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The immune system possesses immense individual-to- 
individual diversity. Immunity is intrinsically variable, 
because it is controlled by the most polymorphic genes and is 

shaped by highly sensitive environmental sensors that are capable 
of pushing immunity into myriad functional configurations. These 
functional configurations are the intrinsic biases toward particular 
immune response types. Thus, while most healthy humans have the 
capacity to turn on type 1 helper T cells (TH1 cells), TH2 cells, TH17 
cells, type I interferons, inflammasome activation, and a multitude 
of other states, individuals differ in the degree to which they are 
primed for each functional configuration1–3. These interindividual 
differences are relatively low at birth4 but continually expand as 
we age and encounter new environments1,5, and are both stable 
and robust to perturbation2,3. The origin of this diversity is rooted 
in our evolutionary pasts, with genes that control immune traits 
being among the most divergent in archaic genomes6. In modern 
humans, a diverse range of immune-associated disorders reflects 
the clinical consequences of this diversity in immunological states. 
This diversity also provides challenges for more successful applica-
tion of immunotherapeutic strategies, initially developed against 
cancer or autoimmunity, that hold wider potential for other clinical 
conditions. For example, despite their widespread success in suc-
cessfully treating 21 types of cancer, checkpoint blockade inhibi-
tors induce adverse immune effects in up to 50% of people who 
receive combination therapy7. A better understanding of the rea-
sons driving such variability could help define more precision-
medicine strategies.

The immune system is possibly unique in the advantages that 
variation can confer. The Red Queen hypothesis, an evolutionary 
arms race between competing species (Fig. 1a), runs into a genera-
tional time asymmetry when considering the evolution of pathogens 
and hosts (Fig. 1b). Rather than unsustainable convergence toward 
a homogenous state of infection–resistance, evolution has selected 
for maintenance of immune diversity as a protective mechanism 

(Fig. 1c). When potential pathogens can rapidly specialize to take 
advantage of a fixed niche, an evolutionary advantage can be gained 
from possessing an immune system wired into a functional con-
figuration that is different from that of the prior host (Fig. 1c,d). 
Beyond the immune system, a single holotype can be considered 
optimal per environmental condition, with diversity representing a 
divergence from the optimum. In the immune system, by contrast, 
diversity is generally a beneficial feature (although some loci, such 
as the Toll-like receptor (TLR) loci, are subject to intense purifying 
selection8), with increased immune divergence from the prior host 
predicted to benefit the newly infected individual.

In this Review, we outline the current state of knowledge on the 
primary drivers of immunological variation. We concentrate on 
serological, cellular, and molecular aspects of immunity, as direct 
measures of immune variation, instead of clinical outcomes and 
other complex phenotypes, of which immune status is only one 
aspect. Likewise, this Review focuses on the drivers of immune 
variation that have a substantial impact at the population level — 
common genetic variants, intrinsic factors such as age and sex, and 
common environmental exposures. Of necessity, we omit rare driv-
ers, such as rare genetic variants, except for the lessons they provide 
for a broader population-level understanding.

Genetic drivers of immune variation
Genetic variation is an important driver of immune variation. 
Studies of multigenerational families9,10 and twin pairs11–13 neverthe-
less highlight high variability in how much genetic variation con-
tributes to different immune traits. The largest multigenerational 
study10 demonstrates a median heritability of 37% for immune 
variation, with a range between 0% and 79%, in line with most pre-
vious studies. Cytokine pathways, key drivers of immunity, are par-
ticularly heritable12,14,15. Genome-wide association studies (GWASs) 
allow the dissection of this aggregate genetic contribution to indi-
vidual causal drivers.
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Extremely large GWASs have been performed to investigate 
basic hematological traits, and have identified >7,000 loci associ-
ated with such traits16,17. Colocalization of immune-modifying vari-
ants with risk variants for autoimmune diseases has been observed, 
suggesting clinical consequences16. These very large studies per-
mit trans-ethnic analysis. For example, a missense variant in IL7 
is associated with increased lymphocyte counts in South Asians, 
an effect that has been obscured in other populations17. The other 
end of the GWAS spectrum trades power for depth: six fine-detail 
immune-phenotyping GWASs have been performed on relatively 
small numbers of individuals9–11,18–20. Together, these GWASs have 
identified 95 loci associated with immune phenotypes, of which 
28% have been reported by more than one study. Factors to consider 

when comparing studies are the design of the immune-phenotyping 
platform, that power is still limited, and differences in ancestry. For 
example, 13% of associations in a Sardinian population10 have a 
twofold-higher frequency in this population than in the European 
cohort of the 1000 Genomes Project, where they are mostly at 
low frequency. Hence, more associations are expected to emerge 
and, as for hematological traits, analyses of different ancestries  
will be helpful.

