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Genomic deep learning models can predict genome-wide epigenetic
features and gene expression levels directly from DNA sequence. While

current models perform well at predicting gene expression levels across
genes in different cell types from the reference genome, their ability to
explain expression variation between individuals due to cis-regulatory
genetic variants remains largely unexplored. Here, we evaluate four

state-of-the-art models on paired personal genome and transcriptome data
and find limited performance when explaining variation in expression across
individuals. In addition, models often fail to predict the correct direction of

effect of cis-regulatory genetic variation on expression.

With rapid advancesin deep learning and growing datasets for train-
ing, there has been recent success in predicting gene expression
levels'™*, three-dimensional (3D) genome folding>® and epigenetic
features”'° such as transcription factor binding, histone modifica-
tionsand chromatin accessibility directly from the reference genome
sequence. These genomic deep learning models are trained using
genome-wide data from a variety of cell types and cellular contexts
and have been shownto learn biologically relevant regulatory motifs
within the input DNA sequence®’. Current sequence-to-expression
models can explain variation in expression across different genes in
the genome based on the reference genome sequence surrounding
the start site of each gene. However, the application of such models
to sequences from personal genomes to explain variation in gene
expression across individuals (Fig. 1a) has been largely unexplored.
Here, we evaluate four state-of-the-art models—Enformer (ref. 4),
Basenji2 (ref. 11), ExPecto (ref. 2) and Xpresso (ref. 3)—on paired
whole genome sequencing (WGS) and RNA sequencing (RNA-seq)
data (n = 421) from the Geuvadis consortium'? and show that model
performance is limited when explaining gene expression variation
acrossindividuals. When the models do pick up onregulatory varia-
tion, for alimited set of genes, they often fail to capture the correct
direction of effect of such variation on expression. Together with the
recent findings of Sasse et al.*, our work highlights shortcomings of

current deep learning models of gene expression when applied to
personal genome interpretation.

Totest these existing sequence-to-expression models on personal
genome variation, we use RNA-seq datafrom the Geuvadis consortium,
measured onlymphoblastoid celllines (LCLs) and paired with WGS data
from 421 individuals in the 1000 Genomes Project'. We focus on the
3,259 genes for which the Geuvadis analysis of expression quantitative
loci (eQTLs) identified at least one statistically significant (FDR < 5%)
geneticassociation where genotype of a cis variant is predictive of gene
expression variation across individuals. We construct personal input
sequences for eachindividual by inserting their single nucleotide vari-
ants (SNVs) into the reference sequence around each gene transcrip-
tionstart site (TSS). We then compute gene expression predictions for
eachindividual, as well as for the reference genome sequence, using all
four models (Methods). For each model, we use the output expression
predictiontrack corresponding to the cell type most similar to the LCLs
used for the Geuvadis measurements. To ensure that the chosen model
outputsareindeed relevant for prediction of gene expressionin LCLs,
for each gene we compare the model prediction using the reference
genome sequence with its median expression level in the Geuvadis
dataset (Fig.1b and Extended Data Fig. 1). We find Spearman rank corre-
lations between reference predictions and observed expression levels
of 0.57 for Enformer, 0.52 for Basenji2, 0.53 for ExPecto and 0.33 for

'Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA. *Center for Computational Biology,
University of California Berkeley, Berkeley, CA, USA. ®Chan Zuckerberg Biohub, San Francisco, CA, USA. “These authors contributed equally:

Connie Huang, Richard W. Shuai, Parth Baokar.

e-mail: nilah@berkeley.edu

Nature Genetics | Volume 55 | December 2023 | 2056-2059

2056


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01574-w
http://orcid.org/0000-0001-9628-8229
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01574-w&domain=pdf
mailto:nilah@berkeley.edu

