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Advancement in high-throughput microscopy has propelled 
the generation of massive amounts of biological imaging 
data1. These data can offer valuable insights into cellular 

processes and biological systems, but only if we conquer the chal-
lenges of processing these voluminous datasets. The Human Protein 
Atlas (HPA) is a project that faces these challenges and opportu-
nities. Through a systematic antibody-based approach, millions 
of fluorescence microscopy images have been generated to map 
the expression of the human proteome2. Compartmentalization 
is an important mechanism to allow multiple biological reactions 
to occur in parallel. In cells, these compartments are called organ-
elles, and knowledge of which compartments our proteins reside 
in would greatly increase our understanding of human biology. 
The HPA Cell Atlas aims to map the subcellular distribution of the 
human proteome with confocal microscopy3. The current version 
(HPAv19) of the database comprises image data for 12,390 proteins 
(www.proteinatlas.org).

We have previously demonstrated an astounding degree of cellu-
lar complexity; as many as half of all human proteins are localized to 
multiple cellular compartments3, and many proteins show single-cell 
variability4. Unbiased analysis of subcellular protein localizations 
from our images has greatly enriched our vocabulary for describ-
ing cellular systems. This analysis was first performed manually3, 
and we have since integrated the labor-intensive annotation tasks 
into a mainstream video game5, which produced tens of millions of 
human annotations. These annotations were particularly success-
ful at the challenging task of identifying mixed patterns of protein 
localizations, a task called multi-label classification6. Previously, we 

developed a machine learning model, called Loc-CAT, capable of 
classifying mixed patterns in images of cell types of different mor-
phology5. However, the performance measured with macro F1 score 
(defined in Methods) was yet substantially lower (0.47) than that of 
human experts (0.71).

The emerging field of deep learning7 has powered many suc-
cessful real-life applications, including image recognition8, gaming9 
and autonomous cars10. Deep neural networks, particularly con-
volutional neural networks (CNNs)8, have been widely applied to 
perform computer vision tasks such as image classification11,12 and 
segmentation13. Compared to Loc-CAT5, which uses hand-crafted 
features as inputs, CNNs typically take raw images as inputs and 
learn hierarchical feature representations in an end-to-end fashion. 
This allows the model to better abstract cellular localization pat-
terns and scale efficiently with data size14. CNNs are increasingly 
used for biological image analysis15–17 including multi-label clas-
sification for yeast protein localization18. Over recent years, a col-
lection of successful neural network architectures, such as Resnet19, 
Inception12 and Densenet20, and different training techniques, such 
as Dropout21, Batch Normalization22, Focal Loss23, Cyclical learning 
rates24 and AutoAugment25, have been developed. Software librar-
ies, such as PyTorch26 and Tensorflow27, can be easily implemented 
and applied to a wide range of applications. Automated machine 
learning28(AutoML) techniques such as hyperparameter optimiza-
tion29, meta-learning30 and neural architecture search31 make the 
model development easier and accessible even for nonexperts.

Finding the best solution for classifying protein localizations 
within HPA Cell Atlas Images involves performing searches of 
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parameters and hyperparameters over an enormous solution space. 
Crowd-sourced competitions are commonly used for large-scale 
solution searches. One such success is ILSVRC32, which provides 
the ImageNet dataset33 that is widely recognized as powering the 
current advancements in deep learning. Competitions for cellular 
image analysis have also been successfully introduced; for example, 
for classification34 and cell-tracking35. Popular online platforms 
such as Kaggle, Innocentive and DREAM allow publishing datasets 
and hosting competitions typically focused on benchmarking meth-
ods for fundamental research problems (for example, DREAM) or 
crowdsourcing solutions for real-life applications, often motivated 
by considerable prize money (for example, Kaggle).

Here, we present the design and results from our ‘Human Protein 
Atlas Image Classification’ competition, hosted by Kaggle. In con-
trast to typical image classification tasks that predict one label per 
image, our dataset requires classification of multiple labels per image 
(the multi-label problem6). There is also a great class imbalance in 
the dataset, making the classification task harder (the class imbal-
ance problem36). During a 3-month period, 2,172 teams provided a 
total of 55,213 submissions, nearly all based on deep learning. The 
top-ranking solutions were awarded with a cash prize (Table 1, first 
place, US$14,000; second place, US$10,000; third place, US$8,000; 
fourth place: US$5,000). The models far outperformed our previous 
effort at protein localization classification, and there was consider-
able variety among the solutions with some convergence on popular 
networks and training techniques. Different strategies for adapting 
neural networks and loss functions, augmenting data and using pre-
trained networks were successfully applied by the winning teams. 
Here, we present the competition design, statistical analyses of the 
solutions and visualizations of the winning models to shed light on 
the considerations for designing multi-label pattern classification 
algorithms and potential applications of the winning solutions.

