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Personal transcriptome variation is poorly 
explained by current genomic deep learning 
models

Connie Huang1,4, Richard W. Shuai1,4, Parth Baokar1,4, Ryan Chung2, 
Ruchir Rastogi1, Pooja Kathail2 & Nilah M. Ioannidis    1,2,3 

Genomic deep learning models can predict genome-wide epigenetic 
features and gene expression levels directly from DNA sequence. While 
current models perform well at predicting gene expression levels across 
genes in different cell types from the reference genome, their ability to 
explain expression variation between individuals due to cis-regulatory 
genetic variants remains largely unexplored. Here, we evaluate four 
state-of-the-art models on paired personal genome and transcriptome data 
and find limited performance when explaining variation in expression across 
individuals. In addition, models often fail to predict the correct direction of 
effect of cis-regulatory genetic variation on expression.

With rapid advances in deep learning and growing datasets for train-
ing, there has been recent success in predicting gene expression 
levels1–4, three-dimensional (3D) genome folding5,6 and epigenetic 
features7–10 such as transcription factor binding, histone modifica-
tions and chromatin accessibility directly from the reference genome 
sequence. These genomic deep learning models are trained using 
genome-wide data from a variety of cell types and cellular contexts 
and have been shown to learn biologically relevant regulatory motifs 
within the input DNA sequence8,9. Current sequence-to-expression 
models can explain variation in expression across different genes in 
the genome based on the reference genome sequence surrounding 
the start site of each gene. However, the application of such models 
to sequences from personal genomes to explain variation in gene 
expression across individuals (Fig. 1a) has been largely unexplored. 
Here, we evaluate four state-of-the-art models—Enformer (ref. 4), 
Basenji2 (ref. 11), ExPecto (ref. 2) and Xpresso (ref. 3)—on paired 
whole genome sequencing (WGS) and RNA sequencing (RNA-seq) 
data (n = 421) from the Geuvadis consortium12 and show that model 
performance is limited when explaining gene expression variation 
across individuals. When the models do pick up on regulatory varia-
tion, for a limited set of genes, they often fail to capture the correct 
direction of effect of such variation on expression. Together with the 
recent findings of Sasse et al. 13, our work highlights shortcomings of 

current deep learning models of gene expression when applied to 
personal genome interpretation.

To test these existing sequence-to-expression models on personal 
genome variation, we use RNA-seq data from the Geuvadis consortium, 
measured on lymphoblastoid cell lines (LCLs) and paired with WGS data 
from 421 individuals in the 1000 Genomes Project14. We focus on the 
3,259 genes for which the Geuvadis analysis of expression quantitative 
loci (eQTLs) identified at least one statistically significant (FDR < 5%) 
genetic association where genotype of a cis variant is predictive of gene 
expression variation across individuals. We construct personal input 
sequences for each individual by inserting their single nucleotide vari-
ants (SNVs) into the reference sequence around each gene transcrip-
tion start site (TSS). We then compute gene expression predictions for 
each individual, as well as for the reference genome sequence, using all 
four models (Methods). For each model, we use the output expression 
prediction track corresponding to the cell type most similar to the LCLs 
used for the Geuvadis measurements. To ensure that the chosen model 
outputs are indeed relevant for prediction of gene expression in LCLs, 
for each gene we compare the model prediction using the reference 
genome sequence with its median expression level in the Geuvadis 
dataset (Fig. 1b and Extended Data Fig. 1). We find Spearman rank corre-
lations between reference predictions and observed expression levels 
of 0.57 for Enformer, 0.52 for Basenji2, 0.53 for ExPecto and 0.33 for 
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not as a competing approach, but rather as a minimum baseline for 
the genetic contribution to expression that should be possible to 
learn for each gene in the dataset. The higher performance of these 
PrediXcan-style models indicates effects of common cis-regulatory 
variants that are not captured by current deep learning models.