The wealth of genetic data allows broad comparisons to be 
made. Associations have been predominantly with protein quanti-
tative trait loci (pQTLs), rather than cellular traits. These pQTLs act 
mostly in trans, via regulatory genes19,21–23. This is in line with distal 
(trans) effects being an important contributor to variation of gene 
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Fig. 1 | Immunological diversity as an evolutionary strategy. a, In a simplified single-trait Red Queen scenario, a predator–prey relationship based on 
speed drives ever-increasing speed in both the predator (red density curve) and prey (blue density curve), with the fast end of the predator bell curve 
requiring an overlap with the slow end of the prey bell curve. b, In a host–pathogen relationship, the asymmetry in population growth potential and 
generation time would allow the pathogen to rapidly specialize to counter any single-trait immune response. c, Representation of a human population 
with immune diversity, including individuals biased toward different immune responses. Individual X is immunologically more similar to individual Y than 
they are to individual Z. These distances also relate to the magnitude of the reoptimization cost that a pathogen will experience on moving from host X to 
either host Y or host Z. d, Evolutionary trajectories of pathogens in their optimization toward two example immune biases. The green trajectory represents 
optimization in a host population in which all individuals are biased toward TH17. The purple trajectory represents optimization in a host population in 
which all individuals are biased toward type I interferons (IFN). The blue trajectory represents optimization in an immunologically diverse host population.
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expression among immune cell types and being enriched for dis-
ease associations, even though most expression QTL (eQTL) stud-
ies so far have focused on cis effects24. Increasingly, physiological 
perturbations in specific cell types are being mapped and are assist-
ing in the evaluation of the colocalization of immune trait GWASs 
and eQTL signals25. More recently, splice variation has been identi-
fied as an additional source of variation that is increased following 
immune activation26. Genetic determinants of alternative splicing 
are largely independent of those of gene regulation and are often 
context dependent or alter splicing only in the context of immune 
stimulation26.

The human leukocyte antigen (HLA) locus, the most genetically 
diverse in the human genome, maintained by balancing selection27, 
is worth additional attention. This locus has been reproducibly 
associated with multiple immunological disorders, both infectious 
and autoimmune, often with the strongest effect size28. These asso-
ciations may be driven by variation in permission of clonal HLA–
peptide–TCR/KIR interactions; however, a role for variation in 
HLA expression level and stability is being increasingly inferred as 
a peptide-independent basis for association28. GWASs for healthy, 
baseline immune phenotypes have revealed several independent 
associations within the HLA locus, including a known type 1 diabe-
tes HLA-DRB1 risk allele that impacts HLA-DRB1 surface expres-
sion in innate immune cells20, and variants correlated with surface 
expression of costimulatory molecules in adaptive immune cells10. 
HLA has an even more prominent role in the genetic control of 
immunoglobulin levels, accounting for 19% of known associations 
and including autoimmune disease–associated alleles29. On the basis 
of the biology of HLA variation, it is expected that future GWASs of 
immune responses at the clonal level will identify stronger effects, 
accounting for the powerful associations exhibited with disease.

