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The UGT2A1/UGT2AZ2 locus is associated with
COVID-19-related loss of smell or taste

Janie F. Shelton, Anjali J. Shastri, Kipper Fletez-Brant

Stella Aslibekyan and Adam Auton® <

Using online surveys, we collected data regarding COVID-19-
related loss of smell or taste from 69,841 individuals. We
performed a multi-ancestry genome-wide association study
and identified a genome-wide significant locus in the vicinity
of the UGT2A1 and UGT2A2 genes. Both genes are expressed
in the olfactory epithelium and play a role in metabolizing
odorants. These findings provide a genetic link to the bio-
logical mechanisms underlying COVID-19-related loss of
smell or taste.

Loss of sense of smell (anosmia) or taste (ageusia) are distinctive
symptoms of COVID-19 and are among the earliest and most often
reported indicators of the acute phase of SARS-CoV-2 infection. It
is notable from other viral symptoms in its sudden onset and the
absence of mucosal blockage'. While a large fraction of COVID-19
patients report loss of smell or taste, the underlying mechanism
is unclear’. In this study, we conducted a genome-wide associa-
tion study (GWAS) of COVID-19-related loss of smell or taste,
having collected self-reported data from over 1 million 23andMe
research participants as described previously’. By asking study par-
ticipants to report the symptoms they encountered during their
COVID-19 experience, we identified SARS-CoV-2 test-positive
individuals who reported a loss of smell or taste and contrasted
them with test-positive individuals who did not report a loss of smell
or taste.

Of the individuals who self-reported having received a
SARS-CoV-2 positive test, 68% reported loss of smell or taste as
a symptom (47,298 out of a total of 69,841 individuals). Female
respondents were more likely than male respondents to report this
symptom (72% versus 61%; chi-squared test, P=5.7x107'"%) and
those with this symptom were typically younger than those with-
out this symptom (mean age of 41 years for those with loss of smell
or taste versus 45 years for those without; P=2.34x 107", Welch’s
t-test). Among genetically determined ancestral groups, rates of loss
of smell or taste ranged between 63% and 70% (Table 1). As expected,
compared to other symptoms surveyed, loss of smell or taste was
much more common among those with a SARS-CoV-2 positive test
compared to those who self-reported other cold or flu-like symp-
toms but who tested negative for SARS-CoV-2 (Extended Data
Fig. 1). In a logistic regression model predicting loss of smell or taste
as a function of age, sex and genetic ancestry, individuals of East
Asian or African American ancestry were significantly less likely to
report loss of smell or taste (odds ratio (OR) =0.8 and 0.88, respec-
tively) relative to individuals of European ancestry (Supplementary
Table 1).

For unrelated individuals with complete data, we conducted
GWAS within each ancestry group separately (total sample
size=56,373) before performing a multi-ancestry meta-analysis

, The 23andMe COVID-19 Team*,

Table 1| Sample sizes and percentages comparing self-reported
loss of smell or taste versus no loss of smell or taste among
those with a positive SARS-CoV-2 test result

Positive SARS-CoV-2 test result

Lossof % Noloss % Total,n
smell or of smell
taste, n or taste,
n
Total 47298 68 22543 32 69,841
Sex Female 31,608 72 12562 28 44170
Male 15,690 61 9,981 39 25671
Age <25 6,276 71 2,620 29 8,896
26-35 13,855 73 5134 27 18,989
36-45 10,539 70 4,552 30 15,091
46-55 8,321 67 4,080 33 12,401
56-65 5,673 62 3,522 38 9,195
66-75 2,059 51 1,945 49 4,004
>75 574 45 689 55 1,263
Ancestry European 33,336 67 16,257 33 49,593
Latino 9,233 70 3,944 30 13177
African 1,860 66 949 34 2,809
American or
Black
East Asian 626 65 338 35 964
South Asian 284 63 167 37 451
Other 1,959 69 888 31 2,847