Results
Competition design and assessment metrics. The aim of the com-
petition was to develop computational models for the classification 
of protein subcellular localization patterns in confocal microscope 
images from the HPA Cell Atlas (Fig. 1). We prepared a dataset of 
42,774 nonpublic images and allowed participants to use any exter-
nal data, including the ~78,000 images that are publicly available 
on the HPA Cell Atlas (HPAv18). Each image contained multiple 
cells and had four channels marking the protein of interest and cell 
outlines (Fig. 1a).

We designed the competition to address the two main challenges 
of developing computational models for this purpose, namely the 
class imbalance and multi-label problems (Fig. 1). The first dif-
ficulty arises from the highly imbalanced frequencies of the 28 
localization classes (Fig. 2a and Supplementary Table 1). The most 

common label in the training set was ‘nucleoplasm’ (12,885 images 
in training and 31,590 images in HPAv18), while the rarest label was 
‘rods and rings’ (11 images in training and 42 images in HPAv18, 
see Supplementary Table 2). The second difficulty, the multi-label 
problem, stems from the need to potentially assign multiple labels 
to each image. Each image has been assigned 1–6 such labels during 
the standardized annotation pipeline3 (Fig. 1c, Methods). In total, 
the dataset contains 577 unique combinations of labels. Beyond 
these main difficulties, different cellular morphologies of the 27 cell 
lines in our dataset add complexity (Supplementary Table 3).

Typically, learning algorithms perform well on common classes 
but perform poorly on rare classes. To encourage an equally dis-
tributed classification performance among all the 28 classes, we 
chose to assess model performance with a macro F1 score (range 
0–1). This score gives importance to both precision and sensitivity 
(recall), and is calculated for each class before averaged over the 28 
classes. To earn a high score in this competition, a model thus needs 
to pay special attention to rare classes. During the competition, 
teams could see their score and rank on a public leaderboard, which 
was computed from a subset of test images (‘validation_public’, see 
Fig. 2a). At the end of the competition, another subset of test images 
(‘test_private’, see Fig. 2a) was used to produce the final ranking on 
the private leaderboard (Methods). During the competition, ~148 
images of rare classes were mistakenly included from the published 
Cell Atlas Images; this was fixed during the competition by exclud-
ing the leaked images from the ‘test_private’ set (full disclosure in 
Methods). Since the participants were notified and the final evalua-
tion was performed with the ‘test_private’ set, the overall impact of 
the leakage on the results of this paper is minimal.

Participation and performance. After the final ranking, we 
awarded the top four teams based on their rank on the private lead-
erboard (Table 1). The winning team generated models with macro 
F1 scores ranging from ~0.56–0.59, >20% better than Loc-CAT and 
the citizen science results. We invited nine teams among the top 40 
to participate in this study.

When analyzing the final submission for all the teams (2,137 
submissions), we found that the top teams were marginally better 
than most other teams. Both the precision and recall of experts are 
substantially higher than the top teams. Figure 2b shows the pre-
cision-recall for all the teams and the experts’ score (on a similar 
dataset; precision, 0.74 and recall, 0.69) from our previous work5. 
We computed macro F1 scores for groups of teams binned based 
on their ranking on the private leaderboard (Fig. 2d). The scores 
for teams with higher ranks varied less, which indicates it is harder 
to improve further for higher ranking models. The scores for sin-
gle label images are significantly higher (Methods, P < 1.08 × 10−5, 
two-sample Kolmogorov–Smirnov test) than for multi-label images 

Table 1 | Models and their performance for top ranking and selected teams

Rank Team Name Member(s) Score Award (US$)

1 Team 1: bestfitting D. Shubin 0.593 14,000

2 Team 2: WAIR J. Lan 0.571 10,000

3 Team 3: pudae P. Jinmo 0.570 8,000

4 Team 4: Wienerschnitzelgemeinschaft S. Mahmood Galib, C. Henkel, K. Hwang, D. Poplavskiy,  
B. Tunguz, R. Wolfinger

0.567 5,000

5 Team 5: vpp Y. Gu, C. Li, J. Xie 0.566 –

8 Team 8: One More Layer (Of Stacking) D. Buslov, S. Fironov, A. Kiselev, D. Panchenko 0.563 –

10 Team 10: conv is all u need X. Cao, R. Wei, Y. Wu, X. Zhu 0.557 –

16 Team 16: NTU_MiRA K.-L. Tseng 0.553 –

39 Team 39: Random Walk Z. Gao, C. Ju, X. Yi, H. Zheng 0.540 –
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for all groups, emphasizing the difficulty of classifying images with 
mixed localization patterns.

