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CD4+ TCRαβ+ T  cells confer immunity to bacteria, viruses, 
fungi and protozoan parasites. They are repositories of 
immunological memory, facilitating secondary responses 

both faster than and of larger magnitude than primary infection. 
CD4+ T  cell memory has been studied using major histocompat-
ibility complex (MHC) tetramers and T cell antigen receptor (TCR) 
transgenic T cells, mostly in bacterial and viral infections1–5, and less 
so in parasitic infection6. Previous studies have employed preselected 
markers, including fate-mapping of cytokine or chemokine genes1,2, 
adoptive transfer of cell-sorted effectors3,4 and single-cell transfer 
and longitudinal sampling5. These indicate that a single naive CD4+ 
T cell generates memory clones that partly resemble their effector 
counterparts. This can be explained by a linear model wherein naive 
cells necessarily give rise to effector cells before transit to memory, 
or a branching model, wherein memory cells develop before or in 
parallel with effectors. Single-cell RNA sequencing (scRNA-seq) 
has recently revealed CD4+ central memory precursors during the 
first week of viral infection7, consistent with a branching model. In 
humans, longitudinal assessment after vaccination has indicated 

that effectors gave rise directly to circulating memory cells8,9. Given 
the class of infectious agent can influence the response of a CD4+ 
T cell clone10, it remains difficult to extrapolate from previous stud-
ies to CD4+ T cells in a parasitic infection.

Malaria remains a threat to human health, with 228 million 
cases and 405,000 deaths in 2018 (ref. 11). Although non-sterilizing 
immunity can be achieved via natural infection, this takes multi-
ple exposures over many months to achieve12. In endemic regions, 
antimalarial chemoprevention can improve protection for at least 
one year after cessation of drug treatment13,14. Mechanisms explain-
ing this phenomenon remain unresolved, although qualitative 
changes in memory CD4+ T  cells have been reported15. In mice, 
immune-checkpoint blockade reduced CD4+ T cell exhaustion and 
improved immunity16, suggesting that parasitic infection impairs, 
but does not delete, CD4-dependent cellular immunity. Defining 
molecular pathways that promote effective development of CD4+ 
T cell memory may reveal new strategies for improving immunity 
to malaria, either during natural exposure and chemoprevention or 
via vaccination.
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The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, anti-
malarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell 
RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In 
the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) tran-
scriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, 
and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were 
revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed 
that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells 
is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining 
gene-expression dynamics and gene–gene correlations (http://haquelab.mdhs.unimelb.edu.au/cd4_memory/).
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Although CD4+ T cells protect against Plasmodium parasites17, 
genome-scale characterization of the dynamics of memory develop-
ment remains to be performed in malaria or other infection models. 
We previously employed TCR transgenic CD4+ T cells specific for a 
Plasmodium epitope (PbTII cells), in conjunction with scRNA-seq 
and computational modeling, to reveal mechanisms underlying 
TH1 and TFH fate bifurcation during the first week of experimen-
tal malaria18. From hundreds of single-cell transcriptomes, TH1 
and TFH effectors emerged from a proliferating, intermediate state, 
the balance of which was externally influenced by monocytes or B 
cells. Here, we extend our previous work by studying thousands of 
parasite-specific CD4+ T cells over four weeks in the spleen using 
two complementary scRNA-seq platforms, single-cell assay for 
transposase-accessible chromatin using sequencing (scATAC-seq), 
computational modelling and in  vivo validation. We define, at 
genome scale, the dynamics underlying CD4+ T cell memory deve
lopment during experimental malaria and drug treatment, and  
provide user-friendly online resources to facilitate research in  
T cell biology.

Results
PbTIIs exhibit memory phenotypes boosted by anti-malarial 
drugs. We transferred naive eGFP+ Plasmodium-specific PbTIIs19 
into C57BL/6J mice—seeding the spleen of each mouse with 100–
500 cells—and infected them with blood-stage Plasmodium chabaudi 
chabaudi AS (PcAS) parasites17. Parasitemia peaked by day 7, fol-
lowed by low-level parasitemia (Fig. 1a) and splenomegaly (Fig. 1b)  
for 2–3 months. We administered sodium artesunate or control 
saline at multiple time-points from day 7, referred to as intermittent 
antimalarial drug treatment (IAT).

PcAS infection triggers CD4+ T cell responses that largely com-
prise TH1 and TFH cells20,21 (definitions for CD4+ T  cell states are 
provided in Table 1). Splenic PbTIIs peaked by day 7, remaining 
detectable well beyond the first month, although IAT reduced these 
and splenomegaly (Fig. 1b,c and Supplementary Information Fig. 1a).  
PbTIIs expressed CD62L and CCR7 heterogeneously during the first 
month, which was modulated by IAT (Fig. 1d), suggesting central 
memory (TCM) and effector memory (TEM) PbTIIs had developed. 
Bifurcated expression of TH1-associated C-X-C motif chemokine 
receptor 6 (CXCR6) and TFH-associated CXCR5 was partially 
retained, and was enhanced by IAT at day 60. (Extended Data Fig. 1a).  
PbTIIs were located in splenic T cell, B cell and red pulp zones at day 
7 (Extended Data Fig. 1b), and in GCs and B cell zones at later times 
(Extended Data Fig. 1c,d). Thus, PbTIIs entered GCs and persisted 
long enough to become memory cells.

We next determined whether PbTIIs exhibited recall responses. 
Direct ex vivo interferon-γ (IFN-γ) production progressively sub-
sided in both groups by day 28, consistent with waning of primary 
TH1 responses (Fig. 1e). In contrast, in vitro TH1 recall was substan-
tially enhanced on a per-cell basis by IAT (Fig. 1e), despite reduc-
tions in PbTII numbers (Fig. 1c), and those capable of expressing 
IFN-γ or interleukin-10 (IL-10) (Extended Data Fig. 2a,b). The 
potential for PbTIIs to mount TH1 and TFH recall responses was 
examined by bulk ATAC-seq. Inaccessible chromatin in naive 
PbTIIs became accessible at day 7, and remained partially acces-
sible at day 28 with or without IAT (Extended Data Fig. 2c). This 
was evident for specific TH1 or TFH-associated genes Ifng, Cxcr5, 
T-box transcription factor 21 (Tbx21) and Il21 (Extended Data  
Fig. 2d). To test recall in vivo, we performed homologous high-dose 
rechallenge, comparing day 28, antigen-experienced PbTIIs, with 
naive comparators transferred before rechallenge (Supplementary 
Fig. 1b). PbTIIs primed 28 days previously exhibited greater direct 
ex vivo IFN-γ production than that of naive PbTIIs (Fig. 1f), with 
reduced proliferative and early-activation markers (Extended Data 
Fig. 2e,f). Thus, PbTIIs had acquired memory phenotypes, with IAT 
boosting TH1 memory (Fig. 1f).

Central memory precursors are not essential for CD4+ T  cell 
memory development. We next examined the mechanisms under-
lying memory development. Despite reporting only two fates in 
our previous study18, we hypothesized that rare memory precursors 
existed. To test this, we assessed thousands of splenic effector tran-
scriptomes. PbTIIs at day 7 (10,251 cells following quality control) 
had bifurcated, exhibiting reported TH1 and TFH gene signatures18, 
and a smaller group of proliferating cells expressing TH1 or TFH 
features (Fig. 2a–c). Consistent with our previous study, the minor 
cluster was likely undergoing final cell division and fate bifurca-
tion18. Most importantly, neither a recently published CD4+ TCM 
precursor gene signature7 (Fig. 2d) nor CCR7 expression (Fig. 2e) 
supported emergence of CD4+ TCM precursors at peak infection.

TH1 and TFH effectors exhibit gradual transit towards memory. 
We next hypothesized that memory developed directly from effec-
tors. However, tracking this process using single-gene approaches 
was difficult since TH1 and TFH phenotypic mixing is reported in 
Plasmodium infection22. scRNA-seq revealed that neither Ifng, Tbx21 
nor Cxcr3 expression was confined to TH1 cells (Extended Data  
Fig. 3). Similarly, selectin p ligand (Selplg) (encoding the adhesion  
molecule PSGL1) and lymphocyte antigen 6 complex, locus C2  
(Ly6c2) (encoding Ly6C) were expressed in both fates at peak 
(Extended Data Fig. 3). Cxcr6 and Cxcr5 were reasonably well- 
confined to their respective fates (Fig. 2b), although no single 
gene faithfully marked all TH1 or TFH cells. Therefore, we applied 
scRNA-seq profiling over time to avoid pre-selected markers,  
to capture intermediate states and to examine dynamics at genome 
scale. As before, we transferred PbTIIs (Extended Data Fig. 4a), 
infected with PcAS, and administered IAT or saline from day 7 
(Supplementary Information Fig. 1c). At various timepoints, splenic 
PbTIIs were sorted and processed via Smart-seq2 scRNA-seq 
(Extended Data Fig. 4b). From 4,548 wells, high-quality transcrip-
tomes were obtained for 2,964 cells (Extended Data Fig. 4c). To 
study transcriptomes from naivety to memory, we integrated this 
Smart-seq2 dataset with our previous PbTII datasets18, resulting 
in 3,728 transcriptomes spanning 4 weeks of infection with and 
without IAT (Extended Data Fig. 4d). Principal-component analy-
sis (PCA) and uniform manifold approximation and projection 
(UMAP) revealed, as before, 2 effector populations emerging by 
day 7, expressing Cxcr5 or Cxcr6 (Extended Data Fig. 5a). UMAP 
suggested that there was progressive transcriptomic change over 
time, with two trajectories being more apparent during IAT than 
during saline treatment (Extended Data Fig. 5a). Unsupervised  
trajectory inference using Slingshot23 was unable to map trajecto-
ries that adhered to timepoint information (Extended Data Fig. 5a).  
Estimation of RNA velocity24 indicated that, although change  
was rapid and trajectory inference was possible around fate  
bifurcation, subsequent timepoints exhibited slower rates of  
change, making inference of trajectory difficult (Extended Data  
Fig. 5b). In any case, our integrated scRNA-seq dataset sup-
ported the presence of intermediate transcriptomic states between  
effector and memory states, particularly under IAT, suggesting  
that there was a progressive effector-to-memory transition over  
several weeks.

Temporal mixture modelling of effector-to-memory transi-
tions. We next generated a probabilistic transcriptomic model to 
map gene-expression dynamics with or without IAT. We employed 
GPfates18, which involved Bayesian Gaussian process latent variable 
modeling (bGPLVM), calculation of pseudotime from resulting 
latent variables, and finally overlapping mixtures of Gaussian pro-
cesses (OMGP), run on IAT and control saline groups separately—
including data from day 0–7 in both datasets (Fig. 3a). Resulting 
models resembled incomplete circles in two dimensions, with TH1 
and TFH lineages coalescing and partially returning towards naivety 
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(Fig. 3a). Our ability to assign effectors to either lineage diminished 
along pseudotime (Fig. 3b). This was more apparent for saline than 
for IAT (Fig. 3b). Also of note, the TFH lineage tracked closer to naive 
cells (Fig. 3a).