Brief Communication

https://doi.org/10.1038/s41588-023-01574-w

a ) ) ) b
Personalized gene expression Model evaluation - - 10 A
o == Enformer
— Genes across genes =] Basenji2
. '_»//-\\// i e < 981 mm= ExPecto
'I' — —r — L/ = m— X presso
.. ACCTGAGCTTCGTGGA....... GACGCCGGTCACCTGT .. T."; — 8 06 1 = PrediXcan
> ~ +
o —~ ,-f/\\_/_/ — -g S 04
'n' — —— — S c
.. ACCACAGCTTAGTGGA........ GACGCTGGTCACCAGT .. c T 02 4
: = go
. . Predicted expression S
. == = Basenji2 A 3 ol
= o ExPecto f Measured expression Q
'l' ~ b - Xpresso ; 4 @
.. ACCTGAGCTTCGTGGA.......... GACGCTGGTCACCACT .. acrgssrz:;ai:m " Reference genome  Correlation Correlation
correlation across genes  across individuals
Cc Correlation across genes Correlation across individuals d SLFN5 SNHG5
250
c c 925
K%} 0o 35 2
g $ 200 AB ‘§ 92.0
kel S 34 o
= @ 150 3 o 915
© = Q 33 Q
2 = - = 910
“ > 100 o Qo
5 s € 32 £ 905
. 2 IS .
2 50 L L
= g3 S 900
ol — :
-5 0 5 10 15 20 25 35 o] 50 100 150 200

QO (0 . p0 00 O P O 0
08 087 00 0" 08 o E R o

Enformer predicted versus observed

(Spearman rank correlation) (Spearman rank correlation)

Fig.1| Cross-gene versus cross-individual gene expression prediction.

a, Overview of our approach, illustrating the cross-gene (blue) and cross-
individual (green) measures of performance. Colored nucleotides on the left
represent genetic variants presentin each example individual. b, Performance
of all tested models on reference sequence prediction, cross-gene prediction
and cross-individual prediction. Bar heights represent means and error bars
represents.d. over all individuals (n = 421) for cross-gene Spearman rank
correlation or over all genes (n = 3,259) for cross-individual Spearman rank

0P 0% of oF O o} of of of

Enformer predicted versus observed

Observed expression Observed expression

correlation. ¢, Distribution of Enformer cross-gene Spearman rank correlations
for allindividuals (left histogram) and Enformer cross-individual Spearman
rank correlations for all genes (right histogram). Histograms for the other
tested models are shown in Extended Data Figs. 2 and 3. d, Example genes

with strong positive cross-individual correlation (SLFN5) and strong negative
cross-individual correlation (SNHGS5) of observed and predicted expression for
Enformer.

Xpresso, indicating that these models explain a substantial fraction of
expression variationacross genesin LCLs, similar to previous reports.

For each model, we then compute two additional metrics using
the personalized sequences as input. First, for each individual, we
calculate across-gene correlation that compares the predicted expres-
sion levels of the aforementioned 3,259 genes using that individual’s
personalinputsequence with the observed expression levels of those
genes in the same individual. Similarly, for each gene, we compute
a cross-individual correlation that compares the predicted expres-
sion levels in all 421 individuals with their observed expression levels
(see Fig. 1a for a visual comparison of the two metrics). We find that
the cross-gene correlation for each individual is similar to the refer-
ence genome performance of the corresponding model (Fig.1b,cand
Extended DataFig. 2), with average Spearman correlations of 0.55 for
Enformer, 0.51 for Basenji2, 0.52 for ExPecto and 0.32 for Xpresso.
However, when we instead compute the correlation across individuals
foreach gene, we find that the distribution of cross-individual correla-
tions is centered close to zero for all models (Fig. 1b,c, Extended Data
Fig. 3 and Supplementary Fig. 1), indicating that all models struggle
to explain variation in expression across individuals. This result sug-
gests that current state-of-the-art sequence-to-expression models
donotcorrectly predict the effects of many SNVs on gene expression.
Wealso try ensembling the predictions from the four models and find
that performance is improved only slightly by averaging predictions
across models (Supplementary Fig. 2).