using a fixed effects model. Each input GWAS was adjusted for
inflation via genomic control (41=1.029, 1.037, 1.024, 1.042 and
1.071 within the European, Latino, African American, East Asian
and South Asian ancestry GWAS, respectively), as was the sub-
sequent meta-analysis (4=1.001). Within the multi-ancestry
meta-analysis, we identified a single associated locus at chr4q13.3
(Fig. 1). No other locus achieved genome-wide significance in the
multi-ancestry meta-analysis or in any of the input populations.
The index SNP at this locus was rs7688383 (C/T, with T being the
risk allele, P=1.4x 107", OR=1.11). While most of the support for
this genetic association within the multi-ancestry analysis comes
from the European population (for which we have the largest sam-
ple size), the estimated effect sizes are consistent across populations
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Fig. 1| Manhattan plot and regional plot for the ‘loss of taste or smell' phenotype comparing SARS-CoV-2-positive individuals with and without this
symptom. a, Manhattan plot. SNPs achieving genome-wide significance are highlighted in red. The nearest gene to the index SNP is indicated above the
relevant association peak. b, Regional plot around the UGT2A1/UGT2A2 locus. The colors indicate the strength of linkage disequilibrium (r?) relative to the
index SNP (rs7688383). Imputed variants are indicated with '+’ symbols; coding variants are indicated with 'x’ symbols. Where imputed variants were not
available, directly genotyped variants are indicated by ‘o’ symbols; coding variants are indicated by diamond symbols.

(Supplementary Table 2). The credible set from the multi-ancestry We performed a phenome-wide association study on the index
analysis contained 28 variants covering a 44.6-kilobase (kb) region ~ SNP across approximately 1,300 phenotypes defined in the 23andMe
(chr4:69.57-69.62 megabases (Mb); Supplementary Table 3). database. We identified four additional associated phenotypes with
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P<1x107%, of which two are related to the ability to smell, one is
related to ice cream taste preference and one is related to tobacco
use (Supplementary Table 4). We detected no other associations
with COVID-19 symptoms, susceptibility or severity.

There are four genes within 150kb of the association (UGT2A1,
UGT2A2, UGT2B4, SULT1BI), with the index variant itself being
within an intron of the overlapping UGT2A1 and UGT2A2 genes.
While the GWAS index variant appears to be physically proximal
to expression quantitative trait loci (eQTLs) for UGT2A1, evidence
for colocalization between the GWAS and eQTLs for any of the
nearby genes is generally weak (Supplementary Note and Extended
Data Figs. 2 and 3). Nonetheless, of the four genes in the vicinity,
UGT2AI and UGT2A2 are not only the most proximal but also the
most biologically plausible causal gene candidates. UGT2AI and
UGT2A2 are part of a family of uridine diphosphate glycosyltrans-
ferases, enzymes that metabolize lipophilic substrates through con-
jugation with glucoronic acid. During olfaction, animal studies show
that these enzymes, which are expressed in the olfactory epithelium,
are involved in the elimination of the odorants that enter the nasal
cavity and bind to olfactory receptors. For example, glucuronidation
of odorants fails to stimulate the olfactory bulb, which prevents the
odor from being detected by the brain, functionally demonstrating
the effect of the enzyme produced by these genes on the odorant’.
This results in the clearance of the odorant to facilitate the transient
experience of olfaction, once the stimuli are no longer present in the
environment’. UGT2A2 is a splice variant of UGT2A 1, with identical
C-terminal residues but different N termini®. Conversely, UGT2B4
and SULTIBI appear less plausible from a biological perspective,
with neither having a clear link to olfactory or gustatory function.

While mechanistic explanations have been proposed’ for
COVID-19-related loss of smell, experimental studies suggest that
loss of smell is related to damage to the cilia and olfactory epithelium
but not infection of the olfactory neurons. For example, in an exper-
iment where hamsters were nasally infected with SARS-CoV-2, the
olfactory epithelium and cilia became very damaged, which can com-
pletely inhibit the ability to smell, but no infection was observed in
the olfactory neurons®. Recent evidence suggests that SARS-CoV-2
enters and accumulates in olfactory support cells, specifically, sus-
tentacular cells, which unlike olfactory neurons abundantly express
the viral entry proteins angiotensin-converting enzyme 2 (ACE2)
and transmembrane protease serine 2 (TMPRSS2; refs. *'%). These
support cells are metabolically and functionally associated with
olfactory neurons and with odorant signal transduction (processing
odorants by endocytosing the odorant-binding protein complex,
detoxifying, maintaining the cilia of mature olfactory receptor neu-
rons and maintaining epithelial integrity). It has been proposed that
olfactory sensation is impaired when these essential functions are
disrupted, causing ciliary impairment’. How UGT2A1 and UGT2A2
are involved in this process is unclear but given their localization
and essential function in metabolizing and detoxifying such com-
pounds, these genes may play a role in the physiology of infected
cells and the resulting functional impairment that contributes to
loss of ability to smell. Notably, the variant identified in this study
also appears to be associated with general ability to smell, which
may suggest that those with heightened smell or taste sensitivity
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may be more prone to notice a loss of these senses resulting from a
SARS-CoV-2 infection.