To understand the impact of class imbalance on the performance 
of the models, we computed the class-wise score distribution for the 
top ten teams. Figure 2c and Supplementary Table 4 show that the 
averaged F1 score, precision and recall for each class varied more 
when the class had fewer samples in the training dataset; in par-
ticular, most models struggled with the two rarest classes (rods 
and rings, microtubule ends). The difficulty of identifying differ-
ent localization patterns in the images also played a role in perfor-
mance for each class. For example, the average F1 score was higher 
for aggresomes than plasma membrane, despite a lower num-
ber of training images (322 and 3,777, respectively), because the 
aggresome is visually distinct while the plasma membrane is often 
confused with the cytosol. The performance correlated better with 
the sample number for cell lines than for classes (Supplementary 
Fig. 1), likely because the assessment metric (macro F1) encouraged 

participants to develop models that are equal in performance for 
the different classes, rather than the different cell lines. A confusion 
matrix (Supplementary Fig. 2) for single-class samples based on the 
winning model shows that the endoplasmic reticulum and peroxi-
somes were confused with cytosol, and that nuclear speckles were 
mistakenly classified as nucleoplasm. The patterns are consistent 
across cell lines, despite morphological differences, showing that 
the model generalizes well (Supplementary Fig. 2).

Strategies used by the top-ranking solutions. To compare the 
underlying structures of the solutions, we invited the top 200 teams 
to fill out a survey on the methodology used, which was answered 
by 56 teams. Notably, all teams but one used deep learning models. 
For the neural network architectures, 44 of the 56 teams used varia-
tions of Resnet, Densenet or Inception as backbone architecture, as 
they are known to be effective for image recognition tasks12,19,20. To 
address the multi-label problem, most teams (34 of 56) used binary 

Multi-label
Kaggle competition

1

2
3

4, 5, 6

a

c

b

Multi-label prediction

Nucleoplasm
Cytosol

Plasma membrane
Nucleoli

Mitochondria
Golgi apparatus
Nuclear bodies

Nuclear speckles
Nucleoli fibrillar c.

Centrosome
Cell junctions

Actin filaments
...

Protein of interestNucleus

ERMicrotubules

Classifier

Multilocalizing proteins Cell line variation

- Densenet-121
- AutoAugment
- Lovász loss
- Cyclic LR
- Ensemble models
- ...

Nucleoplasm,
Actin filaments

Nucleoli,
Plasma membrane,
Actin filaments

A549

U-2 OS

2,172 teams
54,000 submissions

3 months

US$37,000

Images

HPAv18
(78,000)

Test
(12,000,

labels withheld)

Labels

HPA Cell Atlas

Training
(31,000)

Winning solutions

Cytosol
Nucleoplasm

Rods and
rings

Class imbalance
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cross entropy. Many teams handled class imbalance by apply-
ing class weights or by using focal loss23 to train the models, and 
employed multi-label stratification37 to generate validation datasets. 
Most teams used the public HPAv18 dataset for training; adding 
these ~78,000 annotated images led to a substantial boost in image 

