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Single-cell transcriptomic technologies have revolutionized 
our understanding of tissues1–3. The systematic construction 
of whole-organ and whole-organism single-cell atlases has 

revealed an unanticipated diversity of cell types and cell states, and 
has provided detailed insights into cellular development and dif-
ferentiation processes4–7. However, strategies for the prospective 
isolation of cell populations newly identified by single-cell genom-
ics are needed to enable their functional characterization or thera-
peutic use. Furthermore, single-cell genomics technologies remain 
cost-intense and scale poorly, impeding their integration into clini-
cal routine.

Unlike single-cell transcriptomics, flow cytometry offers a mas-
sive throughput in terms of samples and cells, is commonly used 
in routine clinical diagnostics8 and remains unrivaled in the ability 
to prospectively isolate live populations of interest for downstream 
applications. However, flow cytometry provides low-dimensional 

measurements and relies on predefined sets of surface markers 
and gating strategies that have evolved historically in a process of 
trial and error. Hence, single-cell transcriptomics (scRNA-seq) 
approaches have demonstrated that flow cytometry gating schemes 
frequently yield impure or heterogeneous populations9,10, and flow 
strategies for the precise identification of cell types defined by 
scRNA-seq are lacking. Conversely, the precision and efficiency of 
commonly used cytometry gating schemes are largely unknown, 
and the exact importance of many surface markers remains unclear. 
Together, these findings highlight a disconnect between single-cell 
genomics-based molecular cell type maps and data generated by 
widely used cytometry assays.

The differentiation of hematopoietic stem cells (HSCs) in the 
bone marrow (BM) constitutes a particularly striking example of 
this disconnect11–14. The classical model of hematopoiesis, which 
is based mainly on populations defined by flow cytometry15–17, has 
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recently been challenged in several aspects by single-cell transcrip-
tomic9,10,18–20, functional21,22 and lineage tracing23 approaches. These 
studies revealed that hematopoietic lineage commitment occurs 
earlier than previously anticipated, that putative oligopotent pro-
genitors isolated by fluorescence activated cell sorting (FACS) con-
sist of heterogeneous mixtures of progenitor populations and that 
lineage commitment is represented most accurately by a continu-
ous process of differentiation trajectories rather than by a stepwise 
differentiation series of discrete progenitor populations12–14,24. The 
frequency of functionally oligopotent progenitors in immuno-
phenotypic hematopoietic stem and progenitor cell (HSPC) gates 
remains controversial9,25,26. These discrepancies have contributed 
to conflicting results between studies that employ scRNA-seq for 
the definition of progenitor populations9,10,18,19,27 and studies that 
use FACS15,16,28. As a consequence, flow-based assays that accurately 
reflect the molecular and cellular complexity of the hematopoietic 
system are urgently needed.

Recently, methods to simultaneously measure mRNA and sur-
face protein expression in single cells have been developed29,30. Here, 
we demonstrate that ultrahigh content single-cell proteo-genomic 
reference maps, alongside appropriate computational tools, can be 
used to systematically design and analyze cytometry assays that 
accurately reflect scRNA-seq-based molecular tissue maps at the 
level of cell types and differentiation states. For this purpose, we 
have generated proteo-genomic datasets encompassing 97–197 
surface markers across 122,004 cells representing the cellular land-
scape of young, aged and leukemic human BM and blood, as well 
as all states of HSC differentiation. We demonstrate how such data 
can be used in an unbiased manner to evaluate and automatically 
design cytometry gating schemes for individual populations and 
entire biological systems without previous knowledge. We show 
that, compared with existing approaches, such optimized schemes 
are superior in the identification of cell types and more accurately 
reflect molecular cell states. Projecting datasets from malignant 
hematopoiesis on our reference atlases enables the fine-mapping of 
the exact stage of differentiation arrest in leukemias, the identifi-
cation of leukemia-specific surface markers and an unsupervised 
classification of disease states. Finally, we demonstrate how such 
data resources can be used to project low-dimensional cytometry 
data on single-cell genomic atlases to enable functional analysis of 
precisely defined states of cellular differentiation. Our data resource 
and bioinformatic advances enable the efficient identification and 
isolation of any molecularly defined cell state from blood and 
BM while laying the grounds for reconciling flow cytometry and 
single-cell genomics data across human tissues.

Results
A single-cell proteo-genomic reference map of BM. To establish 
a comprehensive single-cell transcriptomic and surface protein 
expression map of human BM, we performed a series of Abseq 
experiments in which mononuclear BM cells from hip aspirates 
were labeled with 97–197 oligo-tagged antibodies, followed by 
targeted or whole transcriptome scRNA-seq on the BD Rhapsody 
platform (Fig. 1a). For targeted single-cell transcriptome profiling, 
we established a custom panel, consisting of 462 mRNAs covering 
all HSPC differentiation stages, cell type identity genes, mRNAs 
of surface receptors and additional genes that permit the charac-
terization of cellular states. These genes were selected systemati-
cally to capture all relevant layers of RNA expression heterogeneity 
observed in this system (Supplementary Note 1 and Supplementary 
Table 1). Whole transcriptome single-cell proteo-genomics con-
firmed that no populations were missed due to the targeted nature 
of the assay (Supplementary Note 2). Using this panel, in combina-
tion with 97 surface markers (Supplementary Table 2), we analyzed 
the BM of three young healthy donors, three aged healthy donors 
and three acute myeloid leukemia (AML) patients at diagnosis  

(Fig. 1a, Extended Data Fig. 1 and Supplementary Table 3). For 
samples from healthy donors, CD34+ cells were enriched to enable 
a detailed study of HSC differentiation (Extended Data Fig. 2). For 
samples from AML patients, CD3+ cells were enriched in some cases 
to ensure sufficient coverage of T cells.

Since single-cell proteo-genomic approaches are not commonly 
performed at this level of antibody multiplexing, we designed a series 
of control experiments. First, we performed matched Abseq experi-
ments in the presence or absence of antibodies to ensure that highly 
multiplex antibody stains do not effect the transcriptome of single 
cells (Supplementary Note 3). We further performed a series of Abseq 
experiments on fresh and frozen samples to demonstrate that the 
freeze–thawing process has no great impact on the data (Supplementary  
Note 3). Finally, we evaluated the sequencing requirements for optimal 
cell type classification in high-parametric single-cell proteo-genomic 
experiments (Supplementary Note 4). In the main reference data 
set, 70,017 high-quality BM cells were profiled with combined RNA 
and high-parametric surface protein information, and an average 
of ~7,500 surface molecules per cell were detected (Extended Data  
Fig. 3). Following data integration across experiments and measure-
ment modalities, we identified 45 cell types and cell stages covering 
the vast majority of previously described hematopoietic cell types of 
the BM and peripheral blood (PB), including all stages of HSC dif-
ferentiation in the CD34+ compartment, all T cell and natural killer 
(NK) cell populations of the CD3+ and CD56+ compartments, sev-
eral dendritic cell and monocyte subpopulations from the CD33+ 
compartment and all main B cell differentiation states across CD10+, 
CD19+ and CD38high compartments (Fig. 1b,c, Supplementary  
Note 5 and Supplementary Table 4). In addition, poorly characterized 
populations, such as cytotoxic CD4+ T cells and mesenchymal stem 
or stromal cells (MSCs) are covered. Cells from young and aged BM 
occupied the same cell states in all individuals, whereas cell states in 
AML differed (Fig. 1b and see below). Importantly, the combined 
RNA and surface protein information provided higher resolution and 
revealed cell types that are not readily identified by one of the indi-
vidual data layers alone (Supplementary Note 6).

Besides our main reference dataset, we generated ‘query‘ 
single-cell proteo-genomic datasets, which are displayed in the con-
text of the main reference (Supplementary Note 7). These include, 
first, the analyses of healthy BM and matched PB samples using 
a 197-plex antibody panel to query the expression of additional 
surface markers in the context of our reference (Extended Data  
Fig. 4 and Supplementary Table 2). Second, the analyses of healthy 
BM analyzed with a 97-plex antibody panel in combination with 
whole transcriptome profiling to query any gene’s expression in 
the space defined by our reference (Supplementary Note 2). Third, 
the profiling of the CD34+CD38− BM compartment with a 97-plex 
antibody panel to provide higher resolution of immature HSPCs 
(see below and Extended Data Fig. 9c,d) and fourth, a cohort of 
12 AML patients (see below and Fig. 4). To make our comprehen-
sive resource accessible, we developed the Abseq App, a web-based 
application that permits visualization of gene and surface marker 
expression, differential expression testing and the data-driven iden-
tification of gating schemes across all datasets presented in this 
manuscript. A demonstration video of the app is available in the 
supplement (Supplementary Video 1). The Abseq App is accessible 
at: https://abseqapp.shiny.embl.de/.

A directory of the biological importance of surface markers. 
While surface markers are widely used in immunology, stem-cell 
biology and cancer research to identify cell types, cell stages and 
biological processes, the exact importance of individual markers 
frequently remains ambiguous. To link surface marker expression 
quantitatively with biological processes, we assigned each cell in our 
data set to its respective cell type, and determined its differentia-
tion stage, its stemness score, its cytotoxicity score and its current 
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cell cycle phase as well as technical covariates (see Methods and 
below). Moreover, we included covariates representing unknown 
biological processes that were defined in an unsupervised manner 
using a factor model. Nontechnical covariates were not affected by 

marker expression level (Extended Data Fig. 5a and Methods). For 
each surface marker, we then quantified the fraction of variance of 
expression that is determined by any of these processes (Fig. 2a). 
This model identified markers that represent cell type identities or 
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differentiation stages, as well as stemness, cytotoxicity and cell cycle 
properties (Fig. 2b–d and Extended Data Fig. 5b–f).

