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East Asian-specific and cross-ancestry 
genome-wide meta-analyses provide 
mechanistic insights into peptic ulcer disease

Yunye He    1, Masaru Koido    1, Yoichi Sutoh2, Mingyang Shi1, 
Yayoi Otsuka-Yamasaki2, Hans Markus Munter    3, BioBank Japan*, 
Takayuki Morisaki4,5, Akiko Nagai6, Yoshinori Murakami    4, Chizu Tanikawa5, 
Tsuyoshi Hachiya    2, Koichi Matsuda    5, Atsushi Shimizu2 & 
Yoichiro Kamatani    1 

Peptic ulcer disease (PUD) refers to acid-induced injury of the digestive 
tract, occurring mainly in the stomach (gastric ulcer (GU)) or duodenum 
(duodenal ulcer (DU)). In the present study, we conducted a large-scale, 
cross-ancestry meta-analysis of PUD combining genome-wide association 
studies with Japanese and European studies (52,032 cases and 905,344 
controls), and discovered 25 new loci highly concordant across ancestries. 
An examination of GU and DU genetic architecture demonstrated that 
GUs shared the same risk loci as DUs, although with smaller genetic effect 
sizes and higher polygenicity than DUs, indicating higher heterogeneity of 
GUs. Helicobacter pylori (HP)-stratified analysis found an HP-related host 
genetic locus. Integrative analyses using bulk and single-cell transcriptome 
profiles highlighted the genetic factors of PUD being enriched in the highly 
expressed genes in stomach tissues, especially in somatostatin-producing 
D cells. Our results provide genetic evidence that gastrointestinal cell 
differentiations and hormone regulations are critical in PUD etiology.

PUD refers to the acid-induced injury of the digestive tract, occurring 
mainly in the stomach (GU) or proximal segment of the duodenum 
(DU) with bleeding, perforation or gastric outlet obstruction as the 
major complication. PUD is one of the most common gastrointestinal 
disorders, with a lifetime prevalence rate of approximately 5–10% in the 
general population1. The prevalence of PUD has been reported to be 
substantially higher in east Asians (EAS) than Europeans (EUR)1, with 
GU being more common than DU in the Japanese population and DU 
being more common in Europeans2.

With HP infection and the use of nonsteroidal anti-inflammatory 
drugs (NSAIDs) being two of the most common causes of GUs and 

DUs3, genetic factors also play a critical role in the development of 
PUD4. Previous genome-wide association studies (GWASs) of PUD 
had identified multiple loci, mainly HP related, in Europeans5,6. Given 
the relatively high prevalence of PUD and HP infection in east Asians 
and the remarkably limited number of risk loci identified in east Asian 
populations2,7, GWASs with a larger sample size of EAS ancestry indi-
viduals would be required to enhance our understanding of genetic 
etiology of PUD. As GUs and DUs differ in various aspects, such as the 
proportion of ulcers that are attributable to HP infection8, the genetic 
differences across PUD subtypes and the key cell types involved in 
their etiology should be investigated. Epidemiological studies have 
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(Supplementary Table 2 and Supplementary Fig. 3). Analysis of the X 
chromosome identified one known locus at GUCY2F7 for PUD, DU and 
GU (Supplementary Table 3). Thirteen nonoverlapping significant loci 
were identified in sex-stratified analysis (thirteen for men and one for 
women; Supplementary Table 3).

Replication was conducted in individuals from three independ-
ent studies, namely BBJ1-12K (1,001 cases), BBJ2-42K (3,637 cases) and 
TMM13-50K (a population-based study (5,388 cases); Supplementary 
Table 1 and Methods). The replication datasets were imputed using the 
1KG Phase 3 panel and tested for associations of autosomal variants 
with the same settings as in discovery GWASs. Among the nine new 
lead variants associated with PUD or subtypes, four were nominally 
associated (P < 0.05) with PUD or its subtypes in the same direction in 
at least two replication datasets. Notably, five new loci were replicated 
in the population-based dataset (P < 0.05 in the same direction; Sup-
plementary Table 4).

Next, we performed an east Asian-specific meta-analysis combin-
ing the discovery GWASs and three replication GWASs (ncase = 29,739; 
ncontrol = 240,675). Fixed-effect meta-analyses using the inverse-variance 
weighted (IVW) method were performed for PUD and PUD subtypes. 
The genomic inflation factors (λgc) and linkage disequilibrium (LD) 
score regression (LDSC)14 intercepts ranged from 1.03 to 1.08 and 
from 1.01 to 1.02, respectively (Supplementary Table 5), indicating 
no substantial bias. In the EAS-specific meta-analysis, we detected 25 
nonoverlapping risk loci associated with PUD or any subtype, including 
11 additional new loci (Table 1, Supplementary Fig. 4 and Supplemen-
tary Table 6).

Finally, we collected publicly available European GWASs of PUD 
and its subtypes using samples from FinnGen and UK Biobank (UKB)5,12,15 
(Supplementary Table 7). After quality control (QC) and harmonization 
(Methods), a fixed-effect, IVW, cross-ancestry meta-analysis (52,032 
cases of PUD and 905,344 controls) was performed, combining the 
Japanese and European studies. Six additional loci for PUD and DU 
reached the genome-wide significance level (P < 5.0 × 10−8; Table 1,  
Fig. 2, Supplementary Table 8 and Supplementary Fig. 5). Furthermore, 
we performed a cross-ancestry meta-regression utilizing MR-MEGA 
(Meta-Regression of Multi-AncEstry Genetic Association)16 and 
identified 23 known and described new loci mentioned above in the  
east Asian-specific and cross-ancestry meta-analyses (Supplementary 
Table 9). In total, we identified 25 nonoverlapping new loci for PUD and 
its subtypes in the east Asian-specific and cross-ancestry meta-analyses 

suggested that DU is a protective factor against gastric cancer (GC)9. 
However, whether genetic factors for PUD and GC are concordant and 
can explain the epidemiological findings remain unclear. Therefore, 
we anticipated that large-scale genetic studies of PUD could not only 
expand our understanding of PUD biology but also provide insights 
into the genetic factors that interact with HP or lead to different out-
comes of PUD or GC, potentially enabling a more accurate prediction 
of individual risk in clinical settings.

To address these issues, we conducted a large east Asian-specific 
and cross-ancestry genome-wide analysis of PUD and PUD subtypes 
along with four Japanese studies and two European cohorts totaling 
52,032 PUD cases and 905,344 controls.

Results
We conducted a three-stage genome-wide analysis of PUD and its sub-
types. An overview of the workflow is provided in Fig. 1 and Supplemen-
tary Fig. 1. PUD cases in the east Asian populations were obtained by 
combining individuals with any of the two major PUD subtypes (DU 
and GU), which were classified based on the anatomical sites where 
peptic ulcers occurred. Individuals with comorbidities of GU and DU 
were classified as BU (both GU and DU) cases (Methods, Supplementary 
Fig. 2 and Supplementary Table 1).

