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Pneumonia is a major global health problem; it kills more chil-
dren under 5 years of age than any other disease1. The bur-
den of disease is aggravated by old age, chronic lung disease, 

immunosuppression and viral co-infection. Secondary pneumonia 
following pandemic and seasonal influenza virus infection is a sig-
nificant cause of mortality worldwide2.

Nasopharyngeal colonization by Streptococcus pneumoniae 
(pneumococcus) is common, with 40–95% of infants and 10–25% 
of adults colonized at any given time3. Such pneumococcal carriage 
is important as the prerequisite of infection4, the primary reservoir 
for transmission5 and the predominant source of immunizing expo-
sure and immunological boosting in both children and adults6,7.

Immune dysregulation caused by infection with respiratory 
viruses such as influenza leads to increased carriage load8. Increased 
carriage load has been associated with pneumonia incidence and 
severity, as well as with within-household S. pneumoniae transmis-
sion5,9–11. The mechanisms and markers associated with this patho-
gen synergy have been difficult to study in human subjects due to 
the rapidly progressing nature of the disease.

One safe way to simulate influenza infection in the nose is using 
live attenuated influenza vaccine (LAIV), consisting of cold-adapted 
influenza viruses. LAIV has been shown to affect subsequent suscepti-
bility to S. pneumoniae and to lead to increased carriage load in mouse 
models of infection and in vaccinated children12,13. Furthermore, 
LAIV administration prior to S. pneumoniae challenge led to a 50% 
increase in S. pneumoniae acquisition, as detected by molecular meth-
ods, as well as a tenfold increase in nasopharyngeal bacterial load14.

In mouse models of pneumococcal carriage, recruitment of 
neutrophils and monocytes to the nasopharynx dependent on the 
TH17 subset of helper T cells mediates immunological control and 
clearance15–17. Influenza virus infection promotes type I interferons, 
which interfere with recruitment of these phagocytes, although 
interferon-γ​ (IFN-γ​) is postulated to impair phagocytosis by macro-
phages through downregulation of the scavenger receptor MARCO 
(macrophage receptor with collagenous structure)18–20. However, the 
precise immune mechanisms and gene regulators involved in the 
control and clearance of pneumococcal carriage in humans have 
not been revealed21. Moreover, how these mechanisms are altered 
during human influenza virus infection remains largely unknown.

Systems-biology approaches have allowed the identification of 
immune mechanisms associated with protection from infectious 
diseases and with robust immune responses during vaccination22–28. 
Here, we applied systems biology to nasal samples collected in 
the setting of human challenge with LAIV and S. pneumoniae, to 
emulate nasal effects of influenza infection on S. pneumoniae car-
riage. We identified the key cellular mechanisms that control newly 
acquired pneumococcal carriage in humans, and how they are dis-
rupted following nasal influenza infection.

Results
LAIV-induced inflammation leads to increased pneumococcal 
carriage load and acquisition. In a double-blinded controlled ran-
domized clinical trial, we administered LAIV (n =​ 55) 3 days prior 
to S. pneumoniae inoculation (day 0). To verify the requisite topical 
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application for an effect on pneumococcal carriage, we adminis-
tered tetravalent inactivated influenza vaccine as a control (n =​ 62). 
LAIV infection led to transiently increased pneumococcal acqui-
sition at day 2 (60.0% and 40.3%, as detected by molecular meth-
ods, in LAIV groups and control groups, respectively)14. LAIV also 
increased S. pneumoniae carriage load in the first 14 days following 
pneumococcal inoculation14 (Supplementary Fig. 1). We collected a 
series of nasal microbiopsies and nasal lining fluid throughout the 
study to assess ongoing cellular and cytokine responses. Participants 
were grouped into those who did not become colonized following 
S. pneumoniae challenge (carriage−) and those who did (carriage+), 
as determined by classical microbiology (Fig. 1a). To investigate 
whether LAIV-induced immune responses were associated with 
a predisposition to pneumococcal carriage, we measured the con-
centrations of 30 cytokines and of proteins, including interleukin 1 
receptor antagonist (IL-1RA), in nasal lining fluid (Fig. 1b). After 
multiple-testing correction, we found that at day 0, directly prior 

to S. pneumoniae inoculation, LAIV significantly increased concen-
trations of 20 cytokines, including CXCL10 (IP-10), tumor-necrosis 
factor (TNF), interleukin 10 (IL-10), IFN-γ​ and IL-15 (Fig. 1b and 
Supplementary Table 1). In contrast, the control group did not show 
any significant increase in cytokine response at day 0. Following 
S. pneumoniae inoculation, S. pneumoniae carriage in the absence 
of LAIV was associated with increased concentration of epidermal 
growth factor at day 2 and decreased concentration of IL-1RA at  
day 9 after S. pneumoniae inoculation (compared with that at base-
line), neither of which remained significant after multiple-testing 
correction. No other cytokines, including IL-17A or CCL2, were 
significantly altered by carriage alone (Fig. 1b).