To characterize new markers identified by this analysis, we 
focused initially on the evaluation of surface molecules that  
specifically mark distinct stages of HSC differentiation, since a lack 
of specific markers currently impedes the accurate representation  

of lineage commitment by flow cytometry9,10,18,21,27. For this pur-
pose, we performed pseudotime analyses within the CD34+ HSPC 
compartment and identified surface markers that correlate with 
the progression of HSCs towards erythroid, megakaryocytic, 
monocyte, conventional dendritic cell or B cell differentiation tra-
jectories (Methods; Figs. 2d and 3a and Extended Data Fig. 5g).  
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Of note, the monocyte trajectory also includes neutrophil progeni-
tor stages, but mature neutrophils are not included in the datas-
ets due to the use of density gradient centrifugation of samples. 
Moreover, trajectory analyses were not performed for plasmacytoid 
dendritic and eosinophil/basophil lineages due to a low number 
of intermediate cells impeding the unanimous identification of 
branch points. Pseudotime analyses quantified the exact expres-
sion dynamics of many well-established markers, such as CD38 as 
a pandifferentiation marker, as well as CD10 and CD11c as early 
B cell and monocyte-dendritic cell lineage commitment markers, 
respectively (Fig. 2d and Extended Data Fig. 6a). Importantly, our 
analyses revealed new surface markers that specifically demarcate 
distinct stages of lineage commitment, including CD326, CD11a 
and Tim3 (Figs. 2d and 3). To confirm the high specificity of these 
markers for erythroid and myeloid commitment, respectively, we 
used FACS-based indexing of surface markers coupled to single-cell 
RNA-seq (‘index scRNA-seq’, see also Supplementary Note 8), or 
coupled to single-cell cultures (‘index cultures’) (Fig. 3b). As sug-
gested by our proteo-genomic single-cell data, CD326 expression  
was associated with molecular priming and functional commit-
ment into the erythroid lineage (Fig. 3c–g and Extended Data  
Fig. 6b,c). By contrast, Tim3 and CD11a were identified as pan-
myeloid differentiation markers and were associated with tran-
scriptomic priming and functional commitment into the myeloid 
lineage (Fig. 3c,h–o and Extended Data Fig. 6c). Finally, CD98 was 
identified as a new pandifferentiation marker of HSCs, which we 
confirmed by classical flow cytometry (Fig. 2d and Extended Data  
Fig. 6d–h). Beyond the progression of HSCs to lineage-committed 
cells, we also analyzed the surface marker dynamics throughout 
B cell differentiation, allowing us to identify markers specific to 
their lineage commitment, maturation, isotype switching and final 
plasma cell generation (Extended Data Fig. 6i–p).

Our model provides a global and quantitative understanding 
of how well cell type identities, differentiation stages and biologi-
cal processes are related to the expression of individual surface 
markers. A comprehensive overview of surface markers associated 
with these processes is depicted in the supplement (Supplementary  
Data 1 and Extended Data Fig. 5).

Surface protein expression in healthy aging and cancer. To inves-
tigate surface protein expression throughout healthy aging, we com-
pared Abseq data of BM from young and aged healthy individuals. 
These analyses revealed that the expression of surface molecules 
was highly similar across all BM populations between age groups  
(Fig. 4a,b and Supplementary Data 1), suggesting unexpectedly 
stable and highly regulated patterns of surface protein expression 
that are affected only modestly by aging. While cell type frequencies 
were also affected only modestly by aging, a substantial accumu-
lation of cytotoxic effector CD8+ T cells was observed31 (Extended 
Data Fig. 7a). Moreover, the expression of several immune regula-
tory molecules showed age-related changes in surface presentation, 
including the death receptor FAS (CD95), the poliovirus receptor 
(CD155) and the ICOS ligand (CD275) (Fig. 4b). In particular, 
naive CD8+ and CD4+ T cell subsets displayed an aging-associated 
decline in surface expression of CD27, a costimulatory molecule 
required for generation and maintenance of long-term T cell immu-
nity32 (Fig. 4b,c). Together, these analyses suggest that the overall 
pattern of surface protein expression is widely maintained upon 
healthy aging, whereas specific changes, most prominently in the 
surface presentation of immune regulatory molecules, occur.

We next explored surface marker remodeling in AML—a blood 
cancer characterized by the accumulation of immature, dysfunc-
tional myeloid progenitors, also called blasts. While the cellular 
BM of healthy donors displayed highly similar topologies across six 
individuals, initial analysis of three AML patients demonstrated that 
leukemic cells showed patient-specific alterations and a large degree 

of interpatient variability (Fig. 1b). To develop a generically appli-
cable workflow to interpret data from hematological diseases in the 
context of our reference, we generated single-cell proteo-genomics 
datasets from a total of 15 AML patients, covering six t(15;17) trans-
located acute promyelocytic leukemias and nine normal karyo-
type AMLs with NPM1 mutations, of which four patients carried 
an additional FLT3 internal tandem duplication (Supplementary  
Table 3). While an unsupervised integration of these data high-
lighted primarily patient-to-patient variability (Extended Data 
Fig. 7b), projecting cells onto our healthy reference enabled a 
fine-mapping of the differentiation stages of leukemia cells (Fig. 4d 
and Supplementary Note 7). Unsupervised clustering of patients on 
the basis of relative abundancies of differentiation stages revealed 
three main categories: ‘monocytic AMLs’ that displayed an extensive 
accumulation of blasts with classical monocyte phenotype, acute 
promyelocytic leukemias that were blocked in early and late promy-
elocyte states, and ‘immature AMLs’ that showed high numbers of 
immature blasts resembling HSC, multipotent progenitors (MPP), 
early lymphomyeloid progenitor and early promyelocyte states  
(Fig. 4e,f). In general, leukemic blasts retained many features 
reminiscent of the cell stage they were blocked in (Extended Data  
Fig. 7c–e). Accordingly, differential expression analyses revealed 
that many surface markers that distinguish the different AML 
states also mark their corresponding healthy counterparts, such as 
CD133 for immature AMLs or CD14 and CD11b for monocytic 
AMLs (Fig. 4g). This also translated into differential surface expres-
sion of potential drug targets, such as PD-L1 (CD274) and CTLA4 
(CD152) (Fig. 4h and Extended Data Fig. 7f), suggesting that the 
myeloid differentiation program of the AML might be essential in 
the treatment choice of targeted immune therapies.

By contrast, differential analyses between AML and healthy 
cells from the same differentiation stage revealed markers spe-
cifically overexpressed in leukemic cells (Fig. 4i, Extended Data  
Fig. 7c and Supplementary Data 2). Interestingly, these analyses 
readily identified several previously described leukemia stem-cell 
markers, including CD25, Tim3, CD123 and CD45RA33, support-
ing the validity of our approach. Quantifying the degree of inter-
patient heterogeneity of each marker while accounting for cell 
state revealed that many known leukemia stem-cell markers vary 
strongly in their expression between patients (Fig. 4i). Together, 
this workflow of projection to a well-annotated healthy reference 
in combination with cell-state-specific differential expression test-
ing might become a standard in scRNA-seq analyses of hemato-
logical diseases. Our computational routines are available online at  
https://git.embl.de/triana/nrn.

Data-driven flow cytometry for immunology. Gating strategies 
for flow cytometry have evolved historically in a process of trial 
and error. In particular, the isolation of rare and poorly charac-
terized cell subsets using flow cytometry remains challenging, 
whereas commonly used gating schemes are not necessarily opti-
mal in purity (precision) and efficiency (recall). To tackle these 
problems, we explored different machine learning approaches 
for the data-driven definition of gating schemes. For all popula-
tions in our dataset, gating schemes defined by machine learning 
approaches provided higher precision (purity) when compared with 
classical gating schemes from the literature (Fig. 5a, Extended Data  
Fig. 8a–d and Supplementary Table 5). While different machine 
learning methods tested achieved similar purities, gates defined 
by the hypergate algorithm34 offered a higher recall (Fig. 5a and 
Extended Data Fig. 8a–d).

To validate and demonstrate this approach, we focused on deter-
mining new gating strategies for rare and poorly characterized  
BM cell types, such as cytotoxic CD4+ T cells (Fig. 5b) and MSCs 
(Fig. 5g). Cytotoxic CD4+ T cells represent a rare T cell popula-
tion characterized by the expression of cytotoxicity genes typically 
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Fig. 4 | Adaptation of surface protein expression in healthy aging and cancer. a, Correlation of surface marker expression between matched cell types 
from aged and young BM donors. For each cell type, mean surface marker expression across all cells was computed, separately for all ‘young’ and ‘aged’ 
samples. Left panel: histogram of Pearson correlation coefficients. Right panel: sample scatter plots depicting the mean surface expression of all measured 
markers in indicated cell types. b, Volcano plot depicting log2 fold change and false discovery rate (FDR) for a test for differential surface marker expression 
between cells from young and aged individuals, while accounting for cell types as covariates. See Methods for details. c, Boxplots depicting CD27 surface 
expression in naïve T cell populations from young and aged individuals. Sample size is provided as Figure Source Data. See Methods, section Data 
visualization for a definition of boxplot elements. d, Projection of AML samples onto healthy reference. See Supplementary Note 7 for details. e, Clustering 
of leukemia samples by their projected cell type composition. Lymphoid cells are excluded from the clustering. f, Density plots of monocyte pseudotime, 
resulting from projection on the healthy reference. See Methods for details. g, Heatmap depicting surface markers with differential expression between 
the phenotypic classes defined in e. The eight markers with the most significant P values from DESeq2 were selected for each comparison between 
classes. Average expression across all nonlymphoid cells is shown. ITD, internal tandem duplication; mut, mutation; wt, wild type. h, Surface expression of 
immunotherapy targets CTLA4 (CD152) and PD-L1 (CD274) in different myeloid compartments of healthy donors and AMLs. Sample size is provided as 
Figure Source Data. i, Scatter plot depicting the average expression of all surface markers in healthy HSCs and MPPs (x axis) and leukemic stem cells (LSC) 
projecting to the HSC and MPP cell state (y axis). Cells from four patients where the HSC/MPP class was covered with more than 20 cells are included 
(AML1, AML2, AML3 and AML Q6). P values for differential expression were computed using DESeq2 and are encoded in the symbol size, and previously 
described LSC markers are depicted as a triangle. Interpatient variability is color-coded, see Methods, for details. See also Supplementary Data 2.
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CD34− compartments, see also Extended Data Fig. 8. b, Different CD4+ T cell subsets are highlighted (central and right panels) and the corresponding 
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cytotoxic CD4+ T cells. The suggested gate is highlighted on a scatter plot of CD4 and CD28 expression as identified from pregated CD45+ CD3+ Abseq 
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observed in their well-characterized CD8+ T cell counterparts35. 
While this cell type has been suggested to be involved in several 
physiological and pathophysiological processes, no coherent gat-
ing strategy for their prospective isolation exists36. Hypergate sug-
gested that cytotoxic CD4+ T cells display an immunophenotype of 
CD4+CD28−, and differential expression analyses of surface mark-
ers revealed that cytotoxic CD4+ T cells express significantly lower 
levels of CD7, CD25, CD127 and CD197 when compared with 
other CD4+ T cell subsets (Fig. 5b–e). Flow cytometric analyses of 
CD4+CD28− T cells confirmed the expected immunophenotype in 
BM from healthy donors and patients with different hematologi-
cal cancers, suggesting a robust and efficient prospective isolation 

of this rare cell type (Fig. 5d and Extended Data Fig. 8e). Finally, 
FACS-based sorting of CD4+CD28− T cells followed by gene expres-
sion analysis confirmed the expression of cytotoxicity genes in this 
population (Fig. 5f).