classification scores (for example, from 0.510 to 0.552 for Team 1, 
see Supplementary Tables 5b and 6), mostly due to the increase of 
rare class images. Augmentation strategies such as random crop-
ping, rotation and flipping were commonly used (Supplementary 
Notes and Supplementary Table 5).
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Fig. 2 | Competition results. a, Image numbers of each localization class for HPAv18, training, validation_public and test_private dataset. PM, plasma 
membrane; Golgi app., Golgi apparatus; N. bodies, nuclear bodies; N. speckles, nuclear speckles; N. fibrillar c., nucleolar fibrillar center; ER, endoplasmic 
reticulum; N. membrane, nuclear membrane; C. junctions, cell junctions; Int. fil., intermediate filaments; Actin fil., actin filaments; MTOC, microtubule 
organizing center; F. a. sites, focal adhesion sites; Cyt. bridge, cytokinetic bridge; C. bodies, cytoplasmic bodies; M. ends, mitochondrial ends. b, Precision-
recall values for the experts, selected teams (including the top four winning teams) and all other teams. c, Statistics on the macro F1 scores of different 
teams and their performance on different classes. Score distributions for the different label classes with the classes sorted according to sample size 
(high to the left, low to the right). n = 10 teams for each violin. The minimum (min), mean, percentile (P) and maximum (max) values can be found in 
Supplementary Table 9. d, Statistics on the macro F1 scores of different teams and their performance, binned into groups based on their ranking on the 
leaderboard. The top 10, 11–100, 101–500 and the remaining teams, respectively. The scores for single localized, multi-localized and all proteins are shown 
separately. n = 10 teams for violins with teams 1–10, n = 90 teams for violins with teams 11–100, n = 400 teams for violins with teams 101–500 and n = 1,637 
teams for violins with teams 501–2,137. The minimum, mean, percentile and maximum values can be found in Supplementary Table 9.
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To understand how these different strategies contribute to per-
formance, we collected detailed information about the solutions 
and intermediate experiments from nine selected teams (Table 1, 
Supplementary Table 5 and Supplementary Figs. 3–11). Among 
these teams, different strategies were applied to different aspects of 
image analysis. For example, Team 1 used an optimized single neu-
ral network and a combined loss function with a Lovász loss38 term, 
Team 2 focused on data preprocessing, Team 3 used automatic data 
augmentation and Team 4 ensembled a large number of models.

We found that different teams often drew the same conclusion 
on a number of strategies, despite the fact that they mostly worked 
independently. Team 3 employed an automated augmentation 
strategy search algorithm (AutoAugment25), which resulted in an 
improvement of the macro F1 score from 0.477 to 0.499. In addition 
to training time augmentations, test time augmentations were also 
shown to be effective by several teams. Both Team 1 and 5 found 
DenseNet20 to be more effective than Resnet19 in terms of neural 
network architecture. In terms of network size, Teams 1 and 4 found 
medium-sized networks (for example, Densenet 121) to be better 
than larger ones (for example, Densenet 169). Several teams, includ-
ing 1, 2, 3 and 16, found that scores can be improved by using a 
larger image size (for example, 1,024 × 1,024 pixels). Teams 4 and 10 
even applied models that work on multi-scale. Techniques such as 
model ensembling and stacking were used to push the performance 
beyond single models. By ensembling single models from the top 
three teams, we obtained an even better model (macro F1 = 0.575, 
Supplementary Table 7).

To facilitate the reuse of these solutions, we built a model zoo 
(https://modelzoo.cellprofiling.org) to host the source code and 
trained models from the selected teams. These can be used as pre-
trained models39 to reduce the training time and training data size 
for constructing new models for biological image analysis.

Assessing the biological relevance of the winning model with class 
activation maps (CAMs). Understanding whether a prediction for 
a given image is based on biologically relevant information is dif-
ficult due to the poor interpretability of neural networks. However, 
newly developed visualization techniques, such as class activation 
mapping40, allow us to peer into the spatial attention of these models 
to ensure that the classification is based on biologically meaningful 
information. A model that fails to focus on the biologically relevant 
regions of a cell generally indicates lower performance. In Fig. 3, 
we compared the best, an intermediate, and a low scoring model 
(Methods) by generating CAMs from ‘easy’ (cytosol and nucleoli) 
and ‘hard’ patterns (mitochondria, plasma membrane, Golgi appa-
ratus). For the easy patterns, the CAMs visualize biologically rel-
evant regions for the top and intermediate model. For the hard 
patterns, we see more diversity between the models and images.

CAMs can also be used to identify when the score fails to reflect 
biological information. The final solution by Team 1 is an ensemble 
of two models (Supplementary Fig. 3): a classification model and a 
metric learning model41 that was trained with antibody identifiers 
from HPAv18 (Supplementary Notes, Supplementary Fig. 12 and 
Supplementary Table 5). The metric learning part boosted the score 