Even before bacterial inoculation, nasal inflammatory responses 
to LAIV differed between those who went on to become carriers 
and those who were protected from carriage (Fig. 1c). In particu-
lar, IL-10 was significantly increased in LAIV-vaccinated subjects 
who did not acquire S. pneumoniae following inoculation (5.8-fold 
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Fig. 1 | LAIV-pneumococcus co-infection leads to excessive proinflammatory responses that are associated with increased pneumococcal load and 
impaired monocyte recruitment. a, Experimental design of the study. Analyzed time points are indicated by black circles. b, Heat map showing for each 
cytokine the median log2[fold change] compared with baseline for the time points 0, 2,7 and 9 days; n =​ 19 per group. c, The delta in median log2[fold 
change] following LAIV vaccination just prior to inoculation with S. pneumoniae for subjects becoming carriage+ or carriage− (excluding subjects becoming 
positive by PCR only, who resemble subjects that become carriage+ by culture as well). The color of each bar represents the median induction in the entire 
LAIV group. **P =​ 0.0097 by two-tailed Wilcoxon test for LAIV carriage− subjects comparing IL-10 day 0 with baseline; P =​ 0.073 for the LAIV carriage+ 
group. ***P =​ 0.0008 by two-tailed Wilcoxon test for LAIV carriage+​ subjects comparing CXCL10 day 0 with baseline; P =​ 0.051 for the LAIV carriage− 
group. d, Pneumococcal load (median and interquartile range of CFU ml−1 in nasal wash shown) for all carriage+ subjects with high (top quartile, n =​ 9) or 
low (all subjects below top quartile, n =​ 28) CXCL10 concentrations at day 0. P =​ 0.019 by two-tailed Mann-Whitney test of area under the curve of log-
transformed load over time. e, Scatter plot showing correlation of CXCL10 concentration at baseline with S. pneumoniae load for a second validation cohort 
(n =​ 52) with an asymptomatic upper respiratory tract virus infection (n =​ 15) or not. Spearman correlation test results and linear regression line with 95% 
confidence interval (gray shading) are shown.
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increase), but not in those who became carriers following inocu-
lation (2.0-fold increase). In contrast, CXCL10 was significantly 
increased in subjects who went on to become carriers (2.4-fold 
increase), but not in those who remained carriage-negative (1.5-
fold increase). Moreover, subjects with increased concentrations of 

CXCL10 before inoculation displayed higher pneumococcal load 
following S. pneumoniae inoculation (Fig. 1d). This suggests that 
differences in the response to influenza virus are associated with 
secondary susceptibility to S. pneumoniae. To test whether this was 
specific for LAIV infection, we measured CXCL10 in nasal washes 
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Fig. 2 | Neutrophil function is impaired following LAIV administration. a, Concentrations of myeloperoxidase in nasal wash of volunteers before or 2 days 
after S. pneumoniae inoculation. Median and interquartile range are shown (for n =​ 9 LAIV carriage− and LAIV carriage+ and for n =​ 10 control carriage− and 
control carriage+ subjects). *P =​ 0.014 by two-tailed Wilcoxon paired test. b, S. pneumoniae OPK capacity of blood neutrophils before and 3 days following 
LAIV (n =​ 6) or control (tetravalent inactivated influenza vaccine or no, n =​ 7) vaccination. Individual subjects are shown and connected by lines. *P =​ 0.031 
by two-tailed Wilcoxon paired test. NS, not significant. c,d, Effect of exogenous TNF (c; n =​ 10) and CXCL10 (d; n =​ 8) on OPK activity of blood neutrophils 
of healthy volunteers. **P =​ 1.15 ×​ 10−5 by Friedman test. Neutrophils from six subjects were used in three independent experiments. Individual samples 
are depicted and connected by dashed lines. e, Normalized MAP4K2 and TIGIT counts on sorted neutrophils before LAIV or in control arm (n =​ 6, red) 
and following LAIV (n =​ 4, blue). Individual samples are shown, and paired samples are connected by black lines. **P =​ 0.008 and ***P =​ 3.2 ×​ 10−5 two-
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Individual subjects are depicted by dots and connected by lines.
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from an independent cohort in which a subset of subjects had an 
asymptomatic viral upper respiratory tract infection the week before 
S. pneumoniae inoculation that did not progress to symptomatic 
infection. These comprised infections with rhinovirus (n =​ 12), 
coronavirus (n =​ 5), respiratory syncytial virus (n =​ 2) and para-
influenzavirus (n =​ 1)29. The predominant virus, rhinovirus, was 
recently shown to associate with increased pneumococcal acquisi-
tion and transmission30. In these virus-infected subjects, CXCL10 
concentration was increased (Supplementary Fig. 2), and baseline 
CXCL10 concentration correlated with increased pneumococcal 
load also in this second cohort (Fig. 1e). Unfortunately, sample sizes 
were too small to further investigate in depth the effects of infection 
with the different viruses, which are likely to have divergent con-
sequences. Although the correlation was modest in this validation 
cohort, suggesting that other host and environmental factors are 
involved, we identified a biomarker, CXCL10, that was predictive of 
S. pneumoniae load.