MSCs constitute a rare and heterogeneous group of cells in 
the BM37,38. While ex vivo expanded MSCs have been phenotyped 
extensively, primary human MSCs remain poorly characterized, in 
particular due to their extremely low frequency. In our dataset, we 
captured a small number of heterogeneous MSCs, with one subset 
(MSC-1) expressing high levels of the key BM-homing cytokine 
CXCL12 (Fig. 5g). Hypergate suggested CXCL12-expressing MSCs 
to be isolated most efficiently by expression of CD13 and absence of 
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Fig. 7 | Systematic integration of single-cell genomics, flow cytometry and functional data. a, Illustration of the concept. b, Projection of indexed 
Smart-seq2 data onto a reference UMAP. Single cells with recorded FACS measurements of surface markers were subjected to Smart-Seq2 based 
scRNA-seq. FACS measurements of surface markers were used to project cells onto the UMAP (Methods). Colors denote cell type identified from 
RNA-seq. See Supplementary Table 6 for composition of the FACS panels. c, FACS-based projection of indexed Smart-seq2 data onto reference 
pseudotime trajectories. Line plots depict the RNA expression of differentiation markers smoothed over projected pseudotime values (red). For 
comparison, expression values determined from Abseq data are shown (blue). The selected genes correspond to the five genes with the strongest 
statistical association with the respective trajectory. d, Projection of indexed single-cell culture data onto a reference UMAP. Single cells with available 
FACS measurements of 12 surface markers were projected onto the UMAP defined by Abseq. Single cells were seeded into culture medium supporting 
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CD11a (Fig. 5h). Indeed, flow cytometric analyses of CD13+CD11a− 
MSCs validated the immunophenotype suggested by our Abseq data 
and confirmed known and new MSC surface markers identified 
by our approach (Fig. 5i,j and Extended Data Fig. 8f). Moreover, 
FACS-based isolation of CD13+CD11a− cells followed by transcrip-
tomic analyses revealed a high enrichment of CXCL12 and other 
key MSC signature genes (Fig. 5k).

Together, these analyses demonstrate the utility of our approach 
for deriving gating schemes from data and mapping the surface 
marker expression of poorly characterized populations. In com-
bination with our single-cell proteo-genomic reference map, the 
Abseq App allows users to define new data-driven gating schemes 
for any population of interest.

A data-defined gating scheme for human hematopoiesis. Gating 
schemes for complex biological systems, such as the HSPC com-
partment, are improving steadily. However, there is strong evi-
dence from single-cell transcriptomics9,10,18,19, lineage tracing22,23 and 
single-cell functional experiments21 that even the most advanced 
gating schemes do not recapitulate the molecular and cellular het-
erogeneity observed by single-cell genomics approaches. This has 
contributed to several misconceptions in the understanding of the 
hematopoietic system, most notably incorrect assumptions on the 
purity of cell populations and inconsistent views on lineage com-
mitment hierarchies11–14.

To generate flow cytometric gating schemes that most ade-
quately reflect the transcriptomic states associated with HSC dif-
ferentiation, we used the Abseq dataset of CD34+ cells from one 
BM sample (‘Young1’) to train a decision tree. Thereby, we obtained 
a gating scheme that uses 12 surface markers to define 14 leaves 
representing molecularly defined cell states with high precision  
(Fig. 6a–c). The data-derived scheme excelled in the identifica-
tion of lineage-committed progenitors—a principal shortcoming 
of many current gating strategies (Fig. 6a–c)9,10,21,22. Importantly, 
cell populations defined by the data-defined gating scheme were 
transcriptionally more homogenous, compared with a widely used 
gating scheme17 (Fig. 6d,e), a state-of-the-art gating scheme focus-
ing on lymphomyeloid differentiation25 (Fig. 6e and Extended Data  
Fig. 9a–d) and a ‘consensus gating’ scheme generated in silico to 
combine the latter with a scheme focusing on erythroid-myeloid 
differentiation26 (Fig. 6e and Extended Data Fig. 9b). Of note, indi-
vidual populations from the data-defined scheme displayed a func-
tional output comparable with that of populations of the ‘consensus 
gating’ scheme, while the data-defined scheme overall provided 
a higher level of information on functional lineage commitment 
(Extended Data Fig. 9e,f).

To validate this new gating scheme, we implemented the sug-
gested surface marker panel in a classical flow cytometry setup and 
performed Smart-seq2-based single-cell RNA-seq while simulta-
neously recording surface marker expression (index scRNA-seq)  
(Fig. 6f,g and Supplementary Note 8). This approach demonstrated 
that the new gating strategy efficiently separated molecularly defined 
cell states (Fig. 6g). Quantitatively, the data-defined gating scheme 
performed equally well at resolving molecularly defined cell states 
on the Abseq training data as on the Smart-seq2 validation data, 
and significantly outperformed the expert-defined gating scheme  
(Fig. 6h). A limitation of the low cellular throughput of the 
Smart-seq2 analysis is that the signature-based identification might 
result in the ‘over-identification’ of certain cell states. Together, our 
results demonstrate that high-content single-cell proteo-genomic 
maps can be used to derive data-defined cytometry panels that 
describe the molecular states of complex biological systems with 
high accuracy. Moreover, our gating scheme permits a faithful iden-
tification and prospective isolation of transcriptomically defined 
progenitor states in the human hematopoietic hierarchy using 
cost-effective flow cytometry.

Mapping flow cytometry data on single-cell reference maps. 
While classical FACS gating strategies are of great use for the pro-
spective isolation and characterization of populations, single-cell 
genomics studies revealed that differentiation processes, including 
the first steps of hematopoiesis, are represented most accurately by 
a continuous process9,18,20,27,39. To complement the approach based 
on discrete gates, we propose here that high-dimensional flow 
cytometry data can be used to place single cells into the continu-
ous space of hematopoietic differentiation spanned by single-cell 
proteo-genomics exploiting shared surface markers (Fig. 7a). Based 
on the observation that surface marker expressions in flow cytom-
etry and Abseq follow similar distributions (Extended Data Fig. 
10a), we developed a new projection algorithm termed nearest rank 
neighbors (NRN https://git.embl.de/triana/nrn/; see Methods). 
Given an identical starting population, NRN employs sample ranks 
to transform surface marker expression of FACS and Abseq data 
to the same scale, followed by k-nearest neighbors-based projec-
tion into a space defined by the proteo-genomic single-cell data. 
We tested NRN on FACS-indexed Smart-seq2 datasets using the 
classification panel developed in Fig. 6 (12 markers) and a semiau-
tomated panel based on our Abseq data to better resolve erythro-
myeloid lineages (11 markers; Supplementary Note 8). We evaluated 
the performance of NRN using a variety of methods. First, cell types 
molecularly defined by Smart-seq2 were placed correctly on the 
Abseq uniform manifold approximation and projection (UMAP) 
(Fig. 7b). For most molecularly defined cell types, the accuracy of 
the projection using the flow cytometry data was close to the per-
formance of data integration using whole transcriptome data with a 
state-of-the-art algorithm (Extended Data Fig. 10b–d). Most impor-
tantly, the projections closely reflected the gradual progression of 
cells through pseudotime, as confirmed by the expression dynam-
ics of key lineage genes from our FACS-indexed Smart-seq2 data 
(Fig. 7c). This suggests that NRN, in combination with high-quality 
reference datasets, can be used to study the continuous nature of 
cellular differentiation processes by flow cytometry.

A key limitation of single-cell genomics remains the lack of 
insight into functional differentiation capacities of cells. We there-
fore evaluated whether NRN can be used to interpret functional 
single-cell data in the context of single-cell genomic reference 
maps. For this purpose, we performed single-cell culture assays, 
while recording surface markers of our data-defined gating scheme 
from Fig. 6, followed by data integration using our Abseq data via 
NRN. As expected, cells with the highest proliferative capacity and 
lineage potency were placed in the phenotypic HSC and MPP com-
partments, and HSPCs placed along the transcriptomically defined 
differentiation trajectories continuously increased the relative 
generation of cells of the respective lineage (Fig. 7d). Functionally 
unipotent progenitors cells were observed along the respective 
transcriptomic trajectories, but were also present in the phenotypic 
HSC/MPP compartment (Fig. 7d,g), in line with previous findings 
on early lineage commitment of HSPCs9,10,21. By contrast, oligopotent  
cells with distinct combinations of cell fates were enriched specifi-
cally in the HSC/MPP compartment (Fig. 7d,g). Some of these fate 
combinations, in particular combinations of erythroid, megakaryo-
cytic and eosinophilic/basophilic fates, and combinations of lym-
phoid, neutrophilic, monocytic and dendritic fates, co-occurred 
more frequently than expected by chance (Fig. 7e,f), in line with 
most recent findings on routes of lineage segregation9,18,40,41.  
Despite strong associations between surface phenotype, transcrip-
tome and function, cells with a highly similar phenotype can give 
rise to different combinations of lineages (Fig. 7g). This observation 
suggests a role of stochasticity in the process of lineage commitment,  
or hints towards layers of cell fate regulation not observed in the 
transcriptome. Together, our observations confirm that hemato-
poietic lineage commitment occurs predominantly continuously 
along the routes predicted by the transcriptome, with an early 
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primary erythromyeloid versus lymphomyeloid split9,10,18,21,40,41 
and might help reconciling discrepancies in the interpretation of  
previous studies.

In summary, our data resource, alongside the NRN algorithm, 
enables accurate integration of flow data with single-cell genom-
ics data. This permits the charting of continuous processes by flow 
cytometry and the mapping of single-cell functional data into the 
single-cell genomics space.