Gene numbers increased from ~2,000 at naivety to ~5,000 dur-
ing clonal expansion, ~4,000 in effectors and ~2,000 by the end of 
pseudotime, a pattern mirrored by cell-cycling genes (Fig. 3c). IAT 

did not alter the decline in detected genes over pseudotime, but did 
reduce expression of exhaustion-associated genes (Fig. 3d). To vali-
date our GPfates models, we employed single-cell variational infer-
ence25, which recapitulated observations from PCA and GPfates, 
including that Cxcr5- and Cxcr6-expressing effectors appeared  
to gradually change over three weeks (Extended Data Fig. 5c).  
Thus, computational modeling suggested that effectors gradually 
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Fig. 1 | Plasmodium-specific TCR transgenic PbTII cells develop memory during infection. a, Parasitemia during PcAS infection in C57BL/6J mice in 
the presence or absence (saline-treated control group) of IAT. Data are pooled from 3 independent experiments (n = 5 mice per group, per independent 
experiment). Statistical testing was performed using two-tailed Mann–Whitney test. Days p.i., days postinfection; pRBC, parasitized red blood cells.  
b, Spleen weight during PcAS infection in the presence or absence of IAT. Data are representative of 3 independent experiments (n = 5 mice group, per 
individual timepoint). Statistical testing was performed using two-tailed Mann–Whitney test. c, Splenic PbTII cell numbers during PcAS infection in 
the presence or absence of IAT. Data are pooled from 2 independent experiments (n = 5 mice per group, per individual timepoint for each independent 
experiment). Statistical testing was performed using two-tailed Mann–Whitney test. d, Histograms of flow-cytometric assessment for surface CD62L 
and CCR7 expression on PbTII cells. A representative histogram is presented for naive controls, and overlaid histograms (n = 5 mice per group) are 
presented for day 28 (D28) saline and IAT groups. Data are representative of two independent experiments. e, Left, analysis of direct ex vivo IFN-γ 
production by PbTII cells without restimulation. Right, analysis of ex vivo IFN-γ production by PbTII cells after PMA and ionomycin restimulation in vitro. 
The dashed gray line represents the threshold of IFN-γ production by naive PbTII cells. Data are pooled from 2 independent experiments (n = 5 mice per 
group, per individual timepoint for each independent experiment). Statistical analysis performed using two-tailed Mann–Whitney test. f, Representative 
fluorescence-activated cell sorting (FACS) plots showing direct ex vivo production of IFN-γ at 17 hours following rechallenge for naive (gray) or memory 
(green) PbTII cells in saline and IAT groups. The graph compares IFN-γ production between naive or memory PbTII cells in saline or IAT groups. Data are 
pooled from 2 independent experiments (n = 5 mice per group, per independent experiment). Statistical analysis was performed using paired two-way 
analysis of variance with Tukey’s multiple-comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data are presented as mean ± s.e.m. 
(a,b,c,e). Statistical analysis was performed between saline and IAT groups for each timepoint (a,b,c,e).

Nature Immunology | VOL 21 | December 2020 | 1597–1610 | www.nature.com/natureimmunology 1599

http://www.nature.com/natureimmunology


Resource Nature Immunology

transitioned to various quiescent cellular states that partially resem-
bled naivety.

To facilitate interrogation of our GPfates models, we present 
an online graphical user interface (GUI) (Fig. 3e): http://haquelab.
mdhs.unimelb.edu.au/cd4_memory/. The ‘Dynamic Model’ GUI 
enables visualization of expression dynamics for any gene in CD4+ 
T cells during persistent infection or IAT. We also present a gene–
gene correlation function, allowing testing for coexpression of two 
genes in the same cell.

Transcriptome dynamics reveal immune signatures retained in 
memory. To discover genes associated with memory development, 
we categorized ~15,000 genes within our GPfates models accord-
ing to expression dynamics along pseudotime (without consider-
ation of TH1–TFH bifurcation). Using SpatialDE26, seven distinct 
dynamics were identified (Fig. 4a,b). The shape of each was similar 
between IAT and saline groups, with minor differences, for exam-
ple, in dynamic 1 (Fig. 4c). Gene Ontology (GO) analysis was con-
ducted within each dynamic (Fig. 4b). Consistent with our previous 
study18, dynamic 6, associated with DNA replication, peaked before 
bifurcation and faded as effector phenotypes emerged. Dynamic 5 
was more prolonged and was associated with energy metabolism, 
including ATPase and electron-carrier activity. Dynamic 7, fea-
turing a late drop in gene expression, was overwhelmingly com-
posed of ribosomal genes. Dynamic 1 was composed of relatively 
few genes (511 of 14,167 for IAT; 463 of 15,310 for saline) that 
peaked late and remained elevated at the end of pseudotime. GO 
analysis indicated that there were strong associations with immune 
processes, including cytokine signaling, TNF-receptor signaling, 
antigen binding and targeting by the immune-associated E3 ubiq-
uitin ligase, TRAF6. Therefore, only 3–4% of genes exhibited a late  
peak and preserved expression, and were largely associated with 
immune processes.

Correlation and gene-network analysis of dynamic 1 revealed 
stronger positive correlations between genes under IAT than under 

saline (Fig. 4d). Resulting networks suggested a linear ‘axis’ under 
IAT, and a single hub of weaker connections under saline (Fig. 4d,e). 
Several transcriptional regulators were distributed along the IAT 
axis with a graded TH1–TFH structure (Fig. 4d,e), with Bcl6 and Tox2 
at one end, and TH1-associated Id2, Tbx21 and Runx2 at the other 
(Fig. 4e). Foci for immune checkpoints (Tigit, Lag3, Pdcd1, Ctla4) 
and Tr1 (Il10, Prdm1, Bhlhe40 (refs. 27,28)) were also noted. Thus, 
similar genes were detected in dynamic 1 for IAT and saline, but 
gene–gene correlations were stronger and TH1, Tr1, exhaustion and 
TFH groupings were clearer in IAT.

The existence of TH1 and TFH networks under IAT motivated 
examination of genes according to the strength of TH1–TFH bifurca-
tion. All genes were scored for pseudotime correlation and bifur-
cation to either lineage (Fig. 4f). Some genes exhibited moderate 
pseudotime correlation and strong TH1 or TFH assignment, includ-
ing Cxcr6, Ccr2, Ccr5, Tox2, Cxcr5 and Bcl6. Among strongly 
TH1-bifurcating genes, some correlated strongly with pseudotime, 
including Nkg7, S100a4, S100a6 and Ccl5 (Fig. 4f). In contrast, only 
Folr4 (encoding folate receptor 4) was TFH bifurcating and highly 
correlated with pseudotime. Instead, many TFH-associated genes 
correlated with early pseudotime, including Tcf7, highlighting their 
expression in naivety. Finally, some genes correlated with late pseu-
dotime with little bifurcation, including transcription factors Id2 
and Maf, exhaustion-related genes Tigit and Lag3 (in saline controls 
more so than under IAT) and Cxcr3.

To test predictions from our models (Extended Data Fig. 6a), 
we examined protein expression of various markers, including dis-
tribution among lineages. ID2 was strongly upregulated at day 7,  
but was not substantially retained at the protein level by day 28 
(Extended Data Fig. 6b). Reciprocally related TCF1 (encoded by 
Tcf7), was heterogeneously downregulated in effectors, and partly 
recovered in some memory cells during IAT (Extended Data Fig. 6b).  
c-Maf was upregulated at day 7, and partially retained at day 28 with 
or without IAT (Extended Data Fig. 6c). CCL5 was absent from 
CXCR5+ effector and memory PbTIIs, and was associated instead 
with CXCR6+ memory PbTIIs (Extended Data Fig. 6d). CXCR3 was 
broadly expressed on CXCR5+ and CXCR6+ cells at day 28 under 
IAT (Extended Data Fig. 6e).

Id3, a transcription factor related to ID2, appeared to be confined 
to the TFH-associated lineage (Extended Data Fig. 6a). We confirmed 
this using Id3GFP PbTIIs, with GFP expression in CXCR5+ but not 
CXCR6+ PbTIIs at day 28 (Extended Data Fig. 6f). Thus, Id3 and 
Tcf7 were retained along the TFH lineage. To confirm Tcf7 promoted 
the TFH lineage, we examined TH1–TFH fate in CreERT2Tcffl/fl PbTIIs, 
compared with those from wild-type littermates (Extended Data 
Fig. 6g). TCF1-deficient PbTII effectors were defective in BCL6 and 
CXCR5 expression, and instead expressed more CXCR6, ID2 and 
T-bet (Extended Data Fig. 6h), confirming TCF1 promoted the TFH 
lineage in our model.

Memory fate is determined during the first week of infection. 
To examine memory fate in single naive PbTIIs, we employed the 
diverse endogenous TCRαβ sequences in Rag-sufficient PbTIIs as 
barcodes18. From 2,964 transcriptomes across all timepoints and 
conditions, where endogenous VDJ regions were reconstructed29, 
we detected 201 families (Fig. 5a,b), defined as sharing the same 
endogenous sequences. Families ranged from two to five cells  
(Fig. 5b), and did not cross timepoints or conditions (Extended Data 
Fig. 7a), because individual mice were used for each, and PbTIIs in 
separate mice harbor unique endogenous barcodes. Cells from one 
family frequently occupied both TH1 and TFH lineages (Fig. 5c), con-
firming single naive PbTIIs displayed heterogeneity in the effector 
and memory fates of their progeny.

We tested whether lineage choice was random within a family. 
We examined cells under IAT only, where binary TH1–TFH fates  
were more easily discerned than in saline controls (Fig. 5c). After 

Table 1 | T cell terminology

Definition

Naive CD4+ 
T cell

A mature CD4+ T cell yet to encounter cognate antigen 
presented in the context of MHCII, expressing CCR7 and 
CD62L

Effector 
CD4+ T cell

A CD4+ T cell exhibiting helper functions such as cytokine 
production after being activated by cognate antigen and 
having progressed through clonal expansion

Memory 
CD4+ T cell

A CD4+ T cell previously activated and clonally expanded 
via cognate antigen, which although quiescent, retains a 
capacity to respond to a second round of activation with 
cognate antigen

TH1 cell Effector CD4+ T cell expressing high levels of T-bet and 
IFN-γ, also marked by cell-surface expression of CXCR6

TFH cell Effector CD4+ T cell expressing high levels of BCL6 and 
CXCR5, as well as ICOS, with a capacity to leave T cell 
zones and move to B cell follicles in secondary lymphoid 
tissue

GC TFH cell Effector CD4+ T cell expressing high levels of BCL6, 
CXCR5 and PD1, with a capacity to interact with B cells in 
the germinal center

TR1 cell Effector CD4+ T cell coexpressing IFN-γ and IL-10

TCM cell Antigen-experienced, quiescent T cell that expresses 
CCR7 (with or without CD62L)

TEM cell Antigen-experienced, quiescent T cell that rapidly expresses 
cytokine and/or specific T helper phenotypes during recall
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excluding cells of indeterminate fate, we examined 97 families. We 
hypothesized cell fate was independent of family, and therefore dis-
tribution of fates within each family would follow a random, bino-
mial distribution (Fig. 5d). Instead, sibling PbTIIs exhibited greater 
tendencies towards the same fate than could be explained by ran-
dom binomial process (P < 0.0005, Fig. 5d), the trend being evident 
also during examination of smaller families, albeit with reduced sta-
tistical significance owing to smaller sample sizes (P = 0.054 for 67 
families of 2; P = 0.052 for 19 families of 3). Thus, TH1–TFH lineage 
fate was not entirely random within a family.