Early neutrophil degranulation in response to carriage is 
impaired by LAIV infection. In mouse models, neutrophil recruit-
ment after onset of carriage contributes to control of the bacteria15. 
We observed pre-existing high numbers of neutrophils in the human 
nasal lining, and pneumococcal carriage did not lead to significant 
further recruitment of neutrophils (Supplementary Fig. 3a,b). To 
investigate whether luminal neutrophils were involved in the early 
control of carriage, we measured concentrations of myeloper-
oxidase, a marker for neutrophil degranulation31, in nasal washes. 
Concentrations were increased (2.2-fold) at 2 days after challenge in 
control carriage+ but not carriage− individuals (Fig. 2a). This neu-
trophil activation was impaired in the LAIV group, who displayed 
high carriage load during early carriage and had increased acquisi-
tion compared with that of controls. Together, these findings suggest 
that neutrophil degranulation is important for the initial control of 
carriage. To investigate whether neutrophils were also impaired sys-
temically following LAIV, as reported during wild-type influenza 
infection32, we isolated blood neutrophils before, and at 3 days after, 
LAIV administration from a subset of subjects. We confirmed that 
opsonophagocytic killing (OPK) of S. pneumoniae by blood neutro-
phils was decreased following LAIV (Fig. 2b). This effect could be 
mimicked by the addition of TNF, but not CXCL10, to neutrophils 
from healthy donors in vitro, decreasing killing capacity in a dose-
dependent manner (Fig. 2c,d). NanoString expression analysis of 
594 genes revealed ten differentially expressed genes in blood neu-
trophils 3 days post-LAIV (Supplementary Table 2). Among those 
were the genes encoding MAP4K2 (mitogen-activated protein 
kinase kinase kinase kinase 2; 3.2-fold increase), which acts on the 
TNF signal-transduction pathway33, and the co-inhibitory receptor 
TIGIT (T cell immunoreceptor with immunoglobulin and ITIM 
domains; 3.6-fold increase; Fig. 2e). TIGIT expression levels were 
also negatively correlated with neutrophil killing capacity (r =​ −​0.73;  
Fig. 2f). TIGIT is an immunological checkpoint protein that has 
been described to promote regulatory T cell function34, but its 
expression on neutrophils has not been previously appreciated, to 
our knowledge. Incubation of whole blood with recombinant TNF 
increased TIGIT levels on neutrophil surfaces within 30 min in a 
dose-dependent manner (Fig. 2g).

Taken together, these findings indicate that inflammation follow-
ing LAIV impairs the response of nasal and systemic neutrophils to 
pneumococcus, which could be mimicked by addition of exogenous 
TNF to neutrophils and is associated with an upregulation of TIGIT.

Pneumococcal carriage–induced monocyte recruitment to the 
nose is impaired by LAIV infection. Immunophenotyping revealed 
a significant recruitment of monocytes to the nose following establish-
ment of carriage (Fig. 3a and Supplementary Fig. 4). Monocyte num-
bers increased as early as 2 days following S. pneumoniae inoculation,  

peaked at 9 days (median 4.8×​ increase) and remained elevated 
29 days after S. pneumoniae inoculation. In contrast, there was no 
recruitment of CD3+ T cells to the nose (Supplementary Fig. 4b). 
LAIV infection prior to pneumococcal carriage impaired the recruit-
ment of monocytes to the nose (Fig. 3a). Moreover, peak pneumo-
coccal load was associated with increased monocyte recruitment in 
the control group, but not in the LAIV group (Fig. 3b,c). Indeed, for 
subjects in the control group with very low carriage densities, which 
were detectable only by molecular methods, no monocyte recruit-
ment was observed (Supplementary Fig. 4c). This suggests that a 
minimum S. pneumoniae load is required for sensing and monocyte 
recruitment and that LAIV infection interferes with this process. 
Although CCL2 (MCP-1) was not substantially induced follow-
ing S. pneumoniae carriage, its concentration was correlated with 
numbers of monocytes at all time points (Supplementary Fig. 5a). 
Furthermore, stratification of individuals showed that those with 
increased CCL2 concentration at day 2 after S. pneumoniae inocu-
lation exhibited increased monocyte recruitment (Supplementary  
Fig. 5b). Concentrations of IL-6, IFN-γ​ and TNF were also cor-
related with numbers of monocytes at each time point, but strati-
fication of individuals did not reveal differential recruitment of 
monocytes (Supplementary Fig. 5a,b). In a second, independent 
cohort that did not receive any vaccine, monocytes were increased 
at day 9 following S. pneumoniae inoculation, which was correlated 
with an increased CCL2 concentration in nasal fluid, validating 
these results (Supplementary Table 3 and Supplementary Fig. 5c).