Age and immune variation
Age is one of the most potent drivers of immune variation, driving 
a shift toward systemic inflammation and away from naive lym-
phocyte phenotypes1,3,5. Age correlates with multiple immunologi-
cal parameters and also amplifies the degree of variation present, 
a result of direct effects of age as well as increased environmental 
exposures over time1,12. Age-related immune variation can be due to 
cumulative effects of immunosenescence, such as lower activity of 
hematopoietic stem cells30,31, altered lineage differentiation32, thymic 
involution33, attenuated antiviral responses34, leukocyte attrition, or 
mutation accumulation. Key genetic mutations with increased age 
include both somatic mutations and mosaic chromosomal altera-
tions (mCAs), such as deletions, duplications, and loss of heterozy-
gosity. A recent large study described how expanded mCA clones 
increased with age, were associated with altered leukocyte numbers, 
and showed significant associations with infections35. Intriguingly, 
this process may act synergistically with genetic variation, as 
GWASs have identified multiple variants in DNA-damage-repair 
pathways associated with mCAs36. Likewise, postzygotic somatic 
mutations increase with age and can impact immune responses, 
with somatic variants frequently observed in the CD8+ T cells of 
people with multiple sclerosis or rheumatoid arthritis, and non-
coding somatic variants that act as eQTLs have been described in 
cancer37. The relative contributions of these factors largely remain 
to be dissected, and it is likely that many age-associated immune 
changes are driven by combinations of factors or through secondary 
changes that occur during aging, such as increased inflammation 
or pathogen exposure — for example, cytomegalovirus infection, 
which impacts multiple immune phenotypes12. It is also important 
to consider cumulative environmental exposures as potential con-
founders. Few detailed immune-phenotyping studies have been 
run outside of countries with historic economic privilege, and 
even within such countries, large-scale changes in environmental 
exposure separate older participants from younger participants. 

Well-established age-associated changes may therefore reflect 
infectious and environmental history, rather than purely reporting 
on the direct effect of age itself.

Sex and immune variation
The effect of sex on immune variation is most apparent at the clini-
cal level. There are differences between women and men in risks for 
immune-related diseases, including those linked to autoimmunity 
and viral infection. At the level of immune parameters, the most 
consistently observed associations with sex are altered baseline cel-
lular traits and differential responses to vaccinations38. A recent 
study also found that 47% of HLA class I and II genes showed dif-
ferences between sexes in expression following stimulation with 
lipolysaccharide (LPS), a far greater rate than the genome average39. 
While much of the effect of sex is unexplained, the best-studied 
drivers for this variation are sex chromosomes and sex hormones.

With an abundance of immune-related genes present on the X 
chromosome, the differential allosome allocation can explain many 
sex-associated immune differences. Several studies have shown 
biallelic expression of the X-encoded TLR7 in females, which results 
in higher levels of type I interferon induction by plasmacytoid den-
dritic cells and a greater propensity for immunoglobulin G (IgG) 
class switching in B cells40,41. By contrast, analyses of whole-blood 
transcriptional responses to LPS found that the vast majority of 
X-linked genes are commonly induced in both males and females, 
including the majority of genes known to escape X inactivation39. 
TLR7 may thus represent a unique case, rather than a general rule. 
While the Y chromosome is genetically poor, there is evidence that 
mosaic loss of chromosome Y (LOY) contributes to immune varia-
tion. LOY is the most common postzygotic mCA in leukocytes and 
is associated with earlier mortality and morbidity in men. LOY is 
higher in innate cells than in adaptive cells and is associated with 
large-scale transcriptional dysregulation42. Whether these associa-
tions are direct and casual or reflect a common underlying mecha-
nism requires further study.

Sex hormones are the other major source of potential 
sex-associated immune differences. Antibody responses to influenza 
vaccination positively correlate with plasma estradiol concentra-
tions in females43 and negatively correlate with plasma testosterone 
in young males43,44. Studies of sex hormones are complicated by the 
intersection with age, as estradiol, progesterone, and testosterone 
levels fluctuate throughout life. It is therefore important to consider 
that immune variability may be specific to certain developmental 
periods in life, and that age effects may often be nonlinear, as was 
reported for differential immune response specifically to influenza 
H1N1 stimulation45 and vaccination46.