Discussion
In this study, we have demonstrated the power of single-cell 
proteo-genomic reference maps for the design and analysis of 
cytometry experiments. We have introduced a map of human blood 
and BM spanning the expression of 97–197 surface markers across 
45 cell types and stages of HSC differentiation, healthy ageing and 
leukemia. Our dataset is carefully annotated and will serve as a key 
resource for hematology and immunology.

While cytometry experiments remain the workhorse of immu-
nology, stem-cell biology and hematology, recent single-cell atlas 
projects have revealed that current cytometry setups do not accu-
rately reflect the full complexity of biological systems10,42. For the 
first time, we have exploited single-cell proteo-genomic data to 
systematically design and interpret flow cytometry experiments 
that mirror most accurately the cellular heterogeneity observed by 
single-cell transcriptomics. Unlike approaches based on index sort-
ing9,10,43,44, single-cell proteo-genomics has a sufficient throughput to 
enable the profiling of entire tissues or organs, and at the same time 
covers up to several hundred surface markers. Unlike single-cell 
RNA-seq data, antibody tag counts reflect the true distribution of 
surface marker expression, enabling a quantitative integration of cell 
atlas data with FACS. Building on these unique properties of our ref-
erence map, we have automated the design of gating schemes for the 
isolation of rare cell types, devised a gating strategy that reflects the 
molecular routes of HSC differentiation and demonstrated the direct 
interpretation of flow cytometry data in the context of our reference.

These advances enable a functional characterization of 
molecularly defined cell states and thereby directly affect HSC 
research. There is a growing consensus in the field that lineage 
commitment occurs early from primed HSCs, that not all pro-
genitor cells in the classical megakaryocyte-erythrocyte pro-
genitor/granulocyte-macrophage progenitor (MEP/GMP) gates 
are functionally oligopotent and that the main branches of the 
hematopoietic system are a GATA2-positive branch of erythroid, 
megakaryocytic and eosinophil/basophil/mast cell progenitors, as 
well as a GATA2-negative branch of lymphomyeloid progenitors, 
including the progenitors of monocytes, neutrophils and dendritic 
cells9,18,19,27,40,41,45. Due to a lack of better alternatives, many functional 
studies still use the classical gating scheme alongside the outdated 
concept of ‘common myeloid progenitors’15,16,28. Here, we introduce 
and validate a flow cytometry scheme that allows the prospective 
isolation of molecularly homogeneous progenitor populations. We 
have used this scheme to show that transcriptional lineage priming 
impacts on cellular fate in vitro9,21, thereby contributing further evi-
dence for the revised model of hematopoiesis. In the future, a wider 
use of this scheme has the potential to avoid conflicting results 
stemming from imprecisely defined populations.

Furthermore, these advances enable the rapid profiling of blood 
formation and other BM phenotypes while offering a resolution 
comparable with that of single-cell genomics. Recently, BM pheno-
types of disease, ranging from sickle cell disease46 to leukemia47 have 
been investigated using scRNA-seq. However, due to economic and 
experimental hurdles, the throughput of these studies has remained 
restricted to maximally tens of patients. Accordingly, the ability to 
associate patient genotypes with phenotypes is thereby highly lim-
ited, and these assays have not been translated to diagnostic rou-
tines. Our new gating schemes and analytical strategies are widely 

applicable to profile aberrations encountered in disease, both in 
research and, ultimately, in clinical diagnostics.

Although we have demonstrated the implementation of 
data-driven design and analysis strategies for cytometry assays in 
the context of BM, conceptually the approach presented here can 
be applied to any organ of interest. Thereby, it has the potential 
to enable the precise isolation and routine profiling of myriad cell 
types discovered by recent single-cell atlas projects.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41590-021-01059-0.

Received: 16 February 2021; Accepted: 24 September 2021;  
Published online: 22 November 2021

References
 1. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 

257–272 (2019).
 2. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to 

mechanism. Nature 541, 331–338 (2017).
 3. Giladi, A. & Amit, I. Single-cell genomics: a stepping stone for future 

immunology discoveries. Cell 172, 14–21 (2018).
 4. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a 

Tabula Muris. Nature 562, 367–372 (2018).
 5. Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 

1091–1107.e17 (2018); erratum 173, 1307 (2018).
 6. Han, X. et al. Construction of a human cell landscape at single-cell level. 

Nature 581, 303–309 (2020).
 7. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the 

molecular, cellular and spatial bone marrow niche organization. Nat. Cell 
Biol. 22, 38–48 (2020).

 8. Van Dongen, J. J. M. et al. EuroFlow antibody panels for standardized 
n-dimensional flow cytometric immunophenotyping of normal, reactive and 
malignant leukocytes. Leukemia 26, 1908–1975 (2012).

 9. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a 
continuous process. Nat. Cell Biol. 19, 271–281 (2017).

 10. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in 
myeloid progenitors. Cell 163, 1663–1677 (2015).

 11. Loughran, S. J., Haas, S., Wilkinson, A. C., Klein, A. M. & Brand, M. Lineage 
commitment of hematopoietic stem cells and progenitors: insights from 
recent single cell and lineage tracing technologies. Exp. Hematol. 88,  
1–6 (2020).

 12. Haas, S., Trumpp, A. & Milsom, M. D. Causes and consequences of 
hematopoietic stem cell heterogeneity. Cell Stem Cell 22, 627–638 (2018).

 13. Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex 
differentiation landscapes. Nature 553, 418–426 (2018).

 14. Jacobsen, S. E. W. & Nerlov, C. Haematopoiesis in the era of advanced 
single-cell technologies. Nat. Cell Biol. 21, 2–8 (2019).

 15. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common 
myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 
193–197 (2000).

 16. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common 
lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

 17. Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the 
origin of macrophages and dendritic cells in early lymphoid development. 
Nat. Immunol. 11, 585–593 (2010).

 18. Tusi, B. K. et al. Population snapshots predict early haematopoietic and 
erythroid hierarchies. Nature 555, 54–60 (2018).

 19. Giladi, A. et al. Single-cell characterization of haematopoietic progenitors and 
their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 
20, 836–846 (2018).

 20. Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem 
and progenitor cell differentiation. Blood 128, e20–e31 (2016).

 21. Notta, F. et al. Distinct routes of lineage development reshape the human 
blood hierarchy across ontogeny. Science 351, aab2116 (2016).

 22. Perié, L., Duffy, K. R., Kok, L., De Boer, R. J. & Schumacher, T. N. The 
branching point in erythro-myeloid differentiation. Cell 163, 1655–1662 
(2015).

 23. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native 
haematopoiesis. Nature 553, 212–216 (2018).

NATuRe IMMuNOLOgy | VOL 22 | DECEMBER 2021 | 1577–1589 | www.nature.com/natureimmunology1588

https://doi.org/10.1038/s41590-021-01059-0
https://doi.org/10.1038/s41590-021-01059-0
http://www.nature.com/natureimmunology


ResouRceNaTurE ImmuNOlOgy

 24. Haas, S. Hematopoietic stem cells in health and disease—insights from 
single-cell multi-omic approaches. Curr. Stem Cell Rep. 6, 67–76 (2020).

 25. Karamitros, D. et al. Single-cell analysis reveals the continuum of  
human lympho-myeloid progenitor cells article. Nat. Immunol. 19,  
85–97 (2018).

 26. Psaila, B. et al. Single-cell profiling of human megakaryocyte-erythroid 
progenitors identifies distinct megakaryocyte and erythroid differentiation 
pathways. Genome Biol. 17, 83 (2016).

 27. Pellin, D. et al. A comprehensive single cell transcriptional landscape of 
human hematopoietic progenitors. Nat. Commun. 10, 2395 (2019).

 28. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized 
in vivo. Nature 548, 456–460 (2017).

 29. Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: 
ultrahigh-throughput single cell protein profiling with droplet microfluidic 
barcoding. Sci. Rep. 7, 44447 (2017).

 30. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in 
single cells. Nat. Methods 14, 865–868 (2017).

 31. Fagnoni, F. F. et al. Expansion of cytotoxic CD8+ CD28− T cells in healthy 
ageing people, including centenarians. Immunology 88, 501–507 (1996).

 32. Peters, M. J. et al. The transcriptional landscape of age in human peripheral 
blood. Nat. Commun. 6, 8570 (2015).

 33. Hanekamp, D., Cloos, J. & Schuurhuis, G. J. Leukemic stem cells: 
identification and clinical application. Int. J. Hematol. 105, 549–557 (2017).

 34. Becht, E. et al. Reverse-engineering flow-cytometry gating strategies for 
phenotypic labelling and high-performance cell sorting. Bioinformatics 35, 
301–308 (2019).

 35. Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue 
and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).

 36. Takeuchi, A. & Saito, T. CD4 CTL, a cytotoxic subset of CD4+ T cells, their 
differentiation and function. Front. Immunol. 8, 194 (2017).

 37. Al-Sabah, J., Baccin, C. & Haas, S. Single-cell and spatial transcriptomics 
approaches of the bone marrow microenvironment. Curr. Opin. Oncol. 32, 
146–153 (2020).

 38. Frenette, P. S., Pinho, S., Lucas, D. & Scheiermann, C. Mesenchymal stem 
cell: keystone of the hematopoietic stem cell niche and a stepping-stone for 
regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).

 39. Macaulay, I. C. et al. Single-cell RNA-sequencing reveals a continuous spectrum 
of differentiation in hematopoietic cells. Cell Rep. 14, 966–977 (2016).

 40. Drissen, R., Thongjuea, S., Theilgaard-Mönch, K. & Nerlov, C. Identification 
of two distinct pathways of human myelopoiesis. Sci. Immunol. 4,  
eaau7148 (2019).

 41. Görgens, A. et al. Multipotent hematopoietic progenitors divide 
asymmetrically to create progenitors of the lymphomyeloid and 
erythromyeloid lineages. Stem Cell Rep. 3, 1058–1072 (2014).

 42. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell 
heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

 43. Baron, C. S. et al. Cell type purification by single-cell transcriptome-trained 
sorting. Cell 179, 527–542.e19 (2019).

 44. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy 
to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

 45. Zheng, S., Papalexi, E., Butler, A., Stephenson, W. & Satija, R. Molecular 
transitions in early progenitors during human cord blood hematopoiesis. Mol. 
Syst. Biol. 14, e8041 (2018).