Thus, acquisition of pneumococcal carriage led to a recruitment 
of monocytes to the nasopharynx, a process that was associated 
with pneumococcal load and CCL2 induction and that was inhib-
ited by LAIV infection.
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Nasal responses associated with pneumococcal clearance are 
impaired by LAIV. To assess anti-pneumococcal responses induced 
by carriage, we collected nasal cells 29 days after S. pneumoniae 
inoculation, stimulated them in vitro with heat-killed S. pneumoniae  
and measured concentrations of 30 cytokines in the supernatant. 
Increased production (fold change >​ 2 and q <​ 0.05 (P value cor-
rected for multiple testing) to unstimulated control) of TNF, 
macrophage inflammatory protein 1α​ (MIP-1α​), IL-10, IL-6 and 
granulocyte–macrophage colony-stimulating factor upon restimu-
lation was observed in the control carriage+ group (Fig. 4a and 
Supplementary Fig. 6a). In the LAIV carriage+ group, however, this 
boosting of anti-pneumococcal cytokine responses by rechallenge 
was absent (Fig. 4a and Supplementary Fig. 6a). The production of 
the above five cytokines correlated with decreased pneumococcal 
load at day 29 after S. pneumoniae inoculation, suggesting these 
responses are involved in S. pneumoniae clearance (Fig. 4b). To test 
whether monocytes/macrophages were the source of these cyto-
kines, we compared the cytokine signature from whole nasal cells 
with that from alveolar macrophages exposed to S. pneumoniae in 
vitro (Fig. 4c). Relative cytokine production was highly correlated 
between the two cell populations, suggesting that nasal monocytes/
macrophages could be the source of these cytokines. This is sup-
ported by the observation that in carriers with low carriage load 
(detectable only by molecular methods), absence of monocyte 

recruitment was associated with absent S. pneumoniae-specific 
responses (Supplementary Fig. 6b).

In conclusion, carriage led to increased responses of nasal cells 
to pneumococcal stimulation, which was potentially due to the 
infiltration of monocytes. This was impaired by prior LAIV infec-
tion and was correlated with clearance of pneumococcal carriage 
(Supplementary Fig. 7).

LAIV alters nasal gene-expression responses to carriage. To iden-
tify gene signatures associated with the observed responses to pneu-
mococcal carriage and infection with LAIV, we performed RNA 
sequencing on whole nasal cells at days −​5, 2 and 9 after S. pneu-
moniae inoculation (Fig. 5 and Supplementary Table 4). Carriage 
without LAIV induced 834 and 176 differentially expressed genes 
(DEGs) at days 2 and 9, respectively (Fig. 5a). These genes were 
enriched for pathways associated with gap junction trafficking and 
regulation (including GJA1, TJP1 and multiple GJB genes) and deg-
radation of the extracellular matrix (including COL17A1, COL12A1, 
LAMA3 and KLK7). In the carriage− group, a smaller number of 
DEGs was observed (161 and 248 at days 2 and 9, respectively).

In the LAIV carriage+ group, 936 and 711 DEGs were observed 
at day 2 and day 9, respectively. Surprisingly, despite the high con-
centrations of inflammatory cytokines observed in the LAIV car-
riage− group, only a relatively small number of DEGs were observed 
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cytokine. c, The cytokine profile from alveolar macrophages (median for six volunteers shown) exposed to S. pneumoniae for 18 h was compared with that 
of stimulated whole nasal cells (median of control carriage+ group shown). Spearman non-parametric correlation test results and regression lines with 
shaded 95% confidence intervals are shown.
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at days 2 and 9 (126 and 153, respectively). DEGs of carriage+ sub-
jects receiving LAIV and DEGs of carriage+ subjects without LAIV 
showed very little overlap, with only 38 DEGs at day 2 and 2 DEGs 
at day 9 in common. Very little overlap was observed at the path-
way level between these groups, indicating LAIV alters the natural 
responses to pneumococcus (Fig. 5b and Supplementary Table 5). 
This could reflect transcriptome kinetics, due to altered differentia-
tion and cellular activation, or it could reflect changes in cell migra-
tion to the nasal mucosa.

The LAIV carriage+ group showed enrichment for genes encod-
ing molecules involved in the Toll-like receptor 3 (TLR3) signal-
ing cascade, in retinoic acid–inducible gene I (RIG-I)/melanoma 
differentiation-associated protein 5 (MDA5)-mediated induction of 
IFN-α​/β​ pathways and in IFN-γ​ signaling, which is in agreement 
with the induction of antiviral responses following LAIV vaccina-
tion35. Moreover, TLR4 signaling was also enriched in this group. 
The pneumococcal protein pneumolysin is sensed by TLR436, 
and it is possible that the increased pneumococcal load following 
LAIV vaccination led to increased pneumolysin sensing. O-linked 
glycosylation of mucins, which are used by S. pneumoniae as a 
carbohydrate source for growth37, was also enriched in the LAIV 
carriage+ group (including the genes ST3GAL4, GALNT7, GCNT3 
and B4GALT5). ST3GAL4 encodes a sialyl transferase, and cleavage 
of sialic acids by the influenza neuraminidase has previously been 
shown to promote pneumococcal growth38. This finding supports a 

LAIV-mediated effect on pneumococcal growth through alterations 
of host factors. Common genes and pathways between the LAIV-
vaccinated carriers and control carriers include ‘innate immune 
system’ and ‘signaling by interleukins’ (IL1B, CLEC4E, CD55 and 
IL1RN). In conclusion, the genome-wide transcriptomic response 
to pneumococcal carriage was substantially altered on both the gene 
level and the pathway level by LAIV.