We next hypothesized that splenic effectors remained on their 
trajectories with no lineage plasticity. To test this, we focused on 
IAT, where trajectories were better preserved over time. Since Cxcr5 
and Cxcr6 were the top bifurcating effector genes (Fig. 4e), we 
sorted CXCR5+CXCR6– (TFH) and CXCR6+CXCR5– (TH1) PbTIIs 
at day 7, transferred them separately into infection-matched mice 
and administered IAT until day 28; the reference group of control 
mice harbored PbTIIs that were unperturbed after transfer, infec-
tion and IAT (Supplementary Fig. 1d). At day 28, PbTIIs derived 
from CXCR5+CXCR6– effectors expressed neither TH1-associated 
CXCR6 or CCL5 (Fig. 5e), high levels of Id2 (Fig. 5f) nor reduced 
expression of TCF1 relative to those in reference controls (Fig. 5f). 
They also exhibited reduced in vitro IFN-γ recall relative to that in 
controls (Fig. 5g). PbTIIs derived from CXCR6+CXCR5– effectors 
were undetectable in spleens, but were found expressing CXCR6, 
not CXCR5, in the liver (Fig. 5h). Fate-mapping performed in 
saline-treated mice elicited similar results, suggesting that IAT had 
not restricted lineage plasticity (Extended Data Fig. 7b,c). Thus, sin-
gle naive clones produce effector progeny that progress along TH1 
and TFH lineages with only a modest clone-specific preference for 
either; having done so, memory fate is set because little plasticity 
exists between splenic trajectories.

TCM and Tr1 emerge within TFH and TH1 lineages. CCR7 and 
CD62L mark naive and TCM cells. Sell (encoding CD62L), after 
downregulation at priming, was re-expressed along both lineages 
(Extended Data Fig. 8a). Ccr7 was retained during clonal expan-
sion and by only TFH lineage cells (Extended Data Fig. 8a,b), sup-
porting the idea that TCM cells develop along the TFH lineage. We 
hypothesized that TCM cells in lymph nodes could not display a TH1 
phenotype. Consistent with this, fewer PbTIIs in inguinal lymph 
nodes were TH1-like than in spleen (Extended Data Fig. 8c). We 
next searched for GC TFH cells along the TFH lineage. Pdcd1 (encod-
ing PD1) and Ccr7 were poorly coexpressed within the TFH lineage 
(Extended Data Fig. 8d,e), suggesting that if Pdcd1+Cxcr5+ GC TFH 
cells and Ccr7+ TCM emerged within the TFH lineage, the GPfates 
model had insufficient power to distinguish them.

Finally, Ifng was not confined to the TH1 lineage, but was expressed 
more so in that lineage than in the TFH lineage (Extended Data Fig. 8f,g).  
In contrast, Il10 expression was largely confined to the TH1 lineage: 
34% of TH1 lineage cells coexpressed Ifng and Il10 during persistent 
infection, consistent with progressive Tr1 development from TH1 
effectors, that was limited by IAT (Extended Data Fig. 8f,g). Thus, on 
the basis of GPfates modeling, we propose that TFH effectors gave rise 
to TCM cells, GC TFH cells and potentially TFH memory, while TH1 cells 
gave rise to Tr1 cells and TH1-phenotype TEM cells.

IAT limits exhaustion in both lineages and boosts GC TFH cells. 
We next determined broader effects of IAT, examining ‘late pseu-
dotime’ in GPfates models to focus on exhaustion and memory. 
Differential-gene-expression analysis between IAT and saline 
within either lineage revealed that IAT altered the expression of 
1,110 genes (false-discovery rate (FDR) < 0.05) in the TH1 lineage 
(Supplementary Table 1) compared with 252 (FDR < 0.05) for the 
TFH lineage (Supplementary Table 2). GO analysis revealed IAT 
increased expression of immune-associated genes in the TH1 lineage,  

with fewer immune effects on the TFH lineage (Fig. 6a). There were 
175 immune genes upregulated in the TH1 lineage by IAT, 17 of 
which were also downregulated in the TFH lineage, including Il7r, 
Cd96 and Cd40lg (Fig. 6a). Fifty-four immune genes were downreg-
ulated by IAT in the TH1 lineage, 20 of which were also downregu-
lated in the TFH lineage, including Ctla4, Lag3, Tigit, Icos, Il21, Cd3d 
and Cd3g. These data suggest that IAT influenced both lineages, but 
more so TH1.

Power to detect differentially expressed genes between groups 
of single cells is influenced by heterogeneity. We reasoned that 
increased heterogeneity in the TFH lineage had obscured IAT effects, 
and that distinguishing GC TFH from TCM cells required analysis of 
more cells. We also questioned whether persisting infection had 
merged TFH and TH1 lineages into a single state. We assessed PbTIIs 
from IAT and control groups via droplet-based scRNA-seq at day 28 
(3,227 and 3,380 cells, respectively, following quality control), per-
forming unsupervised clustering on the combined datasets (Fig. 6b), 
available for interrogation as the ‘Memory’ GUI at http://haquelab.
mdhs.unimelb.edu.au/cd4_memory/. During persisting infection, 
PbTIIs exhibited two main phenotypes (Fig. 6b): TFH-like cluster 1, 
and TH1-like cluster 3 (Fig. 6c,d). Minor cluster 5 was proliferative 
based on cell-cycling genes, including marker of proliferation Ki-67 
(Mki67) (Fig. 6c,d). Finally, during persisting infection, rare PbTIIs 
occupied distal clusters 2, 4, 6 and 7, as well as minor cluster 8 (char-
acterized by type I IFN genes). Separated clusters 1 and 3 suggested 
that persisting infection had not merged TH1 and TFH lineages into 
a single state. In addition to these, rarer phenotypes had also been 
generated during persisting infection.

Considering IAT effects, TH1-like clusters 3 and 4 (Fig. 6c,d) 
were mainly from saline and IAT groups, respectively (Fig. 6b). 
They were distinct from each other, with cluster 4 being smaller 
in size, suggesting that IAT had uniformly altered the TH1 lineage 
and reduced heterogeneity. TFH-like clusters 1 and 2 were less dis-
tinct, remaining partly adjacent to each other. Most strikingly, in 
contrast to TH1 cells, IAT increased heterogeneity among non-TH1 
clusters 2, 6 and 7 (Fig. 6b). Nevertheless, IAT reduced expression 
of exhaustion-related genes in both lineages, including Lag3 (Fig. 6e  
and Supplementary Tables 3 and 4), abrogated Il10 expression in 
the TH1 lineage (Fig. 6e) and boosted Il7r expression, all of which 
are consistent with the GPfates models. Predicted effects of IAT on  
Lag-3, TIGIT and IL-7R were confirmed at the protein level (Fig. 6f). 
Collectively, our results revealed that IAT had reduced exhaustion 
in both lineages, limited Tr1 development, condensed TH1 memory 
phenotypes and increased heterogeneity within the TFH lineage.

To search for GC TFH and TCM cells, we employed small curated 
gene lists: Cxcr5, Bcl6, Il21, Pdcd1 and Icos for GC Tfh, and Ccr7 
and Sell for TCM. Cluster 6 exhibited the strongest GC TFH signature, 
and cluster 7 the strongest TCM signature (Fig. 6b,c,g). Cluster 6 also 
appeared to be moderately exhausted, likely owing to Pdcd1 and 
Cd160, markers common to exhaustion and GC biology (Fig. 6e,g). 
Clusters 6 and 7 were smaller than the adjacent TFH-like cluster 2, 
consistent with the GPfates model having missed phenotypes present 
at <5%. Importantly, the proportion of TFH-like cells with TCM or GC 
TFH signatures increased by ~80% under IAT (Fig. 6h), confirmed for 
GC TFH by flow cytometry (Fig. 6i). Finally, we identified genes dif-
ferentially expressed between GC TFH and TCM cells (Supplementary 
Table 5), and those elevated in GC TFH compared with other fates at 
day 28 (Supplementary Table 6). In addition to TFH-associated genes, 
Pdcd1, Tox2, Cxcr5, Id3, Tcf7, Tox and Bcl6, we noted those previ-
ously unstudied, including Rgs10 and Ppp1r14b (Supplementary 
Table 6). Thus, IAT had improved CD4+ T cell responses by prevent-
ing exhaustion and boosting TCM and GC TFH cells.

scATAC-seq reveals effector heterogeneity and partial resetting of  
chromatin in memory. We hypothesized that lineage convergence 
and partial reversion to naivety was an artefact of transcriptomics. 
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We examined chromatin using scATAC-seq in naive (day 0), pro-
liferating (day 4), effector (day 7) and memory (day 32 with IAT 
or control saline) PbTIIs (Fig. 7a), as well as sorted TFH lineage 
(CXCR5hi) and TH1 lineage (CXCR6hi) effectors (Fig. 7a). Across  
all cells, we identified 59,197 accessible peaks. Using latent semantic 
indexing (LSI)30 and PCA, PC2 separated proliferating and effec-
tor cells from naive and memory cells, while PC3 separated TH1  
from TFH effectors (Fig. 7a). Chromatin accessibility was substan-
tially more heterogeneous among effectors than among their naive 
counterparts. PCA and UMAP (Fig. 7a,b) revealed epigenomes at 
day 32 that were more homogenous than effectors, and clustered 
close to naive cells. Targeted analysis of transcription-factor-binding 
motifs suggested differential and inverse patterns of accessibility  
for Id2 and Tcf7 in TH1 effectors compared with in TFH effectors, 
which was partially reset to naive levels by day 32 (Fig. 7c). Tbx21 
motifs were enriched, and Bcl6 motifs depleted during the first 
week, which was partially lost by day 32 (Fig. 7c). Thus, phenotypic 
convergence of effectors during transit to memory was evident  
by epigenomics.

Nevertheless, epigenomic differences remained between naive 
and day 32 cells. Reactome pathway analysis revealed enrich-
ment for peaks associated with tyrosine-kinase and CD28  
signaling at day 32 that was absent in naive cells (Fig. 7d). Thus,  
specific changes in chromatin had been retained in memory.  
We sought to infer transcriptional regulators whose access to 
chromatin varied between naivety and memory31. PCA of motif 
bias-corrected deviation revealed that day 32 motif variability  
was similar, although distinct from, that of naive cells (Fig. 7e). 
Binding motifs were variable for Fos, Jun, Runx, Rel, Maf, Tbx  
and Irf families (Fig. 7e and Supplementary Table 7), with motif 
enrichment for Irf8, JunD and MafF, and loss for Tcf7, Ctcf,  
Etv6, Nfatc3, and Runx1 in memory compared to naivety (Fig. 7f 
and Extended Data Fig. 9). Thus, epigenomic and transcriptomic 
heterogeneity induced during effector differentiation was partially, 
but incompletely, reset during transit to memory (Extended Data 
Fig. 10).

Discussion
Here, we examined the dynamics of CD4+ T  cell memory devel-
opment using a model of malaria and treatment with antimalari-
als. We mapped transcriptomic change as CD4+ T  cells gradually 
transitioned from effector to memory over four weeks, and in doing  
so inferred genomic relationships between TFH, TH1, Tr1, GC TFH, 
TCM, TEM, naive, proliferating and exhausted cells (terms defined 
in Table 1). We revealed that CD4+ T  cell fate toward either 
TH1-effector memory or various TFH and TCM fates was determined 
during the first week of infection, whose phenotypes were altered 
by antimalarial drugs.