 46. Hua, P. et al. Single-cell analysis of bone marrow–derived CD34+ cells  
from children with sickle cell disease and thalassemia. Blood 134,  
2111–2115 (2019).

 47. van Galen, P. et al. Single-cell RNA-Seq reveals AML hierarchies relevant to 
disease progression and immunity. Cell 176, 1265–1281.e24 (2019).

 48. van Dijk, D. et al. Recovering gene interactions from single-cell data using 
data diffusion. Cell 174, 716–729.e27 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

NATuRe IMMuNOLOgy | VOL 22 | DECEMBER 2021 | 1577–1589 | www.nature.com/natureimmunology 1589

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natureimmunology


ResouRce NaTurE ImmuNOlOgy

Methods
All reagents and antibodies used are listed in Supplementary Tables 1 (primers 
for targeted transcriptomics), 2 (Abseq antibodies) and 6 (all other reagents, 
oligonucleotides, equipment and software).

Human samples. BM samples from healthy and diseased donors were obtained at 
the University clinics in Heidelberg and Mannheim after informed written consent 
using ethic application numbers S480/2011 and S-693/2018. For demographic 
characteristics on sample donors, see Supplementary Table 3. BM aspirates were 
collected from iliac crest. Healthy BM donors received financial compensation in 
some cases. For BM, mononuclear cells were isolated by Ficoll (GE Healthcare) 
density gradient centrifugation and stored in liquid nitrogen until further use. All 
experiments involving human samples were approved by the ethics committee of 
the University Hospital Heidelberg and were in accordance with the Declaration of 
Helsinki.

Cell sorting for Abseq. Human BM samples were thawed in a water bath at 37 °C 
and transferred dropwise into RPMI-1640 10% FCS. Cells were centrifuged for 
5 min at 350 and washed once with RPMI-1640 10% FCS. Cells were resuspended 
in FACS buffer (FB) (PBS 5% FCS 0.5 mM EDTA) containing CD34-PE and CD3 
PE-Cy7 and FcR blocking reagent (Miltenyi) and incubated for 15 min at 4 °C. 
Cells were washed with FB and resuspended in 1 ml FB, followed by addition 
of 1 µl CellEvent Caspase-3/7 Green (ThermoFisher) and 1 µl 4,6-diamidino-
2-phenylindole (DAPI) (ThermoFisher) to the cell suspension. After 3 min 
incubation at room temperature, cells were filtered through a 40 µm cell strainer. 
Singlet, CaspaseGreen− DAPI− total BM and singlet, CaspaseGreen− DAPI− CD34+ 
(HSPCs) as well as singlet, CaspaseGreen− DAPI− CD3+ (T cells) cells were sorted 
on an Aria Fusion II cell sorter (BD). In general, the entire CD34+ fraction from 
one thawed vial was sorted (~2 × 104) and combined with 1 × 105 CD34− total 
BM cells (see also Extended Data Fig. 2). In CD3+ T cell-enriched AML samples, 
2 × 104 CD3+ T cells were mixed with the CD34+ HSPC fraction and combined 
with 1 × 105 CD34− total BM cells. For the generation of the AML query datasets, 
2 × 104 live total BM cells from each of 12 different AML samples were sorted. 
In case of the CD34+ immature HSPCs enrichment experiment, healthy adult 
human BM cells were stained with anti-human CD34, CD38, CD45RA, CD10 and 
fixable viability dye efluor506 and 5 × 103 were sorted from each of four different 
gates (CD34+CD38+CD45RA−, CD34+CD38+CD45RA+, CD34+CD38−CD45RA−, 
CD34+CD38−CD45RA+). In cases where different biological samples or sorted 
populations were combined in the same run, cells of interest were sorted and 
labeled by cell hashing antibodies before surface labeling and single-cell capture as 
described in Abseq surface labeling, single-cell capture and library preparation.

Cell sorting for gene expression analysis and flow cytometry. Human BM 
samples were thawed as described above. For dead cell exclusion and blocking 
of nonspecific binding, fixable viability dye efluor506 (ThermoFisher) and FcR 
blocking reagent (Miltenyi) were used in all staining solutions. Cells were generally 
stained for 15 min at 4 °C and then washed once with FB, resuspended in 1 ml 
FB and filtered through a 40 µm cell strainer. For cytotoxic CD4+ T cell sorting, 
cells were stained in FB containing anti-CD3, CD4, CD7, CD28, CD45RA, CD45 
and CD127 surface antibodies. Singlet, live, CD45+, CD3+ cells were gated and 
CD4+CD28− or CD4+CD28+ cells were sorted and processed as described below. 
For MSC gene expression analysis, cells were stained in FB containing anti-CD10, 
CD11a, CD13, CD26, CD31, CD45, CD49a, CD90, CD105, CD146 and CD271 
surface antibodies. Singlet, live, CD11a−CD13+ MSCs or all cells outside this gate 
were sorted. Cells were sorted on either FACSAria Fusion or FACSAria II equipped 
with 100 µm nozzles, respectively.

For flow cytometric analysis, human BM samples were processed as described 
above. For analysis of cytotoxic CD4 T cells across hematopoietic malignancies, 
cells were stained with anti-CD3, CD4, CD7, CD25, CD28, CD45RA, CD45, CD69 
and CD127 surface antibodies. For analysis of CD98 expression in hematopoietic 
stem and progenitors, cells were stained with anti-human CD4, CD10, CD11a, 
CD34, CD38, CD45RA, CD49f, CD90, CD98, CD133 and Tim3 antibodies. 
For analysis of CD326 surface expression in comparison with CD71 and CD41, 
healthy adult human BM was stained with anti-human CD34, CD38, CD41, CD44, 
CD45RA, CD49b, CD49d, CD71, CD90 and CD123 antibodies. All experiments 
were measured on BD FACSFortessa flow cytometers, equipped with five lasers.

Panel design for targeted transcriptomics. Panel design is described in 
Supplementary Note 1. In short, we used a human cell atlas reference and followed 
the method described by Schraivogel et al. for target gene selection49.

Abseq surface labeling, single-cell capture and library preparation. Abseq 
surface antibody libraries (Supplementary Table 2) were pipetted 24 h before 
experiments. For most antibodies, 1 µl was used for surface library preparation. 
Antibodies recognizing epitopes with well-known high surface expression were 
further diluted in PBS and 1 µl was added to the surface library (for example HLA 
ABC, CD45, CD11a). Sorted cells (around 1.2 × 105–1.4 × 105; described in Cell 
sorting for Abseq) were centrifuged 5 min at 350g and resuspended in the surface 
library mix (around 100 µl for the 97 Ab panel, 200 µl for the 197 Ab panel).  

In cases where different biological samples or sorted populations were combined in 
the same run, sorted cells were labeled individually with oligonucleotide coupled 
cell hashing antibodies (BD single-cell multiplexing kit) for 25 min on ice, washed 
three times in all, each followed by 5 min centrifugation at 350g and then pooled 
and then subjected to Abseq cell surface labeling. Cells were then labeled for 30 min 
at 4 °C and washed three times in all, each followed by 5 min centrifugation at 350g. 
Cells were resuspended in sample buffer (BD Rhapsody Cartridge reagent kit) and 
between 1 × 104 and 2 × 104 cells were captured with the BD Rhapsody single-cell 
system following the manufacturer’s instructions50. Antibody tag libraries, 
multiplexing libraries and targeted mRNA gene expression libraries were generated 
following manufacturer instructions. For mRNA libraries, the targeted panel 
(Supplementary Table 1) or the whole transcriptome analysis library preparation 
protocol was used according to the manufacturer’s instructions (BD). Resulting 
libraries were quality checked by Qubit and Bioanalyzer, pooled and sequenced 
using NextSeq500 or Illumina Novaseq S2 (Illumina; high-output mode).

Single-cell index cell cultures. Two days before index sorting, irradiated 
MS-5 feeder cells were plated at a density of 1 × 104 cells per well into 96-well 
flat-bottom cell culture plates in αlpha-minimal essential medium with ribo-and 
deoxynucleosides (ThermoFisher) containing 10% FCS (Gibco), glutamine (2 mM) 
(ThermoFisher), penicillin/streptomycin (100 U ml−1) (ThermoFisher) and 
sodium pyruvate (2 mM) (Gibco). Several hours before index sorting, the medium 
was replaced by 100 µl H5100 medium (StemCell Technologies) containing 
glutamine (2 mM) (ThermoFisher), penicillin/streptomycin (100 U ml−1) 
(ThermoFisher), hydrocortisone (1 nM) (StemCell Technologies), SCF (20 ng ml−1), 
FLT3-L (100 ng ml−1), TPO (50 ng ml−1), IL-3 (20 ng ml−1), IL-5 (20 ng ml−1), 
IL-6 (20 ng ml−1), IL-7 (20 ng ml−1), IL-11 (20 ng ml−1), G-CSF (20 ng ml−1), 
GM-CSF (20 ng ml−1), M-CSF (20 ng ml−1) (all Preprotech) and EPO (3 U ml−1) 
(R&DSystems). Two BM samples from the same donor were thawed and washed 
as described above. The first sample was subsequently resuspended in 100 µl FB 
containing anti-human CD4, CD10 (BioLegend), CD11a, CD11c, CD19, CD33, 
CD34, CD38, CD61, CD123, CD133 and Tim3 antibodies (Classification panel), 
whereas the second sample was stained with anti-human CD11a, CD33, CD34 
(Biolegend), CD38, CD49b, CD61, CD71, CD123, CD133, CD326 and FcεR1A 
(eBioscience) (Semiautomated panel). In another experiment, cells were labeled 
with anti-human CD11a, CD71, CD45RA, CD44, CD135, Tim3 (Biolegend), 
CD90, CD326, CD41 (BioLegend), CD123 (ThermoFisher), CD10, CD38 and 
CD34 (BioLegend) antibodies (Consensus panel). All antibody clones for flow 
cytometry matched clones from Abseq experiments and were purchased from BD, 
except otherwise indicated. For dead cell exclusion and blocking of nonspecific 
binding, fixable viability dye efluor506 (ThermoFisher) and FcR blocking reagent 
(Miltenyi) were included in both staining solutions. After staining for 15 min at 
4 °C, cells were washed with FB, resuspended in 1 ml FB and filtered through a 
40 µm cell strainer. For both assays, 480 single, live CD34+ cells were FACS indexed 
and sorted into the feeder cell containing 96-well plates as described above. 
Cells were incubated at 37 °C, 5% CO2 for 16–19 days. To analyze clonal output, 
cells were harvested and transferred to 96-well V bottom plates, washed with FB 
and resuspended in 10 µl FB containing anti-human CD1c (Biolegend), CD14, 
CD19 (Biolegend), CD34 (Biolegend), CD41a (Biolegend), CD45, CD56, CD66b, 
CD123, CD235a, CD303, CD141, CD370 (Biolegend) and FcεR1a (eBioscience). 
For dead cell exclusion and blocking of nonspecific binding, fixable viability dye 
efluor506 (ThermoFisher) and FcR blocking reagent (Miltenyi) were included in 
the staining solution. After staining for 15 min at 4 °C, cells were washed with FB 
and resuspended in 100 µl FB and filtered through a 40 µm cell strainer. Cells were 
analyzed on a LSRII (BD) flow cytometer. Erythroid lineage output was determined 
via CD235+ expression, which was concomitant with the downregulation of 
CD45 expression (CD45−CD235+). Myeloid lineages were defined via CD66b and 
CD14 antibodies (CD235−CD45+CD66b+ or CD235−CD45+CD14+). Dendritic 
cell lineages were defined via CD1c, CD141, CD370, CD303 and CD123 
expression. Lymphoid cell lineages were defined via CD19 and CD56 expression. 
Megakaryocyte output was determined via CD41a expression, Eosinophil/basophil 
output was determined via FcεR1a expression. Generally, only wells that contained 
more than ten CD45+CD235− or CD45+CD235+ or CD45+CD235− cells were 
considered during analysis if not stated otherwise. For calculation of erythroid 
ratios, the count of all generated erythroid cells was divided by the sum of all other 
generated cells. Myeloid ratios were determined by dividing the sum of generated 
myeloid and dendritic cells by the sum of all other generated cells.