In comparison, regularized linear regression models trained
separately for each gene using nearby variant dosages as predic-
tors (the approach used by PrediXcan (ref. 15)) explain much more
cross-individual variation, even when restricted to the same input
context (197 kilobases (kb)) as Enformer (Fig. 1b and Extended Data
Fig. 3). Since such PrediXcan-style models do not attempt to learn
generalizable sequence features that can be applied to new sequences,
variants or genes outside of the training set, we include these models

not as a competing approach, but rather as a minimum baseline for
the genetic contribution to expression that should be possible to
learn for each gene in the dataset. The higher performance of these
PrediXcan-style models indicates effects of common cis-regulatory
variants that are not captured by current deep learning models.

We also find that, although the mean cross-individual correlation
is close tozero for allmodels, there are tails of strongly positively cor-
related and strongly negatively correlated genes for each model (Fig.1c
and Extended DataFig. 3). Example genes with strong positive correla-
tionand strong negative correlation are shown for EnformerinFig. 1d.
When comparing predictions for such genes across all four models, we
find that the models often disagree with one another on the direction of
correlation (Fig. 2a,b, Extended DataFig. 4 and Supplementary Fig. 3).
This result suggests that theincorrectly predicted direction of genetic
effect for the negatively correlated genes for any given modelis not due
to an inherent difficulty in modeling those particular genes or their
corresponding variants, but rather to noise in the effects attributed to
variants by these types of models. Importantly, we find that the four
tested models are more consistent with one another inthe magnitude
of their correlation to observed expression of agiven gene thaninthe
direction of that correlation (Fig. 2b and Extended DataFig. 4), suggest-
ing that they agree onidentifying causal regulatory variants more than
they agree on the direction of effect of such variants on expression.

We next explore whether predicted directions of genetic effect
on expression tend to be more accurate for certain types of genes.
First, we test whether genes with strong genetic associations in the
Geuvadis eQTL analysis are more likely to have correctly predicted
directions of genetic effect by comparing the cross-individual cor-
relation for each gene with the P value (Fig. 2c and Extended Data
Fig. 5), effect size (Extended Data Fig. 6) and minor allele frequency
(MAF) (Extended Data Fig. 7) of the most statistically significant
eQTL within 20 kb of the TSS. We find that genes with strong eQTLs
tend to have larger magnitude cross-individual correlations for all
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Fig.2|Models often disagree on predicted direction of effect of cis-
regulatory variation. a, Predictions from all four deep learning models on an
example gene, SNHGS, that has strong negative cross-individual correlations for
Enformer, Basenji2 and ExPecto, and positive cross-individual correlation for
Xpresso. Points are colored by the corresponding individual’s dosage of the most
statistically significant eQTL for this gene. Dashed lines indicate the predicted
expression levels of the reference (Ref) and alternate (Alt) alleles of the most
statistically significant eQTL. b, Comparison of cross-individual Spearman rank
correlations for Enformer versus other models. A kernel density estimate of each
scatterplotis overlaid (red). Note the increased density of genes along the y =x
andy=-xaxes. Related plots for all pairs of models are shown in Extended Data
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Fig.4.c, Cross-individual Spearman rank correlations for Enformer compared
with the P value of the most statistically significant eQTL in each gene (top left),
the distance to the TSS for that eQTL (top right), the median observed expression
level of the gene (bottom left) and the coefficient of variation of the predicted
expression levels of the gene (bottom right). Note that negative cross-individual
correlations are observed even for genes with strong eQTLs. For each plot,
Pearson correlations and lines of best fit using ordinary least squares are shown
inblack when computed using all genes, and in orange or green when computed
using only genes with positive or negative cross-individual correlations,
respectively. Related plots for all tested models are shown in Extended Data
Figs. 5-10.

models; however, these genes are not more likely to have positive
rather than negative cross-individual correlations, indicating that the
models often predictincorrect directions of effect even for genes with
strong genetic effects on expression. We find a small trend towards
larger cross-individual correlations for genes with smaller distance
between the most statistically significant eQTL and the TSS (Fig. 2c and
Extended DataFig. 8), which aligns with previous findings that current
sequence-to-expression models capture gene expression determinants
in promoters more accurately than distal enhancers'®. However, we note
that genes with proximal eQTLs still frequently have strong negative
cross-individual correlations, suggesting that modeling distal regula-
tory effects and predicting regulatory effect direction are two impor-
tant, but orthogonal, areas for future modeling improvements. Last,
we find only small trends when comparing model performance with
the median observed expression level of agene (Fig. 2c and Extended
DataFig. 9) and with the variationin predicted expression levels across
individuals (Fig. 2c and Extended Data Fig. 10).