We also find that, although the mean cross-individual correlation 
is close to zero for all models, there are tails of strongly positively cor-
related and strongly negatively correlated genes for each model (Fig. 1c 
and Extended Data Fig. 3). Example genes with strong positive correla-
tion and strong negative correlation are shown for Enformer in Fig. 1d. 
When comparing predictions for such genes across all four models, we 
find that the models often disagree with one another on the direction of 
correlation (Fig. 2a,b, Extended Data Fig. 4 and Supplementary Fig. 3). 
This result suggests that the incorrectly predicted direction of genetic 
effect for the negatively correlated genes for any given model is not due 
to an inherent difficulty in modeling those particular genes or their 
corresponding variants, but rather to noise in the effects attributed to 
variants by these types of models. Importantly, we find that the four 
tested models are more consistent with one another in the magnitude 
of their correlation to observed expression of a given gene than in the 
direction of that correlation (Fig. 2b and Extended Data Fig. 4), suggest-
ing that they agree on identifying causal regulatory variants more than 
they agree on the direction of effect of such variants on expression.

We next explore whether predicted directions of genetic effect 
on expression tend to be more accurate for certain types of genes. 
First, we test whether genes with strong genetic associations in the 
Geuvadis eQTL analysis are more likely to have correctly predicted 
directions of genetic effect by comparing the cross-individual cor-
relation for each gene with the P value (Fig. 2c and Extended Data  
Fig. 5), effect size (Extended Data Fig. 6) and minor allele frequency 
(MAF) (Extended Data Fig. 7) of the most statistically significant 
eQTL within 20 kb of the TSS. We find that genes with strong eQTLs 
tend to have larger magnitude cross-individual correlations for all 

Xpresso, indicating that these models explain a substantial fraction of 
expression variation across genes in LCLs, similar to previous reports.

For each model, we then compute two additional metrics using 
the personalized sequences as input. First, for each individual, we 
calculate a cross-gene correlation that compares the predicted expres-
sion levels of the aforementioned 3,259 genes using that individual’s 
personal input sequence with the observed expression levels of those 
genes in the same individual. Similarly, for each gene, we compute 
a cross-individual correlation that compares the predicted expres-
sion levels in all 421 individuals with their observed expression levels 
(see Fig. 1a for a visual comparison of the two metrics). We find that 
the cross-gene correlation for each individual is similar to the refer-
ence genome performance of the corresponding model (Fig. 1b,c and 
Extended Data Fig. 2), with average Spearman correlations of 0.55 for 
Enformer, 0.51 for Basenji2, 0.52 for ExPecto and 0.32 for Xpresso. 
However, when we instead compute the correlation across individuals 
for each gene, we find that the distribution of cross-individual correla-
tions is centered close to zero for all models (Fig. 1b,c, Extended Data 
Fig. 3 and Supplementary Fig. 1), indicating that all models struggle 
to explain variation in expression across individuals. This result sug-
gests that current state-of-the-art sequence-to-expression models 
do not correctly predict the effects of many SNVs on gene expression. 
We also try ensembling the predictions from the four models and find 
that performance is improved only slightly by averaging predictions 
across models (Supplementary Fig. 2).

In comparison, regularized linear regression models trained 
separately for each gene using nearby variant dosages as predic-
tors (the approach used by PrediXcan (ref. 15)) explain much more 
cross-individual variation, even when restricted to the same input 
context (197 kilobases (kb)) as Enformer (Fig. 1b and Extended Data  
Fig. 3). Since such PrediXcan-style models do not attempt to learn 
generalizable sequence features that can be applied to new sequences, 
variants or genes outside of the training set, we include these models 
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Fig. 1 | Cross-gene versus cross-individual gene expression prediction.  
a, Overview of our approach, illustrating the cross-gene (blue) and cross-
individual (green) measures of performance. Colored nucleotides on the left 
represent genetic variants present in each example individual. b, Performance 
of all tested models on reference sequence prediction, cross-gene prediction 
and cross-individual prediction. Bar heights represent means and error bars 
represent s.d. over all individuals (n = 421) for cross-gene Spearman rank 
correlation or over all genes (n = 3,259) for cross-individual Spearman rank 