Single-cell index RNA-sequencing. For single-cell index RNA-sequencing, 
cells from the same samples that were prepared for single-cell cell index cultures 
were used. Hardshell 96-well polymerase chain reaction (PCR) plates (Bio-Rad) 
were prefilled with 4 µl lysis buffer containing 1 µl RNase inhibitor (40 U ml−1, 
Takara), 1.9 µl Triton X-100 (0.2%, Sigma), 1 µl oligo dT30VN (10 µM, Sigma) 
and dNTPs (10 mM, ThermoFisher). Cells were FACS indexed, sorted into lysis 
buffer and snap frozen on dry ice. For cell lysis, plates were incubated for 5 min 
at 10 °C, followed by incubation for 3 min at 72 °C in a thermocycler (PCRMax). 
For reverse transcription, 0.25 µl RNase inhibitor (40 U ml−1, Takara), 0.5 µl 
DTT (20 mM, Takara) 0.2 µl template switching oligonucleotides (50 µM, IDT), 
1.05 µl H2O (Ambion), 2 µl Smartscribe buffer (5×, Takara) and 1 µl Smartscribe 
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(100 U ml−1, Takara) was added to each well. Reverse transcription was performed 
by incubating plates for 90 min at 42 °C, followed by ten cycles of 2 min at 50 °C, 
2 min 42 °C, followed by 10 min at 72 °C followed by 4 °C storage. To amplify 
cDNA, 12.5 µl KAPA HiFi HotStart (Roche), 0.25 µl ISPCR primer (10 µM, Sigma) 
and 2.25 µl H2O was added to each well. Plates were incubated for 3 min at 98 °C, 23 
cycles of 20 s at 98 °C, 15 s at 67 °C, 6 min at 72 °C followed by one stage for 5 min at 
72 °C, followed by final storage at 4 °C. cDNA was then cleaned up using an equal 
volume (25 µl) of SPRIselect beads (Beckman) and tagmented using homemade 
Tn551. Resulting libraries were quality checked by Qubit and Bioanalyzer, pooled 
and sequenced using all lanes in an Illlumina Hiseq 4000.

Real-time-quantitative PCR. For real-time-quantitative PCR (RT-qPCR) analysis, 
cells of interest were sorted directly into RNA lysis buffer (Arcturus PicoPure RNA 
Isolation Kit, Life Technologies, Invitrogen), snap frozen and stored at −80 °C or 
processed directly for cDNA synthesis using SuperScript VILO cDNA synthesis 
kit (Invitrogen) according to the manufacturer’s instructions. Depending on the 
sorted cell number, cDNA was further diluted 1:5–1:10 in RNase-free water and 
6 µl was mixed in technical triplicates in 384-well plates with 0.5 µl of forward 
and reverse primer (10 µM) and 7 µl PowerUP SybrGreen Mastermix (Thermo 
Fisher). Program: 50 °C for 2 min, 95 °C for 10 min and 40 cycles of 95 °C for 15 s, 
60 °C 1 min. Primers were designed to be intron spanning whenever possible using 
PrimerBlast (National Center for Biotechnology Information) and purchased 
from Sigma Aldrich (purification: desalting). Experiments were performed on the 
ViiA7 System (Applied Biosystems) and analysis of gene amplification curves was 
performed using the Quant StudioTM Real-Time PCR Software v.1.3 (Applied 
Biosystems). RNA expression was normalized to the housekeepers glyceraldeyde-
3-phosphate dehydrogenase and beta actin for gene expression analysis. Relative 
expression levels (2−ΔCt, ∆Ct = (geometric mean Housekeeper Ct)−(gene of interest 
Ct)) of replicates were log10 transformed and z-scored. Primers used in this study 
can be found in Supplementary Table 6.

Analysis of Abseq data. Fastq files were processed via the standard Rhapsody 
analysis pipeline (BD Biosciences) on Seven Bridges (https://www.sevenbridges.
com) according to the manufacturer’s recommendations. The resulting unique 
molecular identifier (UMI) count matrices were imported into R (v.3.6.2) and 
processed with the R package Seurat (v.3.1.3 and 3.2.0)52. To account for differences 
in sequencing depth across cells, both layers were normalized independently 
using Seurat defaults. RNA UMI counts were log-normalized, while antibody 
UMI counts were centered using log ratio normalization to account for unspecific 
binding background signal. Subsequently, both normalized matrices were 
concatenated and integration across patients was performed using Scanorama53. 
The resulting corrected counts were used for visualization and clustering analysis. 
Nonintegrated, raw counts were used for differential expression testing.

Multiomics factor analysis integration, clustering and identification of cell 
type markers. Following integration, we removed genes and surface markers 
with variance near to zero using the caret package54 and used MOFA to perform 
data integration across modalities55. A total of 30 multiomics factor analysis 
(MOFA) factors were used as a starting point, with a drop factor threshold of 
0.001. The resulting MOFA dimensions were used to construct a shared nearest 
neighbor graph and modularity-based clustering using the Louvain algorithm 
was performed. Finally, UMAP visualization was calculated using 30 neighboring 
points for the local approximation of the manifold structure. Marker genes and 
surface markers for every cell type were identified by comparing the expression 
of each in a given cluster against the rest of the cells using the receiver operating 
characteristic test. To evaluate, which genes classify a cell type, cell type specific 
markers were selected as those with the highest classification power defined by the 
area under the receiver operating characteristic curve.

Processing of Smart-seq2 data. Count matrices were generated using 
pseudoalignment with Kallisto56 using the GRCh38 human reference genome as 
implemented in the Scater package v.1.14.6 (ref. 57). Gene level expression counts were 
imported into Seurat. Low-quality cells were removed on the basis of the percentage 
of mitochondrial RNA reads (>20%) and number of detected genes (<1,000). The 
remaining data were further processed using Seurat. Data was log-normalized and 
scaled. The top 2,000 highly variable genes were used for clustering and UMAP 
calculation. Cells were then annotated as described in Supplementary Note 8.

Abseq App web application. Differential expression, data visualization and gating 
scheme calculation can be performed in the Abseq App shiny web application 
(https://abseqapp.shiny.embl.de/). The application was written in R and relies on 
the packages shiny and aws.s3. A demonstration video of the app is included as 
Supplementary Video 1.

Pseudotime analysis. To reconstruct possible cell lineages from our single-cell 
gene expression data, data from individual samples were subset to include only 
the cell types from the CD34+ hematopoietic stem and progenitor compartment. 
MOFA–UMAP embedding was then used as input for pseudotime analysis by 
slingshot58. The HSC cluster was used as a start cluster, and myelocytes, class 

switched memory B cells, late erythroid progenitors, megakaryocyte progenitors 
and conventional dendritic cell compartments as the end clusters. The genes that 
significantly changed through pseudotime were determined by fitting a generalized 
additive model (GAM) for each gene, using the TradeSeq package59.

Modeling variance in surface marker expression. To attribute the variance in 
surface marker expression to biological processes, we used the variancePartition 
package60 on log-transformed antibody read count data. As covariates, we used cell 
type annotation (for all cells except CD34+ HSPCs), splines with three degrees of 
freedom fitted through pseudotime (for CD34+ HSPCs, Pseudotime analysis), cell 
cycle scores (calculated using Seurat package defaults), scores for cytotoxicity and 
stemness (calculated using the gene lists in Supplementary Table 7 and the Seurat 
function AddModuleScore()), as well as technical covariates (number of genes 
observed, number of surface markers observed, reads on surface markers, reads 
on genes). To also account for variance explained by any hypothetical processes 
not in this predefined list, we additionally performed a factor analysis of the entire 
dataset (RNA plus surface markers) while accounting for the known covariates 
using ZiNB-WAVE61. We ran ZiNB-WAVE with four unknown factors on the 
concatenated mRNA and surface marker expression matrices while using a gene 
level-covariate specifying whether each row in the matrix is an mRNA or surface 
marker. The unknown factors explained only a very small part of the variance, and 
appeared to capture mostly differentiation processes not optimally explained by 
the pseudotime. Of note, markers with low absolute expression are more strongly 
subject to stochastic expression or measurement noise, while markers that are 
expressed by many different cell types are more strongly subject to technical effects, 
such as differences in single-cell library quality, likely due to the absence of true 
biological variability for these markers (Extended Data Fig. 5a). Other covariates 
are not affected by the expression level of the markers.

Projection on a reference atlas. The projection on the reference dataset is 
described in Supplementary Note 7. In short, we used scMAP to calculate nearest 
neighbors and thereby determined cell type label, MOFA–UMAP coordinates and 
pseudotime value.