Association analyses of PUD and its subtypes
First, we performed GWASs of PUD and PUD subtypes (DU, GU and 
BU) in the discovery stage on the BioBank Japan first cohort (BBJ1)10-
180,000 (180K) dataset (Methods). The dataset included 19,713 cases 
of PUD and 153,178 controls of east Asian ancestry and was imputed 
using the 1000 Genomes Project Phase 3 (ref. 11) (1KG Phase 3) refer-
ence panel. A total of 13,846,852 variants (minor allele count (MAC) 
>20 and R2 > 0.3) were tested in east Asians for association with a 
generalized linear mixed model using SAIGE12, which controls for the 
case–control imbalance (case-to-control ratios ranged from 1:7.7 to 
1:82 in BBJ1-180K; Supplementary Table 1). For PUD, ten genome-wide 
significant loci (P < 5.0 × 10−8) were identified, five of which had not 
been reported as genome-wide significant loci in previous GWASs of 
PUD or any subtype. In addition, 14 loci reached the significance thresh-
old for DU, including 7 new loci (3 of which overlapped with new PUD 
loci). One previously reported locus at PSCA2 was identified for GU and 
BU. A total of 15 nonoverlapping genetic loci (Methods) reached the 
significance threshold for PUD or any subtype, of which 9 were new 

Discovery-stage association analysis of PUD, GU, DU and BU in BBJ1-180K
nCase: 19,713  , nControl: 153,178

~12 million variants imputed using 1KG

Meta-analysis in East Asian population
nCase: 29,739, nControl: 240,675

BBJ1-180K, BBJ1-12K, BBJ2-42K and TMM-50K

Cross-ancestry analysis of PUD, GU and DU
nCase: 52,032 , nControl: 905,344

East Asian individuals from BBJ1-180K, BBJ1-12K, BBJ2-42K and TMM-50K
and European individuals from UKB and FinnGen  

Replication and H. pylori-stratified
analysis in TMM-50KReplication in BBJ1-12K and BBJ2-42K

Post-GWAS analyses

Fig. 1 | Overview of the three-stage study design. The 1000 Genomes Project 
reference panel (1KG Phase 3). BBJ1-180K consists of approximately 180,000 
individuals from BBJ1. BBJ1-12K consists of approximately 12,000 individuals 

from BBJ1. BBJ2-42K consists of approximately 42,000 individuals from  
BBJ2. TMM-50K consists of approximately 50,000 individuals from Tohoku 
Medical Megabank.
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(Supplementary Fig. 6), although one new locus identified in the dis-
covery stage was not significant in any of the meta-analyses (Supple-
mentary Table 2).

Cross-ancestry comparison
With the large available datasets for PUD and its subtypes in EAS, we 
investigated the shared and distinct risk loci for PUD in EAS and EUR 
individuals. We compared the per-allele effect sizes of lead variants 
associated with PUD or any of the subtypes available for both ancestries 

(Methods). The effect sizes for PUD showed a relatively high correlation 
(27 variants with minor allele frequency (MAF) > 0.01 in both popula-
tions; r = 0.79) between the two ancestries, although we detected 9 
variants (9 out of 27 effect-size differences (difference in log(odds 
ratio (OR)) > 0.05); Fig. 3a and Supplementary Table 10). The high cor-
relation remained after the winner’s curse (WC) corrections (Methods, 
Supplementary Table 11 and Supplementary Fig. 7). To further examine 
the difference in genetic architecture of PUD between east Asians and 
Europeans, we conducted a cross-ancestry genetic correlation analysis 

Table 1 | Significant loci associated with PUD or PUD subtypes from genome-wide meta-analyses

Phenotypes rs ID Chromosome Position 
(GRCh37)

Nearest 
gene

Effect 
allele/
noneffect 
allele

OR 95% CI P Analysis EAFEAS EAFEUR

PUD rs59781317 1 156016356 UBQLN4 G/A 1.04 (1.03–1.06) 3.51 × 10−8 Cross-ancestry 0.77 0.25

PUD rs184426772 2 182502860 CERKL C/T 2.22 (1.68–2.92) 1.61 × 10−8 EAS 0.01 0.00

PUD, DU rs11692085 2 219963550 NHEJ1 T/C 1.05 (1.04–1.07) 2.58 × 10−12 Cross-ancestry 0.27 0.66

PUD, DU, GU rs4685405 3 16981683 PLCL2 T/G 1.05 (1.04–1.07) 9.84 × 10−12 Cross-ancestry 0.52 0.18

DU, PUD, GU rs79928271 3 169139475 MECOM A/T 0.90 (0.88–0.93) 2.02 × 10−11 EAS 0.28 0.13

DU rs13086914 3 171491650 PLD1 G/T 0.91 (0.88–0.94) 4.83 × 10−8 EAS 0.20 0.39

DU rs34742353 4 47634802 CORIN A/AT 1.11 (1.07–1.15) 5.88 × 10−9 EAS 0.83 0.74

PUD rs2553380 4 124538120 LINC01091 C/T 0.94 (0.92–0.96) 1.00 × 10−8 EAS 0.65 0.84

PUD, DU, GU rs3805497 5 40746885 TTC33 T/A 1.08 (1.06–1.09) 5.32 × 10−25 Cross-ancestry 0.58 0.25

PUD rs1801020 5 176836532 F12 G/A 0.95 (0.94–0.97) 1.38 × 10−11 Cross-ancestry 0.35 0.75

DU rs41265804 6 29924159 HLA-A G/C 0.92 (0.90–0.95) 1.00 × 10−9 Cross-ancestry 0.49 0.17

PUD rs146095444 6 131582218 AKAP7 T/C 1.24 (1.15–1.34) 2.76 × 10−8 EAS 0.02 0.00

PUD, DU rs416879 6 160774838 SLC22A3 G/A 0.96 (0.95–0.97) 2.48 × 10−9 Cross-ancestry 0.28 0.48

PUD, DU, GU, 
BU

rs72607744 7 127560541 SND1 A/G 1.16 (1.12–1.20) 4.45 × 10−15 EAS 0.10 0.00

DU rs7470279 9 80607789 GNAQ T/A 1.09 (1.06–1.12) 1.56 × 10−10 Cross-ancestry 0.37 0.15

PUD rs10992997 9 96701663 BARX1 G/A 1.05 (1.03–1.06) 1.41 × 10−8 Cross-ancestry 0.14 0.42

DU rs3019776 11 68826155 TPCN2 G/A 1.10 (1.07–1.13) 1.38 × 10−9 Cross-ancestry 0.53 0.97

BU rs147272036 14 95298230 GSC-DT G/C 3.77 (2.36–6.02) 2.85 × 10−8 EAS 0.01 0.00

DU rs511893 16 88990941 CBFA2T3 G/T 0.91 (0.88–0.94) 6.39 × 10−9 Cross-ancestry 0.30 0.34

DU rs2642030 17 65605075 PITPNC1 G/A 1.07 (1.05–1.10) 2.00 × 10−8 Cross-ancestry 0.56 0.25

DU rs6117384 20 6673542 LINC01713 C/T 1.09 (1.07–1.12) 6.32 × 10−12 Cross-ancestry 0.74 0.73

PUD, DU, GU, 
BU

rs6123837 20 57465571 GNAS A/G 1.05 (1.04–1.07) 2.12 × 10−14 Cross-ancestry 0.58 0.36

PUD, DU rs12625329 20 62709274 RGS19 A/G 1.04 (1.03–1.06) 8.09 × 10−9 Cross-ancestry 0.66 0.46

PUD, DU, GU rs11416248 22 25008477 GGT1 CT/C 0.93 (0.91–0.95) 2.28 × 10−12 EAS 0.32 0.22

DU rs7288137 22 50458020 TTLL8 A/G 1.08 (1.06–1.12) 7.73 × 10−9 Cross-ancestry 0.20 0.22

Previously known loci

PUD, DU rs1345894981 
(rs147048677)

1 155161794 MUC1 T/C 1.14 (1.10–1.19) 2.54 × 10−12 Cross-ancestry 0.02 0.06

DU, PUD, GU, 
BU

rs2294008 8 143761931 PSCA T/C 0.66 (0.64–0.68) 7.69 × 10−189 EAS 0.64 0.46

PUD, DU, GU rs8176719 9 136132908 ABO TC/T 0.93 (0.92–0.95) 5.76 × 10−24 Cross-ancestry 0.45 0.37