In conclusion, we analyze the performance of four state-of-the-art
sequence-to-expression deep learning models—Enformer, Basenji2,
ExPecto and Xpresso—on personalized gene expression prediction,
and find that these models consistently under-perform when pre-
dicting differences in expression for a given gene across individuals
based on inter-individual variation in the input DNA sequence. We
also find genes with strong negative correlations between predicted
and observed expression levels, for which the models have probably
identified causal regulatory variant(s) butincorrectly predicted their
direction of effect. Previous evaluations of variant effect prediction
with sequence-to-expression deep learning models have focused on
individual variant effects, as measured by eQTL studies, or massively
parallel reporter assays. However, massively parallel reporter assays
lack the complex genomic and chromatin context of endogenous
gene expression, and it is difficult to identify the causal variants in
eQTL studies, even with current fine-mapping approaches, resulting
ineffect size estimates that are not biologically meaningful for variants
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that are in linkage disequilibrium with a causal variant. By using per-
sonal genome sequences to evaluate model performance, our input
sequencesincludeall variants surrounding the TSS for each individual
and thus avoid the issue of causal variant identification.

Our conclusions about directionality prediction are in line with
previous tests on eQTLs**, which showed low performance on predict-
ing the direction of effect on expression for individual variants, espe-
cially for distal eQTLs. Following Avsec et al.*, we confirm this finding
for Enformer for fine-mapped GTEx eQTLs in LCLs (Supplementary
Fig.4). Our preliminary analysis also suggests that these models have
room forimprovement in predicting the direction of effect of chroma-
tin accessibility quantitative trait loci (caQTLs) as well (Supplemen-
tary Fig. 5), although further work is needed to evaluate the ability of
genomic deep learning models to explain cross-individual variation
inaccessibility and other molecular phenotypes, as discussed below.

Finally, our cross-model analysis reveals that models often strongly
disagree withone another on the predicted direction of genetic effects
on expression and, intriguingly, that agreement between models is
greater for the magnitude of cross-individual correlation than the
direction of that correlation. This result further supports the con-
clusion that current genomic deep learning models recognize the
presence of important regulatory variation in an input sequence but
struggle with understanding the direction of effect of such variation.
To diagnose the reasons for these errors, it will be valuable to assess
whether model predictions of variant effects on other epigenetic tracks
(for example, transcription factor binding and chromatin accessibil-
ity) are more accurate than for gene expression. For example, these
models may have correctly learned variant effects on more proximal
phenotypes, such as individual regulatory elements, but struggle
to map effects of those elements to corresponding changes in gene
expression; alternatively, the models may struggle with direction of
variant effects even on proximal phenotypes such as the binding of
individual transcription factors. Further work to distinguish between
these possibilities will help prioritize future modelingimprovements to
focus onunderstanding high-level regulatory grammar (forexample,
through hierarchical models of gene expression), or to focus on more
accurately learning local variant effects (for example, by increasing
sequence diversity during model training).

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-023-01574-w.
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Methods
Alldatausedinthis study are publicly available (‘Data availability’), and
no specific ethical approval was required.