correlation. c, Distribution of Enformer cross-gene Spearman rank correlations 
for all individuals (left histogram) and Enformer cross-individual Spearman 
rank correlations for all genes (right histogram). Histograms for the other 
tested models are shown in Extended Data Figs. 2 and 3. d, Example genes 
with strong positive cross-individual correlation (SLFN5) and strong negative 
cross-individual correlation (SNHG5) of observed and predicted expression for 
Enformer.
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models; however, these genes are not more likely to have positive 
rather than negative cross-individual correlations, indicating that the 
models often predict incorrect directions of effect even for genes with 
strong genetic effects on expression. We find a small trend towards 
larger cross-individual correlations for genes with smaller distance 
between the most statistically significant eQTL and the TSS (Fig. 2c and 
Extended Data Fig. 8), which aligns with previous findings that current 
sequence-to-expression models capture gene expression determinants 
in promoters more accurately than distal enhancers16. However, we note 
that genes with proximal eQTLs still frequently have strong negative 
cross-individual correlations, suggesting that modeling distal regula-
tory effects and predicting regulatory effect direction are two impor-
tant, but orthogonal, areas for future modeling improvements. Last, 
we find only small trends when comparing model performance with 
the median observed expression level of a gene (Fig. 2c and Extended 
Data Fig. 9) and with the variation in predicted expression levels across 
individuals (Fig. 2c and Extended Data Fig. 10).

In conclusion, we analyze the performance of four state-of-the-art 
sequence-to-expression deep learning models—Enformer, Basenji2, 
ExPecto and Xpresso—on personalized gene expression prediction, 
and find that these models consistently under-perform when pre-
dicting differences in expression for a given gene across individuals 
based on inter-individual variation in the input DNA sequence. We 
also find genes with strong negative correlations between predicted 
and observed expression levels, for which the models have probably 
identified causal regulatory variant(s) but incorrectly predicted their 
direction of effect. Previous evaluations of variant effect prediction 
with sequence-to-expression deep learning models have focused on 
individual variant effects, as measured by eQTL studies, or massively 
parallel reporter assays. However, massively parallel reporter assays 
lack the complex genomic and chromatin context of endogenous 
gene expression, and it is difficult to identify the causal variants in 
eQTL studies, even with current fine-mapping approaches, resulting 
in effect size estimates that are not biologically meaningful for variants 
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Fig. 2 | Models often disagree on predicted direction of effect of cis-
regulatory variation. a, Predictions from all four deep learning models on an 
example gene, SNHG5, that has strong negative cross-individual correlations for 
Enformer, Basenji2 and ExPecto, and positive cross-individual correlation for 
Xpresso. Points are colored by the corresponding individual’s dosage of the most 
statistically significant eQTL for this gene. Dashed lines indicate the predicted 
expression levels of the reference (Ref) and alternate (Alt) alleles of the most 
statistically significant eQTL. b, Comparison of cross-individual Spearman rank 
correlations for Enformer versus other models. A kernel density estimate of each 
scatterplot is overlaid (red). Note the increased density of genes along the y = x 
and y = −x axes. Related plots for all pairs of models are shown in Extended Data 

Fig. 4. c, Cross-individual Spearman rank correlations for Enformer compared 
with the P value of the most statistically significant eQTL in each gene (top left), 
the distance to the TSS for that eQTL (top right), the median observed expression 
level of the gene (bottom left) and the coefficient of variation of the predicted 
expression levels of the gene (bottom right). Note that negative cross-individual 
correlations are observed even for genes with strong eQTLs. For each plot, 
Pearson correlations and lines of best fit using ordinary least squares are shown 
in black when computed using all genes, and in orange or green when computed 
using only genes with positive or negative cross-individual correlations, 
respectively. Related plots for all tested models are shown in Extended Data  
Figs. 5–10.
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that are in linkage disequilibrium with a causal variant. By using per-
sonal genome sequences to evaluate model performance, our input 
sequences include all variants surrounding the TSS for each individual 
and thus avoid the issue of causal variant identification.