Gene modules associated with recruitment of monocytes. To 
identify sets of coexpressed genes post-LAIV and carriage, we used 
CEMiTool on the baseline-normalized data of LAIV and control 
groups, separately39. This modular expression analysis revealed 
genes that may act together or are similarly regulated during the 
immune responses to carriage and infection.

Genes in the control cohort were grouped into four coexpression 
modules, of which three were significantly enriched for known reac-
tome pathways (Supplementary Data 1). Module M1 was enriched 
in the carriage+ group at day 9 after S. pneumoniae inoculation  
(Fig. 6a). Numbers of monocytes were correlated with the aver-
age fold change count in this module, suggesting that these genes 
reflect the infiltration of monocytes (Fig. 6b). To further investigate 
these monocytes, we performed gene set enrichment analysis on the 
module M1 genes using a list of genes from distinct monocyte sub-
sets (Fig. 6c)40. These genes were enriched for classical CD14+CD16– 
monocytes and not for other monocyte subsets. Moreover, this 
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module was enriched for genes related to ‘chemokine receptors bind 
chemokines’ and ‘IFN-α​/β​ signaling’ (Fig. 6d). Type I interferons 
have been shown to be required for the clearance of pneumococcal 
carriage in mouse models41, and these findings suggest that their 
activity in monocytes might be critical for this. CEMiTool also inte-
grates coexpression analysis with protein–protein interaction data. 
Expression of the gene encoding the chemokine CXCL6 and that 
of the gene encoding its receptor CXCR2 were identified as hubs in 
module M1 (Fig. 6e and Supplementary Data 1). CXCR2 engage-
ment has been shown to induce attachment of monocytes to the 
endothelial layer, initiating chemotaxis, which suggests this interac-
tion could contribute to monocyte recruitment42. Module M3 was 
enriched for genes related to ‘extracellular matrix organization’ and 
‘collagen formation’ (Fig. 7).

For LAIV, we identified six distinct coexpression modules 
(Supplementary Data 2), which were strongly enriched for genes 

related to ‘diseases associated with O-glycosylation of proteins’ 
(module M1), ‘immunoregulatory interactions between a lym-
phoid and a non-lymphoid cell’ (module M3), ‘chemokine receptors 
bind chemokines’ (module M4) and ‘interferon signaling’ (module 
M5; Fig. 8). Indeed, the hubs of module M5 are well known type I 
interferon–related genes, such as ISG15, OAS1, OASL, IFIT1–3 and 
IFITM1. Taken together, our findings reveal that a strong local anti-
viral response is elicited in response to LAIV infection.

Discussion
This study addresses fundamental questions about the immune 
responses that control and clear S. pneumoniae carriage and how 
influenza infection can alter this control. By using a double experi-
mental human challenge model with LAIV and S. pneumoniae, we 
revealed that S. pneumoniae carriage led to quick degranulation of 
pre-existing nasal neutrophils in the human nose and recruitment  
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of monocytes, promoting bacterial clearance. LAIV infection 
impaired these immune responses following carriage. LAIV is an 
attenuated influenza strain, and wild-type influenza viruses might 
have even more pronounced effects on the host response to pneu-
mococcus. Carriage in the absence of LAIV was associated with 
only limited inflammation, corroborating the view of S. pneu-
moniae as a commensal bacterium that can asymptomatically colo-
nize healthy adults43. In contrast, robust proinflammatory cytokine 
responses were measured following LAIV at both the protein- and 
gene-expression level. These results provide an explanation for the 
published finding that LAIV increased acquisition of S. pneumoniae 
and carriage load14.

In addition, our findings that LAIV led to impaired blood neu-
trophil killing capacity and that the addition of TNF, the nasal lev-
els of which were increased following LAIV, to neutrophils in vitro 
impaired their activity highlight the crucial role of neutrophils in 
susceptibility to secondary bacterial infection44. The association of 
TIGIT with this impaired neutrophil function following influenza 
infection warrants further investigation, as TIGIT-blocking thera-
peutics are currently being developed for treatment of cancer and 
human immunodeficiency virus45.