Gene expression dataset

The data used to evaluate gene expression predictions for personal
genome sequences were obtained from the Geuvadis consortium®,
whichincludes paired gene expressionand WGS data fromindividuals
inthe1000 Genomes Project™. The E-GEUV-1release includes RNA-seq
data from LCLs from a total of 465 samples. After excluding samples
withunphased imputed genotypes, there were 421 Geuvadis individu-
alswith phased WGS data that we used for our analysis. These samples
originated from five populations with ancestryin Europe and Africa: 92
Tuscan (TSI), 89 Finnish (FIN), 85 British (GBR), 78 European from Utah
(CEU)and 77 Yoruban (YRI). We also obtained results from the Geuvadis
cis-eQTL analysis performed in European individuals (n = 373), which
included autosomal protein-coding and lincRNA genes from GENCODE
v.12 and considered variants with MAF > 5% located within 1 Mb of a
gene TSS. Except where otherwise noted, our results are shown for all
3,259 genes that had a statistically significant eQTL (false discovery
rate <5%) inthe Geuvadis EUR cis-eQTL analysis.

Comparison of deep learning models for gene expression
prediction

We test four state-of-the-art deep learning models that make gene
expression predictions for an input DNA sequence. These models
consider different sequence contexts, or receptive fields, when mak-
ing predictions; in particular, Enformer has the widest receptive field
(98.3 kb upstream and 98.3 kb downstream of the gene TSS), followed
by Basenji2 (27.5 kb upstream and 27.5 kb downstream), ExPecto
(20 kb upstream and 20 kb downstream) and Xpresso (7 kb upstream
and 3.5 kb downstream). All models include standard convolutional
layers, with additional dilated convolutional layers in Basenji2 and
transformer layers in Enformer. The models also use different sources
of gene expression data during training; in particular, Basenji2 and
Enformer are trained using genome-wide cap analysis of gene expres-
sion (CAGE) measurements, while ExPecto and Xpresso are trained
using RNA-seq data. Basenji2 and Enformer use multitask learning to
make gene expression predictions along with many other epigenetic
track predictionsin avariety of cell types, while Xpresso predicts gene
expression alone. ExPecto uses a hierarchical model, making predic-
tions of epigenetic tracks along the input sequence and thenadding a
linear transformation on top of those outputs to predict expression.

Constructing personalized input sequences

For each of the 3,259 genes from the Geuvadis analysis mentioned
above, the ENSEMBL geneID, TSS position from GENCODE v.12, strand
and chromosome were obtained from Geuvadis. We used hg19 as the
reference genome for creating personalized sequences, to match the
Geuvadis dataset. For ExPecto, Basenji2 and Enformer, whose recep-
tive fields are symmetric about the TSS, and for genes located on the
positive strand for Xpresso, we computed personalized sequences
directly around the TSS using beftools consensus”. Since Xpresso
uses anasymmetricinput sequence, for geneslocated on the negative
strand, we extracted the reference sequence 3.5 kb before the TSS to
7 kb after the TSS using Samtools", applied bcftools consensus and
then took the reverse complement. We considered only SNVs and did
not include indels when creating the personalized input sequences.
We predicted gene expression levels as described below for the two
personalized haplotypes for eachindividual and averaged the predic-
tions from both haplotypes.

Basenji2 predictions
Basenji2 takes input sequences of 131 kb with an effective receptive field
of 55 kb for each prediction. The model outputs predictionsin128-bp

bins for 5,313 epigenetic and transcriptional tracks from the ENCODE,
Roadmap Epigenomics and FANTOM consortiums. We used Basenji2
predictions for the GM12878 LCL CAGE track, asitis the cell type most
relevant for the Geuvadis expression data. For agiveninputsequence
centered atagene TSS, we averaged predictions from the forward and
reverse complement sequence as well as minor sequence shifts to the
leftand right (one nucleotide in each direction). To compute the final
expression prediction for a gene, we averaged the predicted CAGE
signal over a ten-bin window around each TSS.

Enformer predictions

Enformer replaces the dilated convolutions of Basenji2 with a
self-attention mechanism, which facilitates the learning of long-range
dependencies. Enformer has areceptive field 0of 196.6 kb and outputs
predictions in 128-bp bins for the same 5,313 tracks as Basenji2. As
above, we used Enformer predictions for CAGE measurements per-
formed on GM12878. While the Enformer authors averaged predic-
tions within a three-bin window around each gene TSS, we found that
averaging over a ten-bin window led to better performance on the
Geuvadis dataset.