Our conclusions about directionality prediction are in line with 
previous tests on eQTLs2,4, which showed low performance on predict-
ing the direction of effect on expression for individual variants, espe-
cially for distal eQTLs. Following Avsec et al.4, we confirm this finding 
for Enformer for fine-mapped GTEx eQTLs in LCLs (Supplementary  
Fig. 4). Our preliminary analysis also suggests that these models have 
room for improvement in predicting the direction of effect of chroma-
tin accessibility quantitative trait loci (caQTLs) as well (Supplemen-
tary Fig. 5), although further work is needed to evaluate the ability of 
genomic deep learning models to explain cross-individual variation 
in accessibility and other molecular phenotypes, as discussed below.

Finally, our cross-model analysis reveals that models often strongly 
disagree with one another on the predicted direction of genetic effects 
on expression and, intriguingly, that agreement between models is 
greater for the magnitude of cross-individual correlation than the 
direction of that correlation. This result further supports the con-
clusion that current genomic deep learning models recognize the 
presence of important regulatory variation in an input sequence but 
struggle with understanding the direction of effect of such variation. 
To diagnose the reasons for these errors, it will be valuable to assess 
whether model predictions of variant effects on other epigenetic tracks 
(for example, transcription factor binding and chromatin accessibil-
ity) are more accurate than for gene expression. For example, these 
models may have correctly learned variant effects on more proximal 
phenotypes, such as individual regulatory elements, but struggle 
to map effects of those elements to corresponding changes in gene 
expression; alternatively, the models may struggle with direction of 
variant effects even on proximal phenotypes such as the binding of 
individual transcription factors. Further work to distinguish between 
these possibilities will help prioritize future modeling improvements to 
focus on understanding high-level regulatory grammar (for example, 
through hierarchical models of gene expression), or to focus on more 
accurately learning local variant effects (for example, by increasing 
sequence diversity during model training).

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
All data used in this study are publicly available (‘Data availability’), and 
no specific ethical approval was required.

Gene expression dataset
The data used to evaluate gene expression predictions for personal 
genome sequences were obtained from the Geuvadis consortium12, 
which includes paired gene expression and WGS data from individuals 
in the 1000 Genomes Project14. The E-GEUV-1 release includes RNA-seq 
data from LCLs from a total of 465 samples. After excluding samples 
with unphased imputed genotypes, there were 421 Geuvadis individu-
als with phased WGS data that we used for our analysis. These samples 
originated from five populations with ancestry in Europe and Africa: 92 
Tuscan (TSI), 89 Finnish (FIN), 85 British (GBR), 78 European from Utah 
(CEU) and 77 Yoruban (YRI). We also obtained results from the Geuvadis 
cis-eQTL analysis performed in European individuals (n = 373), which 
included autosomal protein-coding and lincRNA genes from GENCODE 
v.12 and considered variants with MAF > 5% located within 1 Mb of a 
gene TSS. Except where otherwise noted, our results are shown for all 
3,259 genes that had a statistically significant eQTL (false discovery 
rate < 5%) in the Geuvadis EUR cis-eQTL analysis.

Comparison of deep learning models for gene expression 
prediction
We test four state-of-the-art deep learning models that make gene 
expression predictions for an input DNA sequence. These models 
consider different sequence contexts, or receptive fields, when mak-
ing predictions; in particular, Enformer has the widest receptive field 
(98.3 kb upstream and 98.3 kb downstream of the gene TSS), followed 
by Basenji2 (27.5 kb upstream and 27.5 kb downstream), ExPecto 
(20 kb upstream and 20 kb downstream) and Xpresso (7 kb upstream 
and 3.5 kb downstream). All models include standard convolutional 
layers, with additional dilated convolutional layers in Basenji2 and 
transformer layers in Enformer. The models also use different sources 
of gene expression data during training; in particular, Basenji2 and 
Enformer are trained using genome-wide cap analysis of gene expres-
sion (CAGE) measurements, while ExPecto and Xpresso are trained 
using RNA-seq data. Basenji2 and Enformer use multitask learning to 
make gene expression predictions along with many other epigenetic 
track predictions in a variety of cell types, while Xpresso predicts gene 
expression alone. ExPecto uses a hierarchical model, making predic-
tions of epigenetic tracks along the input sequence and then adding a 
linear transformation on top of those outputs to predict expression.