Input image

a b c d e

Cytosol Mitochondria PM Golgi app. Nucleoli

CAM
top model

score 0.565

CAM
intermediate

model
score 0.549

CAM
low

model
score 0.494

Fig. 3 | Visualization of model spatial attention. CAMs for three different models, the top-scoring model (from Team 1), an intermediate-scoring model 
(from Team 3) and a low-scoring model (from Team 1). Scale bars, 10 μm. a, For the cytosolic protein Methenyltetrahydrofolate synthetase, the CAMs 
for all three models highlight relevant cellular regions. b, The CAMs for the mitochondrial protein Prohibitin 2 show a progressively worse overlap with 
the mitochondrial staining following the model accuracy score. c, The plasma membrane staining of Catenin beta 1 overlaps well with the CAM for the 
top model, but not for the intermediate and lower scoring models. d, The CAMs for Golgi reassembly stacking protein 1, which is localized to the Golgi 
apparatus, show attention of correct size for all three models, but none of the models focused on all cells in the image. e, The nucleolar staining pattern of 
UTP6 small subunit processome component, is captured well by the CAMs for the top and intermediate models in the nuclear region of the cell.
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by ~4% (macro F1 of 0.565 with the classification part alone to 0.593). 
However, we found that the metric learning model mainly gained 
performance by pairing images in the test set to those acquired from 
the same sample in HPAv18 (Methods). With the help of CAMs, 
we found that the visual attention pattern varied from protein to 
protein and often focused on biologically meaningless features 
(Supplementary Fig. 13). Presumably, the metric learning model 
works by exploiting ‘batch effects’ in the dataset through so called 
‘hidden variables’, a pitfall in machine learning40. Nevertheless, the 
classification model without metric learning retained the record  
of single model performance (macro F1 = 0.565, Supplementary 
Table 5) with verified performance in a five-fold cross-validation 
experiment (Supplementary Table 8).

Visualizing image feature representations of subcellular protein 
distributions. To investigate the ability of a CNN to distinguish 
subcellular structures, we analyzed features extracted from the 
penultimate layer of the classification model from Team 1 (with-
out the metric learning model). Figure 4 shows a uniform manifold 

approximation and projection for dimension reduction (UMAP)42 
projection of these features. First, the features clearly distinguish the 
different subcellular locations. Nuclear sub-compartments cluster 
separately, such as the nucleoplasm (for example, RUNX1 translo-
cation partner 1), nucleoli (for example, EBNA1 binding protein 2), 
nucleoli fibrillar center, nuclear bodies (for example, Centromere 
protein T) and nuclear speckles (for example, Heterochromatin pro-
tein 1 binding protein 3); these examples also illustrate how well fine 
structures are distinguished, such as the assignment of heterochro-
matin protein 1 binding protein to nuclear speckles and centromere 
protein T to nuclear bodies (that is, centromeres). Similarly, the 
proteins Enhancer of mRNA decapping 4 and Perilipin 3 are accu-
rately predicted to localize to cytoplasmic bodies and lipid droplets. 
Although these cellular structures are small puncta in the cytosol, 
the model can reliably distinguish them.

Images that were assigned multiple localization labels (gray 
points in Fig. 4) are found between clusters of images representing 
the single locations. Examples include L3MBTL3 histone methyl-
lysine binding protein, located in both the nucleus and nucleoli, and 
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Utrophin, located in both the nucleus and plasma membrane. This 
indicates that the features learned by the CNN have the potential to 
be used as quantitative representations of mixed patterns.

A web application was developed and deployed with the ImJoy 
platform43, where users can interact with the UMAP and the images 
with associated metadata (https://tinyurl.com/y6nhf5bo). This pro-
vides a new way to explore large online resources, such as the HPA 
database.

Discussion
The HPA image classification competition provides crowd-sourced 
solutions for the task of classifying protein subcellular localization 
patterns in fluorescence microscopy images. The participants were 
tasked with developing solutions to solve the multi-label classifica-
tion problem on a dataset with high class imbalance. The partici-
pants tested a large number of techniques in a competitive setup, 
which led to the use of external datasets and methods not previously 
applied to multi-label classification.

A key design choice for the competition was to use macro F1 as 
the assessment metric. It successfully encouraged the participants to 
optimize their solution to handle the label class imbalance in our 
dataset and yielded roughly similar performances among the classes 
except the rarest two. During the challenge, many strategies were 
implemented, such as adapting Lovász loss (designed for segmen-
tation) to multi-label classification, developing the metric learning 
model and testing a large number of new models and training tech-
niques. As a result, the performance of the winning models are sub-
stantially better than our previous Loc-CAT model, but not yet at the 
level of human experts. More comparative experiments are required 
to better evaluate the gap between our models with human experts.

Despite the superior performance of deep learning methods, 
there are limitations including hallucination and generalization 
problems44. It has also been reported that machine learning algo-
rithms can easily pick up unintentional variations (for example, 
in biomedical image classification45). We speculate that the met-
ric learning model used these unintended hidden variables46(for 
example, background noise) to match the test images with HPAv18 
and boost the performance. Since this type of problem cannot be 
reflected by the evaluation metric, special attention is required for 
future competition organizers to prevent this type of exploitation.