Currently, the only available malaria vaccine, RTS,S/AS01, gener-
ates short-lived immunity that correlates with antibodies and CD4+ 
T cell-derived IL-2 and TNF32,33. Since TH1 cells also provide protec-
tion34, one vaccine strategy might be dual promotion of antibod-
ies and TH1 memory. Our study highlights that these mechanisms 
can be elicited simultaneously among T cells of the same specificity 
during infection, although development of one likely influences and 
interferes with the other22,35. One possible solution might be to tem-
porally segregate TH1 and TFH differentiation, by priming and boost-
ing with different antigens, and employing adjuvants that block and 
then promote TH1 immunity.

One conclusion from our work is that memory fate is deter-
mined during the first week of infection. Therefore, diverting CD4+ 
T cells along a particular lineage may be possible at early, but not 
late, stages of infection or vaccination. Nevertheless, consistent 
with clinical studies13,14, our data suggest that reducing parasite load 
profoundly affects cellular phenotypes and functional potential. 
We speculate that anti-malarial drug treatment in endemic regions 
minimizes deleterious effects of chronic infection on naturally 
acquired or vaccine-mediated immunity.

In contrast to LCMV infection7, CCR7+ TCM precursors were 
absent during Plasmodium infection. One interpretation might 
be that all effectors expressed equal TCM potential, although this 
appears unlikely given the restriction of Ccr7 along one lineage, and 
that fate-mapping suggested minimal crossover between trajecto-
ries. The discrepancy between studies may be due to differences in 
viral versus parasitic infection10, the specific transgenic TCRs used 
or specifics of infectious dose or Plasmodium species employed. 
Nevertheless, our data argue that TCM precursors are not essential 
for CD4+ T cell memory development.

Clonal analysis confirmed that diversity in fate is common 
among clones during parasitic infection18. Mathematical modeling 
revealed a modest predisposition to one fate among sibling cells. 
This suggested heterogeneity in responses by individual clones, 
despite transcriptomic and epigenomic homogeneity in naivety, and 
predictable frequencies of each fate at a population level. Our obser-
vations are consistent with those from bacterial infection36. Given 
heterogeneity in microanatomical location, and since B cells and 
myeloid cells influence effector fate18, we hypothesize that cell–cell 
interactions are the primary drivers of differences between clones.

A caveat of our dynamic modeling was its inability to distinguish 
GC TFH from TCM cells within the TFH lineage. A focused analysis at 
a late time-point revealed that, although the bulk of TFH lineage cells 
exhibited a heterogeneous TFH phenotype, rarer GC TFH and TCM 
subpopulations were present. GC TFH and TCM cells differentially 
expressed many genes, including those previously reported such  
as Klf2 (ref. 37) and Satb1 (ref. 38). Our analysis suggested a contin-
uum between TFH and GC TFH cells, with TCM cells as a separate, 

Fig. 6 | IAT boosts development of GC TFH and memory CD4+ T cells during malaria. a, Venn diagrams showing the number of differentially expressed 
genes (genes with FDR < 0.05) involved in immune-system process (GO:0002376) performed on the Smart-seq2 (384) dataset only. An overlapping 
list of genes between genes upregulated in the TH1 and TFH branches of late cells (pseudotime > 0.9) during IAT (pink, left), or upregulated in the TH1 and 
TFH branch of late cells in the saline group (green, right). b, UMAP representation of PbTII cells isolated at D28 p.i. from saline or IAT groups, analyzed 
using the droplet-based 10x Genomics Chromium platform. UMAP was calculated from the first 10 principle components using 1,394 highly variable 
genes. Data are available as ‘Memory’ on our web-based GUI: https://haquelab.mdhs.unimelb.edu.au/cd4_memory/. c, Unsupervised clustering of UMAP 
representation in b. d, Visualization of Cxcr6, Cxcr5 and Mki67 on UMAP representation in b. e, Violin plots showing the exhaustion score, Il7r expression 
and Il10 expression for all clusters shown in UMAP representation in b. Median expression for each cluster is denoted for each gene and score. f, Top, 
representative FACS plots and graph showing surface expression of LAG3 and TIGIT on PbTII cells at D28 p.i. Bottom, representative FACS plots and graph 
showing the kinetics of IL7R expression over time. Data are representative of 2 independent experiments (n = 5 mice per group, per individual timepoint for 
each independent experiment) and are presented as mean ± s.e.m. Statistical analysis was performed between saline and IAT groups for each timepoint 
individually using two-tailed Mann–Whitney test. g, Violin plots show GC TFH and TCM score for all clusters shown in UMAP representation in b. Median 
expression for each cluster is denoted for each score. h, Pie charts show the proportion of GC TFH and TCM cells within the ‘TFH’ population for PbTII cells at 
D28 p.i. with or without IAT as described in b and g. i, Representative FACS plots and graph showing proportion of PbTIIs as GC TFH cells (CXCR5+PD-1+) 
at D28 p.i. in the presence or absence of IAT. Data are representative of 3 independent experiments (n = 6 mice per group, per independent experiment) 
and are presented as mean ± s.e.m. Statistical analysis was performed using two-tailed Mann–Whitney test. **P < 0.01.
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adjacent population. We propose that cells progress along the TFH 
lineage, with small proportions differentiating further into GC TFH 
or TCM cells.

Tcf7 promotes TFH cell differentiation, but its role in CD4+ T cell 
memory is unclear. We noted Tcf7 expression in CD4+ T cells along 
the TFH lineage—indeed, TCF1 supported this trajectory in our 
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Fig. 7 | scATAC-seq reveals partial epigenomic resetting and homogenization during memory development. a, PCA of peaks after application of 
latent semantic indexing analysis30. b, UMAP representation of the epigenomic landscape of PbTII cells from PC 2–10. c, Changes in scATAC-seq peaks 
associated with different TH1- or TFH-associated transcription factors (Id2, Tcf7, Tbx21, Bcl6) for different timepoints. Error bars represent mean ± s.d. 
Statistical test was performed using two-sided Wilcoxon rank-sum test. d, Reactome analysis of the top 10 enriched pathways for different timepoints. 
The P value was adjusted for multiple testing using Benjamini–Hochberg correction. e, Top, PCA analysis of 500 variable motifs (combined database of 
human and mice motifs from Jaspar database) calculated using chromVAR analysis for comparison between cells from naive (D0), saline and IAT groups 
at D32 p.i. Bottom, top 50 motifs explaining variability between cells from naive (D0), saline and IAT groups at D32 p.i. f, Changes in scATAC-seq peaks 
associated with the top variable transcription factors detected from chromVAR analysis as described in e. Error bars represent mean ± s.d. Statistical test 
was performed using two-sided Wilcoxon rank-sum test. **P < 0.01, ***P < 0.001.
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model. Tcf7 was also preserved during persisting infection, suggest-
ing that exhaustion was not an impediment to its potential function. 
This is reminiscent of CD8+ T cell reports39–42, wherein TCF1 sup-
ported stem-like memory cells in humans, and precursor exhausted 
cells were reinvigorated via immune checkpoint blockade. These 
observations suggest a generalized model in which TCF1 is retained 
in one lineage after bifurcation, supporting their subsequent recall 
responses.

An important feature of the TH1 and TFH lineages was their 
gradual, partial coalescence and incomplete return to naivety dur-
ing memory. Nevertheless, changes in transcription-factor-binding 
motifs were preserved among individual memory cells—for exam-
ple, Maf and Irf8 motifs. Several studies have examined epigenomic 
and transcriptomic changes in CD8+ T cells during memory devel-
opment43, or in humans undergoing vaccination or cancer treat-
ment9. These support a model of CD8+ T cell memory characterized 
by partial reversion to naive-like states, consistent with that pre-
sented here for CD4+ T cells.

Drug treatment boosted TH1 memory cells and GC TFH forma-
tion in our mouse model, perhaps consistent with what happens 
in humans in malaria-endemic regions, where immunity may be 
improved by antimalarial drugs. A caveat of our model is that immu-
nity induced by a single infection is so robust that improvements to 
parasite control cannot be assessed functionally44. Nevertheless, we 
previously associated TFH boosting with improved primary immu-
nity45. We speculate that exhaustion, impaired antigen presenta-
tion46 and IL-10 immune regulation47 impair GC TFH responses, 
and are alleviated by removing parasites with antimalarial drugs. 
In endemic areas, children are infected multiple times each sea-
son. The effect of multiple infections and drug treatment on CD4+ 
T cells remains to be tested.

Thus, transition from effector to memory and GC TFH cell states 
occurs gradually in CD4+ T cells during experimental malaria. The 
extended timeframe over which transcriptomic change occurred, 
and the effect of antimalarial drugs, suggests that there are oppor-
tunities for manipulating memory development after primary 
immune responses have been triggered. We identify potential tar-
gets for manipulating CD4+ T cell memory, with potential clinical 
utility in malaria-vaccine development or in prevention of ongo-
ing, persisting Plasmodium infections. Given pivotal roles for CD4+ 
T cells in bacterial, fungal and viral infections, our datasets may be 
relevant across a range of human infectious diseases.
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Methods
Experimental mice, adoptive transfer and infections. C57BL/6J and SJL.Ptprca 
mice were purchased from Animal Resources Centre (Canning Vale), PbTII19, 
nzEGFP and CreROSA26Ert2 mice were bred in-house. nzEGFP mice express enhanced 
green fluorescent protein (eGFP) from the ubiquitously expressed CMV early 
enhancer/chicken beta actin promotor. Id3GFP mice and Tcf7-floxed (Tcf7fl/fl) were 
crossed with PbTII mice. Only Id3GFP/+ mice were used as reporters. All mice were 
female, aged 8–12 weeks, and maintained under specific-pathogen-free conditions 
within the animal facility at QIMR Berghofer Medical Research Institute. Mice 
were housed in exhaust-ventilated cages (Opti-mice) with ≤6 mice per cage, 
and room temperature was maintained between 19 °C and 22 °C, with humidity 
between 55% and 65% and with 12-h/12-h dark/light cycle with a 15-min sunrise 
and sunset. All animal procedures and protocols were approved (A1503-601M) 
and monitored by the QIMR Berghofer Medical Research Institute Animal  
Ethics Committee.

Spleens were collected and homogenized through a 100-µm cell strainer 
to create a single-cell suspension. Red blood cells (RBCs) were lysed using 
RBC Lysing Buffer Hybri-Max (Sigma-Aldrich) and CD4+ T PbTII cells were 
enriched using CD4 microbeads (Miltenyi Biotec). Cells (1 × 104 per mouse) were 
transferred to each mouse via lateral tail-vein intravenous (i.v.) injection.

PcAS parasites were used after thawing frozen, infected blood stabilites and 
performing a single in vivo passage in C57BL/6J mice. PcAS-infected RBCs were 
collected from passage mice by cardiac puncture and mice infected (1 × 105 
infected RBCs per mouse) via lateral tail vein i.v. injection.

Intermittent antimalarial drug treatment (IAT). Sodium artesunate (Guilin 
Pharmaceutical or sourced from J. Mohrle) was prepared according to the 
manufacturer’s protocol by diluting in 0.9% saline (Baxter) to a final concentration 
of 5 mg ml–1. Mice were treated via intraperitoneal (i.p) injection with sodium 
artesunate (1 mg per mouse), or vehicle control saline, twice daily from day 
7 to day 9 p.i., once daily from day 10 to day 16 p.i. and then twice weekly 
until experimental endpoint. Mice treated with sodium artesunate were also 
administered pyrimethamine (0.07 g l–1; Sigma-Aldrich) in drinking water for the 
duration of the treatment.