Constructing personalized input sequences
For each of the 3,259 genes from the Geuvadis analysis mentioned 
above, the ENSEMBL gene ID, TSS position from GENCODE v.12, strand 
and chromosome were obtained from Geuvadis. We used hg19 as the 
reference genome for creating personalized sequences, to match the 
Geuvadis dataset. For ExPecto, Basenji2 and Enformer, whose recep-
tive fields are symmetric about the TSS, and for genes located on the 
positive strand for Xpresso, we computed personalized sequences 
directly around the TSS using bcftools consensus17. Since Xpresso 
uses an asymmetric input sequence, for genes located on the negative 
strand, we extracted the reference sequence 3.5 kb before the TSS to 
7 kb after the TSS using Samtools17, applied bcftools consensus and 
then took the reverse complement. We considered only SNVs and did 
not include indels when creating the personalized input sequences. 
We predicted gene expression levels as described below for the two 
personalized haplotypes for each individual and averaged the predic-
tions from both haplotypes.

Basenji2 predictions
Basenji2 takes input sequences of 131 kb with an effective receptive field 
of 55 kb for each prediction. The model outputs predictions in 128-bp 

bins for 5,313 epigenetic and transcriptional tracks from the ENCODE, 
Roadmap Epigenomics and FANTOM consortiums. We used Basenji2 
predictions for the GM12878 LCL CAGE track, as it is the cell type most 
relevant for the Geuvadis expression data. For a given input sequence 
centered at a gene TSS, we averaged predictions from the forward and 
reverse complement sequence as well as minor sequence shifts to the 
left and right (one nucleotide in each direction). To compute the final 
expression prediction for a gene, we averaged the predicted CAGE 
signal over a ten-bin window around each TSS.

Enformer predictions
Enformer replaces the dilated convolutions of Basenji2 with a 
self-attention mechanism, which facilitates the learning of long-range 
dependencies. Enformer has a receptive field of 196.6 kb and outputs 
predictions in 128-bp bins for the same 5,313 tracks as Basenji2. As 
above, we used Enformer predictions for CAGE measurements per-
formed on GM12878. While the Enformer authors averaged predic-
tions within a three-bin window around each gene TSS, we found that 
averaging over a ten-bin window led to better performance on the 
Geuvadis dataset.

ExPecto predictions
ExPecto predicts gene expression by first using a convolutional neural 
network (Beluga, an updated version of DeepSEA (ref. 7)) to predict 
chromatin features within a 40 kb region around each gene TSS. Spe-
cifically, Beluga outputs predictions in 200-bp bins for 2,002 epige-
netic tracks from the ENCODE and Roadmap consortiums. To predict 
expression for a given gene, Beluga is used to predict chromatin fea-
tures for 200 bins centered around the TSS, averaging predictions 
over the input sequence and its reverse complement. The resulting 
predictions are spatially transformed with a set of basis functions and 
used as input features for an L2-regularized linear regression model 
to predict expression for the given input sequence. For our ExPecto 
predictions, we used a publicly available ExPecto model trained on 
Epstein-Barr virus (EBV)-transformed lymphocytes from GTEx, which 
we chose as the most relevant cell type to compare with the Geuvadis 
expression data.

Xpresso predictions
Xpresso consists of two convolutional blocks and two fully connected 
layers trained on normalized RNA-seq data across 56 tissues and cell 
lines from the Roadmap Epigenomics Consortium. The optimal input 
sequence for Xpresso was found to be a 10.5 kb region asymmetrically 
centered around the TSS. For our analysis, we used predictions from 
the pretrained LCL-specific Xpresso model as the most relevant to the 
Geuvadis dataset.