PUD rs78459074 11 1029905 MUC6 G/A 0.95 (0.93–0.96) 7.60 × 10−9 Cross-ancestry 0.21 0.12

PUD, DU rs10500661 11 6273744 CCKBR C/T 1.11 (1.09–1.13) 7.75 × 10−27 Cross-ancestry 0.09 0.20

PUD, DU,GU rs9581957 13 28557889 URAD T/C 1.07 (1.06–1.09) 2.20 × 10−20 Cross-ancestry 0.18 0.33

PUD, DU,GU rs34074411 17 39867248 GAST T/C 1.07 (1.06–1.09) 1.07 × 10−22 Cross-ancestry 0.63 0.45

DU, PUD rs11665674 19 49196275 FUT2 G/A 1.15 (1.11–1.18) 3.38 × 10−17 EAS 0.45 0.00

Lead variants from each significant locus identified in the fixed-effect population-specific or the cross-ancestry meta-analysis are shown. Only the most significant lead variant is shown for 
loci associated with multiple phenotypes or identified in multiple analyses. Variants were annotated with the nearest genes. EAFEAS and EAFEUR, effect allele frequencies in population-specific 
meta-analysis. For variants not available in the datasets, EAF was obtained from the Genome Aggregation Database or the 1000 Genomes Project.
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using Popcorn17 (Methods). The genetic impact was significantly dif-
ferent from 1 (null hypothesis: ρgi = 1) for PUD (Fig. 3b; genetic impact 
correlation ρgi = 0.65, P = 3.0 × 10−4), indicating the difference in genetic 
architecture of PUD across ancestries. For the subtypes, effect sizes for 
DU showed a higher correlation (r = 0.79) across ancestries compared 
with that for GU (r = 0.63; Supplementary Fig. 8 and Supplementary 
Table 10). The genetic correlation of GU was relatively low (ρgi = 0.45, 
P = 7.3 × 10−3), whereas the genetic architecture of DU did not show a 
significant difference across ancestries (ρgi = 0.72, P = 9.6 × 10−2; Sup-
plementary Table 12).

Characterization of PUD-associated loci in east Asians
To explore the secondary signals at the identified loci, we conducted 
a stepwise conditional analysis using COJO18 with an in-sample LD ref-
erence for EAS (Methods). We detected four additional independent 
signals reaching genome-wide significance (P < 5.0 × 10−8) for PUD and 
three independent signals at the PSCA locus for DU (Supplementary 
Table 13). The PSCA locus had the largest number of independent asso-
ciations (three for PUD, four for DU and two for GU and BU). Near the 
CDX2 and GAST loci, two of the previously reported loci in European 
individuals5, we detected independent signals at PDX1 (Fig. 4a) and JUP2 
(Fig. 4b) loci, respectively (Supplementary Tables 13 and 14).

We conducted a fine-mapping analysis using SuSiE19 to identify 
the causal variants. We searched for nonsynonymous variants in 95% 
credible sets to link the disease-associated loci to potential alteration 
of protein functions. A total of ten nonsynonymous variants at six 
nonoverlapping loci were identified, six of which were in new loci for 
PUD and its subtypes (Supplementary Table 15). Of those, rs2233580 
(PAX4; p.R200H; combined annotation-dependent depletion (CADD)20 
score = 29.8) was also associated with type 2 diabetes. The variant was 
common (MAF > 0.05) in 1KG EAS but almost monozygotic in non-EAS 
populations. Rs4745 (EFNA1; p.D159V; posterior inclusion probability 
(PIP) = 0.05 for DU; CADD score = 15.2) was common in EAS and EUR 
and associated with GC. This was the lead variant of cis-splicing quan-
titative trait loci (sQTLs) for EFNA1 in the stomach and was in high LD 
with rs4072037 (ref. 21) (lead sQTL variant for MUC1 in the stomach; 
LD r2 = 0.74 in 1KG EAS). In addition to the missense variants, we found 
rs4390169 in the credible set (upstream of EFNA1; PIP = 0.06 for DU; 
in high LD with rs4745, LD r2 = 0.99 in 1KG EAS and EUR) to be the lead 
variant of cis-protein QTL (pQTL) in plasma for EFNA1 (ref. 22).

In the credible sets of previously reported ABO and FUT2 loci 
for PUD2,5, we identified rs8176719 (lead variant at ABO locus) and 
rs1047781 (in the credible sets at FUT2 locus; PIP = 0.63). Deletion of 
rs8176719 resulted in the O-allele, whereas rs1047781 (p.I140F) was 
an EAS-specific common variant (MAF = 0.439 in 1KG EAS) and its 
A-allele determined the FUT2 secretor status. We performed a logis-
tic regression analysis to investigate the correlation of ABO blood 
group and FUT2 secretor status with PUD. Blood group O (OR = 1.14, 
P = 6.0 × 10−14) and nonsecretor status (OR = 1.17, P = 2.9 × 10−11) were 
significantly correlated with a higher risk of PUD, which was consist-
ent for all PUD subtypes (Supplementary Table 16). To investigate 
the potential interactions between blood group O and nonsecretor 
status, logistic regression analysis including an interaction term was 
performed. However, significant interactions (P < 0.05/8, Bonferroni’s 
correction) were not detected between blood group O and nonsecretor 
status (Supplementary Table 17).

Overlap of eQTL and pQTL with risk variants for PUD
To detect the functionally relevant genes, we searched the 
Genotype-Tissue Expression (GTEx) v.8 datasets21 for overlap of 
lead cis-expression QTLs (eQTLs) with PUD signals or their LD prox-
ies (LD r2 > 0.6 in 1KG EAS or EUR)23. The most significant eQTL hits 
for a gene within each tissue type were interpreted (Supplementary 
Fig. 9). We identified an overlap of new variants with eQTLs associ-
ated with IHH, PLCL2, PTGER4, ZNF322, HIATL1, FAM211B and GGT1 
in the stomach.

We searched five recent large-scale pQTL datasets22,24–27 from 
serum or plasma for overlap of cis- or trans-pQTL with PUD signals 
or their LD proxies. We observed overlaps with 88 unique significant 
pQTL associations, most of which (93.1%) were trans-pQTL and involved 
the lead SNP at the ABO locus (Supplementary Table 18). The cis-pQTL 
alleles in LD with PUD risk alleles were associated with increased levels 
of EFNA1 and OBP2B, and decreased levels of NHEJ1, ABO and GGT1 (the 
cis-pQTLs overlapped with the cis-eQTLs mentioned above for EFNA1, 
OBP2B, NHEJ1 and GGT1). For trans-pQTLs in LD with the lead variants, 
we observed links with multiple proteins, including F8, F10, PROS1 
(blood coagulation related) and trefoil factor family peptides (which 
play important roles in response to gastrointestinal mucosal injury). 
Additional analysis suggested plausible proteins and pathways (Sup-
plementary Note and Supplementary Table 19).
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Fig. 2 | Manhattan plot of the cross-ancestry meta-analysis for PUD. Two-
sided P values were derived from the cross-ancestry meta-analysis of 52,032 cases 
and 905,344 controls of EAS or EUR ancestry. Meta-analysis was performed using 
the IVW method under the fixed-effect model. For variants above the top light-
gray dashed line (−log10(P) > 20), values are rescaled. Lead variants are annotated 

with the nearest gene name(s). New loci are highlighted in red. Variants are 
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Genetic correlation and pleiotropic effects
We conducted cross-trait LD score regression28 to evaluate the genetic 
correlation across PUD-related traits (Fig. 5a and Supplementary  
Table 20). DU and GU showed significantly high genetic correlations 
(rg = 0.79, false discovery rate (FDR) <5%) with each other, as expected. 
Although not statistically significant (FDR < 5%), GU showed a posi-
tive genetic correlation with GC (rg = 0.17), whereas DU was negatively 
correlated (rg = −0.14). We also investigated the genetic correlation of 
PUD with dietary habits29 and complex traits in BBJ30,31 (Methods); no 
significant genetic correlation was observed between PUD and other 
complex traits in EAS (FDR < 5%; Supplementary Figs. 10–12 and Sup-
plementary Table 21).