Our study has several limitations. First, while our study was large
in scale, it was biased toward individuals of European ancestry and
lacked a replication cohort. Second, we relied on self-reported case
and symptom status; replication within a cohort with clinical ascer-
tainment could be beneficial. Third, given that loss of smell or taste
were combined in a single survey question, we cannot further disen-
tangle these two symptoms. Loss of smell without loss of taste may
be distinct from loss of both or loss of taste without loss of smell.
Given this, it is unclear if our findings relate more strongly to one
symptom or the other.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
$41588-021-00986-w.
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Methods
Overview of study recruitment and data collection. Participants in this study
were recruited from the customer base of 23andMe, a personal genetics company.
Participants provided informed consent and participated in the research online,
under a protocol approved by the external Association for the Accreditation of
Human Research Protection Programs-accredited institutional review board,
Ethical and Independent Review Services. Participants were included in the
analysis based on consent status as checked at the time data analyses were initiated.
Full details of the data collection paradigm for this study have been
described previously®. In brief, primary recruitment was carried out by email to
approximately 6.7 million 23andMe research participants over 18 years of age
and living in the USA or UK. Additionally, pre-existing customers were invited
to participate in the study through promotional materials on the 23andMe
website, the 23andMe mobile application and via social media. Study participation
consisted solely of web-based surveys, including an initial baseline survey and
three follow-up surveys fielded each month after completion of the baseline
survey. The surveys collected information regarding individuals’ experiences with
COVID-19 and included questions regarding recently experienced symptoms
with or without a SARS-CoV-2 positive test. Enrollment continued after the initial
recruitment efforts until a data freeze was taken for this study in March 2021, when
1.3 million participants had completed the baseline survey.

Phenotype definition for GWAS. Using the information derived from the
surveys, we defined a phenotype to contrast SARS-CoV-2 positive individuals
that experienced COVID-19-related loss of smell or taste from those who did

not. Specifically, participants were asked to respond to the question ‘Have you
been tested for COVID-19 (coronavirus)?, with possible responses ‘Yes, it was
positive/Yes, it was negative/No/My results are pending/I'm not sure. Of those who
responded ‘Yes, it was positive, we further considered the question ‘During your
illness, did you experience any of the following symptoms?} to which participants
could select as many as needed from the following list of responses: ‘Muscle or
body aches/Fatigue/Dry cough/Sore throat/Coughing up of sputum or phlegm
(productive cough)/Loss of smell or taste/Chills/Difficulty breathing or shortness
of breath/Pressure or tightness in upper chest/Diarrhea/Nausea or vomiting/
Sneezing/Loss of appetite/Runny nose/Headache/Intensely red or watery eyes. We
defined cases as SARS-CoV-2 test-positive individuals who also reported ‘Loss

of smell or taste) and controls as SARS-CoV-2 test-positive individuals who did
not report ‘Loss of smell or taste. While some participants reported a COVID-19
diagnosis absent a confirmed positive test for SARS-CoV-2, we did not include
such individuals within this analysis.

Descriptive statistics. Sample sizes and proportions were calculated by age, sex
and ancestry. Differences in loss of smell or taste by sex were statistically evaluated
with a chi-squared statistics and mean differences in age were evaluated with a
t-test. A logistic regression model was constructed to evaluate loss of smell or taste
as a function of ancestry, age (categorical) and sex. All analyses were conducted in
Rv.3.6.3.

Genotyping and SNP imputation. DNA extraction and genotyping

were performed on saliva samples by Clinical Laboratory Improvement
Amendments-certified and College of American Pathologists-accredited clinical
laboratories of Laboratory Corporation of America. Samples were genotyped on
one of five genotyping platforms. The V1 and V2 platforms were variants of the
Illumina HumanHap550 BeadChip and contained a total of about 560,000 SNPs,
including about 25,000 custom SNPs selected by 23andMe. The V3 platform was
based on the Illumina OmniExpress BeadChip and contained a total of about
950,000 SNPs and custom content to improve the overlap with our V2 array. The
V4 platform was a fully custom array of about 950,000 SNPs and included a lower
redundancy subset of V2 and V3 SNPs with additional coverage of lower-frequency
coding variation. The V5 platform was based on the Illumina Global Screening
Array, consisting of approximately 654,000 preselected SNPs and approximately
50,000 custom content variants. Samples that failed to reach 98.5% call rate were
reanalyzed. Individuals whose analyses failed repeatedly were recontacted by the
23andMe customer service to provide additional samples as done for all 23andMe
customers.