Elastic net (PrediXcan-style) gene expression model
For comparison with the sequence-to-expression deep learning models 
above, we also trained a cross-validated, elastic net regression model 
for each gene to predict Geuvadis expression measurements from com-
mon variants (MAF ≥ 0.05) within 98.3 kb of the TSS to match Enform-
er’s receptive field. We set the elastic net mixing parameter to 0.5 and 
found the best regularization penalty in a tenfold cross-validation 
scheme using scikit-learn’s ElasticNetCV (ref. 18) in Python. We 
obtained individual gene expression predictions from the output of 
ten holdout validation splits, such that the model makes predictions 
on individuals not in the training set.

QTL effect direction classification
We obtained GTEx v.8 eQTLs fine-mapped using the SuSiE method19,20 
from the Supplementary Data in Avsec et al.4. Using these data, we 
evaluated Enformer on its ability to predict the direction of eQTL 
effect on expression. We used fine-mapped eQTLs identified in 
EBV-transformed lymphocytes as the GTEx cell type that matched the 
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Geuvadis expression data most closely. Using a method similar to that 
described in Avsec et al.4, we focused on variants with a posterior inclu-
sion probability (PIP) in a credible causal set of greater than 0.9, and 
removed variants that affect gene expression in opposite directions for 
different cis genes. We used Enformer predictions from the GM12878 
CAGE track, as the closest match to EBV-transformed lymphocytes. We 
computed expression direction accuracy over 100 bootstrap samples 
from the full set of variants. We also obtained caQTL variants from the 
Tehranchi et al.21 analysis of ATAC-seq data from LCLs from individuals 
in ten populations: four African, four European, one African-American 
and one Han Chinese. Using these data, we evaluated Enformer on 
its ability to predict the direction of caQTL effect on accessibility. To 
generate accessibility predictions, we summed Enformer’s predictions 
from the three 128-bp bins closest to the variant for the DNase:GM12878 
track (track number 69). For computational efficiency, we randomly 
sampled 10,000 caQTLs from the Tehranchi et al.21 dataset, and then 
computed effect direction accuracy over 100 bootstrap samples of 
those 10,000 variants.

Statistics and reproducibility
No statistical method was used to predetermine sample size. All  
individuals with RNA-seq and phased WGS data from the Geuvadis con-
sortium were included. All genes that were found to have at least one 
statistically significant (FDR < 5%) cis-eQTL association in the Geuvadis 
analysis were included. All code to reproduce our analyses is publicly 
available (‘Code availability’).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Geuvadis gene expression data and WGS data used in this study are 
publicly available at https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-GEUV-1.

Code availability
All model predictions on Geuvadis individuals and scripts to generate  
personalized sequences, get model predictions and plot figures are 
available at https://github.com/ni-lab/personalized-expression- 
benchmark (ref. 22).
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Extended Data Fig. 1 | Performance of all tested models on reference 
sequence prediction. Median Geuvadis gene expression (log transformed) 
versus gene expression predictions (log transformed) obtained by inputting the 
reference genome sequence to (a) Enformer, (b) Basenji2, (c) ExPecto, and (d) 

Xpresso. For each model, gene expression predictions from the most relevant 
cell type were used, as described in Methods. Measurements and predictions for 
the 3,259 genes with at least one statistically signficant (FDR < 5%) eQTL in the 
Geuvadis analysis are displayed.
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Extended Data Fig. 2 | Performance of all tested models on cross-gene 
prediction. Cross-gene performance for (a) Enformer, (b) Basenji2, (c) ExPecto, 
and (d) Xpresso. For a given individual, cross-gene performance is defined 
as the correlation between their measured gene expression levels and gene 

expression predictions obtained using their personalized genome sequences. 
Correlations were computed across the 3,259 genes with at least one statistically 
signficant (FDR < 5%) eQTL in the Geuvadis analysis. Each histogram displays the 
distribution of cross-gene performance over all individuals.
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Extended Data Fig. 3 | Performance of all tested models on cross-individual 
prediction. Cross-individual performance for (a) Enformer, (b) Basenji2,  
(c) ExPecto, (d) Xpresso, and (e) PrediXcan. For a given gene, cross-individual 
performance is defined as the correlation between measured gene expression 

levels in all 421 individuals and corresponding gene expression predictions 
obtained using each individual’s personalized genome sequence. Each histogram 
displays the distribution of cross-individual performance for the 3,259 genes 
with at least one statistically signficant (FDR < 5%) eQTL in the Geuvadis analysis.
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Extended Data Fig. 4 | See next page for caption.