While substantial immune variation is associated with sex, 
almost no data are available to discriminate between the impact 
of sex and that of gender within these studies, and effects attrib-
uted to sex may, at least in part, be causally driven by gender. A 
large-scale blood transcriptomics analysis found sharply divergent 
effects of sex in an urban environment versus a rural environment 
in Morocco47. Immune differences between male and female par-
ticipants were strongly amplified in the rural setting, with tradi-
tional gender roles altering environmental exposures, compared 
with those in the less gender-segregated urban setting47. This result 
implies that the primary effect observed was based on gender 
rather than sex, although the topic requires focused research. To 
definitively assign causation to sex-associated immune variation, 
future systems-immunology studies will need to be actively inclu-
sive; engagement of immigrant and transgender populations might 
provide valuable insights into the sex versus gender effects. The 
strong correlation of sex with immunological clinical outcomes 
demonstrates the urgent clinical need of understanding the basis 
for this immune variation and improving the tailoring of medical 
strategies to these differences.
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Environmental drivers of immune variation
Adequate nutrition is essential for a functioning healthy immune 
response. Severe nutritional deficiencies lead to immune defects, in 
particular in children48. However, despite many claims, it remains 
unclear how normal dietary variation directly affects immune 
responses, or whether diet mediates its effects through indirect com-
plex effects, such as changes in the microbiome (discussed below), 
body weight, or associated inflammatory effects. As an example, a 
recent systems-immunology study identified food-derived metab-
olites as potential drivers for an urban–rural divide in immune 
configurations49, although environmental exposures might be con-
founders. Randomized placebo-controlled studies are therefore 
essential for assessing the direct effect of diet on immune function. 
A recent meta-analysis of 18 such studies of probiotic supplemen-
tation found only limited effects on immunity in healthy adults50, 
while a small-scale study identified fermented foods as reducing 
inflammatory markers51. Despite this, there is evidence for immu-
nomodulatory roles of key dietary components. For example, iron 
deficiency is widespread in infants from lower-income countries and 
has been shown to be important for development of T cell and B cell 
responses. A retrospective study of iron deficiency in infants found 
that iron supplementation improved responses to measles vaccina-
tion52. With supporting evidence from in vitro studies53 and peo-
ple with mutations in TFRC, which encodes transferrin receptor 1  
(ref. 54), it is clear that iron bioavailability is necessary for efficient 
B cell responses. For other macronutrients, evidence exists for the 
importance of dietary salt, specifically for TH17 immunity. High-salt 
diets have been associated with increased risk of autoimmunity55 
and reduced mitochondrial function in monocytes56. In vitro and 
mouse experiments have identified increased TH17 cells as a poten-
tial mechanism linking high salt to autoimmunity57, supported by 
TH17 deficiencies in people with salt-losing tubulopathies58 and 
small-scale challenge experiments59. Finally, vitamin D is important 
for many physiological processes, and the use of placebo-controlled, 
randomized interventional studies is helping to identify which 
immune pathways are affected60. Despite these examples, and more, 
it remains unclear whether the relationships between nutrition and 
immunity are continuous, with population-level effects driven by 
different diets, or whether they exist only at the extreme ends of 
the spectrum, such as in iron deficiency or very-high-salt diets. 
Similarly, for body weight, while a moderate body-mass-index 
range has not been observed to be associated with multiple immune 
traits20, individuals with obesity have been reported to be deficient 
in natural killer cell numbers and function, driven by the lipid-rich 
environment61.

Environmental exposures are potential drivers of immune varia-
tion, with particulate matter in pollution and industrial chemicals 
found in food and our domestic and work environments capable 
of driving immune deviation62. Evidence for the immune-altering 
capacity of environmental exposure is strongest in the down-
stream clinical manifestations, where, for example, air pollution 
and industrial-chemical accidents are linked to inflammatory 
diseases63,64, and farm-animal exposure protects from asthma65. 
Combined with animal-exposure models and in vitro studies66, 
variation in exposure to pollutants and chemicals is likely to drive 
strong immune divergence. An example of the mechanistic link 
being directly made is the role of aryl hydrocarbons in promot-
ing TH17 responses. Following the identification of the molecu-
lar basis67, positive correlations have been found between levels 
of particulate-matter air pollution and circulating CCR6+ T cells 
prone to TH17 polarization68. While the latter population associa-
tion was performed in people with multiple sclerosis, it provides 
a clear proof of principle that variable environmental exposures 
can contribute to the immune configurations observed within a 
population. Challenge studies can also be used, such as replicating 
urban diesel-exhaust exposure in a healthy cohort, demonstrating  

the resulting elevation of IgE-mediated responses69. Exposure- 
elimination studies70 provide the reverse design. Among the most 
potent environmental exposures, due to its ubiquity, is cigarette 
smoking, which drives an inflammatory and possibly autoimmune 
state, with changes in many leukocyte cell types20. Understanding 
the effects of smoking is complicated by the over 4,000 toxic sub-
stances present. A better understanding of these complex effects 
may be provided through comparative studies with ex-smokers as 
well as individuals exposed to passive smoking, e-cigarettes, or nic-
otine products. While the effects of individual environmental expo-
sures need to be explored, the net aggregate is potentially extremely 
potent, and may account for such findings as a halving of immune 
variation in cohabitating couples3.