To investigate the pleiotropic effects of distinct variants, we per-
formed a phenome-wide association study (PheWAS) lookup using 
previous large-scale GWASs in a Japanese population7. Among the 
27 available lead variants associated with PUD and its subtypes, 16 
reached the genome-wide significance threshold for at least one trait 
(P < 5.0 × 10−8). From them, 12 variants were associated with at least 
2 traits after Bonferroni’s correction (P < 8.6 × 10−6; Supplementary 
Figs. 13–15 and Supplementary Table 22). Both type 2 diabetes (two at 
SND1–PAX4 locus and one at GAST locus) and GC (EFNA1, PTGER4 and 
PSCA loci) shared three significant variants after Bonferroni’s correc-
tion (P < 8.6 × 10−6) with PUD or its subtypes (Supplementary Fig. 16).

HP-stratified analysis
To examine the differences in genetic architectures between 
HP-induced and HP-unrelated peptic ulcers, we conducted HP-stratified 
association tests for PUD in HP+ and HP− individuals from TMM-50K 
(Methods and Supplementary Table 23). For the distinct PUD signals 
identified in the EAS population (29 variants with MAF > 0.01), per-allele 
effect sizes for PUD between HP− and HP+ status were highly correlated  
(Fig. 5b; slope = 0.84, s.e.m. = 0.07, r = 0.91; Supplementary Fig. 17 and 
Supplementary Table 24). We identified one lead SNP (rs12792379), spe-
cifically associated with HP+ PUD, at CCKBR (OR = 1.18, 95% confidence 

interval (CI) = 1.05–1.34 for HP+ PUD; OR = 1.01, 95% CI = 0.92–0.11 for 
HP− PUD) and one HP− GU locus near ZNF169 (rs12347577; Cochran’s 
Q test, Phet < 0.05). On the other hand, the lead variants in the most 
significant locus at PSCA did not show significant heterogeneity in 
effect sizes (Phet < 0.05). Colocalization analysis suggested that HP+ 
PUD and HP− PUD shared the causal variant in PSCA (PP4 > 0.8 for PUD; 
Supplementary Table 25).

Genetic analyses revealed heterogeneity of GU
To further explore the similarities and differences of genetic archi-
tecture between GU and DU, we first compared the effect sizes of 
distinct signals identified in east Asians (lead variants and independ-
ent secondary variants) for GU and DU (Fig. 5c and Supplementary  
Fig. 18). Notably, the effect sizes for GU showed a strong correlation with 
those for DU (29 variants with MAF > 0.01, r = 0.92), which was concord-
ant with the high genetic correlations described above. However, the 
effect sizes for GU were systematically smaller than those for DU (inter-
cept = 0.01, slope = 0.43 and s.e.m.slope = 0.03), with 19 variants (19 of 
29 = 65.5%) showing significant heterogeneity (Phet < 0.05) in Cochran’s 
Q test (Supplementary Table 26). To further verify the findings and 
avoid potential biases for the comparisons, we compared (1) the effect 
sizes of distinct signals of GWASs in TMM-50K, FinnGen15 and UKB12,  
(2) the effect sizes generated by excluding BU samples in the associa-
tion tests in BBJ1-180K (that is, no common case in the comparison) and  
(3) TMM-50K-derived statistics with BBJ1-180K-derived statistics (that 
is, no common control in the comparison). In any of these comparisons, 
GU showed high correlation (for variants with MAF > 0.01, r = 0.75–0.90) 
with DU, although with smaller effect sizes than DU (Supplementary 
Figs. 19–21 and Supplementary Tables 27–29). Furthermore, we utilized 
SBasyesS32 to estimate the SNP heritability and polygenicity (defined as 
the proportion of SNPs with nonzero effects) using HapMap3 (ref. 33) 
SNPs from EAS-specific summary statistics (Methods). Approximately 
0.22% of the variants were estimated to have nonzero effects for PUD. 
Compared with DU, GU showed moderately higher polygenicity but 
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lower heritability (PiGU = 0.24%, PiDU = 0.10%; Supplementary Figs. 22–23 
and Supplementary Table 30). The results demonstrated that GU and 
DU showed a high genetic correlation with most risk loci shared and 
suggested higher heterogeneity of GU34.

Finally, using the summary statistics derived from TMM-50K, 
we generated polygenic risk score (PRS) models with PRS-CS35 com-
prising 1,029,637 variants and tested the PRS in BBJ1-180K for asso-
ciations with PUD or PUD subtypes to investigate the genetic overlap 
among PUD and PUD subtypes. Compared with HP+ PRS, HP− PRS gen-
erally showed stronger associations with PUD or PUD subtypes. The 
strongest association was between DU PRS and DU (OR = 1.22, 95%  
CI = 1.20–1.25, ΔR2 = 0.94%). DU PRS (OR = 1.08, 95% CI = 1.06–1.10, 
ΔR2 = 0.13%) showed a stronger association with GU than GU PRS 
(OR = 1.04, 95% CI = 1.03–1.06, ΔR2 = 0.05%; Supplementary Table 31). 
The results further validated that GU shares risk loci with DU while 
having higher heterogeneity than the latter.

Pleiotropy of PUD risk variants on GC
Considering that DU appears to be a protective factor against GC, we 
conducted two-sample Mendelian randomization (MR)36 to evalu-
ate the causality of PUD or its subtypes on GC. Summary statistics for 
GC in EAS were obtained from a previous study in BBJ1-180K, which 
included approximately 6,500 cases30 (Methods). Summary statistics 
for PUD and its subtypes were obtained by conducting a meta-analysis 
combing three replication datasets. Although PUD and its subtypes 
showed significant (P < 0.05/15, Bonferroni’s correction) protective 
effects against GC using the IVW method (Supplementary Table 32), 
MR-Egger analysis suggested significant pleiotropy for the instru-
ments (Supplementary Table 33). MR-PRESSO37 was utilized to cor-
rect for the horizontal pleiotropic variants (ranging from six to seven 
for each exposure). The outlier-corrected MR showed no significant 
effects of PUD or its subtypes on GC (Supplementary Table 34). We 
note that splitting samples and removing outliers may cause power loss  
(Supplementary Fig. 24).

To evaluate the pleiotropic effects of PUD risk variants on GC 
risk, we compared the effect sizes of distinct signals in EAS between 
PUD subtypes and GC. For 23 available variants existing in both data-
sets, we found the effect sizes for DU to be negatively correlated with 
that for GC (slope = −0.33, s.e.m.slope = 0.10; Fig. 5d, Supplementary 
Table 35 and Supplementary Fig. 25). It was noteworthy that lead vari-
ants linked to EFNA1 (encoding Ephrin A1, a member of the EFN fam-
ily), PTGER4 (encoding the receptor for prostaglandin E2) and PSCA 
showed relatively strong but opposite effects on DU and GC (Supple-
mentary Table 35). This suggested that the alleles of these variants, 
which increased the risk for PUD, could decrease the risk for GC. When 
removing the three variants from the regression, negative correlation 
was not observed for the 20 variants (slope = −0.06, s.e.m.slope = 0.10; 
Supplementary Fig. 25), indicating that negative correlation between 
DU and GC was largely affected by the three variants.

