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Deep learning gets scope time
Deep learning has made a resounding impact on microscopy; we highlight the state-of-the-art and potential future 
directions in this focus issue.

As editors at Nature Methods, we see 
trends in research methods rise 
and fall over time, with each trend 

carrying its own momentum and excitement. 
In microscopy, we would be hard pressed 
to identify a trend that has so captured the 
current zeitgeist as deep learning. Indeed, not 
since the introduction of super-resolution 
microscopy methods over a decade ago has 
a class of tools had such potential to disrupt 
microscopy as we know it.

The power of conventional machine 
learning, especially for image analysis, is well-
established in the microscopy community. 
In contrast, the benefits of deep learning 
have emerged more recently, although the 
advantages have been known in medical 
imaging for some time. Generally speaking, 
applications of deep learning in microscopy can 
be divided into two broad classes — methods 
used for image analysis, which include 
classification, phenotyping, segmentation, 
tracking and more; and those used for image 
formation or reconstruction. The papers 
included in this focus issue highlight advances 
in both classes of techniques and provide 
means for users to implement these tools.

On the image analysis side, the focus 
includes a Review by David van Valen and 
colleagues that introduces deep learning, 
summarizes major applications and includes 
specific use-cases for interested readers. 
Two Analyses describe large-image analysis 
competitions. The first, from Anne Carpenter 
and colleagues, presents the 2018 Data 
Science Bowl, an image analysis competition 
for automated segmentation of cell nuclei 
from diverse types of 2D images. The second, 
from Emma Lundberg and colleagues, 
describes the results of the Human Protein 
Atlas Image Classification Competition for 
automated classification of subcellular protein 
localizations from fluorescence images. In 
both cases, the top performers surpassed 
the previous field standard by using deep 
learning, and the winning strategies could be 
mined for insight into how to further improve 
these types of tasks.

On the image reconstruction side, a 
Perspective from Loic Royer and colleagues 
covers recent innovations that deep learning 
has brought to generating fluorescence 
microscopy images, including approaches 
for generating super-resolution images from 
low resolution or sparse images, methods 
for creating fluorescence images from 

phase-contrast images, going from low to 
high signal-to-noise images and more, and 
looks toward the future of these tools. In 
addition, an Article from Aydogan Ozcan 
and colleagues describes DeepZ, a tool for 
generating a 3D fluorescence image directly 
from a 2D snapshot.

Also included in this focus issue is a 
Correspondence from Christophe Zimmer 
and colleagues describing ImJoy, an open-
source browser-based platform designed to 
facilitate widespread reuse of deep learning 
solutions for image analysis and beyond. And 
to round things out, a Perspective from Fred 
Hamprecht, Anna Kreshuk and colleagues 
presents ilastik, the popular and powerful 
software tool that has brought machine-
learning-based image analysis to biologists. 
Although ilastik stands out for being the only 
tool featured in this focus issue that does not 
yet incorporate deep learning, we think it fits 
in as a testament to the power of conventional 
machine learning.

Although the general focus of our pieces 
is on fluorescence microscopy in cell biology, 
deep learning is also applied much more 
broadly than what is presented in these 
papers, for example in neuroscience where 
many deep-learning-based techniques 
have been developed for such applications 
as segmentation and tracing of neurons in 
fluorescence and electron microscopy images 
for connectomics, or functional studies 
tracking animals and their body parts for 
behavioral analyses, and much more.

While the pieces in this focus promote 
the use of deep learning in many aspects of 
microscopy, the authors also provide balanced 
and nuanced descriptions of the limitations of 
these approaches. As with all new approaches, 
it is crucial to separate performance from 
hype and regard these methodologies with the 
proper amount of caution.

Deep learning methods have been 
criticized for being a ‘black box’, where an 
input is entered and an output is delivered 
with no insight into the process. However, 
the black box issue is not true in all cases, and 
what information can be mined from within 
neural networks is an active area of research 
in computer science. Another concern is the 
huge amount of data, which often require 
manual annotation, typically needed to 
properly train deep learning models. This is 
also an area of active research, where the limits 
of training data needed for high performance, 

as well as augmentation strategies and transfer 
learning, are being explored.

Separately, the use of deep learning in 
image formation and reconstruction has been 
questioned for the possibility of introducing 
artifacts, especially when generating images of 
structures that were never seen by the model 
during training. This is an important concern, 
particularly since rare events are often those 
that are of the most interest to biologists, 
and must be addressed within the context of 
a given experiment. Proper training is also 
essential, as overtraining and undertraining 
can negatively impact model output and 
potentially affect biological interpretation of 
results. Again, as with all new methods, we 
suggest that new users do their homework, 
enlist experts when possible, include proper 
controls and validate findings with alternative 
methods when possible. Over time, with 
careful use on diverse tasks, the true strengths 
and weaknesses of these approaches on 
biological applications will be further revealed.

In handling many papers in this area, 
and with the help of peer reviewers, we have 
come to identify criteria that we think are 
important for publishing advances in deep 
learning in imaging. These include a detailed 
explanation of the artificial neural network 
used in the paper, along with justification 
as to why it was chosen. We also expect a 
clear description of model training, data 
on how training affects performance and 
tests for overtraining. We ask researchers 
to test the extent to which a trained model 
can be transferred from data taken on one 
microscope or sample type to that taken on 
another microscope or different sample, as 
well as include quantitative tests of accuracy, 
ideally in comparison to ground truth. 
Testing the above on a diversity of datasets 
is also recommended. Our standard policies 
on data and software sharing must also be 
met, and user-friendly tools to access trained 
models are desirable. We welcome feedback 
on these requirements, and retain the 
flexibility to update them over time.

To end, we invite you to explore our 
curated collection of manuscripts published 
in Nature Research journals that highlight 
recent applications of deep learning in 
microscopy (www.nature.com/collections/
deeplearninginmicroscopy). ❐
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