Tamoxifen preparation and administration. Tamoxifen (Sigma Aldrich) was 
dissolved in 10% ethanol in corn oil (Sigma Aldrich) at a concentration of 50 mg 
ml–1. This was sonicated for 30 min–1 h, until all tamoxifen particles had dissolved. 
Mice were administered with a single 5-mg dose of tamoxifen via i.p injection.

Parasitemia assessment. Parasitemia assessment was carried out as previously 
described45. Briefly, a single drop of blood was collected via tail bleed and diluted 
in 250 µl of RPMI medium containing 5 U ml–1 heparin sulphate. Diluted blood 
was stained with Syto84 (5 µM; Life Technologies) and Hoechst 33342 (10 µg 
ml–1; Sigma-Aldrich) for 30 min in the dark at room temperature (RT). Staining 
was quenched with ×10 volume of ice-cold RPMI medium, and samples were 
immediately acquired by flow cytometry.

Flow cytometry. Spleens and lymph nodes were collected and homogenized 
through a 100-µm cell strainer to create a single cell suspension, and RBCs were 
lysed using RBC Lysing Buffer Hybri-Max (Sigma-Aldrich). Cells were assessed 
for viability using a LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (1:200 dilution, 
catalog no. 423102, Biolegend), according to the manufacturer’s protocol, unless 
otherwise specified. Prior to antibody staining, Fc receptors were blocked using 
antibodies against CD16 and CD32. Cells were incubated with surface marker 
antibodies for 20 min at 4 °C. Staining for PerCpCy5.5 CCR7 surface antibody (1:10 
dilution, clone: 4B12, catalog no. 120116, Biolegend) was performed at 37 °C for 
1 h as per the manufacturer’s recommendations, after Fc receptor blocking. Other 
surface marker antibodies used were: APC–CD4 (1:200 dilution, clone: RM4-5, 
catalog no. 100516, Biolegend), PE–CD4 (1:200 dilution, clone: RM4-5, catalog 
no. 100512, Biolegend), BV421 –CRβ (1:200 dilution, clone: H57-597, catalog no. 
109230, Biolegend), PerCpCy5.5–TCRβ (1:200 dilution, clone: H57-597, catalog 
no. 109228, Biolegend), PerCpCy5.5–Vβ12 (1:200 dilution, clone: MR11-1, catalog 
no. 46-5798-80, eBioscience), AF700–CD44 (1:200 dilution, clone: IM7, catalog 
no. 103026, Biolegend), PE–CD62L (1:200 dilution, clone: MEL-14, catalog no. 
104408, Biolegend), APC–CXCR6 (1 200 dilution, clone: SA051D1, catalog no. 
151106, Biolegend), biotinylated CXCR5 (1:50 dilution, clone: 2G8, catalog no. 
551960, BD Biosciences), PE–Ki67 (1:200 dilution, clone: SolA15, catalog no. 
12-5698-82, eBioscience), BV605–CD69 (1:200 dilution, clone: H1.2F3, catalog 
no. 104530, Biolegend), BV421–IL-7R (1:200 dilution, clone: A7R34, catalog no. 
135924, Biolegend), PE–CXCR3 (1:200 dilution, clone: CXCR3-173, catalog no. 
126506, Biolegend), APC–Lag3 (1:100 dilution, clone: C9B7W, catalog no. 125210, 
Biolegend), BV421–TIGIT (1:100 dilution, clone: 1G9, catalog no. 565270, BD 
Biosciences), AF700–CD45.1 (1:200 dilution, clone: A20, catalog no. 110724, 
Biolegend). Other staining dyes or flurophores include strepavidin–PeCy7 (1:200 
dilution, catalog no. 405206, Biolegend) and propidium iodide (1:400 dilution, 
catalog no. 12-9855-41, Sigma-Aldrich).

To assess cytokine production, cells were incubated with brefeldin-A  
(10 mg ml–1) with or without ionomycin (500 ng ml–1) and PMA (25 ng ml–1) 

at 37 °C for 3 h. Intracellular staining for cytokines, transcription factors and 
chemokines was then performed using the eBioscience Foxp3/Transcription Factor 
Staining Buffer Set. Staining with intracellular antibodies was conducted at 4 °C for 
1 h. Where TCF1 was stained after stimulation with PMA and ionomycin for 3 h 
is explicitly stated in figure legends. All other transcription factors and chemokine 
molecules were stained without prior stimulation. Intracellular marker antibodies 
used were: APC–Id2 (1:100 dilution, clone: ILCID2, catalog no. 17-9475-82, 
eBioscience), PE–TCF1 (1:100 dilution, clone: C63D9, catalog no. 2203 S, Cell 
Signaling Technology), PE–CCL5 (1:100 dilution, clone: 2F9, catalog no. 149104, 
Biolegend), PE–c-Maf (1:100 dilution, clone: sym0F1, catalog no. 12-9855-41, 
Thermo Fischer), PE–IL-10 (1:100 dilution, clone: JES5-16E3, catalog no. 505008, 
Biolegend), BV421–IFN-γ (1:200 dilution, clone: XMG1.2, catalog no. 505830, 
Biolegend), APC–T-bet (1:50 dilution, clone: 4B10, catalog no. 17-5825-82, 
Thermo Fischer); PE–BCL6 (1:10 dilution, clone: K112-91, catalog no. 561522,  
BD Biosciences). Samples were acquired on a LSRII Fortessa analyzer  
(BD Biosciences) and subsequently analyzed using FlowJo software (Treestar).

Livers were collected in 1% (vol/vol) FCS/PBS and homogenized through a 
200-µm metal sieve. Liver suspension was resuspended in 33% (vol/vol) percoll/
PBS before centrifugation at 1,700 r.p.m. for 12 min at room temperature. After 
removal of supernatant containing unwanted cells and debris, liver leukocyte pellet 
was processed similarly as splenic and lymph-node tissue described above.

PbTII memory recall during in vivo rechallenge. Mice harboring previously 
in vivo primed eGFP+ PbTIIs received CD4-microbead enriched, non-eGFP+ 
congenically-marked (CD45.1+) PbTII cells from naive donors (1 × 105 cells 
per mouse) 1 day prior to homologous high-dose rechallenge with 1 × 107 
PcAS-infected RBCs.

Immunofluorescence microscopy. Spleens were fixed with 2% paraformaldehyde 
for 2–4 h at RT in the dark followed by dehydration with 30% sucrose 
(Chem-supply) overnight at RT in the dark. Spleens were snap-frozen in 
Tissue-Tek Optimal Cutting Temperature embedding medium (Sakura Finetek) 
on dry ice and stored at −80 °C. Spleens were sectioned at 10–30 μm on polysine 
slides such that consecutive sectioning is avoided. Sections were allowed to dry 
overnight. The dried sections were rehydrated for 15–20 min before fixation in 
4% paraformaldehyde for 15–20 min at RT in dark. Slides were washed 3 times 
for 5 min in washing buffer (0.01% Tween20 in PBS) before permeabilization 
with 0.1% Triton X-100 in washing buffer for 10–15 min. After washing, slides 
were incubated with Medical Background Sniper (Biocare) for 30 minutes. Slides 
were rinsed for 2 min and endogenous biotin was blocked using an Avidin/Biotin 
Blocking kit (Vector Laboratories), according to manufacturer’s protocol. Tissue 
sections were then stained with rabbit anti-GFP (1:500 dilution, catalog no. ab6556, 
Abcam), rat anti-mouse CD3-AF594 (1:200 dilution, clone: 1742, catalog no. 
100240, Biolegend), rat anti-mouse IgD-AF647 (1:50 dilution, clone: 11–26 c.2a, 
catalog no. 405708, Biolegend) and biotinylated peanut agglutinin (1:500 dilution, 
catalog no. B-1075-5 PNA; Vector Laboratories, Inc.) for 1–2 h at RT in the dark. 
Secondary antibody staining for PNA and GFP was performed using streptavidin–
AF555 (1:300 dilution, catalog no. S21381, Thermo Fisher Scientific) and donkey 
anti-rabbit AF488 (1:300 dilution, catalog no. R37118, Thermo Fisher Scientific), 
respectively, for 1–2 h at RT in the dark. Tissue sections were incubated with DAPI 
for 10–15 min to counterstain nuclei, and slides were mounted in Dako Mounting 
Media (Agilent Technologies). Image acquisition was performed using an Aperio 
FL slide scanner or a Zeiss 780-NLO point scanning confocal microscope at ×20, 
×40 and ×63 objective.

Cell detection and quantification were performed using the spot-detection 
function in Imaris image analysis software (Bitplane), with thresholds <10 μm. 
All objects were manually inspected for accuracy before data were plotted and 
analyzed in GraphPad Prism. Colocalization analysis was performed using Imaris 
colocalization functions. B cell follicle was defined as IgD-positive region, and GC 
was defined as IgD-negative and PNA-positive region within B cell follicle.

Bulk Fast-ATAC sequencing and analysis. Fast-ATAC sequencing was performed 
as previously described48. Briefly, 5,000 viable PbTII cells were sorted by flow 
cytometry and pelleted by centrifugation. Supernatant was removed and 50 µl 
of transposase mixture (25 µl TD buffer (Illumina), 2.5 µl of TDE1 (Illumina), 
0.5 µl of 1% digitonin (Promega), 22 µl nuclease-free water) was added to the 
cells. Cells were then incubated at 37 °C for 30 min at 300 r.p.m. in an Eppendorf 
ThermoMixer. Transposed DNA was amplified and purified using a Qiagen 
MinElute PCR Purification kit, according to the manufacturer’s protocol. Purified 
DNA was eluted in 20 µl Buffer EB (Qiagen) and sequenced using paired-end 
sequencing on a NextSeq 550 instrument (Illumina).

Raw ATAC-seq reads were mapped to mouse genome MGSCv37 (mm9) using 
BWA–MEM49 (version 0.7.15). Unmapped reads, reads mapping to unassigned 
contigs and mate unmapped reads were removed, as well as mitochondrial genes 
and PCR duplicates. The resulting .bam files were first converted to bedGraph 
using the bedtools genomecov command from the BEDTools suite50 (version 
2–2.29.0) and then converted to bigwig format using the bedGraphToBigWig 
program from University of California, Santa Cruz (UCSC) Genome Browser 
(https://genome.ucsc.edu/). Read counts were normalized to the number of 
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uniquely mapped reads per million. Peak calling was performed using MACS2 
(version 2.1) with the following parameters:–nomodel, –shift 37, –extsize 73,  
–pvalue 1e-5. The bigWig tracks and narrowPeak files were visualized in a custom 
UCSC Genome Browser track hosting the mouse mm9 reference genome. Peaks 
overlapping with the mm9 blacklist region generated by UCSC were removed, 
and overlapping peaks between replicate samples were identified using the 
findOverlaps command from the GenomicRanges (version 1.38) package and used 
for downstream analysis. Peaks were annotated using the R package ChIPseeker51 
(version 1.22.1) with transcription start site (TSS) reaching from −3,000 to 3,000 to 
the UCSC mm9 gene model and the org.Mm.eg.db R package.