We envision that the pretrained models provided in our model 
zoo will be useful in the context of transfer learning, a popular 
method that dramatically reduces training time and improves the 
generalization of learning models39. As common practice, models 
pretrained with ImageNet32,33 are used even when applied to micros-
copy images of cells47, showing the robustness of transfer learning. 
However, it has also been shown that the generalization of the 
ImageNet features is questionable, especially for fine-grained classi-
fication tasks48. Compared to the classes in ImageNet (for example, 
house and plane), the patterns in cells (for example, mitochondria 
and centrosome) are much finer grained. Thus, we foresee that 
applications involving biological images will adopt the HPA clas-
sification models trained with a large number of cell microscopy 
images instead of using ImageNet. Furthermore, our HPA competi-
tion dataset can be used as a benchmark dataset similar to ImageNet 
for developing new algorithms. For example, it may aid in designing 
models that handle high class imbalance or advancing cell mapping 
research by developing models for unsupervised analysis of subcel-
lular protein patterns in single cells.

Although the top model could not reach expert level perfor-
mance, it still opens up avenues for advancing cell biology. The use 
of high-dimensional features (as in the UMAP) instead of discrete 
labels constitutes an attractive approach for building systems level 
representations of cells harboring information about both single 
and multi-localizing proteins and serves a basis for quantitative 
integration of spatial information with other ‘omics data.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information, details of author 
contributions and competing interests, and statements of code and 
data availability are available at https://doi.org/10.1038/s41592-019-
0658-6.
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Methods
Competition and prizes. This paper describes the outcome of the HPA Image 
Classification competition at Kaggle (https://www.kaggle.com/c/human-protein-
atlas-image-classification/), which was active from 3 October, 2018 to 10 January, 
2019. The top-ranking solutions were awarded with a cash prize (Table 1, first 
place, US$14,000; second place, US$10,000; third place, US$8,000 and fourth  
place, US$5,000).

Image generation in the HPA Cell Atlas. In the HPA Cell Atlas, each target 
protein is imaged in three different cell lines selected based on messenger RNA 
expression data from a large panel of cell lines. A standard immunostaining 
protocol is applied in a 96-well format to stain the target protein49 (https://www.
protocols.io/view/standardized-immunohistochemical-staining-used-in-yj8furw). 
To facilitate the downstream annotation process, reference markers for the nucleus, 
microtubules and endoplasmic reticulum are also stained. Confocal microscopes 
(63× oil immersion) are used to image each sample in the 96-well plate, and 
multiple images are typically acquired for each well. The four-color images (image 
size 2,048 × 2,048; 16-bit, pixel size 0.08 µm or 3,072 × 3,072; 16-bit, 0.08 µm) are 
uploaded to our laboratory information management system, where automatic 
quality checks are applied to pass only in-focus images with high contrast and 
good staining intensity. Manual annotation of the observed localization pattern is 
performed by applying one or more labels to the images (typically two to six) from 
each sample (same antibody, cell line and sample preparation date3). This dataset 
contains a mixture of images annotated by two types of workflow: (1) experts 
annotate the image, another expert curates it and (2) gamers from EVE Online5 
annotate the images and the annotations are curated by experts, as described in (1). 
Typically, at least two images per antibody per cell line are selected to create the 
dataset. In HPAv18, 32 labels are used to describe cellular localization classes.

Dataset assembly and quality control. The total dataset consisted of 42,774 
images. The training set had 31,072 images, and the test set had 11,702 images. 
We provided all images both in high resolution (a mix of 2,048 × 2,048 and 
3,072 × 3,072 pixels, TIFF 8-bit image files) and low resolution (512 × 512 pixels, 
PNG 8-bit grayscale files). Note that the PNG files were directly resized from  
TIFF images. The size inconsistency for the TIFF images were due to the variation 
of the actual size of acquired area from the sample originally, but they all shared  
the same pixel resolution. A total of 32 organelle classes from the HPA were 
merged into 28 classes for the competition (see Supplementary Table 1 for details  
of how the classes were merged and Supplementary Table 2 for the distribution 
of the classes within the training and test sets). Since the HPA Cell Atlas includes 
over 30 different cell lines, we sampled across 27 main cell lines, and have a 
roughly equal distribution across different cell lines. Sampling was done in groups 
consisting of each cell line and organelle combination to achieve this effect. Still, 
some groups were smaller than others, due to the imbalanced nature of the total 
HPA data, both regarding the class labels applied and the cell lines used in the 
experiment (see Supplementary Table 3 for the cell type image distribution in the 
training and test sets).