Participant genotype data were imputed using the Haplotype Reference
Consortium (HRC) panel'’, augmented by the phase 3 1000 Genomes Project
panel' for variants not present in the HRC. We phased and imputed data for
each genotyping platform separately. For the non-pseudoautosomal region of the
X chromosome, males and females were phased together in segments, treating
males as already phased; the pseudoautosomal regions were phased separately.
We then imputed males and females together, treating males as homozygous
pseudo-diploids for the non-pseudoautosomal region.

GWAS. Genotyped participants were included in the GWAS analyses on the basis
of ancestry as determined by a genetic ancestry classification algorithm'’. We
selected a set of unrelated individuals so that no 2 individuals shared more than
700 cM of DNA identical by descent (IBD). If a case and a control were identified
as having at least 700 cM of DNA IBD, we preferentially discarded the control from
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the sample. This filtering paradigm resulted in approximately 1.76% of the sample
being excluded.

We tested for association using logistic regression, assuming additive allelic
effects. For tests using imputed data, we used the imputed dosages rather than
best-guess genotypes. We included covariates for age, age squared, sex, a sex:age
interaction, the top ten principal components to account for residual population
structure and dummy variables to account for the genotyping platform. The
association test P value was computed using a likelihood ratio test, which in our
experience is better behaved than a Wald test on the regression coefficient. Results
for the X chromosome were computed similarly, with men coded as if they were
homozygous diploid for the observed allele.

We combined the GWAS summary statistics from both genotyped and imputed
data. When choosing between imputed and genotyped GWAS results, we favored
the imputed result, unless the imputed variant was unavailable or failed quality
control. For imputed variants, we removed variants with low imputation quality
(< 0.5 averaged across batches or a minimum %< 0.3) or with evidence of
batch effects (analysis of variance (ANOVA) F-test across batches, P < 10~). For
genotyped variants, we removed variants only present on our V1 or V2 arrays (due
to small sample size) that failed a Mendelian transmission test in trios (P <107%),
failed a Hardy-Weinberg test in individuals of European ancestry (P < 10-%°), failed
a batch effect test (ANOVA P< 107*) or had a call rate <90%.

We repeated the GWAS analysis separately in each population cohort for which
we had sufficient data (European, Latino, African American, East Asian and South
Asian ancestry); the resulting summary statistics were adjusted for inflation using
genomic control when the inflation factor was estimated to be greater than 1. We
then performed multi-ancestry meta-analysis using a fixed effects model (inverse
variance method'), restricting to variants of at least 1% minor allele frequency in
the pooled sample and minor allele count> 30 within each subpopulation. Both the
input GWAS and resulting meta-analysis were adjusted for inflation using genomic
control where necessary.

We identified regions with genome-wide significant associations. We defined
the region boundaries by identifying all SNPs with P < 10~ within the vicinity
of a genome-wide significance association and then grouping these regions into
intervals so that no 2 regions were separated by less than 250 kb. We considered
the SNP with the smallest P value within each interval to be the index SNP. Within
each region, we calculated a credible set using the method of Maller et al.”>.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The full set of de-identified summary statistics can be made available to qualified
investigators who enter into an agreement with 23andMe that protects participant
confidentiality. Interested investigators should visit https://research.23andme.com/
covid19-dataset-access/.
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Extended Data Fig. 1| Self-reported symptoms experienced during SARS-CoV-2 infection with a positive test (n = 69,841) as compared to individuals
self-reporting cold or flu-like illness but with a negative SARS-CoV-2 test (n=314,441). Loss of smell or taste was reported by 68% of individuals with a
positive test for SARS-CoV-2 infection.
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Extended Data Fig. 2 | Conditional association LocusZoom plots for rs768838. Lack of evidence for conditional associations. Left, LocusZoom plot of
primary association in the European population prior to conditional analysis. Right, LocusZoom plot of the same region having included rs7688383 in the

regression model.
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Extended Data Fig. 3 | Examples of eQTL associations for UTG2A1, UGT2B4, and SULT1B1. eQTL association plots for UGT2AT (left), UGT2B4 (middle),
and SULT1BT (right). No eQTL associations were observed for UGT2A2. For each gene, the three tissues with the strongest eQTL associations are shown.
Colors represent the linkage disequilibrium with the GWAS index SNP (rs7688383).
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