Single-cell capture and sequencing. Droplet-based scRNA-seq. Recipient mice 
(n = 6 mice per group per timepoint) received 1 × 104 sorted naive (CD62L+CD44–) 
eGFP-expressing PbTII cells from a single donor 24 h prior to infection with 
PcAS. Spleens from 5 infected, recipient mice were pooled, and viable PbTII cells 
were sorted at D7 and D28 (saline and IAT groups) into cold 1% BSA/PBS buffer. 
PbTIIs were counted, and ~8,000 cells were loaded per channel onto a Chromium 
controller (10x Genomics) for generation of gel bead-in-emulsions. Sequencing 
libraries were prepared using Single Cell 3′ Reagent Kits v3 (10x Genomics) and 
then converted using the MGIEasy Universal Library Conversion Kit (BGI) before 
sequencing on a MGISEQ-2000 instrument (BGI).

Smart-seq2 scRNA-seq. We prepared 384-well lo-bind plates with 0.5 µl of Triton-X 
lysis buffer, 0.25 µl of 10 µM olido-dT30-VN, 0.25 µl dNTP mix (25 mM each) 
and ERCC controls (final dilution of 1:64 million) per well and stored at −20 °C 
until use. Plates were thawed on ice before sorting single PbTII cells isolated from 
1 selected donor mouse at each timepoint (n = 6 mice per group per timepoint) 
into each well. Single-cell lysates were sealed and spun at 100g for 1 min, then 
immediately frozen on dry ice and stored at −80 °C. Reverse transcription and 
PCR were performed following the Smart-Seq2 protocol with the following 
modifications: 1 µl of reverse transcription mix and 5.7 µl PCR Master mix. After 
amplification, complementary DNA was subjected to quality control using 1 µl 
of amplified cDNA on an Agilent 2100 BioAnalyzer and Agilent High Sensitivity 
DNA kits (Agilent Technologies). Next, 5 µl of cDNA per cell was cleaned using 
Agencourt AMPure XP beads (Beckman Coulter) at a 1× ratio on a Hamilton STAR 
liquid handler (Hamilton Robotics). cDNA was quantified using Biotium AccuClear 
High Sensitivity DNA quantification reagent and normalized to 1 ng µl–1 in a 
total volume of 500 nl before library preparation using Nextera XT DNA Sample 
Preparation Kit (Illumina). Then, 125 nl of in-house index adapters (Integrated 
DNA Technologies) similar to Illumina N7 and N5 indices were added to the 
tagmentation reaction before adding 1.5 µl of KAPA HiFi DNA polymerase (KAPA 
Biosystems) and performing 12 cycles of PCR according to the manufacturer’s 
instructions. After PCR, all samples were pooled into 384-plex pools using a 24 × 16 
dual indexing approach, and the pool was cleaned using Agencourt AMPure XP 
beads at a 0.6× ratio. Library pools were eluted in buffer EB and quality controlled 
using an Agilent 2100 BioAnalyzer and Agilent High Sensitivity DNA kits before 
the concentration was adjusted to 4 nM. Each library was sequenced on 1 lane of 
Illumina HiSeq 2000 version 4 chemistry (paired-end 75-base-pair reads).

Processing of scRNA-seq data. Smart-seq2 data. Raw reads were mapped to a 
mouse genomic index (Ensembl version 70) using STAR aligner52 version 2.5.2 and 
transcripts per millions (TPM) were estimated by RSEM53 version 1.2.30. ERCC 
RNA spikes were included in the index, but removed for down-stream analysis.

10x Genomics data. For the BGI FASTQ files to be made compatible with 
‘cellranger count’ pipeline from Cell Ranger version 3.0.2 (10x Genomics), file 
names and FASTQ headers were reformatted using code from https://github.com/
IMB-Computational-Genomics-Lab/BGIvsIllumina_scRNASeq54. Data were 
processed using 10x mouse genome 1.2.0 release as a reference.

Quality control of scRNA-seq data. 10x Genomics data. Cells were filtered to 
remove those expressing fewer than 500 genes and more than 6,000 genes, and 
those with more than 35% mitochondrial content. Only genes expressed in three 
or more cells were considered. Regression of the number of unique molecular 
identifiers was performed for each analysis individually.

Smart-seq2 data. Cells were filtered to remove those with fewer than 100,000 reads 
mapping to the mouse genome, those expressing fewer than 1,000 genes and more 
than 5,000 genes and those with more than 35% mitochondrial content. Only 
genes expressed at one or more TPM in three or more cells were considered, unless 
otherwise specified.

Batch-effect correction. Two PbTII datasets (Smart-seq2 (96) and SMARTer C1)  
from our previous study underwent quality control as described previously18 and 
were combined with Smart-seq2 (384) dataset from our current study. Genes 
expressed at less than one TPM in fewer than three cells were globally removed. 
The ‘removeBatchEffect’ function from Limma55 was then used to remove the 
batch effect. All three datasets shown have been regressed as per described unless 
otherwise specified.

Dimensionality reduction. PCA dimensionality reduction (prcomp) was 
performed on Smart-seq2 dataset with the genes expressed at 100 or more TPM 
in 15 or more cells as input. On the combined, batch-effect corrected dataset, 
dimensionality reduction was performed with BGPLVM using GPfates as 
previously described18.

To generate UMAP of the combined dataset, the ‘removeBatchEffect’ function 
from Limma was used to remove the batch effect from the dataset, which contained 
highly variable genes selected using ‘trendVar’ and ‘decomposeVar’ from Scran 
(v1.6.9)56 (FDR < 0.05, bio > 0.5), followed by PCA dimensionality reduction and 
usage of ‘RunUMAP’ from Seurat57 package (v2.3.4 unless otherwise specified).

Alternative integration of the 3 datasets was performed using single-cell 
variational inference (version 0.3.0). The expected-counts matrix obtained from 
RSEM was used as an input. All parameters were kept at default except: up to 4,000 
genes were considered as an input, 30 latent variables were considered, 2 hidden 
layers were used for encoder and decoder neural networks and 100 epochs and a 
0.01 learning rate were used to train the model. The computed latent variables were 
used as an input to generate UMAP using ‘RunUMAP’ from Seurat.

To perform PCA dimensionality reduction on the 10x Genomics dataset, 
we identified highly variable genes using the ‘FindVariableGenes’ function from 
the Seurat package and used these as an input. For each subset of data used for 
dimensionality reduction, highly variable genes were computed individually and 
used as an input. The number of highly variable genes used in each analysis is 
noted in the figure legends. The PCA output was then used as an input to generate 
UMAP using ‘RunUMAP’ from Seurat.

Gene-signature scoring. TH1 and TFH signature scores were calculated using the 
top 50 TH1- and TFH-bifurcating genes derived from Lonnberg et al.18. Cell-cycle 
signature score was calculated using 226 cell-cycle genes derived from Cyclebase58. 
Eight coinhibitory receptors (Ctla4, Pdcd1, Lag3, Havcr2, Btla4, Cd160, 2b4, Tigit) 
established for their role in T cell exhaustion59 were used for exhaustion-phenotype 
scoring.

Each cell on the 10x Genomics dataset was scored for various signatures 
defined in each figure legend using the ‘AddModuleScore’ function from Seurat. To 
score cells in the Smart-seq2 dataset, a summative expression of all genes defined 
within each signature was calculated for each cell.

Pseudotime and trajectory inference. Pseudotime was inferred on the combined, 
batch-effect-corrected dataset based on latent variable (LV) 1 coordinates from 
bGPLVM dimensionality reduction. Firstly, DBSCAN clustering was performed on 
D0–D3 cells and D4–28 cells separately, using LV1 and LV2 coordinates as inputs. 
From the D0–D3 group, only cells with LV2 coordinates lower than the lowest  
LV2 coordinate from the non-outlier cells were considered outliers, and from 
the D4–D28 group, only cells with LV2 coordinates higher than the highest LV2 
coordinate from the non-outlier cells were considered outliers. Outliers from 
each group were grouped together with the cells from the opposing groups. LV1 
coordinates of the first group (D0–D3 cells and outliers from D4–D28 cells) were 
flipped along the lowest LV1 coordinate from all pf the dataset and concatenated 
with the LV1 coordinates of the second group (D4–D28 cells and outliers from 
D0–D3 cells) to infer the pseudotime coordinates.

Overlapping mixtures of Gaussian processes (OMGP). Lineages were traced along 
the pseudotime with OMGP using GPfates18, using LV2 coordinates to model as 
a function of pseudotime. Trajectory inferences were performed separately for 
saline and IAT groups, with the same set of parameters used (two trends assumed, 
global variance = 0.5, per-trend variance = 3 and per-trend lengthscale = 2). 
Here, the saline-treated group consists of all cells from D0–D7 and saline-treated 
cells from D10 onwards. The IAT group consists of all cells from D0–D7 and 
IAT-administered cells from D10 onwards.

Slingshot. Trajectories were inferred through UMAP cell embeddings using 
Slingshot v0.99.12 (ref. 23). Cluster information from unsupervised clustering 
was used as an input. Slingshot analysis was performed separately for saline and 
IAT groups. A semisupervised approach was taken whereby clusters with a high 
proportion of D0 were specified as starting points.

RNA velocity. RNA-velocity analysis was performed using Velocyto version 0.17.16 
(ref. 24). Analysis was performed separately for saline and IAT groups and only 
timepoints from D4 onwards were included in the analysis. All parameters were 
kept at default except: minimum number of spliced molecules = 40, minimum 
number of cells expressing spliced molecules of a gene = 30, 1,000 gs to rank, and 
20 PCs and 150 neighbors considered for knn imputation. Calculated velocity was 
projected onto pre-computed BGPLVM embeddings.

Functional dynamics analysis. Automatic expression histology (AEH) from 
spatialDE26 was applied on the combined, batch-effect-corrected dataset. Only 
significantly variable genes along pseudotime were considered (FDR < 0.05). AEH 
was applied separately for saline and IAT samples, with the same set of parameters 
(number of patterns (c) = 7, lengthscale = 9). c specifies the number of groups of 
genes, with each group displaying distinct expression dynamic along pseudotime. 
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Genes in Dynamic 1 (n = 511) were identified together in a small number of 
groups even when c = 70, indicating that gene groupings were robust to variation in 
parameter choice for c.

Gene-signature scores of each dynamic were computed using the 
‘AddModuleScore’ from Seurat. Correlations between expression profiles of genes 
in dynamic 1 were quantified by calculating Spearman’s rho. Only correlations 
between genes higher than rho > 0.3 were considered as input for generation of a 
coexpression network. The network plot was generated using ggraph v2.0.3 with 
layout = ‘fr’ parameter.

Differential-gene-expression analysis. As an input for differential-gene- 
expression analysis (DGEA), expected counts from Smartseq2 data were 
estimated by RSEM version 1.2.30 and then normalized and log-transformed 
using ‘computeSumFactors’ and ‘normalize’ functions from scran. Pairwise Welch 
t-test was performed using ‘pairwiseTTests’ function from scran to identify genes 
differentially expressed between two groups of cells. Comparisons were done as 
follows: (1) cells at late pseudotime from IAT group on the TH1 arm versus cells 
at late pseudotime from saline group on the TH1 arm, (2) cells at late pseudotime 
from IAT group on the TFH arm versus cells at late pseudotime from saline group 
on the TFH arm (Fig. 4e). Genes with a FDR below 0.05 were considered to be 
differentially expressed. Cells with a pseudotime value higher than 0.9 were 
considered to be late pseudotime.