Gene-based and gene-set analysis
Gene-level analysis using MAGMA38,39 (Methods) detected 29 genes 
significantly associated with PUD (P < 6.5 × 10−7; Supplementary  
Table 36), 45 genes associated with DU and 15 genes associated with 
GU, in the EAS population. In total, 47 distinct genes were associated 
with PUD or PUD subtypes. Multiple genes identified in gene-level 
analysis were reportedly related to GC (PTGER4 (ref. 40), PRKAA1 
(ref. 41), GNAQ42, GNAS43, NHEJ1 (ref. 44), IHH45 and JUP46). Based on 
the gene-level statistics, we additionally performed pathway enrich-
ment analysis and identified one gene set after Bonferroni’s correc-
tion (nikolsky_breast_cancer_8q23_q24_amplicon, including genes 
within amplicon 8q23-q24 identified in a study of breast tumors47; 
P < 8.0 × 10−7; Supplementary Table 37).

Tissue- and cell-type specificity analysis
We tested the tissue-level specificity employing MAGMA39 with GTEx 
v.8 datasets21 in EAS individuals to investigate the tissue types related 
to PUD and its subtypes. Significant genetic enrichments (FDR < 5%) 
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were observed in the stomach, pancreas, small intestine and kidney for 
PUD, in the stomach, pancreas and prostate for DU and in the stomach 
for GU (Fig. 6a and Supplementary Table 38).

To further characterize specific cell types associated with 
PUD in the gastric and duodenal tissues, we utilized publicly avail-
able single-cell RNA sequencing (scRNA-seq) datasets of the human 
stomach and duodenum48. We performed cell-specificity analysis 
using LDSC49 and MAGMA in EAS and EUR individuals, respectively 
(Methods). To increase statistical power, we conducted a fixed-effect 
meta-analysis combining EAS and EUR results for each method (Meth-
ods and Supplementary Figs. 26–31). For PUD, we found that stomach 
D cells reached the significance threshold (FDR < 5%) in the analyses 
of both MAGMA and LDSC (Fig. 6b,c and Supplementary Tables 39 and 
40). In addition, duodenal enterochromaffin cells (EC cells), stomach 
antral EC cells and stomach tuft cells were significantly (FDR < 5%) 
associated with PUD, as per MAGMA (Fig. 6b). Somatostatin produced 
by stomach D cells inhibits the secretion of a variety of gastrointestinal 

hormones, including the gastrin secreted by stomach G cells which 
stimulates gastric acid secretion. EC cells secrete serotonin (5-HT, a 
neurotransmitter) with diverse gastrointestinal functions and tuft 
cells (chemosensory epithelial cells) secrete interleukin-25, driving the 
type 2 immune response to parasitic infection. Together, the findings 
suggested the important role of gastrointestinal hormone regulation 
and immune response in PUD etiology.

Discussion
Our GWAS meta-analyses of PUD and PUD subtypes discovered 33 
autosomal susceptibility loci, of which 25 had not been reported in pre-
vious GWASs (19 in east Asian-specific analysis and 6 in cross-ancestry 
analysis). The loci were mostly shared across ancestries with strong 
correlations of effect sizes. Our cross-ancestry analysis emphasized 
the high genetic correlation of DU and suggested the heterogeneity 
of GU across ancestries. The larger effect sizes of MUC1 and MUC6 in 
populations of EUR ancestry are in reasonable agreement with their 
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critical roles in the protection from NSAID-induced injury, given the 
much lower prevalence of HP infection in western countries compared 
with that in east Asian populations50.

Multiple new loci (PAX4 (ref. 51), PDX1 (ref. 52), IHH53 and SLC22A3 
(ref. 54)) and reported loci (CCKBR, CDX2 and GAST) were found to 
be related to cell differentiation or gastrin signaling. By integrating 
scRNA-seq datasets, we identified the association of PUD with certain 
hormone-secreting cells, including stomach D cells (somatostatin) 
and stomach antral and duodenal EC cells (5-HT). The potential roles 
of D cells and EC cells are discussed in Supplementary Note. Our results 
also showed the signal at CCKBR (encoding the receptor for gastrin) 
to be HP+ specific. The PUD risk allele of the lead SNP (rs12792379) is 
in LD with the eQTL allele associated with higher CCKBR expression 
in multiple tissues21, including esophagus mucosa. It has been widely 
shown that HP-elicited cytokines stimulate gastrin release55. It is likely 
that the increased gastrin level induced by HP will interact with altered 

expression in CCKBR, leading to dysregulated gastric acid secretion 
and altered susceptibility to apoptosis56,57. Taken together, our results 
provided genetic evidence of gastrointestinal cell differentiation and 
hormone regulation being critical in PUD etiology.

As expected, we observed high genetic correlation between GU 
and DU and nominally significant genetic correlations between PUD 
and its risk factors (Supplementary Note); effect-size comparisons 
demonstrated that GU shared risk loci with DU, but had smaller effect 
sizes than DU. Polygenicity of GU was higher than that of DU. SNP-based 
heritability estimate for DU (liability scaled) was almost twice as high 
as for GU. In addition, DU PRS showed a stronger association with GU 
than GU PRS in east Asians. The results revealed the genetic difference 
between GU and DU and reflected a higher heterogeneity of GU58–60.

We found three variants (linked to EFNA1, PTGER4 and PSCA) to 
have relatively large pleiotropic effects on DU and GC. EFNA1 sup-
presses tumor growth whereas PGE2 supports tumor growth by 
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promoting angiogenesis40,61. PUD risk alleles resulted in increased 
levels of EFNA1 and reduced levels of PTGER4, whereas GC risk alleles 
were associated with a decreased level of EFNA1 and an increased level 
of PTGER4. This suggested that the risk alleles of variants at EFNA1 
and PTGER4 for GC (nonrisk alleles for PUD) potentially benefited 
peptic ulcer healing while imposing an increased risk for GC through 
upregulated cell proliferation and angiogenesis. In addition, we also 
detected multiple PUD risk, cancer-related genes (for example, IHH, 
GNAS, NHEJ1, JUP and MECOM), which provided potential targets 
contributing to the different outcomes of PUD or GC. No causal effects 
were identified in the outlier-corrected MR in the present study, which 
may suffer from the power loss caused by sample split and removal  
of variants. Further research is warranted on the protective role of 
DU against GC.

Although we identified multiple associations, the present study 
has several potential limitations. First, the phenotypic information of 
PUD and subtypes was obtained via interviews and reviews of medical 
records. However, the prevalence rate of PUD was consistent with that 
in previous epidemiological studies; our study replicated most of the 
previously identified loci and the new biological findings are feasible, 
which suggested the relatively high reliability of the results. Second, 
due to the lack of information about the chronological order of PUD 
onset and anti-inflammatory drug use at PUD onset in the present 
study, the specific interaction of NSAIDs with host genetic factors was 
underexplored. Third, detailed information on the anatomical site of 
the ulcers or the strains of HP was not available. Fourth, the variants 
identified by fine-mapping and the overlaps in association signals 
identified by lookup approaches might result from tagging distinct 
causal variants, and the meta-analysis fine-mapping using BBJ1-180K 
as LD reference might be miscalibrated62, which should be inter-
preted cautiously. Despite the Biobank-scale cohort for HP-stratified 
analysis, the statistical power is still limited for certain analyses. 
Even though our subtype analysis revealed the overall similarities 
and differences in genetic architecture, a large sample size and more 
detailed classifications are still warranted to elucidate the potential 
heterogeneity further.