The test dataset images were collected first from nonpublished images 
generated within HPA. We excluded images from the same biological sample (with 
a specific protein and cell line) already represented in the test set from the training 
set to avoid information leakage. The training set images were collected from both 
public and nonpublic HPA Cell Atlas images.

For quality control, we applied further image analysis to get an acceptable 
quality of the images in the competition dataset. This allowed us to use 
nonpublished images from the HPA Cell Atlas, which are of mixed quality (high 
and low) compared to the high quality of the published images. The quality control 
was based on cell count and image contrast. The cell count was performed on the 
red (microtubules) channel images, mainly by applying a Gaussian filter and otsu 
thresholding with the scikit-image50 library and by removing objects smaller than 
8,000 pixels. We required a minimum of five cells per image and excluded cells 
touching the image borders. A minimum contrast check was applied to the green 
channel (protein of interest) with the ‘is_low_contrast’ method from scikit-image. 
We set ‘fraction_threshold’ to 0.2 and ‘upper_percentile’ to 99.99. Low contrast 
images were discarded.

Image-wise classification task. In this competition, the classification task is 
performed image-wise mostly because our current annotations are made at this 
level for each protein/antibody and cell line. We do not provide cell-wise labels, 
although it may yield better performance due to single-cell variations. However, 
we expect the impact to be minimal because only ~2% of proteins vary in their 
localization patterns between cells in images3 and because these images are 
assigned the labels for all patterns observed in the image. Future improvements 
along this direction may be targeted to these proteins show single-cell variations.

Image resolutions and external data. We provide the entire image dataset in high 
and low resolutions, and we allowed the participants to explore the use of external 
data and pretrained models. We believe this is important, because it allowed the 
participants explore not only the model itself, but also different strategies to fetch 
external data, augment the data and take advantage of pretrained models, which 

had already been shown to be effective. We also believe it is important to obtain 
better performance under realistic constraints.

For the hidden variable problem raised from the metric learning model, 
prohibiting the use of external training data (and pretrained networks) may reduce 
the same type of risk. However, this may also prevent teams from achieving the 
desired outcome, since external data can improve performance, as we observed 
with HPAv18. A compromise may be to restrict the set of information allowed 
for training, such as only location labels from HPAv18 to avoid finding weak 
correlations with extra information such as antibody identifiers.

Data leakage disclosure and fix during the competition. During the competition, 
participants notified us that there was a data leakage issue after comparing the 
public HPA Cell Atlas Images (HPAv18) with the test set images using similarity 
analysis (for example, perceptual image hashing). We identified that 148 out of 
11,702 images in the test set (including ‘validation_public’ and ‘test_private’) were 
mistakenly included. We also noticed that all the leaked images contain rare class 
labels, and many of the leaked images were not identical to images in HPAv18 but 
highly similar, for example by coming from a different focal plane.

Shortly after the leakage was identified, most of the leaked images in 
‘test_private’ (the final evaluation test set to generate the ranking on the private 
leaderboard) were removed from scoring, and the rest of the leaked images were 
swapped with unleaked images with the same labels from ‘validation_public’ to 
keep rare classes in both test sets. All participants were notified of the leak and the 
fix. Most teams detected leaks in their code and excluded those leaked images from 
their own validation dataset.

Performance criteria. The F1 scores computed in Fig. 2 were computed from the 
following equation:

Precision ¼ Tp

Tp þ Fp

Recall ¼ Tp

Tp þ Fn

F1 ¼ 2 ´
precision ´ recall
precision þ recall

where Tp denotes the number of images that are true positive, and Fn, Fp denote the 
false negative and false positive, respectively.

The macro F1 score is computed from:

macro F1 ¼ 1
n

Xn

i¼1

F1

 !

During the challenge, we used macro F1 to compute the score for public 
leaderboard rankings. Each team was allowed to select two final submissions at 
the end of the challenge. Macro F1 was used to compute the score on the private 
leaderboard (if there were two submissions for a team, we took the maximum 
score), and this was used as the main criterion to award the teams.

To analyze the score distributions of all teams, we took the one submission 
per team that gave the maximum score on the private leaderboard. For Fig. 2d we 
computed the score for all, single- and multi-localized classes with macro F1. Per-
class F1 scores in Fig. 2c were computed with F1 for each class with no averaging. 
Scores shown in tables were rounded down.