The human microbiome has the potential to be a major con-
tributor to immune variation. The microbiome exhibits an extraor-
dinary degree of interindividual compositional diversity71. The 
presence of the microbiome influences immune development and 
function, with infant microbial colonization modifying immune 
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development4,72, and adult broad-spectrum antibiotic treatment 
truncating vaccine responses73. Among the strongest evidence for 
microbiome variation influencing immune states is the association 
with diseases. Shifts in microbiome composition are observed in 
different inflammatory and immunological diseases. While such 
associations may be correlative in nature, microbiome ‘transplants’ 
have demonstrated partial success, consistent with a causative rela-
tionship. Fecal microbiota transplantation following Clostridium 
difficile infection, the most promising condition for microbiome 
transplantation74, is accompanied by reduced inflammatory param-
eters75. Isolated gut-microbiome species have been shown to pro-
mote immune biases toward TH1 cell76, TH17 cell77, or regulatory 
T cell (Treg cell) differentiation78 when transferred into mice with 
limited or no resident microflora. Parallel shifts in microbiome and 
immune profiles have been observed in infants4,72 and the posthe-
matopoietic stem-cell transplantation setting79, and microbiome 
supplementation in these settings alters the immune system72,80,81. 
Together, these data strongly suggest that, at least in individuals 
with dysbiosis or limited microbiome diversity, introduction of new 
species does modify the immune status.

Of the diverse mechanisms by which variation in the micro-
biome may influence host immune variation, several have been 
experimentally validated. First, commensals provide antigenic tar-
gets82. While the impact of such responses will be diluted above the 
clonal level, the immune response at the interface tissue is likely to 
be profoundly shaped by these interactions, as has recently been 
demonstrated in the clonal dominance in tissues observed after 
vaccine challenge83. Second, the microbiome produces bioactive 
metabolic products, which can shape the host immune system. 
For example, short-chain fatty acids are implicated in the ability 
to induce Treg cells in mice78, and tryptophan metabolites reduce 
interferon-γ responses by human cells in vitro84. The key unknown 
is the extent to which these immunomodulatory properties are 
amplified or negated across the microbiome variation observed in 
the healthy human population. If independence in microbial colo-
nization efficiency occurs, these effects would drive a spectrum of 
immune-modifying microbiomes, increasing variance in immune 
configurations. Conversely, interdependency in microbial coloni-
zation may result in niche substitution, limiting the overall impact 
of microbiome diversity on immune variation (Fig. 2). Notably, the 
initial immune variation among infants converges as the microbi-
ome stabilizes, independently of gestational age85, suggesting there 
is some degree of interdependency in the effects of colonization4. 
Large-scale studies with parallel systems immunology and micro-
biomics, such as one identifying that up to 10% of the variation in 
cytokine responses could be accounted for by the microbiome84, are 
needed to answer such questions.

The balance of probabilities suggests that microbiome varia-
tion between individuals contributes to the observed immune 
diversity. The magnitude of this contribution, however, remains 
to be determined. The responsiveness of the microbiome to diet, 
environmental exposure, age, and sex86,87 creates problematic con-
founders. Even in the case of GWASs, in which associations found 
with the microbiome show some overlap with immunological loci, 
reproducibility has been problematic, and the direction of causality 
between immune traits and microbiome traits associated with the 
same loci has not been established88. In each case, it remains pos-
sible that microbiome changes are largely bystander correlations, 
responding in parallel with the immune system to the causative 
drivers. Equally, the microbiome may be the nexus that integrates 
many of the associated variables and provides the direct causative 
mechanisms underlying immunological variation.

Variation during immune reactions
As an emerging field of research, systems immunology has concen-
trated largely on understanding the nature of variation in the healthy 

baseline state. Beneath this baseline variation, however, lies a hidden 
layer of immune variation, present only during immune responses. 
Indeed, it is precisely the outcome of immune challenge that has 
shaped the evolution of our immune system. Systems-vaccinology 
studies are the key approach to investigating the perturbation of 
the immune system in a controlled manner, with influenza vacci-
nation being among the most extensively studied. Variation in the 
production of protective antibodies following vaccination has been 
correlated with high plasmablast activity within a week after vac-
cination89,90. The presence of CD38+ B cell subsets at baseline seems 
to be a strong predictor across diverse cohorts and studies89,91, with 
specific gene-expression signatures89,91–93. Variation in the early 
activation of the interferon pathway has been reproducibly associ-
ated with elevated antibody production in the latter response89–91,94, 
a finding consistent across multiple different vaccines91,94–96. These 
positive innate responses can also be found at baseline and are 
mediated mainly by dendritic cells and plasmacytoid dendritic 
cells91,97. Intriguingly, a similar interferon signature correlates with 
prediction of clinical flares of systemic lupus erythematosus91, sug-
gesting a common basis for an immunological variation that may 
have beneficial or detrimental consequences depending on the acti-
vation context.