Differential expression testing between experimental groups and estimation 
of interpatient variability. For comparing surface protein abundance between 
young and aged healthy as well as leukemic individuals, antibody tag read counts 
were summed at the level of cell types for each experimental batch (that is, donor). 
Differential expression testing was then performed for these pseudobulks using 
DESeq2 (ref. 62), either separately for each cell type (Fig. 4i, Extended Data Fig. 7c  
and Supplementary Data 2), or jointly across all cells while accounting for cell 
type as a covariate (Fig. 4b). For cell-type-specific comparisons, only samples for 
which the respective cell type was covered with at least 20 cells were included. 
When comparing leukemic with healthy individuals, age and gender were used as 
additional covariates. Unlike single-cell specific methods, DESeq2 estimates the 
variance in gene expression between experimental replicates to separate signal 
from noise while using a negative binomial distribution that is sufficiently generic 
to capture the count-nature data of antibody-based pseudobulk expression values.

To estimate the degree of interpatient variability of surface marker abundance 
while accounting for cell state differences, we trained random forest classifiers to 
predict the experimental batch (that is, donor) from gene expression separately for 
each cell state. The feature importance score from these classifiers was then scaled 
from zero to one and used to estimate interpatient variability.

Changes in cell type abundance between experimental groups. To identify cell 
types that change in abundance between young and aged individuals (Extended 
Data Fig. 7a), we considered the following: first, different amounts of CD34+, CD3+ 
and total BM cells were sorted. Hence, frequencies were always computed within 
the respective gate (for example, for CD8+ effector T cells, the frequency among 
CD3+ T cells was computed). We then compared the following statistical models of 
observed cell type frequency pi in individual i:

M0 : pi ∼ Binom (q) with q ∼ Beta (1, 1)

M1 : pi ∼ Binom
(

qC(i)
)

with qC(i) ∼ Beta (1, 1)

Here C(i) indicates if individual i is young or old.
Finally, we sought to distinguish between a model where cell type frequencies 

change as a function of age, and a model where cell type frequencies are simply 
highly variable between individuals, with no relationship to age:

M2 : pi ∼ Binom (qi) with qi ∼ Beta (1, 1)

We compared the M1 and M2 models to M0 using a Bayesian strategy termed 
leave-one-out information criterion63 to identify cell types with high evidence for 
between-group and interindividual variability, respectively.

Thresholding of surface marker expression. For every sample separately, 
thresholds were calculated using the normalized antibody counts to distinguish 
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marker-positive from marker-negative cells. For this we implemented the Otsu 
algorithm as described by Otsu64.

Data-driven identification of gating schemes. To account for the CD34+ FACS 
enrichment of HSPCs performed in our samples, we divided the BM cells into 
CD34+ and CD34− subsets. For individual cell type gating scheme calculation, we 
compared three different methods. The first two methods are based on a decision 
tree using either the continuous normalized surface marker expression matrix 
named ‘Tree continuous’, or a transformed Boolean matrix (‘Tree Otsu’). For the 
latter method, a cutoff for each antibody was calculated using the histogram-based 
Otsu algorithm as described above and the matrix was binarized accordingly. 
In both cases, the tree was determined using the package Rpart and, if needed, 
pruned to the maximum number of required surface markers. The third method is 
based on the Hypergate algorithm34. For this, we used the target population as the 
Hypergate gate vector input, calculated the predicted gating scheme and calculated 
the channel contributions of each surface marker using a beta of 1. Afterwards we 
used the contributions to optimize the predicted gating scheme to only include the 
maximum number of surface markers selected. Furthermore, we gated the samples 
using a canonical gating scheme (Expert) reported in the literature to predict gatings 
for some of the cell types present in the BM (Supplementary Table 5). For this, we 
used the Otsu threshold to split each population into marker-positive and negative 
populations. For each gate, the following metrics were calculated: first, the purity 
(Pr), that is, the proportion of target cells in the final gate and second, the recall (Rc), 
that is, the proportion of target cells gated from their original total population.

For the simultaneous gating calculation of all cells from the HSC and 
progenitor compartment, we selected the cells from BM (Young1) with a CD34 
surface expression higher than 0.95. Subsequently, we downsampled cells to the 
same number of cells across populations. Subsequently, we calculated the decision 
tree with the Rpart package, using the ‘continuous’ approach defined above.

The NRN algorithm for integrating FACS and single-cell genomics data. To 
project flow cytometric measurements of surface protein abundance from CD34+ 
cells onto the single-cell reference, we initially subset the single-cell reference to 
exclude CD34− cells, and flow cytometry data was transformed using the “logicle” 
transform using FlowJo (v.10.7.1). Subsequently, the expression of each surface 
marker was normalized separately both in the flow cytometry and in the Abseq 
dataset using a rank-based approach. In particular, sample ranks were computed 
and divided by the total number of samples, that is, data was mapped to a scale 
from 0 to 1 where 0 indicates lowest expression within the dataset, and 1 indicates 
highest expression. Within this normalized gene expression space, the cosine 
distance between any cell from the Abseq (reference) dataset and the FACS (query) 
dataset was computed, the four nearest reference neighbors of every query cell were 
identified and the average position of these neighbors in UMAP and pseudotime 
space was computed using scmap65. Subsequently, the average Euclidean distance 
of the reference neighbors in MOFA space was computed to identify cells with 
inconsistent mapping results. These cells were later removed by applying a 
user-defined threshold (here, 8). In the case of the Smart-seq2 dataset, a total of 75 
cells were thereby removed from the analyses.

Data visualization for a definition of boxplot elements. All plots were generated 
using the ggplot2 (v.3.2.1) package in R 3.6.2, GraphPad Prism (v.8 and v.9.1 for 
MacOS) or FlowJo (v.10.7.1, BD). Boxplots are defined as follows: the middle line 
corresponds to the median; the lower and upper hinges correspond to first and 
third quartiles, respectively; the upper whisker extends from the hinge to the largest 
value no further than 1.5× the interquartile range (or the distance between the first 
and third quartiles) from the hinge and the lower whisker extends from the hinge to 
the smallest value at most 1.5× the interquartile range of the hinge. Data beyond the 
end of the whiskers are called ‘outlying’ points and are plotted individually.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data is available for interactive browsing at https://abseqapp.shiny.embl.de. 
Datasets including raw and integrated gene expression data, cell type annotation, 
metadata and dimensionality reduction are available as Seurat v.3 objects through  
figshare: https://figshare.com/projects/Single-cell_proteo-genomic_reference_
maps_of_the_human_hematopoietic_system/94469. FACS data are provided 
through figshare: https://figshare.com/projects/Supplementary_data_FACS_
data_from_Single-cell_proteo-genomic_reference_maps_of_the_human_
hematopoietic_system/122716. Fastq files are available from the European 
Genome-Phenome Archive under accession number EGAS00001005593. Source 
data are provided with this paper.