ExPecto predictions

ExPecto predicts gene expression by first using a convolutional neural
network (Beluga, an updated version of DeepSEA (ref. 7)) to predict
chromatin features within a40 kb region around each gene TSS. Spe-
cifically, Beluga outputs predictions in 200-bp bins for 2,002 epige-
netic tracks fromthe ENCODE and Roadmap consortiums. To predict
expression for a given gene, Beluga is used to predict chromatin fea-
tures for 200 bins centered around the TSS, averaging predictions
over the input sequence and its reverse complement. The resulting
predictions are spatially transformed with a set of basis functions and
used as input features for an L2-regularized linear regression model
to predict expression for the given input sequence. For our ExPecto
predictions, we used a publicly available ExPecto model trained on
Epstein-Barr virus (EBV)-transformed lymphocytes from GTEx, which
we chose as the most relevant cell type to compare with the Geuvadis
expression data.

Xpresso predictions

Xpresso consists of two convolutional blocks and two fully connected
layers trained on normalized RNA-seq data across 56 tissues and cell
lines fromthe Roadmap Epigenomics Consortium. The optimalinput
sequence for Xpresso was found tobe a10.5 kb region asymmetrically
centered around the TSS. For our analysis, we used predictions from
the pretrained LCL-specific Xpresso model as the most relevant to the
Geuvadis dataset.

Elastic net (PrediXcan-style) gene expression model

For comparison with the sequence-to-expressiondeep learning models
above, we also trained a cross-validated, elastic net regression model
foreach geneto predict Geuvadis expression measurements from com-
mon variants (MAF > 0.05) within 98.3 kb of the TSS to match Enform-
er’'sreceptive field. We set the elastic net mixing parameter to 0.5 and
found the best regularization penalty in a tenfold cross-validation
scheme using scikit-learn’s ElasticNetCV (ref. 18) in Python. We
obtained individual gene expression predictions from the output of
ten holdout validation splits, such that the model makes predictions
onindividuals notin the training set.

QTL effect direction classification

We obtained GTEx v.8 eQTLs fine-mapped using the SuSiE method'**°
from the Supplementary Data in Avsec et al.*. Using these data, we
evaluated Enformer on its ability to predict the direction of eQTL
effect on expression. We used fine-mapped eQTLs identified in
EBV-transformed lymphocytes asthe GTEx cell type that matched the

Nature Genetics


http://www.nature.com/naturegenetics

Brief Communication

https://doi.org/10.1038/s41588-023-01574-w

Geuvadis expression datamost closely. Using amethod similar to that
describedin Avsecetal., we focused on variants with a posterior inclu-
sion probability (PIP) in a credible causal set of greater than 0.9, and
removed variants that affect gene expressionin opposite directions for
different cis genes. We used Enformer predictions from the GM12878
CAGE track, as the closest match to EBV-transformed lymphocytes. We
computed expressiondirection accuracy over 100 bootstrap samples
fromthe full set of variants. We also obtained caQTL variants from the
Tehranchi et al.” analysis of ATAC-seq data from LCLs fromindividuals
inten populations: four African, four European, one African-American
and one Han Chinese. Using these data, we evaluated Enformer on
its ability to predict the direction of caQTL effect on accessibility. To
generate accessibility predictions, we summed Enformer’s predictions
fromthe three 128-bp bins closest to the variant for the DNase:GM12878
track (track number 69). For computational efficiency, we randomly
sampled 10,000 caQTLs from the Tehranchi et al.”* dataset, and then
computed effect direction accuracy over 100 bootstrap samples of
those 10,000 variants.