A strong case study for the utility of systems-vaccinology 
approaches is the application of these lessons to understanding 
immune differences with age. The functional correlation between 
early interferon responses and antibody production in healthy 
young individuals may suggest the causality of poor immune 
response after vaccination in the aged population90,92. The aged 
population, in comparison with younger individuals, has an innate 
cell compartment skewed toward an inflammatory signature but 
away from type I interferons90,93,98,99. Indeed, the addition of an 
interferon-stimulating adjuvant to an influenza vaccine substan-
tially improves the production of antibodies in older people100,101. 
Studying natural variation between good responders and poor 
responders therefore identifies target pathways that can be exploited 
for improving clinical outcomes in the poor responder population.

Although vaccines constitute the best-controlled 
systems-immunology challenge context, experimental and natu-
ral infections provide the most physiologically relevant. The 
SARS-CoV-2 pandemic has provided the most intensively studied 
natural infection context, with a multitude of systems-immunology 
studies identifying immunological variations associated with pro-
tection from severe infection. Clonal cross-reactivity explains a pro-
portion of protection102,103; however, other factors have been linked 
to differential immunological response configurations. Cytokine 
bias, driven by an altered myeloid compartment104–106, appears to 
significantly alter the risk of severe disease, with type I interferons 
being protective and IL-6 or TNF being detrimental104,105,107. In the 
lymphoid compartment, susceptibility to severe disease is associated 
with elevated activation and clonal expansion of CD8+ T cells104,108,109. 
The contribution of this variation in immune responses to clinical 
outcomes is emphasized by the predictive nature of early immune 
configurations for later pathology109,110. While some component of 
the association between immune status and clinical outcome may be 
shared across infections, especially those sharing infectious modali-
ties111, other associations are likely to differ. An example of the latter 
is the association of CD4+ T cell responses with parasitemia restraint 
in controlled malaria infections112. The utility of systems immunol-
ogy in understanding clinical outcomes in SARS-CoV-2 infections 
is likely to drive the uptake of this approach to other infectious dis-
eases. We anticipate that different immune configurations will each 
provide either beneficial effects or detrimental effects, depending 
on the infectious challenge.

Regulatory QTL mapping during dynamic processes such as 
the response to immune stimuli can reveal otherwise hidden reg-
ulatory variation that may be particularly relevant for disease. As 
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reviewed elsewhere24, immune cell activation reveals a large number 
of trans-acting response eQTLs, which are highly cell type specific. 
The response eQTLs identified in the context of pathogen sens-
ing can have large effect sizes, and show a stronger enrichment for 
immunological disease associations and evidence of recent selection 
than do standard, steady-state eQTLs24,45,113. Transcriptional varia-
tion is to a large extent buffered at the protein level, and the first 
GWASs for pQTLs after in vitro stimulation are emerging14,114,115. 
Significantly increased interindividual variability in cytokine 
response has been observed following stimulation115, and is under 
strong genetic control and typically pathogen centered rather than 
cytokine centered14,114,115. As in the previously mentioned baseline 
example, nearly all pQTLs are trans effects14,114,115, and they are 
enriched for infectious-disease associations14,114,115. Human genetic 
determinants following in vivo encounters have also been studied. 
Several GWASs have been performed for response to vaccination, 
although further replication is needed before firm conclusions 
can be drawn, and studies are increasingly being performed on 
responses to infections116. While associations with clinical out-
come have been reviewed elsewhere, the response to SARS-CoV-2 
is worth noting, as the COVID-19 pandemic provided a recent 
opportunity for infectious-outcome GWASs that are orders of mag-
nitude larger than previous studies. These studies have identified 
13 genome-wide significant loci with relatively large effect sizes 
associated with infection or clinical outcome117–119. Very few stud-
ies, however, have included immunological phenotypes during an 

in vivo infection-response GWAS. One well-known early example 
was the association of interferon-λ4 expression with clearance of 
hepatitis C virus. In a genome-to-genome analysis, this host varia-
tion was subsequently demonstrated to drive viral polymorphism 
and viral load120. Here, again, the translational potential exists to use 
the correlation between immune variation and infectious outcome 
as a rational guide to therapeutic intervention.