Code availability
The implementation of the NRN algorithm and vignettes describing the workflow 
for projecting single-cell RNA-seq data on the reference are available at https://git.
embl.de/triana/nrn.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | A proteo-genomic single-cell map of 97 surface markers in human bone marrow. Related to Fig. 1. Dot plot depicting the 
expression of all surface markers by cell type. Color indicates mean normalized expression, point size indicates the fraction of cells positive for the marker. 
Automatic thresholding was used to identify positive cells, see Methods, section ‘Thresholding of surface marker expression’ for details. The panel on the 
right depicts the fraction of total reads obtained for each marker as a proxy for absolute expression levels. Bottom panel illustrates the distribution of 
CD34 + expression across populations, similar plots can be generated for any marker using the Abseq App.
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Extended Data Fig. 2 | Representative gating schemes used for the enrichment of CD34+ cells. Related to Fig. 1. For additional information on cell sorting 
setups, see Methods, section ‘Cell sorting for Abseq’.
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Extended Data Fig. 3 | Sequencing statistics. Related to Fig. 1. Plots depict a. The number of cells passing filters. Note that samples AML Q1-Q6 and 
APQ1–6 were multiplexed (hashed) into one experiment. b, c. The sequencing depth on the surface and mRNA level and d, e. The number of surface and 
mRNA molecules per cell observed. Note that targeted mRNA sequencing was performed as described in the main text.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | A single-cell proteo-genomic map of 197 surface markers in human bone marrow and blood. Related to Fig. 1. a. Left: UMAP 
projection on the original coordinate system from the healthy dataset (see Supplementary Note 7). Cells are colored by the mapped cell type. Right: 
UMAP colored by sample origin (blood and bone marrow). b. Violin plot depicting the expression of the bone marrow homing receptor CXCR4 on 
matching cell types of the blood and bone marrow. c. Dot plot depicting the expression of all surface markers by cell type. Color indicates mean normalized 
expression, point size indicates the fraction of cells positive for the marker. Automatic thresholding was used to identify positive cells, see Methods, section 
‘Thresholding of surface marker expression’ for detail.
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Extended Data Fig. 5 | Markers of cell types and biological processes. Related to Fig. 2. a. Heatmap investigating if the fraction of variance explained by 
the different covariates is correlated to antigen-level technical covariates. P values were calculated from Pearson correlation using a one-sided test based 
on the t-distribution. b-d. Dot plot depicting the expression of the 10–20 surface markers with the highest fraction of variance explained by B cell subtype 
(b), myeloid subtype (c) and NK cell subtype (d). Color indicates mean normalized expression, point size indicates the fraction of cells positive for the 
marker. Automatic thresholding was used to identify positive cells, see Methods, section ‘Thresholding of surface marker expression’ for details. e. UMAPs 
highlighting the scores for various biological processes, as computed using the gene lists from Supplementary Table 7. f. Bar charts depicting the markers 
with the highest fraction of variance explained by cytotoxicity score (pink), stemness score (red) and S-phase score (dark red), and the corresponding 
model coefficients. See Supplementary Table 7 for the gene lists used for calculating these scores. g. Pseudotime of all 97 surface proteins for the five 
trajectories (B cells, cDCs, Monocytes, Late erythroid progenitor and Megakaryocyte progenitor). Markers were clustered according to their expression 
pattern using tradeseq (van den Berge, 2020). The density plots indicate the differentiation stages along the pseudotime.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Surface markers associated with HSC and B cell differentiation. Related to Figs. 2 and 3. See methods, section Data visualization 
for a definition of boxplot elements. a. Top: Line of surface protein expression smoothened over pseudotime (see Fig. 3a). Error ribbon indicates 95% 
confidence interval from the smoothing GAM model. Bottom: UMAP display of marker expression in CD34 + HSPCs. b. Left: Gating strategy for subsetting 
CD71 + erythroid/megakaryocytic HSPCs into CD41 + megakaryocyte and CD326 + erythroid progenitors. Right: UMAP display of flow cytometric data 
from CD34 + cells from a healthy donor analyzed with a 12-color FACS panel for erythroid/megakaryocytic differentiation (Supplementary Table 6). 
Feature plots of CD71, CD326 and CD41 expression highlight the bifurcation within CD71 + HSPCs. c. Culture outcome categories described in Fig. 3g 
were analyzed with regards to their CD326, CD11a or Tim3 surface expression. A two-sided Wilcoxon rank sum test was used for comparison of individual 
groups and significance levels between groups. P-values were adjusted for multiple comparisons using the Holm method. d, e. Like Fig. 3d, e, except that 
CD98 expression is shown. f. UMAP display of flow cytometric data from CD34 + cells from five healthy donors analyzed with a 12-color FACS stem and 
progenitor panel (Supplementary Table 6). Left: shows CD98 surface expression, right panel shows assignment of individual gates to the UMAP according, 
as follows: HSC: CD34 + CD38-CD45RA-CD90 + ; MPP: CD34 + CD38-CD45RA-CD90-; MLP: CD34 + CD38-CD45RA + ; MEP: CD34 + CD38 + CD10-
CD45RA-; GMP: CD34 + CD38 + CD10-CD45RA + ; CLP: CD34 + CD38 + CD10 + CD45RA + . g. Boxplots showing CD98 expression in individual cell 
populations mentioned in f. h. Boxplots showing co-expression of CD98 and CD38 markers. i. Like Fig. 3a, UMAP depicting the pseudotime score along 
the B cell differentiation trajectory emanating from CD34 + HSCs & MPPs and Lymphomyeloid progenitors. j–p. Line plots depicting surface expression 
representative for different biological processes smoothened over the B cell pseudotime trajectory.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Changes in surface protein expression and cell type abundance induced by ageing and leukemia. Related to Fig. 4. a. Frequency 
of selected cell types in young and aged individuals. Only cell types with the highest significant changes are shown, see Methods, section ‘Changes in cell 
type abundance between experimental groups’. b. UMAP display of all AML patients. Data were integrated using scanorama and MOFA (see Method ‘Data 
analysis of Abseq data’ and ‘MOFA integration, Clustering, and identification of cell type markers’). c. For every myeloid cell state with sufficient representation 
of ≥ 20 cells in at least three patients, surface marker expression between AML (x-axis) and healthy individuals (y-axis) is compared. AML cell types were 
defined using a projection as in Fig. 4d, e. P-values for differential expression were computed using DESeq2 and encoded in the symbol size. Inter-patient 
variability is color-coded (n = number of patients included), see Methods, section ‘Differential expression testing between experimental groups and estimation 
of inter-patient variability’ and Supplementary Data 2. d. Heatmap depicting cell state specific gene expression in leukemic and healthy individuals. Five 
most significantly overexpressed markers were identified for each cell state, using only leukemic cells. The expression of all markers selected is shown 
and compared to their expression in the corresponding healthy cell states. e. Correlations of surface marker expression are shown for matching cell types 
from young versus aged individuals, from healthy individuals versus AML patients, and for cell types versus the transcriptomically most similar cell type 
available in the dataset. See Methods, section Data visualization for a definition of boxplot elements. f. Boxplot depicting the expression of CD152 and CD274 
in different cell states from different patients. Only populations covered with ≥ 50 cells per patient are included (Fig. 4h) and see source data (Source Data 
Extended Data Fig. 7) for sample size.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Comparison of data-defined and state-of-the-art (expert-defined) gating schemes. Related to Fig. 5. a. Performance of different 
methods for the definition of gates of CD34- populations. Gates for each cell type were defined from CD34- Abseq data as follows: Black dots correspond 
to gates identified from literature (Supplementary Table 5). Yellow dots correspond to gates that were set using the hypergate algorithm (Becht et al., 
2019). Light blue and violet dots correspond to gates that were set using a decision tree with or without predefined thresholds, respectively. See also 
Methods. For each gating scheme, precision (purity) and recall were calculated. b. Automated and expert-defined gates of class switched memory B cells. 
Orange and blue dots on the UMAP correspond to class switched memory B cells located within and outside of the selected gate, respectively (that is true 
positives and false negatives). Green and gray dots correspond to other cells located inside and outside the gate, respectively (that is false positives and 
true negatives). Pie charts indicate precision and recall. Top: Shows an expert-defined state of the art gating scheme (CD3-CD19 + CD27 + IgD-). Bottom: 
Shows a data-defined gating scheme (CD80 + CD21 + IgG+IgD-). c. Like a, except that CD34 + populations are shown. d. Like b, except that gating 
schemes to define pDC progenitors are shown. e. Paired scatter plot depicting the mean fluorescence intensities (MFI) of CD127 and CD7 in CD4 + CD28- 
cytotoxic CD4 + T cells (yellow) and CD4 + CD28 + other CD4 + T cells (blue) in BM samples from healthy, AML and MDS patients. n = 6, 6 and 9 
patients in the respective groups. f. Representative FACS histograms showing surface expression of well-known MSC surface markers. No significance 
= ns, P < 0.05 *, P < 0.01 **, P < 0.001 ***, P < 0.0001 ****. CD4 + CD28- and CD4 + CD28 + paired cell populations within the same BM donors from 
different disease entities were compared using paired two-tailed t-test. P-values were adjusted for multiple comparisons using the Bonferroni method.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | evaluation of different gating schemes. Related to Fig. 6. a. UMAP highlighting classification obtained from the gating 
scheme described by Karamitros et al., 2018, that is HSC: CD34 + CD38-CD10-CD45RA-CD90 + ; MPP: CD34 + CD38-CD10-CD45RA-CD90-; 
LMPP:CD34 + CD38-CD10-CD45RA + ; MLP: CD34 + CD38-CD10 + ; MEP: CD34 + CD38 + CD10-CD45RA-CD123-; CMP: CD34 + CD38 + CD10-
CD45RA-CD123 + ; GMP: CD34 + CD38 + CD10-CD45RA + CD123 + ; B-NK: CD34 + CD38 + CD10 + . b. UMAP highlighting classification obtained 
from a consensus scheme combining the schemes of Doulatov et al., Karamitros et al. and Psaila et al., HSC: CD34 + CD38-CD10-CD45RA-CD90 + ; 
MPP:CD34 + CD38-CD10-CD45RA-CD90-; LMPP:CD34 + CD38-CD10-CD45RA + ; MLP: CD34 + CD38-CD10 + ; CD71-CD41- MEP: 
CD34 + CD38 + CD10-CD45RA-FLT3-ITGA2B-TFRC-; CD71 + CD41- MEP: CD34 + CD38 + CD10-CD45RA-FLT3-ITGA2B-TFRC + ; CD71 + CD41 + MEP: 
CD34 + CD38 + CD10-CD45RA-FLT3-ITGA2B + ; CMP: CD34 + CD38 + CD10-CD45RA-FLT3 + ; GMP: CD34 + CD38 + CD10-CD45RA + ; B-NK: 
CD34 + CD38 + CD10 + . The marker CD135, CD41, CD71 were not part of the 97 Abseq panel. The expression of the corresponding genes, FLT3, 
ITGA2B and TFRC, were smoothened using MAGIC respectively (van Dijk et al., 2018). c. UMAP of additional CD34 + cells with specific enrichment 
of CD34 + CD38- cells, projected on the original coordinate system, colored by mapped cell types d. Same as c but colored by immunophenotypic 
classification obtained from a consensus scheme recapitulating the scheme of Karamitros et al. and Psaila et al. (see above). e. Separation of functional 
potential by the data-driven and the literature ‘consensus gating’ scheme. Single cells were sorted according to the two gating schemes and cultured for 19 
days. Colonies were scored as Ery/Mk if they contained at least 5 erythroid or megakaryocytic cells, and as Ly/My if they contained at least 5 cells of types 
Neutrophil, cDC, Monocyte, or B/NK. Unipotent: Only one of these cell types was formed with at least 5 cells; oligopotent: At least two of these cell types 
were formed. Only gates for which at least 9 colonies were observed are shown. f. Mutual information (in nats) between the gate identity and the ability to 
form any of the cell types, or the total mutual information across all cell types.
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ResouRceNaTurE ImmuNOlOgy

Extended Data Fig. 10 | Projection and classification of cytometry data using a single-cell proteo-genomic reference. Related to Fig. 7. a. Distribution 
of normalized, scaled expression values of Tim3 (left panel) and CD123 (central panel) measured by scRNA-seq, Abseq, and FACS. Right panel: Scatter 
plot depicts the dissimilarity between the distribution of expression values measured by FACS, and the distribution measured by scRNA-seq (x-axis) or 
Abseq (y-axis) as quantified using Kolmogorov-Smirnov distance. Data for all markers included in the panel from main Fig. 6f is shown. b–d. Comparison 
of data integration strategies. Smart-seq2 data and Abseq data were integrated with five different strategies. RNA-based: Integration by Seurat v3, based 
on gene expression (transcriptome). Random: Random selection of ten nearest neighbors. Others: Surface marker-based integration using NRN, using 
defined sets of surface markers (Classification panel, Semi-automated panel: see Supplementary Table 6. Literature panel: CD34, CD38, CD45RA, CD90, 
CD10, CD135/FLT3, CD49f). For every cell projected on the UMAP, the ten nearest neighbors in projected UMAP space were identified. Subsequently, 
the mean Euclidean distance between their location in a gene expression-based PCA space (Smart-seq2) was computed. Sample size n = 1652. b. Boxplot 
summarizing the distance across data integration strategies. See figure for sample size. See Methods, section ‘Data visualization for a definition of boxplot 
elements’. c. Hexagonal plot summarizing the projection accuracy for different regions of the UMAP. d. Boxplots stratified by cell type demonstrate that 
projection using the semiautomated panel performs close to an RNA-based integration in most cases. See panel b for sample size.
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