Statistics and reproducibility

No statistical method was used to predetermine sample size. All
individuals withRNA-seqand phased WGS data from the Geuvadis con-
sortium were included. All genes that were found to have at least one
statistically significant (FDR < 5%) cis-eQTL associationin the Geuvadis
analysis were included. All code to reproduce our analyses is publicly
available (‘Code availability’).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The Geuvadis gene expression dataand WGS data used in this study are
publicly available at https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-GEUV-1.

Code availability

Allmodel predictions on Geuvadisindividuals and scripts to generate
personalized sequences, get model predictions and plot figures are
available at https://github.com/ni-lab/personalized-expression-
benchmark (ref. 22).
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Extended Data Fig. 1| Performance of all tested models on reference
sequence prediction. Median Geuvadis gene expression (log transformed)
versus gene expression predictions (log transformed) obtained by inputting the
reference genome sequence to (a) Enformer, (b) Basenji2, (c) ExPecto, and (d)
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Xpresso. For each model, gene expression predictions from the most relevant
celltype were used, as described in Methods. Measurements and predictions for
the 3,259 genes with at least one statistically signficant (FDR <5%) eQTL in the
Geuvadis analysis are displayed.
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Extended Data Fig. 2 | Performance of all tested models on cross-gene
prediction. Cross-gene performance for (a) Enformer, (b) Basenji2, (c) ExPecto,
and (d) Xpresso. For a given individual, cross-gene performance is defined
asthe correlation between their measured gene expression levels and gene
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expression predictions obtained using their personalized genome sequences.
Correlations were computed across the 3,259 genes with at least one statistically
signficant (FDR <5%) eQTL in the Geuvadis analysis. Each histogram displays the
distribution of cross-gene performance over allindividuals.
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Extended Data Fig. 3 | Performance of all tested models on cross-individual
prediction. Cross-individual performance for (a) Enformer, (b) Basenji2, obtained using each individual’s personalized genome sequence. Each histogram
(c) ExPecto, (d) Xpresso, and (e) PrediXcan. For a given gene, cross-individual displays the distribution of cross-individual performance for the 3,259 genes
performance is defined as the correlation between measured gene expression with atleast one statistically signficant (FDR <5%) eQTL in the Geuvadis analysis.

levels in all 421 individuals and corresponding gene expression predictions
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Pairwise model comparisons of cross-individual
correlation. Comparison of cross-individual Spearman correlations between
each pair of models: (a) Enformer & Basenji2, (b) Enformer & ExPecto, (c)
Enformer & Xpresso, (d) Basenji2 & ExPecto, (e) Basenji2 & Xpresso, (f) ExPecto
& Xpresso, (g) Enformer & PrediXcan, (h) Basenji2 & PrediXcan, (i) ExPecto &

PrediXcan, and (j) Xpresso & PrediXcan. The scatterplots display, for each gene,
the performance achieved by both models. A kernel density estimate of each
scatterplotis overlaid (red). Note the increased density of genes along the y = x
andy =-x axes.
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Extended DataFig. 5| Cross-individual correlation vs. top eQTL p-value for and line of best fit using ordinary least squares are shown separately for genes
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(c) ExPecto, and (d) Xpresso compared to the p-value of the most statistically respectively).

significant Geuvadis eQTL in each gene. For each model, the Pearson correlation
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Extended DataFig. 6 | Cross-individual correlation vs. top eQTL effect size for
all tested models. Cross-individual correlations for (a) Enformer, (b) Basenji2,
(c) ExPecto, and (d) Xpresso compared to the absolute value of the effect size of
the most statistically significant Geuvadis eQTL in each gene. For each model,

Basenji2 cross-individual correlation

Xpresso cross-individual correlation

Basenji2
0.89  pearson 0.589 .
0.6 -
0.4
0.2 4
0.0 A
—0.2
—0.4
0.6
—0.89 Pearson-0.574
oY 0:‘)’ o"b‘ QL? 0:? 01~\ Qlﬁb
Top eQTL effect size |rvalue|
Xpresso
0.8 Pearson 0.573

Pearson -0.528 :
Q"L 0?’ Q‘b‘ 0<? Qb 0,'\ QC'b

Top eQTL effect size |rvalue|

the Pearson correlation and line of best fit using ordinary least squares are shown
separately for genes with positive and negative cross-individual correlations
(orange and green, respectively).