We identified CXCL10 as a marker for increased susceptibil-
ity to S. pneumoniae, and we propose that this should be further 
investigated as a potential therapeutic target for secondary bacte-
rial infections associated with viral infections. Our data showed 
that individuals with higher concentrations of CXCL10 prior to  
S. pneumoniae inoculation had higher bacterial loads. In a previous  

study, children with pneumonia with viral and bacterial (predom-
inantly pneumococcal) co-infection had increased amounts of 
CXCL10 compared with those of children with only viral or bacte-
rial pneumonia, a finding that is associated with disease severity46.  
Data in mice suggest that CXCL10 plays a direct role during 
pneumonia. Mice with genetic ablation of CXCR3, the receptor 
for CXCL10, CXCL9 and CXCL11, showed increased survival, 
decreased lung inflammation and less invasion following infec-
tion, depending on the pneumococcal inoculation strain used47. 
Moreover, addition of exogenous CXCL10 prior to infection of 
mice with influenza virus or respiratory syncytial virus increased 
pneumonia severity48.

Our results support previous findings from mouse models show-
ing that CCL2 signaling and monocyte recruitment are key media-
tors of pneumococcal carriage clearance16. However, contrary to key 
mechanisms described in mouse models, we did not observe any 
production of IL-17A or neutrophil recruitment to the nose follow-
ing carriage or associated with carriage clearance15–17, underlining 
the importance of confirming mouse findings with human data.

One limitation of this study is that only one pneumococcal sero-
type 6B isolate was used; future studies using other isolates with a 
more or less invasive phenotype will be able to address how general-
izable these findings are across pneumococcal isolates. Nonetheless, 
the observation that carriage load and duration decline in parallel 
for all serotypes following repeated exposure suggests that immu-
nological control of newly acquired S. pneumoniae is mediated by 
similar mechanisms independent of the colonizing serotype49.
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In conclusion, this study highlights the importance of innate 
immunity—which was impaired by pre-existing viral infections—
in the control of carriage load and clearance of S. pneumoniae. 
Secondary bacterial infection following viral respiratory tract infec-
tion creates a large disease burden worldwide, and disrupting viral–
bacterial synergy through host-directed therapy could prove an 
attractive addition to current therapeutic and vaccination options50.
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Methods
Study design and sample collection. Healthy adult volunteers were 1:1 
randomized to receive either intranasal LAIV (2015/2016 Fluenz Tetra or 
FluMist Tetra, AstraZeneca) or intramuscular quadrivalent inactivated influenza 
vaccination (Fluarix Tetra, GlaxoSmithKline), as described previously14. The 
control group also received a nasal saline spray, while the LAIV group also received 
an intramuscular saline injection. Three days post-vaccination, all subjects were 
inoculated with 80,000 colony-forming units (CFU) per nostril of S. pneumoniae 
6B type as described previously6,51. Nasal microbiopsies (ASL Rhino-Pro, Arlington 
Scientific) and nasal lining fluid samples (Nasosorption, Hunt Developments) were 
collected and stored at −​80 °C as previously described52.

Clinical trial details. The double-blinded, randomized clinical LAIV-EHPC 
(experimental human pneumococcal carriage) trial was registered on EudraCT 
(number 2014-004634-26) on 28 April 2015 and ISRCTN (number 16993271) on 2 
September 2015 and was co-sponsored by the Royal Liverpool University Hospital 
and the Liverpool School of Tropical Medicine. Key eligibility criteria included 
capacity to give informed consent, no immunocompromised state or contact with 
susceptible individuals, no pneumococcal or influenza vaccine or infection in the 
last 2 years and not having taken part in EHPC studies in the past 3 years. The 
primary endpoint was the occurrence of pneumococcal colonization as determined 
by the presence of pneumococcus in nasal wash samples at any time point post-
inoculation up to and including day 29, detected using classical microbiology or 
lytA quantitative PCR as previously described6,51,53. In this study, 130 volunteers were 
inoculated with pneumococcus, giving an 80% power to identify a 50% increase in 
carriage acquisition. Of 130 vaccinated volunteers, 5 were natural pneumococcal 
carriers (2 in the LAIV arm and 3 in the control arm) and were excluded from 
further analysis. Another 8 subjects in the LAIV arm were excluded following a 
systematic LAIV dispensing error by a single practitioner, as recommended by the 
trial steering group. This resulted in final totals of 55 subjects analyzed in the LAIV 
arm and 62 subjects in the control arm. Key secondary endpoints included the load 
of pneumococcal colonization in nasal wash samples at each time point following 
pneumococcal inoculation (days 2, 7, 9, 14, 22 and 29), detected using classical 
microbiology; the area under the curve of pneumococcal colonization load following 
pneumococcal inoculation (days 2, 7, 9, 14, 22 and 29), detected using classical 
microbiology or by molecular methods (lytA); and the immunological mechanisms 
associated with altered susceptibility to pneumococcus following LAIV. The 
outcomes reported in this manuscript were a priori included in the study protocol.

Ethics statement. All volunteers gave written informed consent, and research 
was conducted in compliance with all relevant ethical regulations. Ethical 
approval was given by the East Liverpool National Health Service Research and 
Ethics Committee/Liverpool School of Tropical Medicine Research and Ethics 
Committee, reference numbers 15/NW/0146 and 14/NW/1460 and Human Tissue 
Authority licensing number 12548.