To generate the differential gene signature from comparison of different 
clusters within D28 data from the 10x Genomics dataset, cluster-specific genes 
were defined using ‘FindAllMarkers’ from Seurat by comparing between clusters  
as specified in each analysis.

GO term enrichment analysis. GO terms were obtained from the ‘org.Mm.eg.
db’ Bioconductor annotation package60. Fisher’s exact test was used to identify 
significantly over-represented GO terms. Input gene lists were differentially 
expressed genes from the comparisons described above, with up- and 
downregulated genes considered separately. The background gene set was reduced 
to those used as an input for DGEA. GO term enrichment analysis was conducted 
for functional-dynamics analysis using genes from each dynamic as input and 
all significantly variable genes along pseudotime as the background gene set. 
Enrichment analysis for biological process and molecular function terms was 
performed using the ‘goana’ function in edgeR61.

Testing the distribution of cell fates among clonotypes. TCR sequences for 
each cell from Smart-seq2 data were reconstructed using TraCeR as previously 
described29. Cells were classified as belonging to the TH1 group if their TH1 
assignment probability (TAP) was greater than the median TAP + 0.05, and cells 
were classified as belonging to the TFH group if their TAP was less than the median 
TAP – 0.05. Analysis to test whether the distribution of cell fate among families 
was consistent with cells acquiring fates independently of the family to which they 
belong was focused on only those cells from the 97 families found in IAT group, 
excluding cells where fate was indeterminate. To test the null hypothesis that 
cells fate is randomly distributed across cells, independent of their family (that is 
ancestry), a bootstrapping approach was used. First, we constructed a likelihood 
function to describe the likelihood of observing the a given number of TH1 cells, 
Thi, in a particular family, i, of size ni, assuming the process is binomial with some 
probability Ph. The overall likelihood of observing the distribution of cell fates 
across all families is then given by:

L ¼
YN

i¼1

Bi Thi; ni; Phð Þ

where N is the number of families. Note that the Ph that maximizes the likelihood 
will be given by the proportion of all cells that have a TH1 fate (demonstrated by 
evaluating the derivative of when log of the likelihood function and solving for 
when derivative is zero). In this dataset the proportion of cells that were TH1 was 
Ph = 0.575. Using the observed numbers of Thi and ni for each family, L in equation 
1 was computed and was called the likelihood of the observed distribution (L0).

To determine whether the likelihood of the observed distribution of cell fates 
by family is consistent with a random process, cells were randomly permuted 
among the different families 100,000 times. Each permutation, p, was performed 
in such a way as to preserve the size of families, but redistribute the cells across 
the families. After permuting the cells, the likelihood, Lp, was recalculated for each 
permutation p. This process produced a distribution of the likelihood associated 
with cell fates being randomly and independently distributed across families. 
The likelihood of the observed distribution of cell fates across families, L0, was 
compared with the set of likelihoods, Lp, associated with each random permutation 
of cells across the fates, and the likelihood of finding the observed distribution 
of cell fates by family by random chance was less than approximately 0.05%, that 
is p = 0.0005. Thus, the null hypothesis that cell fate is independent of family was 
rejected.

The histogram of the observed versus expected distribution of families with 
a TH1 predominance, a TFH predominance or a mixture of fates (Fig. 6d), was 
determined by first drawing a histogram of the observed proportions of TH1 cells 

in each family (noting that families of size 3 or 6 that had a proportion of 1/3 or 
2/3 were included in the middle bin in the histogram). To determine the expected 
distribution of families, the above described permutation of cells between families 
was performed and the histogram redrawn each time. The expected distribution 
of families was created by taking the mean of the bin counts across these 100,000 
random permutations.

Plate-based scATAC-seq. Plate-based scATAC-seq was performed as previously 
described62. Briefly, 17,000–50,000 viable PbTII cells were sorted using flow 
cytometry and pelleted by centrifugation. Supernatant was removed, and cells 
were resuspended in 50 μl tagmentation mix (33 mM Tris-acetate, pH 7.8, 66 mM 
potassium acetate, 10 mM magnesium acetate, 16% dimethylformamide (DMF), 
0.01% digitonin and 5 μl of Tn5 from the Nextera kit from Illumina, cat. no.  
FC-121-1030). Cell/tagmentation mixture was then incubated at 37 °C, 800 r.p.m. 
on an Eppendorf thermomixer for 30 min. Tagmentation reaction was stopped 
by the addition of equal volume (50 μl) of stop buffer (10 mM Tris-HCl, pH 8.0, 
20 mM EDTA, pH 8.0) followed by incubation in ice for 10 min. Then, 150 µl 
of DPBS/0.5% BSA was added to the mixture and nuclei suspension was then 
transferred to a polypropylene FACS tube. 0.0006% DAPI (in-house) was added 
for staining the nuclei prior to single-nuclei sort into 384-well plate (Eppendorf, 
cat. no. 0030128508) containing 2 µl of 2× lysis buffer (100 mM Tris-HCl, pH 8.0, 
100 mM NaCl, 40 µg ml–1 Proteinase K (New England BioLabs, P8107S), 0.4% SDS. 
Single-nuclei lysates were sealed and spun at 100g for 1 min, then were immediately 
frozen on dry ice and stored at −80 °C. Tn5 release and proteinase K digestion was 
then performed on a PCR machine (MJ Research Peltier Thermal Cycler) at 65 °C 
for 15 min followed by the addition of 2 µl of 10% Tween to quench the SDS. Five 
microliters of NEBNext High-Fidelity 2× PCR Master Mix (New England Biolabs, 
cat. no. M0541L) was then added to a preprepared 384-well plate (Eppendorf, cat. 
no. 0030128508) containing 1 µl of 10 µM i5 and i7 indexing primer mix (5 µM 
each) (Integrated DNA Technologies). The indexing primers were arranged in a 
combinatorial manner to allow multiplexing of up to 1,536 (4×384-well plates) 
sorted nuclei into one sequencing pool. The plate containing the PCR Master Mix 
and indexing primers was stamped onto the single nuclei, mixed briefly, sealed 
and spun at 100g for 1 min. Amplification was performed on a PCR machine 
(MJ Research Peltier Thermal Cycler) with 72 °C for 10 min, 98 °C for 5 min and 
20 cycles of 98 °C for 10 s, 63 °C for 30 s and 72 °C for 20 s. The 384-well plate 
containing the PCR product was inverted into a VBLOK200 reservoir (Clickbio 
cat. no. CBVBLOK200-1) and spun at 200g for 1 min. The combined reactions 
were then transferred to a 5-ml Eppendorf tube, (Eppendorf, cat. no. 0030119401) 
and the DNA was purified and size-selected with an AMPure XP workflow 
(Beckman Coulter, cat. no. A63880). The purified pool was quantified on an 
Agilent Bioanalyser and combined with 3 additional pools, each containing 384 
nuclei, to produce a sequencing library containing 1,536 single nuclei, and this was 
sequenced on 1 lane of an Illumina HiSeq 4000 instrument.

Single-cell ATAC sequencing and processing. Raw ATAC-seq reads were mapped 
to mouse genome MGSCv37 (mm9) using BWA–MEM (version 0.7.15). For each 
single cell, .bam reads with mapping quality below 30 and duplicated reads marked 
with Picard (version 2.19.0) were removed. For each time point, we aggregated the 
single-cell .bam files and marked and removed duplicated reads again. Peak calling 
was performed using MACS2 (version 2.1) with parameters --q 0.01 --nomodel 
--shift --100 --extsize 200 for each aggregated time point. The union of aggregated 
time point peaks (q < 0.01) was generated using bedops63. To generate the full 
read-count matrix over the union of peaks for each single cell we used bedtools 
(version 2–2.29.0) coverageBed50.

Quality-control metrics. For each single cell, the numbers of total reads sequenced, 
uniquely mapped reads, duplicated reads and mitochondrial reads were calculated. 
In addition, we calculated the fraction of reads in peaks and the fraction of open 
chromatin as previously described62.

Filtering cells and peaks. To identify poor-quality single-cell sequencing for each 
time point, we marked cells with log2-transformed uniquely mapped reads counts, 
mitochondrial content and fraction of open chromatin were twice as high as the 
median absolute deviation. If a cell deviates twice from any of the three metrics, 
it was removed prior to analysis. Peaks were removed if they overlapped with 
the mm9 blacklist region generated by UCSC genome browser. Peaks mapped to 
regions present in less than 30 cells across all cells were removed.

Dimensionality reduction. The filtered coverage matrix was binarized and used as 
input for latent semantic analysis (lsa) followed by principle component analysis 
(PCA) using R package lsa (https://CRAN.R-project.org/package=lsa) (version 
3.6.3). UMAP was generated using ‘RunUMAP’ from Seurat (version 3.0).

Motif in peaks fraction and motif variability. To assess the role of transcription 
factor (TF) motif accessibility during memory formation we utilized R packages 
Biostrings64 (version 2.54.0), TFBSTools65 (version 1.24.0) and transcription factor 
motif database JASPAR2016 (ref. 66) (version 1.14.0). For each TF motif of interest, 
we annotated each peak if the underlying sequence contained the motif with a 
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minimum matching score of 80%. Then for each cell, we counted the number of 
peaks with the TF motif. We then corrected the number of peaks with a motif by the 
number of total peaks of that cell. In addition, we assessed TF motif variability across 
all time points or selected time points of interest using chromVar31 (version 1.8) with 
default parameters. In total, we assessed 514 TF motifs from mouse and human 
from the JASPAR2016 TF motif database.

Peak annotation and enrichment analysis. Peaks were annotated with R package 
ChIPseeker (version 1.5.1) with transcription start site (TSS) reaching from −3000 
to 3000 to the UCSC mm9 gene model and the ‘org.Mm.eg.db’ Bioconductor 
annotation package. Genes with TSS closest to peaks that were identified solely 
during peak calling of the aggregate of D0, D32 saline or D32 IAT were assessed for 
pathway enrichment using R package ReactomePA67 (version 1.30.0).