Nature Genetics


http://www.nature.com/naturegenetics

Brief Communication

https://doi.org/10.1038/s41588-023-01574-w

a

0.81 Pearson 0.178

Enformer cross-individual correlation

—0.84 Pearson-0.187

Enformer

0.8 Pearson0.174

ExPecto cross-individual correlation

—0.8{ Pearson-0.163

N NG o™

Top eQTL MAF

ExPecto

o® o

Extended Data Fig. 7 | Cross-individual correlation vs. top eQTL allele
frequency for all tested models. Cross-individual correlations for (a) Enformer,
(b) Basenji2, (c) ExPecto, and (d) Xpresso compared to the global minor allele
frequency (from Ensembl biomaRt) of the most statistically significant Geuvadis

Q’J’ 0?) QP‘
Top eQTL MAF

Basenji2 cross-individual correlation

Xpresso cross-individual correlation

Basenji2

0.8  pearson 0.183 5

.
< x; o*e® o’
.

5 e me® o0
I E Ry oy .{,:’;91
H o

—0.81 Pearson -0.220

o° ¢ N N N o?
Top eQTL MAF
Xpresso
Pearson 0.193 ®

0.8

—0.6 1

Pearson -0.133 , ’

o° N N N N2 o?
Top eQTL MAF

eQTLineach gene. For eachmodel, the Pearson correlation and line of best fit
using ordinary least squares are shown separately for genes with positive and
negative cross-individual correlations (orange and green, respectively).

Nature Genetics


http://www.nature.com/naturegenetics

Brief Communication

https://doi.org/10.1038/s41588-023-01574-w

a

0.8

Enformer cross-individual correlation

Enformer

Pearson -0.150

Basenji2 cross-individual correlation

0.8 4

Basenji2

Pearson -0.200

—044 b7 . .
0.6 - . ’
—0.8 1 Pearson 0.101
Q Q Q Q Q Q Q Q Qo Q Q Q Q Q Q S Q
L B S LS S &L & L LS
Vv 9 A AN N .\{o .\”\ ,19 Vv 9 A S N ,\f) ,(,\ ,}0
Top eQTL distance to TSS (bp) Top eQTL distance to TSS (bp)
C ExPecto Xpresso
084 . - Pearson -0.156 0.8 - % Pearson -0.144

ExPecto cross-individual correlation
Xpresso cross-individual correlation

Pearson 0.139

—0.8 .

Q Q Q Q Q Q Q Q

Q Q Q Q QO Q
Q %) \) \2)

ANEENZEERN RN

Top eQTL distance to TSS (bp)
Extended Data Fig. 8| Cross-individual correlation vs. top eQTL distance to
TSS for all tested models. Cross-individual correlations for (a) Enformer,

(b) Basenji2, (c) ExPecto, and (d) Xpresso compared to the distance between each
gene’s TSS and its most statistically significant Geuvadis eQTL. For each model,

o
&
»

Top eQTL distance to TSS (bp)
the Pearson correlation and line of best fit using ordinary least squares are shown
separately for genes with positive and negative cross-individual correlations
(orange and green, respectively).

Nature Genetics


http://www.nature.com/naturegenetics

Brief Communication https://doi.org/10.1038/s41588-023-01574-w

a Enformer b Baseniji2

Enformer cross-individual correlations
Basenji2 cross-individual correlations

—0.84 Pearson -0:008

—0.8 Pearson-0.018

T T T T T

-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8
log(MedianExpression + 1073) log(MedianExpression + 1073)
c ExPecto d Xpresso

ExPecto cross-individual correlations
Xpresso cross-individual correlations

—0.84 Pearson-0.009 ) Pearson 0.034

-4 -2 0 2 4 6 8 -4 =2 0 2 4 6 8
log(MedianExpression + 1073) log(MedianExpression + 1073)
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