Flow cytometry analysis. Immunophenotyping of nasal cells obtained by curettes 
was performed as previously described52. In brief, cells were dislodged from curettes 
and stained with LIVE/DEAD Fixable Violet Dead Cell Stain (Thermo Fisher 
Scientific) and an antibody cocktail containing Epcam-PE (9C4; BioLegend), 
HLADR-PECy7 (L243; BioLegend), CD16-APC (3G8; BioLegend), CD66b-FITC 
(G10F5, BioLegend), CD3-APCH7 (SK7; BD Biosciences), CD14-PercpCy5.5 (Mφ​
P9, BD Biosciences) and CD45-PACOrange (HI30, Thermo Fisher Scientific). 
Whole blood was stained for 15 min at room temperature with TIGIT-PECy7 
(A15153G, BioLegend) and CD16-APC, followed by 2 ×​ 10 min incubation steps 
with FACSLysis buffer (BD Biosciences) to remove erythrocytes. Samples were 
acquired on an LSR II flow cytometer (BD Biosciences) and analyzed using Flowjo X 
(Treestar). Fluorescent minus one controls for each of the included antibodies were 
used to validate results. For the LAIV and control cohorts, but not the additional 
validation cohort (Supplementary Fig. 5c), 84 of 553 samples (15.2%) had less than 
500 immune cells or 250 epithelial cells and were excluded from further analysis.

Neutrophil opsonophagocytic killing. Neutrophil killing capacity was evaluated as 
previously described with minor modifications54. Briefly, neutrophils were isolated 
through density-gradient centrifugation, followed by 45 min incubation with serotype 
6B pneumococci (inoculation strain, multiplicity of infection 100:1), baby rabbit 
complement (Mast Group) and human intravenous immunoglobulin (Gamunex; 
Grifols). In some experiments, recombinant TNF or CXCL10 (Bio-Techne) was added.

Luminex analysis of nasal lining fluid or stimulated nasal cells. Nasal cells 
collected in RPMI medium containing 1% penicillin–streptomycin–neomycin 
(Thermo Fisher Scientific) and 10% heat-inactivated FBS (Thermo Fisher Scientific) 
were incubated with 50 μ​g ml−1 DNase I (Sigma Aldrich) at room temperature for 
20 min and filtered over a 70 μ​m filter (Thermo Fisher Scientific). Cells were spun 
down at 440g for 5 min, resuspended, counted and incubated at 250,000 cells ml−1 
in 96-well or 384-well plates (Thermo Fisher Scientific). Heat-killed S. pneumoniae 
inoculation strain was added at a concentration of 5 µ​g ml−1 of total protein 
(corresponding to 4.3 ×​ 107 CFU ml−1), and cells were incubated for 18 h. Bacterial 
protein concentration was measured by Bradford assay, using BSA as standard, 

and titration experiments were performed to determine dose. Supernatant was 
collected and stored at −​80 °C until analysis. For nasosorption filters, cytokines were 
eluted from stored filters using 100 μ​l of assay buffer (Thermo Fisher Scientific) 
by centrifugation, then the eluate was cleared by further centrifugation at 16,000g. 
Prior to analysis, samples were centrifuged for 10 min at 16,000g to clear samples. 
These were acquired on an LX200 using a 30-plex magnetic human Luminex 
cytokine kit (Thermo Fisher Scientific) and analyzed with xPonent3.1 software 
following the manufacturer’s instructions. Samples were analyzed in duplicate, and 
nasosorption samples with a coefficient of variation (CV) of >​25% were excluded.

RNA extraction and sequencing. Nasal cells were collected in RNALater (Thermo 
Fisher Scientific) at −​80 °C until extraction. Extraction was performed using the 
RNEasy Micro Kit (Qiagen) with on-column DNA digestion. Extracted RNA was 
quantified using a Qubit (Thermo Fisher Scientific). Sample integrity assessment 
(Bioanalyzer; Agilent), library preparation and RNA sequencing (Illumina 
HiSeq4000, 20 million reads, 100 paired-end reads) were performed at the Beijing 
Genome Institute.

NanoString. Purified blood neutrophils were stored in RLT buffer (Qiagen) with 
1% 2-mercaptoethanol (Sigma Aldrich) at −​80 °C until RNA extraction as above. 
The single-cell immunology v2 kit (NanoString) was used with 20 pre-amp cycles 
for all samples. Hybridized samples were prepared on a Prep Station and scanned 
on a nCounter MAX (NanoString). Raw counts were analyzed using DESeq2 with 
internal normalization, which gave lower variance than normalizing to included 
housekeeping genes. DEGs were identified using a model matrix correcting for 
repeated individual measurements.