Public and private leaderboard. During the competition, teams were scored and 
ranked on a public leaderboard. To prevent overfitting to the public leaderboard, a 
subset (29%) of the test set was used for calculating the leaderboard scores, while 
the remaining part (71%) of the test set was preserved for the final evaluation. This 
is important because participants tend to optimize toward higher scores on the 
public leaderboard at the risk of overfitting to the test data.

Since the participants ran their own model and only submitted the predicted 
labels for the test set, it was mandatory for the top four winning teams to submit 
their models for further inspection.

CAMs. We used Grad-CAM40 to produce the CAMs shown in Fig. 3 and 
Supplementary Fig. 13 from a chosen reference convolutional layer of the network 
under investigation. We generated CAMs for the following models in Fig. 3: Model 
1 is densenet121_1024 from Team 1, Model 2 is inception-v3 from Team 3, Model 
3 is densenet121_standard_no_crop and the metric learning model from Team 
1. The architecture of these three models are shown in Supplementary Fig. 12. 
For generating CAMs, the reference convolutional layer of these models was set 
to Block3, Mixed_7c, Layer3 and Layer3, respectively. The generated CAMs were 
resized and overlaid on top of the corresponding input image. These models are 
also described in Supplementary Notes: experiment 18 in Supplementary Table 5b, 
experiment 8 in Supplementary Table 5f, experiment 30 in Supplementary Table 5b 
and model 5 in Supplementary Table 5a.
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classification competition model zoo is being built to offer downloads of the top 
models generated during the competition. The model zoo can be found at https://
modelzoo.cellprofiling.org.
The source code for the ImJoy plugin HPA-UMAP can be found at https://github.
com/imjoy-team/example-plugins.
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Feature visualization with UMAP. For the feature visualization in Fig. 4, we used 
the 1,024-dimension feature from the ‘fc’ layer (as shown in Supplementary  
Fig. 12) of the densenet121_1024 model from Team 1. It was projected with 
UMAP to reduce the dimensionality from 1024 to 2. For generating the UMAP, the 
number of neighboring points, minimal point distance and number of components 
metric were set to 15, 0.1 and 2, respectively. The distance metric was set to 
Euclidean distance. We processed all the images in the training set and the entire 
HPAv18 dataset, and the generated 2D vectors were then plotted as a scatter plot. 
The data points are color coded are corresponding to their annotated location.

For the live HPA-UMAP (https://tinyurl.com/y6nhf5bo), we wrote the ImJoy 
plugin in Javascript and used Plotly.js to make the plot. Images shown when 
clicking the data points were pulled from the proteinatlas.org dynamically.

Metric learning model results evaluation. The score boost for the metric learning 
is mostly because of identification of ‘batch effects’ defined as images derived from 
different regions of the exact same sample (antibody and cell line combination), 
and not mainly from improved performance for rare classes. In total, 935 images in 
the ‘test_private’ set has one other image from the same sample in HPAv18 and the 
metric learning model detects 647 (69.2%) of them. We found 270 images in the 
‘test_private’ set where the classification model made wrong predictions, but were 
successfully corrected by the metric learning model. Among these images, 261 have 
at least one image from the same sample in HPAv18 and 34 of them belong to rare 
classes (rare class defined as containing fewer than 1,000 images in the dataset). 
However, there are 71 images from the ‘test_private’ set (including five rare images) 
that were correctly predicted by the classification model, but replaced into wrong 
labels by the metric learning model.

Statistical analysis. The plotting and statistical analysis were performed with 
Python 3.6, NumPy, SciPy, scikit-learn, Pandas, seaborn and Matplotlib. To test 
the Macro F1 score difference between single label and multi-label images a two-
sample Kolmogorov–Smirnov test was performed for significance testing. The test 
returns a two-tailed P value. The scores for single label images are significantly 
higher (P < 1.08 × 10−5) than for multi-label images for all groups. The test was 
done for each group of teams, 1–10: n = 10 teams (P < 1.08 × 10−5), 11–100: n = 90 
teams (P < 3.96 × 10−51), 101–500: n = 400 teams (P < 5.22 × 10−197) and 501–2,137: 
n = 1,637 teams (P < 4.01 × 10−186).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset used for the HPA competition is available at: https://www.kaggle.
com/c/human-protein-atlas-image-classification. The external dataset HPAv18 is 
publicly available on the HPA: https://v18.proteinatlas.org/. A script is provided 
for downloading the dataset is available at https://github.com/CellProfiling/HPA-
competition.

Code availability
Source code used to produce the figures has been released under permissive 
licenses at https://github.com/CellProfiling/HPA-competition. A HPA 
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