The continuous evolution of immune variation
The evolutionary advantages of immune variation are imprinted 
upon our genomes. From human origins to modernity, the sig-
nature of selection for immunological genetic variants is evident. 
Among the most fascinating historic selection events is the archaic 
introgression of variants from Neanderthal and Denisovan genomes 
into those of modern humans. Neanderthal ancestry accounts for 
∼2% of the genome of Euroasians, while Denisovan ancestry rep-
resents <1% of the genome in East and South East Asians and up 
to 6% in some Oceanian populations. Despite the widespread sig-
nature of purifying selection against archaic alleles, selection acting 
on advantageous archaic introgressed segments may have increased 
their frequency8. Introgressed Neanderthal and Denisovian loci are 
enriched for innate and adaptive immunity genes121,122, and include 
the HLA and immunoglobulin regions123,124. RNA viruses appear 
to have been an important driving force of such positive selection, 
with up to 30% of high-frequency Neanderthal introgressions being 
selected in response to viruses125. Between 46% and 65% of alleles 

Fig. 3 | Neanderthal ancestry impacts COVID-19 severity. The major risk factor for severe COVID-19, which almost doubles the risk, is a Neanderthal 
haplotype block on chromosome 3 encompassing the gens encoding the chemokine receptors CXCR6 and CCR9 (tagged by rs35044562, red), which is 
especially common in South Asians. A different Neanderthal haplotype block, at the OAS1–OAS3 cluster on chromosome 12 (tagged by rs1156361, light 
blue), is protective against severe COVID-19 in Eurasians. This haplotype appears to have reintroduced the ancestral OAS1 splice variant rs10774671 (dark 
blue), still present as an isolated variant in Africans. Frequencies indicated by bars for 1000 Genomes Project populations: ACB, African Caribbean; ASW, 
African ancestry in the southwest United States; BEB, Bengali (Bangladesh); CDX, Dai Chinese; CEU, Northern and Western European ancestry in the 
United States; CHB, Han Chinese; CHS, Southern Han Chinese; CLM, Colombian; ESN, Esan (Nigeria); FIN, Finnish; GBR, British; GIH, Gujarati Indians in 
Houston (United States); GWD, Gambian Mandika; IBS, Iberian (Spain); ITU, Indian Telugu in the United Kingdom; JPT, Japanese; KHV, Kinh Vietnamese; 
LWK, Luhya (Kenia); MSL, Mende (Sierra Leone); MXL, Mexican ancestry in California (United States); PEL, Peruvian; PJL, Punjabi (Pakistan); PUR, Puerto 
Rican; STU, Sri Lankan Tamil (United Kingdom); TSI, Toscani (Italy); YRI, Yoruba (Nigeria). Adapted population genomics map134: orange arrows indicate 
the major migrations of Homo sapiens after the out-of-Africa exodus; green arrows indicate some more recent migratory events. Approximate geographic 
areas of modern human populations presenting Neanderthal or Denisovan ancestry are shaded in light blue and yellow, with the Neanderthal ancestry 
observed in American populations reflecting their varying levels of European ancestry.
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in introgressed haplotypes represent ancient genetic diversity lost 
in the out-of-Africa bottleneck, and for 70% of these alleles reintro-
duced in Eurasians, the ancestral form is still present in Africans126, 
demonstrating the selective pressure for maintaining genetic diver-
sity in immunity.