RNA sequencing analysis. Quality control of raw sequencing data was done using 
FastQC. Mapping to a human reference genome assembly (GRCh38) was done 
using STAR 2.5.0a55. Read counts from the resulting binary alignment map files were 
obtained with featureCounts using a general transfer format gene annotation from 
the Ensembl database56,57. The R/Bioconductor package DESeq2 was used to identify 
differentially expressed genes among the samples, after removing absent features 
(zero counts in more than 75% of samples)58. Genes with a false-discovery rate value 
of <​0.1 and an absolute fold change of >​1.5 were identified as differentially expressed.

Coexpression analysis. For coexpression analysis, counts were normalized using 
log[counts per million (CPM)], and the log2[fold change] was calculated for each 
time point in a subject-wise manner. The coexpression analysis was performed 
separately for each group (control and LAIV) using the CEMiTool package developed 
by our group and available at Bioconductor (https://bioconductor.org/packages/
release/bioc/html/CEMiTool.html)39. This package unifies the discovery and the 
analysis of coexpression gene modules, evaluating whether modules contain genes 
that are over-represented by specific pathways or that are altered in a specific sample 
group. A P-value =​ 0.05 was applied for filtering genes with low expression levels.

Statistical analysis. All experiments were performed randomized and blinded. 
Two-tailed statistical tests were used throughout the study. When log-normalized 
data were not normally distributed, non-parametric tests were performed and 
multiple-correction testing (Benjamini-Hochberg) was applied for gene expression 
and Luminex analysis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw RNA sequencing data have been deposited in the Gene Expression Omnibus 
repository, accession number GSE117580. All other underlying data are provided 
in the manuscript.
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    Experimental design
1.   Sample size

Describe how sample size was determined. With baseline carriage rates of 50% (expected based on prior data from our model), 73 
participants in each arm were required for 80% power to detect a 50% relative increase in 
pneumococcal acquisition at any time point, after 10% drop-out.

2.   Data exclusions

Describe any data exclusions. Of 130 vaccinated volunteers, five were natural pneumococcal carriers (two in LAIV arm and 
three in control arm) and were excluded from further analysis. Another 8 subjects in the LAIV 
arm were excluded following a systematic LAIV dispensing error by a single practitioner, as 
recommended by the trial steering group. This resulted in a final 55 subjects analysed in the 
LAIV arm and 62 subjects in the control arm. 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Key findings, including monocyte recruitment to the nasopharynx were validated in an 
independent patient cohort. All attempts are replication findings were successful.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Using a permuted-block algorithm (1:1, blocks of 10) held in sealed envelopes, participants 
were randomised to receive either nasal LAIV (Fluenz Tetra or FluMist Tetra, AstraZeneca, UK, 
used interchangeably due to procurement shortages) paired with intramuscular placebo 
(0.5ml normal saline), or nasal placebo [control] (0.2ml normal saline) paired with 
intramuscular Quadrivalent Inactivated Influenza Vaccination (Fluarix Tetra, GlaxoSmithKline, 
UK) (see supplemental methods for flu strains).

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

This was a double-blinded, randomized trial where investigators were blinded during data 
collection and data analysis

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

STAR-2.5.0a was  used to align RNA-Seq read 
featureCounts v1.5.2 was used to extract numbers of mapped reads from aligned RNAseq 
data 
FastQC v0.11.5 was used for RNA-Seq QC analysis 
MultiQC v1.1 was used for RNA-Seq QC analysis 
Flowjo v10 was used for analysing flow cytometry data 
 
The following R packages were used: 
DESeq2 v1.14.1 was used to perform differential gene expression analysis from Nanostring 
and RNA-Seq data 
Cemitool v0.99.9  was used for co-expression analysis from gene expression data 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were developed or used for this study

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Epcam-PE, clone 9C4, Biolegend catalogue #324206, 1:20 dilution 
HLADR-PECy7, clone L243, Biolegend catalogue #307616, 1:20 dilution 
CD16-APC, clone 3G8, Biolegend catalogue #302012, 1:20 dilution 
CD66b-FITC, clone G10F5, Biolegend catalogue #305104, 1:20 dilution 
CD3-APCH7, clone SK7, BD catalogue #560176, 1:33 dilution 
CD14-PercpCy5.5, clone MφP9, BD catalogue #562692, 1:20 dilution 
CD45-PACOrange, clone HI30, ThermoFisher catalogue #MHCD4530, 1:20 dilution 
TIGIT-PECy7, clone A15153G, Biolegend catalogue #372714, 1:20 dilution 
 
We previously reported the use of this panel on nasal cells. (Jochems et al, Plos One, 2017, 
https://doi.org/10.1371/journal.pone.0169805). Fluorescent minus one controls were used 
to validate the panel.  
Utilized lot IDs were not recorded for this study. 
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. no eukaryotic cell lines were used

b.  Describe the method of cell line authentication used. no eukaryotic cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

no eukaryotic cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

no eukaryotic cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Age (median + range) = 20 (18-48); 
Female gender no (%) = 79 (58.9); 
Mean pneumococcus inoculation dose in CFU (sd) = 75699 (8478); 
The volunteers were healthy young adults 
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