http://www.nature.com/naturegenetics


Nature Genetics

Brief Communication https://doi.org/10.1038/s41588-023-01574-w

Extended Data Fig. 4 | Pairwise model comparisons of cross-individual 
correlation. Comparison of cross-individual Spearman correlations between 
each pair of models: (a) Enformer & Basenji2, (b) Enformer & ExPecto, (c) 
Enformer & Xpresso, (d) Basenji2 & ExPecto, (e) Basenji2 & Xpresso, (f) ExPecto 
& Xpresso, (g) Enformer & PrediXcan, (h) Basenji2 & PrediXcan, (i) ExPecto & 

PrediXcan, and ( j) Xpresso & PrediXcan. The scatterplots display, for each gene, 
the performance achieved by both models. A kernel density estimate of each 
scatterplot is overlaid (red). Note the increased density of genes along the y = x 
and y = -x axes.
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Extended Data Fig. 5 | Cross-individual correlation vs. top eQTL p-value for 
all tested models. Cross-individual correlations for (a) Enformer, (b) Basenji2, 
(c) ExPecto, and (d) Xpresso compared to the p-value of the most statistically 
significant Geuvadis eQTL in each gene. For each model, the Pearson correlation 

and line of best fit using ordinary least squares are shown separately for genes 
with positive and negative cross-individual correlations (orange and green, 
respectively).
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Extended Data Fig. 6 | Cross-individual correlation vs. top eQTL effect size for 
all tested models. Cross-individual correlations for (a) Enformer, (b) Basenji2, 
(c) ExPecto, and (d) Xpresso compared to the absolute value of the effect size of 
the most statistically significant Geuvadis eQTL in each gene. For each model, 

the Pearson correlation and line of best fit using ordinary least squares are shown 
separately for genes with positive and negative cross-individual correlations 
(orange and green, respectively).
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Extended Data Fig. 7 | Cross-individual correlation vs. top eQTL allele 
frequency for all tested models. Cross-individual correlations for (a) Enformer, 
(b) Basenji2, (c) ExPecto, and (d) Xpresso compared to the global minor allele 
frequency (from Ensembl biomaRt) of the most statistically significant Geuvadis 

eQTL in each gene. For each model, the Pearson correlation and line of best fit 
using ordinary least squares are shown separately for genes with positive and 
negative cross-individual correlations (orange and green, respectively).
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Extended Data Fig. 8 | Cross-individual correlation vs. top eQTL distance to 
TSS for all tested models. Cross-individual correlations for (a) Enformer,  
(b) Basenji2, (c) ExPecto, and (d) Xpresso compared to the distance between each 
gene’s TSS and its most statistically significant Geuvadis eQTL. For each model, 

the Pearson correlation and line of best fit using ordinary least squares are shown 
separately for genes with positive and negative cross-individual correlations 
(orange and green, respectively).
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Extended Data Fig. 9 | Cross-individual correlation vs. median gene expression for all tested models. Cross-individual correlations for (a) Enformer, (b) Basenji2, 
(c) ExPecto, and (d) Xpresso compared to the median Geuvadis gene expression level (log transformed) for each gene. For each model, the Pearson correlation and line 
of best fit using ordinary least squares are shown.
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Extended Data Fig. 10 | Cross-individual correlation vs. predicted expression 
dispersion for all tested models. Cross-individual correlations for (a) Enformer, 
(b) Basenji2, (c) ExPecto, and (d) Xpresso compared to the log coefficient of 

variation (log σ/μ), a measure of dispersion, in the model predictions for each 
gene. For each model, the Pearson correlation and line of best fit using ordinary 
least squares are shown.
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