In summary, the present study approximately quadrupled the 
number of risk loci for PUD and its subtypes and improved our under-
standing of the genetic architecture of PUD. The findings provided 
insight into the biological pathways involved in PUD pathogenesis 
and potential links between PUD and GC. We demonstrated that, 
besides HP-related loci, host genetic factors potentially involved in 
gastric hormone regulation, cell differentiation and proliferation 
might play important roles in PUD pathogenesis. Our single-cell 
analysis further revealed the association of 5-HT-secreting EC cells, 
somatostatin-secreting stomach D cells and stomach tuft cells with 
PUD, indicating their key role in PUD etiology.
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Methods
Study participants
We included four cohorts for east Asian-specific meta-analysis includ-
ing BBJ1-180K, BBJ1-12K and BBJ2-42K from the BioBank Japan Project10, 
and TMM-50K from Tohoku University Tohoku Medical Megabank63. 
Further details on each cohort are described in Supplementary Note. 
Sample overlap was checked in BBJ1-180K, BBJ1-12K and BBJ2-42K by 
merging three datasets and estimating the identical-by-descent shar-
ing, and the number of potentially overlapping samples is minimal 
(<0.06%; Supplementary Fig. 32).

The clinical characteristics of these cohorts are provided in detail 
in Supplementary Table 1. The research project was approved by the 
ethics committees at the Institute of Medical Science, the University 
of Tokyo (application no. 29-74-A0215) and Iwate Tohoku Medical 
Megabank Organization, Iwate Medical University (application no. 
HG H25-2).

Phenotype definition
In the present study, we assessed PUD, which is a combination of the 
two major subtypes, namely DU and GU. Cases with PUD were obtained 
from the combination of individuals with any of the two major PUD 
subtypes (DU and GU). Clinical information for cases with GU and DU 
was obtained via interviews and reviews of medical records using a 
standardized questionnaire in BBJ1-180K, BBJ1-12K and BBJ2-42K, and 
by self-administered questionnaires in TMM-50K63.

Individuals with comorbidities of GU and DU were additionally 
categorized into group BU. Individuals without a given diagnosis of 
peptic ulcers or any HP-related diseases (GU, DU or GC) were used as 
control samples (Supplementary Table 1). The cohorts and phenotypes 
that were first reported in the present study have been summarized in 
Supplementary Table 41.

Genotyping and imputation
All samples included in the east Asian-specific analysis are genotyped 
using commercially available genotyping arrays. QC of autosomal 
genotypes was performed as described previously. Detailed informa-
tion on genotyping arrays and QC procedures are provided in Sup-
plementary Note64.

Pre-phasing was conducted using Eagle2 (v.2.4.1; https://alkes-
group.broadinstitute.org/Eagle)65. Imputation was performed with 
Minimac4 (v.1.0.2; https://github.com/statgen/Minimac4) using 
the 1000 Genomes Project Phase 3 (ref. 11) v.5 (1KGp3v5) ALL panel  
(https://genome.sph.umich.edu/wiki/Minimac3#Reference_Pan-
els_for_Download). BBJ1-12K and BBJ2-42K were additionally imputed 
with the 1KG high-coverage reference panel66 (GRCh38). For chro-
mosome X, haplotypes were pre-phased for men and women, and 
variants were imputed separately in men and women using the same  
software. Imputed variants with R2 < 0.3 were excluded in the asso-
ciation analysis. More than 12 million variants were included in the 
discovery-stage association analysis.

Genome-wide association analysis
Single-variant association analysis was performed with SAIGE (v.0.44; 
https://github.com/weizhouUMICH/SAIGE)12, which implements a gen-
eralized mixed model with SPA correction controlling for case–control 
imbalance and cryptic relatedness. The regression included age, sex 
and the top ten PCs as covariates. For step 1, LD-pruned genotyped 
variants (PLINK–indep-pairwise 50 5 0.2, https://www.cog-genomics.
org/plink)67 with MAF > 1% were used to estimate the null models with 
leave one chromosome out (LOCO). Variants with MAC < 20 were 
excluded from the association tests (step 2). For sex-stratified analysis, 
single-variant association analyses were performed with SAIGE, adjust-
ing for the same set of covariates other than sex in men and women.

For association tests of the X chromosome, variants were tested 
separately in men and women using the corresponding null models 

estimated by autosomes in each sex. Haploid-based dosages of the 
nonpseudo autosomal region of men were multiplied by 2. The results 
for each sex were then meta-analyzed using IVW methods implemented 
in METAL software (v.2011-03-25, http://csg.sph.umich.edu/abecasis/
Metal/index.html)68.

Genome-wide significant loci were determined by iteratively 
extending 500-kb flanking regions around the most significant variant 
until no genome-wide significant variant (P < 5.0 × 10−8) was detected 
within the extended regions. The most significant variant in each locus 
was selected as the lead variant. Loci for different traits with lead vari-
ants within 500 kb of each other were considered the same, denoted by 
the most significant lead variant from the locus. Significant variants in 
the major histocompatibility complex (MHC) region (GRCh37, chromo-
some 6: 25–34 Mb) were counted as one locus due to the complexity 
of the region.

LDSC
We performed LDSC (v.1.0.0; https://github.com/bulik/ldsc)14 to 
examine the bias caused by confounding factors, such as population 
stratification or cryptic relatedness. We employed the LD scores pro-
vided by authors for the east Asian population, which were estimated 
from 1KG EAS individuals. To convert observed-scale heritability to 
liability-scale heritability, the population prevalence rates in east Asian 
populations were set to 6.2%, 6.9%, 10.8% and 1.8% for DU, GU, PUD 
and BU, respectively. The prevalence rates were estimated from the 
population-based TMM-50K and were similar to those in previous 
epidemiological studies1.

Replication of significant associations and EAS-specific 
meta-analysis
We compared the directions and effect sizes with the replication 
GWAS sets for the lead variants of significant loci identified in the 
discovery-stage GWASs. The results of GWASs at the discovery and rep-
lication stages were combined using the fixed-effect, inverse-variance 
method implemented in METAL. Heterogeneity was estimated by 
Cochran’s Q test. In addition, the random-effects model implemented 
in GWAMA69 was employed to evaluate the heterogeneity (Supple-
mentary Note and Supplementary Fig. 33). We considered the lead 
variants identified in discovery-stage GWASs as replicated if the vari-
ants reached a nominal significance threshold (Prep < 0.05) in the same 
direction in at least two of the replication GWASs.

Cross-ancestry meta-analysis
Summary statistics of PUD and PUD subtypes for European individuals 
were obtained from FinnGen (release 6 for PUD, DU and GU; https://
www.finngen.fi/en/access_results)15, a published GWAS of PUD in UKB 
(https://cnsgenomics.com/content/data)5 and PheWeb UKB-SAIGE12 
(DU and GU; https://pheweb.org/UKB-SAIGE) (details in Supplemen-
tary Table 7).

Genome coordinates of summary statistics were converted from 
GRCh38 (hg38) to GRCh37 (hg19) using the University of California 
Santa Cruz LiftOver tool70 if the original summary statistics were based 
on GRCh38. We performed additional QC, variant normalization71 and 
harmonization for all summary statistics before meta-analyses. Details 
of QC and harmonization are presented in Supplementary Note.