Increasing evidence for functional consequences to introgressed 
alleles is being found. The example of FCGR2A (which encodes 
an immunoglobulin receptor) underscores the importance of 
alternative splicing also in response to infection. An introgressed 
variant, in linkage disequilibrium with immune-trait-associated 
signals20, increases protein-coding transcripts and phagocytosis 
after stimulation by LPS26. The role of introgression in shaping the 
genetic architecture of COVID-19 is notable. The major risk fac-
tor for severe COVID-19, almost doubling the risk, is a haplotype 
block encompassing the genes encoding the chemokine receptors 
CXCR6 and CCR9 (refs. 117–119). This haplotype has been intro-
duced by archaic introgression124 (Fig. 3). The high frequency of 
this Neanderthal haplotype in Europeans (8%) and South Asians 
(30%) suggests that the variant previously underwent positive 

selection124,127, raising the possibility of oscillating selection with 
changing infectious exposures over time. Alternatively, the striking 
difference in frequency between South Asia and East Asia, where 
the variant is largely absent, has been suggested to result from nega-
tive selection, perhaps from coronaviruses or other pathogens127. A 
different Neanderthal haplotype block, at the OAS1–OAS3 cluster, 
is protective against severe COVID-19 in Eurasians117–119, producing 
an OAS1 splice form with higher enzymatic activity128. The ancestral 
variant, still present in Africans, appears to confer a similar mag-
nitude of protection against severe COVID-19, underscoring the 
value of the reintroduction129.

The evolution of immunity has not halted with modernity. While 
historical immune evolutionary processes were driven primarily by 
the burden of infectious disease, and in particular childhood mor-
tality from infections, the shifting context of immune challenges still 
provides selective pressure. The plethora of immune-driven pathol-
ogies, each at risk of amplification by particular immune configura-
tions, creates complex environment-dependent trade-offs. Genetic 
determinants of immune variation overlap known immune disease 
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loci9–11,18,19,29,115. As examples, association signals for immunoglobu-
lin levels overlap genes known to be involved in autoimmune and 
immunodeficiencies29, monocyte-derived cytokine associations 
overlap infectious diseases, and T cell–derived cytokine associa-
tions overlap autoimmune diseases14,115. The nature of immune vari-
ation suggests that no variants will be unambiguously beneficial, 
with instead each immune configuration bias incurring both a ben-
efit and a penalty, in a context-dependent manner. The arrival of an 
era of lower infectious-disease burdens, in particular the hygienic 
control of fecal–oral transmission, childhood vaccination, and anti-
bodies, has not eliminated the selective pressure on the immune 
system, but has instead changed the relative benefits and penalty of 
particular variants. An example of this principle may be seen in the 
P1104A variant of TYK2, a uniquely broad immune-disease locus. 
Homozygosity for this variant confers susceptibility for severe 
mycobacterial disease, most frequently tuberculosis130. At the same 
time, P1104A homozygosity is associated with fivefold protection 
against multiple autoimmune diseases131 and changes in leukocyte 
frequency16,17 (Fig. 4a). The allele frequency declined from ~9% 
in prehistoric humans to ~3–4% in Europeans, among the high-
est purifying selection observed in the human genome132 (Fig. 4b). 
The recent decline in tuberculosis prevalence has eliminated this 
association in Europe131,133 and has prevented further negative selec-
tion of the allele. However, the recent emergence of SARS-CoV-2 
may expose the adverse functional consequences of TYK2 genetic 
variation once more. An intergenic variant in strong linkage dis-
equilibrium with P1104 is associated with COVID-19 severity117,119. 
The effect of this allele therefore balances increased risk of certain 
infections with protection from autoimmunity in a temporally and 
spatially dependent manner.

Conclusion
The genetic architecture of immune diversity and capacity for 
malleability lies in our evolutionary history. While the rate of 
natural-selection-induced genetic change is reduced, the chang-
ing environment is altering the physiological consequences 
of this archaic genetic variation. Systems-immunology and 
systems-vaccinology approaches have made great advances in 
recent years in elucidating the basic structure of this variation. 

Multiple key challenges still remain in dissecting causal mecha-
nisms (see Box 1), with engagement of neglected populations and 
the joint application of techniques from genomics, population 
genetics, microbiomics, and environmental epidemiology being 
critical for further progress. Beyond the mechanistic understand-
ing of natural variation lies the promise of identifying individuals 
with potentially pathogenic immune configurations and the use of 
therapeutics to reroute immunity into a healthy state. Natural varia-
tion in the immune system highlights the pathways that are ame-
nable to large functional shifts after modulation. Understanding 
variation in response to environmental factors in particular, such as 
diet, microbiome, and environmental exposure, holds the promise 
of using simple environmental manipulations in a targeted manner 
to reroute an individual’s immune system toward a less pathogenic 
configuration. Although the advantages of personalized immune 
modification are manifold, they first require a baseline knowledge 
of the source of our individual differences.
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