Statistical analyses. Statistical analyses for all flow-cytometry-based 
protein-expression data were performed using Prism 7 (version 7.0c, GraphPad 
software). P values are shown as *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, 
unless exact P values are indicated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All relevant data from this study, including raw flow-cytometry data, are available 
from the corresponding author upon request. Raw single-cell RNA sequencing 
data from our previous publication have been deposited in the ArrayExpress 
under accession number E-MTAB-4388. Raw scRNA-seq data, bulk ATAC-seq 
data and scATAC-seq data generated from the current manuscript have been 
deposited in the ArrayExpress under accession numbers E-MTAB-9317 (10x 
Genomics scRNAseq data), E-MTAB-9393 (bulk ATAC-seq data), E-MTAB-9403 
(Smart-seq2 data), and E-MTAB-9402 (scATAC-seq data). JASPAR 2016 database 
(version 1.14.0) was used for transcription factor motif analyses.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | PbTII cells localise to T cell zones, B cell follicles and GCs during infection. a, Representative FACS plots for surface CXCR6 and 
CXCR5 expression on PbTII cells at various timepoints during infection. Graphs showing proportion of CXCR6+ or CXCR5+ PbTII cells over time. Data are 
pooled from 3 independent experiments (n=5 mice per group, per individual timepoint for each independent experiment) and presented as mean +/- 
SEM. Statistical analysis was performed between saline and IAT groups for each individual timepoint using two-tailed Mann-Whitney test. p-values where 
indicated are **p< 0.01, ***p<0.001, ****p<0.0001. b, eGFP+ PbTII cells were distributed throughout splenic B cell follicles and T cell zones at D7 p.i. 
(n=4). Graph showing proportion of PbTII cells localised within B cell (IgD) or T cell (CD3) zones. Scale bar, 2mm. c, Standard microanatomical structures 
observed in saline-treated mice at D21 p.i. White arrows indicate eGFP+ PbTII cells. Scale bar, 100µm. d, Localisation of PbTII cells within GCs and IgD+ 
naive B cell follicle regions of mice at D21 p.i. in the presence or absence of IAT. Graph showing proportion of PbTII cells localised within GCs or follicular 
regions of saline- (n=6) or IAT- (n=5) treated mice. Scale bar, 2mm. Images were acquired on an Aperio FL slide scanner (b, d) or a Zeiss 780-NLO point 
scanning confocal microscope (c).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | PbTII cells exhibit functional memory characteristics. a, b, Number of (a) IFNγ-expressing or (b) IL-10-expressing splenic PbTII 
cells after restimulation with PMA and ionomycin for 3 hours in vitro over time, in the presence or absence of IAT. Data are presented as mean +/- SEM. 
Data are representative of 2 independent experiments (n=5/ group, per individual timepoint for each experiment). Statistical test performed using 
two-tailed Mann-Whitney test. c, Average number of reads for ATAC-seq peaks within enhancer regions enriched for D7 p.i. sample. Bulk ATAC-seq 
experiments were performed as 2 independent experiments. Data are derived using overlapping peaks shared between biological replicates from each 
experiment for individual timepoints. Error bars represent mean +/- SD. Statistical test performed using two-sided Wilcoxon rank-sum test. d, Mean 
ATAC-seq peak coverage at Ifng, Tbx21, Cxcr5 and Il21 gene loci with a scale of 0-45 for all tracks. Boxes represent peaks called using MACS2. Data is 
shown for a representative experiment out of 2 independent biological repeats. e, Representative FACS plots and graph showing proliferative marker Ki67 
expression for memory (green) or naive (grey) PbTII cells at 17 hours post-rechallenge. Data are pooled from 2 independent experiments (n= 5 mice per 
group, per independent experiment). Statistical test performed using paired two-way ANOVA with Tukey’s multiple comparison test. f, Representative 
FACS plots and graph showing expression of early activation marker, CD69 for memory (green) or naive (grey) PbTII cells at 17 hours post-rechallenge. 
Data are pooled from 2 independent experiments (n= 5/ group, per independent experiment). Statistical test performed using paired two-way ANOVA 
with Tukey’s multiple comparison test. p-values are indicated where *p< 0.05, **p< 0.01, ****p<0.0001. Statistical analysis was performed between 
saline- and IAT-treated groups for each individual timepoint (a, b).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | PbTII cells at peak effector stage display mixed expression of canonical TH1 and TFH markers. a, Visualisation of the expression 
of common markers used for TH1 and Tfh lineage tracing experiments on UMAP representation of PbTII cells at D7 p.i. assessed using the droplet-based 
10x Genomics platform. b, (top) UMAP representation as in (a) showing the individual clusters identified by unsupervised clustering analysis. (bottom) 
Violin plots showing the expression of genes described in (a) within each cluster. The expression value for naive (D0) PbTII cells is shown for each gene 
for reference.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Quality control checks for scRNA-seq assessment of memory PbTII cell differentiation. a, FACS gating strategy for isolation 
of naive (CD62L+ CD44-) donor PbTII cells for transfer into recipients, 24 hours prior to infection. A subset of these cells was also used for scRNA-seq 
assessment for PbTII responses at D0 p.i. Cells were then either sorted as single-cells onto 384-well plates for Smart-seq2 assessment or sorted as 
single-cells using the 10X Genomics platform. b, FACS gating strategy for isolation of PbTII cells from D7 p.i. onwards for scRNA-seq assessment for either 
Smart-seq2 or 10X Genomics assessment. c, Distribution of PbTII cells from the Smart-Seq2 dataset after filtering for number of genes (1000<nGene< 
5000), mapped counts (> 100,000) and percentage of mitochondrial content (<0.35). d, The current Smart-seq2 (384) PbTII dataset of D0, D7, D10*, 
D14*, D17*, D21* and D28* p.i. cells were combined with our previous datasets18 containing PbTII cells isolated from D0 to D7 p.i. (SMARTer batch: D0, 
D2, D3, D4, D7 p.i.; Smart-seq2 (96) batch: D0, D4, D7 p.i.) PCA plots showing the entire time series, with shapes denoting the different experimental 
batches, (left) before and (right) after batch effect correction as described in methods. (*) = samples were isolated either from saline or IAT groups.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Multiple computational approaches for trajectory inference of PbTII scRNA-seq data. a, (left) UMAP representation of 
batch-corrected Smart-seq2 PbTII dataset superimposed with trajectory inferences calculated using Slingshot. (right) Visualising Cxcr6 and Cxcr5 
expression on UMAP representations as described previously. b, Grid-view of RNA velocities for each cell from the Smart-seq2 PbTII dataset (only 
D4-D28 p.i.) visualised on 2D bGPLVM representations. c, (left) Integration of the three PbTII datasets (Smart-seq2(96/ 384) and SMARTer) using scVI 
represented on a UMAP plot. (right) Visualising Cxcr6 and Cxcr5 on a UMAP representation of the scVI-integrated dataset.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Gene expression and protein validation of multiple memory-associated genes in PbTII cells. a, Visualisation of the expression of 
various memory-associated genes identified using GPfates modelling on 2D bGPLVM representations. LV, latent variable. b–d, Representative FACS plots 
and histograms showing protein level expression of various memory-associated markers over time, in the absence or presence of IAT. Graphs showing 
kinetics of Id2, TCF1, cMaf and CCL5 protein expression over time. Data are representative of 3 independent experiments (n=3 for naive and n=6 for day 
7 and day 28 saline- or IAT-treated groups, per individual timepoint). For the box plot shown, the centre line indicates the median, box limits indicate the 
upper and lower quartiles, and the whiskers indicate the maximum and minimum measures. Statistical analysis was performed using one-way ANOVA 
between all groups. TCF1 staining was performed after stimulation with PMA/ Ionomycin. e, Representative FACS plot showing co-expression of CXCR3 
with either CXCR6 or CXCR5 on PbTII cells at D28 p.i. during IAT. f, Representative FACS plots, overlaid histograms and graph showing the relationship 
between promoter activity of Id3 from Id3GFP reporter mice with either CXCR6 or CXCR5. Data are representative of 2 independent experiments (n= 6 mice 
per group, per indepdent experiment). Statistical analysis performed using two-tailed Wilcoxon matched-pairs signed-rank test. g, Expression of TCF1 in 
PbTII cells from individual PbTIIcre-ERT2 Tcf7wt/wt and PbTIIcre-ERT2 Tcf7fl/fl donor mice on the day of transfer, 7 days post-tamoxifen treatment. h, Representative 
FACS plots and graphs showing expression of various TH1 and Tfh-associated markers at D7 p.i. in Tcf7wt/wt and Tcf7fl/fl PbTIIs. Experiment performed once 
(n=7 mice per group). Data are presented as mean+/- SEM. Statistical test performed using two-tailed Mann-Whitney test. p-values are indicated where 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Clonal analysis of memory fate and lineage plasticity testing with and without IAT. a, Families sharing endogenous TCRα and 
TCRβ sequences displaying no crossover between timepoints or treatments. b, Lineage tracing of effector to memory transition of PbTIIs with and without 
the presence of IAT. Representative FACS plots and graphs showing expression of CXCR5 and CXCR6 in splenic PbTIIs at D28 p.i. Experiment performed 
once (n=5 for Reference and n=4 for CXCR5+ Transfer in the IAT group, and n=6 for Reference and n=6 for CXCR5+ Transfer in the Saline group). 
Statistical test performed using two-tailed Mann-Whitney test. c, Representative FACS plots and graphs showing co-expression of two TH1-markers in 
splenic PbTIIs at D28 p.i. Experiment performed once (n=5 for Reference and n=4 for CXCR5+ Transfer in the IAT group, and n=6 for Reference and n=6 
for CXCR5+ Transfer in the Saline group). Statistical test performed using two-tailed Mann-Whitney test. Data are presented as mean +/- SEM (b, c). 
p-values are indicated where * p<0.05, ** p<0.01.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Assessing relationships of TH1 and Tfh-lineages with TCM, GC Tfh and Tr1 subsets in the GPfates model. a, Visualisation  
of Sell and Ccr7 expression on 2D bGPLVM representations overlaid with OMGP trajectories representing TH1 or Tfh branch. b, Co-expression of  
Sell and Ccr7 along pseudotime, for all cells annotated for the Tfh (left) or TH1 (right) branch as outlined in methods. Kernel density estimation failed to 
estimate a population of Sell+ Ccr7+ cells, hence a threshold was estimated where cells express both Sell ≥ 4.7 and Ccr7 ≥ 3.75 corrected gene values.  
c, Representative FACS plots and graph showing expression of TH1-markers (CCL5 and CXCR6) on PbTIIs at D28 p.i. isolated from the spleen and inguinal 
lymph nodes of the IAT group. Experiment performed once (n=6 mice). Statistical test performed using Wilcoxon matched-pairs signed-rank test. p-value 
where indicated is *p<0.05. d, Visualisation of Pdcd1 expression on 2D bGPLVM representations overlaid with OMGP trajectories representing TH1 or  
Tfh branch. e, Co-expression of Pdcd1 and Ccr7 along pseudotime, for all cells annotated for the Tfh branch. Kernel density estimation failed to estimate  
a dense population of Pdcd1+ Ccr7+ cells, hence a threshold was estimated where cells express both Pdcd1 ≥ 4.0 and Ccr7 ≥ 3.50 corrected gene values.  
f, Visualisation of Il10 and Ifng expression on 2D bGPLVM representations overlaid with OMGP trajectories representing TH1 or Tfh branch. g, Co-expression 
of Il10 and Ifng along pseudotime for all cells annotated for TH1. Tr1 cells are annotated as those cells expressing Il10 and Ifng above the threshold drawn 
(cells expressing both Il10 ≥ 4.9 and Ifng ≥ 3.75 corrected gene values), according to kernel density estimation.
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Extended Data Fig. 9 | Changes in availability of transcription factor binding motifs in memory PbTII cells via scATAC-seq. Changes in scATAC-seq 
peaks for cells from naive (D0), saline and IAT groups at D32 p.i. associated with different transcription factors. Error bars represent mean+/- SD. 
Statistical test was performed using two-sided Wilcoxon rank-sum test. p-values are indicated where ***p<0.001.
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Extended Data Fig. 10 | A conceptual view for development of memory CD4+ T cells during malaria. A broad overview of transcriptome dynamics 
accompanying transition of CD4+ T cells from naivety to memory. CD4+ T cells branch into effector TH1 and Tfh after undergoing clonal expansion, and 
exhibit partial retention of effector phenotypes as they transition to memory. TH1 effector cells give rise to Tr1 cells and TH1 phenotype TEM memory cells.  
Tfh effector cells give rise to TCM cells, GC Tfh cells, or memory Tfh cells. Genes correlating strongly with memory development are summarised in the  
box (right). Numbers in boxes denote the average number of genes detected by high-resolution scRNA-seq at different stages of CD4+ T cell differentiation.
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