The fixed-effect, inverse-variance method was used to conduct 
meta-analyses integrating GWAS results in EAS and EUR populations 
using METAL. We additionally performed fixed-effect meta-analyses 
to generate EUR-specific summary statistics using the two EUR data-
sets. Population-specific meta-analyses were used to compare the 
effect sizes of lead variants identified in cross-ancestry meta-analyses 
between EAS and EUR populations. To investigate potential associations 
in GRCh38-specific regions, we further conducted a cross-ancestry 
meta-analysis combining GRCh38-based datasets (Supplementary 
Note and Supplementary Figs. 34–35).
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MR-MEGA (v.0.2: http://www.geenivaramu.ee/en/tools/
mr-mega)16 was used to perform cross-ancestry meta-regression with 
four axes of genetic variation derived via multidimensional scaling.  
P values were recalculated using the χ2 statistic due to the lack of sup-
port in MR-MEGA for P < 1.0 × 10−14.

Genetic correlation estimation
To assess the genetic correlation between PUD and common binary 
traits and quantitative traits in east Asian populations, we used 
cross-trait LDSC28 with LD scores estimated from 1KG EAS individuals. 
East Asian summary statistics were obtained from previous GWASs in 
BBJ29,30. The MHC region was excluded.

To evaluate the cross-ancestry correlations of genetic effect for 
PUD and subtypes between EAS and EUR, Popcorn (v.1.0: https://github.
com/brielin/Popcorn)17 was used with pre-computed cross-ancestry 
LD scores estimated from 1KG EUR and EAS populations. For these 
analyses, meta-analyzed summary statistics of PUD in EAS and EUR for 
HapMap3 SNPs (without the MHC region) were used.

Blood group and secretor status interaction analysis
ABO blood groups for unrelated individuals used in discovery-stage 
GWASs in BBJ1-180K (KING kingship coefficient72 <0.0884, 
n = 164,613) were inferred from two genotyped variants described 
previously2. Secretor status was inferred using the best-guess geno-
type of imputed variants rs1047781 (p.Ile140Phe)73, where AA or AT 
genotypes are secretors and TT are nonsecretors. Logistic regres-
sion was performed to examine (1) the association of blood group 
or secretor status with PUD and (2) blood group O-secretor status 
interaction. Details on the logistic regression are described in Sup-
plementary Note.

Conditional analysis by COJO
GCTA-COJO (v.1.93.2; https://yanglab.westlake.edu.cn/software/
gcta/#COJO)18 was employed to perform conditional analysis in 
each significant locus identified in EAS-specific meta-analysis of 
PUD and subtypes. We constructed an LD reference panel using 
the best-guess imputed genotype of 20,000 randomly selected 
and unrelated individuals of east Asian ancestry from BBJ1-180K. 
Stepwise model selection was conducted first to select independ-
ent association signals (P < 5.0 × 10−8) and a joint analysis of these 
selected signals was performed next. Variants with MAF > 0.01 were 
included in the analysis.

Fine-mapping and variant annotation
Fine-mapping was conducted using SuSiE (v.0.11.92; https://github.
com/stephenslab/susieR)19 with default configurations while allowing 
ten putative causal variants within each locus. Unrelated individuals 
(KING kingship coefficient <0.0884, n = 171,085) from BBJ1-180K were 
used as LD reference, computed by LDstore (v.2.0; http://www.chris-
tianbenner.com)74 based on the imputed dosages.

We defined regions based on the 3-Mb window centered at the lead 
variants and merged them if the window overlapped. Only variants 
with R2 ≥ 0.5 were included in fine-mapping. We reported the missense 
variants in credible sets, which have a 95% probability of harboring 
one causal variant.

Variants identified in the GWASs were annotated using ANNOVAR 
(v.2020-06-07; -protocol refGene,avsnp150,clinvar_20200316; https://
annovar.openbioinformatics.org/en/latest)75. Chromatin states (core 
15-state model) for stomach mucosa and duodenum mucosa were 
obtained from the Roadmap Epigenomics Project76. Allele frequencies 
for variants not available in population-specific meta-analysis were 
obtained from the Genome Aggregation Database77 (https://gnomad.
broadinstitute.org) or the 1KG. LocusZoom78 was used to create the 
region plot.

HP-stratified analysis
To investigate the interaction of HP with host genetic factors for the 
development of peptic ulcers, we performed HP-stratified analyses in 
HP+ and HP− individuals from TMM-50K. HP infection status was deter-
mined by anti-HP serum immunoglobulin (Ig)G antibody, measured by 
the latex agglutination immunoassay. Individuals with anti-HP serum 
IgG antibody titer ≥10 U ml−1 were categorized as HP+. Association 
tests were performed with the same settings as in the discovery-stage 
GWASs. Cochran’s Q and I² statistics (calculated by R package metafor 
v.3.4: https://www.metafor-project.org/doku.php)79 were used to 
test the effect-size heterogeneity between HP+ and HP− GWASs for 
each subtype. As stratified analysis could reduce power and lead to 
false-negative results, we estimated the power of GWASs of HP− PUD 
for the identified HP+-specific variant. (Supplementary Fig. 36).

Colocalization analysis was conducted using the coloc package 
(v.5.1.0; https://chr1swallace.github.io/coloc)80 for each significant 
locus identified in EAS meta-analysis under a single causal variant 
assumption. For loci with multiple independent signals identified in 
the conditional analysis, coloc was applied to the signals identified 
by SuSiE81.

Estimation of polygenicity using SBayesS
To estimate the polygenicity (defined as the proportion of SNPs with 
nonzero effects) and the strength of negative selection (defined as the 
relationship between MAF and effect sizes, and denoted by S) for PUD, 
we utilized SBayesS from GCTB software (v.2.0: https://cnsgenomics.
com/software/gctb/#Overview)32. SBayesS employs a Bayesian mixed 
linear model and reports the posterior means of SNP-based heritability, 
polygenicity estimates and a metric that indicates negative selection.

An LD reference panel for EAS was constructed using the approach 
described previously32. For a crosstrait comparison of polygenicity 
estimates in EAS, we included 42 binary traits of BBJ1 in the analysis35. 
Details of the construction of the LD reference and parameters for 
SBayesS are provided in Supplementary Note30.

PRS construction and evaluation
PRS models for PUD and PUD subtypes were constructed in east 
Asians. We used the summary statistics derived from replication 
GWASs and HP-stratified analysis in the population-based Japanese 
cohort TMM-50K. PRS-CS (v.2021-Jun-4, https://github.com/getian107/
PRScs)35 and Python (v.3.8.8) were employed to compute PRS models 
using HapMap3 SNPs with an EAS-specific LD reference panel from 
the 1KG. Global shrinkage parameters were obtained from the data by 
PRS-CS using a fully Bayesian approach (PRS-CS-auto). We applied the 
models in BBJ1-180K and then tested the associations of PRS with PUD 
and PUD subtypes using logistic regression adjusted for age, sex and 
the top five PCs. We evaluated the predictive ability of each PRS model 
by its improvement of the area under the curve and R2 on the liability 
scale82 over a base model that includes age, sex and the top five PCs.

Two-sample MR analysis
MR analysis was performed using TwoSampleMR36 to evaluate the cau-
sality of PUD or its subtypes on GC. To avoid sample overlap between 
the exposure and outcome, we conducted an additional meta-analysis 
combing GWASs for PUD and its subtypes in BBJ1-12K, BBJ2-42K and 
TMM-50K. A total of 23 available independent variants identified in 
the EAS-specific meta-analysis were used as instrumental variables. 
To avoid bias caused by weak instruments, we further estimated 
per-variant F statistics for each exposure and removed variants with 
F < 10 from the instrumental variables for the exposure. MR-PRESSO37 
was employed to correct for the horizontal pleiotropic variants. The 
summary statistics for GC were obtained from the previous study 
conducted in BBJ1-180K30. Statistical power for MR was approximately 
estimated using methods described previously83. Compared with MR 
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using all available variants, the pleiotropic outlier correction may result 
in insufficient power (Supplementary Fig. 24).

Gene-based analysis and pathway analyses
Gene-based and pathway analyses were performed using MAGMA 
(v.1.08: https://ctg.cncr.nl/software/magma)38 implemented in FUMA 
(v.1.3.8: https://fuma.ctglab.nl)39. An LD reference panel constructed 
from 1KG EAS population was used. A total of 19,033 protein-coding 
genes (ENSEMBL84 v.92) were tested. The results of the gene-based 
analysis were then employed to conduct gene-set enrichment analysis 
with a total of 15,485 curated gene sets and gene ontology terms from 
MsigDB65 v.7.0. We conducted pairwise comparisons of the −log10(P) 
values generated by MAGMA, using a range of window sizes to evaluate 
the robustness of the association results in gene-based, tissue-type 
specificity and cell-type specificity analyses discovered by MAGMA; 
the effect of window size selection was marginal (Supplementary 
Figs. 37–39).

Per-allele effect-size comparison
For pairwise effect-size (logarithm of ORs) comparison among PUD, 
PUD subtypes and GCs in the EAS population, we selected the nono-
verlapping (interval between adjacent variants >500 kb) lead variants 
identified by EAS-specific meta-analysis and the independent signals 
identified by COJO analysis. For loci associated with two or more phe-
notypes, we selected the most significant associations (lead variants 
with the lowest P value) for comparison. Effect sizes in EAS-specific 
meta-analysis were used for PUD and PUD subtypes. Summary sta-
tistics for GCs were obtained from a previous study in BBJ1-180K13. 
For cross-ancestry comparison of variant effect sizes, we included all 
nonoverlapping lead variants associated with PUD or any subtypes in 
population-specific meta-analysis or cross-ancestry meta-analysis. 
Associations, with the lowest P values, of loci associated with more 
than one phenotype were selected for comparison and effect sizes 
in the population-specific meta-analysis were used. Cochran’s Q test 
was used to test heterogeneity across the effect sizes. In addition, we 
compared the WC-corrected effect sizes of the lead variants identified 
in the EAS meta-analysis in the present study and the variants reported 
in UKB5 using the methods described previously85,86.

PheWAS in BBJ
To investigate whether variants associated with PUD were also associ-
ated with other human complex traits in EAS, statistics of the nono-
verlapping lead variants and secondary signals for 215 case–control 
and quantitative traits were obtained from BBJ PheWeb (https://
pheweb.jp)7. The LD proxy (LD r2 > 0.6) with the highest r2 estimated 
from 1KG EAS was used if a variant was unavailable in the datasets. 
After multiple-test corrections, the significance threshold was set to 
P < 8.6 × 10−6.

Tissue- and cell-type specificity analysis
MAGMA38 gene-property analysis implemented in the SNP2GENE 
method of FUMA39 was employed for tissue-type specificity analysis 
with gene expression profile from the GTEx v.8 dataset21. A total of 54 
nondiseased tissue types and 30 general tissue types were tested. Tis-
sue types with an FDR < 5% were considered significant.

To identify the cell types associated with PUD in the stomach and 
duodenum, processed scRNA-seq datasets of the human stomach and 
duodenum were obtained from a previous study48, which filtered for 
cells with >1,500 transcripts per cell and genes expressed by at least 
three transcripts in at least one cell. A total of 13,980 genes for 19 cell 
types in the stomach and 17 cell types in the duodenum were included 
in the study. The top 10% most specifically expressed genes based on 
fold-change (defined as the average transcript counts of all cell types 
except the target cell type divided by the average transcript counts 
of the target cell type) were extracted for each cell type. SNPs in 

cell-type-specific genes were used to compute partitioned LD scores 
in the 1KG Phase 3 EAS or EUR population. The gene coordinates 
were extended by a window size of 100 kb to capture the effects of 
regulatory elements. Stratified LDSCs49 were performed using the 
partitioned LD scores of cell-type-specific genes, partitioned LD 
scores of all available genes in the dataset and the baseline model of 
53 annotations for each ancestry on HapMap3 SNPs, excluding the 
MHC region (downloaded from https://alkesgroup.broadinstitute.
org/LDSCORE).

We performed gene-set enrichment analysis using MAGMA with 
the cell-type-specific gene sets described above. We used 1KG Phase 
3 EAS and EUR population datasets as reference panels. Variants with 
MAF < 0.01 or in the MHC region were excluded from the analysis. The 
gene coordinates were extended by window sizes of 35 kb upstream and 
10 kb downstream. IVW meta-analysis was performed using statistics 
of both ancestries for each method to increase statistical power. P val-
ues were calculated using the one-tailed test. Cell types with FDR < 5% 
within each expression dataset were considered significant.

The eQTL and pQTL analyses
To characterize the effect of variants on gene expression level, we 
extracted LD proxies (with LD r2 > 0.6) in EAS or EUR 1KG Phase 3 with 
the lead variants and secondary signals in EAS. We extracted only sig-
nificant SNP–gene pairs with FDR < 5% (pre-computed by the authors) 
from GTEx v.8 (ref. 21). We checked the overlap between the lead vari-
ants and secondary signals (including proxies) and cis-eQTL variants 
in GTEx v.8. The most significant cis-eQTL association for each gene in 
each tissue was selected for interpretation.

To characterize the effect of variants on protein level, we 
extracted LD proxies (with LD r2 > 0.6) in EAS or EUR 1KG Phase 3 
with the lead variants and secondary signals in EAS. We extracted 
genome-wide significant SNP–protein associations from five pub-
lished, large-scale pQTL studies in recent years22,24–27, conducted 
in individuals of mainly European ancestry. We then checked the 
overlap between the lead variants (including LD proxies) with cis- and 
trans-pQTL. The most significant association for each protein was 
selected for interpretation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Summary statistics for GWAS of PUD and PUD subtypes in BBJ1-
180K, BBJ1-12K and BBJ2-42K, and EAS-specific and cross-ancestry 
meta-analysis summary statistics are available at the National Biosci-
ence Database Center (NBDC, https://humandbs.biosciencedbc.jp) 
Human Database (research ID: hum0311) and Japanese ENcyclopedia 
of GEnetic associations by Riken ( JENGER, http://jenger.riken.jp/result; 
case–control GWAS nos. 135–155). EAS-specific and cross-ancestry 
meta-analysis summary statistics are additionally deposited to the 
European Bioinformatics Institute GWAS catalog (https://www.ebi.
ac.uk/gwas) (study accession nos. GCST90270926–GCST90270932). 
Summary statistics derived from TMM-50K (GWAS of PUD and PUD 
subtypes; HP-stratified analysis) are available at the Japanese Multi 
Omics Reference Panel ( jMorp, https://jmorp.megabank.tohoku.ac.jp; 
ID: TGA000011). Genotype data for BBJ were deposited at the NBDC 
Human Database (BBJ1-180K, research ID: hum0014; BBJ1-12K and 
BBJ2-42K, research ID: hum0311). Summary statistics for European indi-
viduals were obtained from FinnGen release 6 (https://www.finngen.
fi/en/access_results) and UKB datasets (https://cnsgenomics.com/
content/data and https://pheweb.org/UKB-SAIGE). Summary statis-
tics for other traits in BBJ were obtained from JENGER (http://jenger.
riken.jp), BBJ PheWeb (https://pheweb.jp/phenotypes) and NBDC  
(research ID: hum0014).
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Code availability
Publicly available software and packages were used for bioinformatics 
analysis in the present study. The software and packages used in each 
analysis are described in Methods and Nature Portfolio Reporting 
Summary.
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