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Medical data are used by academia and medical institutions 
in research to improve human health. Medical and health 
data are also considered a valuable commodity by insur-

ance companies, technology giants and countries. In reality, the 
access to and usability of medical data—as represented by the new 
field of medical data sciences—progresses slowly. These current 
limitations substantially affect the field of population and clinical 
genomics, which relies on the quality of data and on access to large 
numbers of individuals. In fact, genome analysis alone has limited 
value, but these data can be linked to electronic medical record 
(EMR) data to create research value. Even in the best-supported 
population initiatives, access to metadata (for example, pheno-
types and demographics) is absent (for example, gnomAD, https://
gnomad.broadinstitute.org/) or limited (for example, UK Biobank, 
https://www.ukbiobank.ac.uk/), and in many cases the data rep-
resent only a snapshot of a person in time. These limitations are 
present even though medical institutions generate massive amounts 
of qualitative and quantitative data1. The integration of multiple 
modalities involves data sharing and analysis, which are strongly 
connected with other aspects of data protection and liability issues.

A lack of unified nomenclature exemplifies the different cultures 
and technical worlds that use medical data: the field of population 
genomics refers to metadata (including observable traits and phe-
notypes); the field of medicine uses the term diagnosis; and the field 
of machine learning uses labels. At a deeper level, understanding 
of the requirements for effective and responsible use (minimum 
necessary) of medical information remains incomplete. Progress is 
unequal: there is a developing corpus of regulations and require-
ments aiming to uphold the ethical use and protection of the data. 
There is also a large capacity for generating human sequence data 
and other types of large-scale data that are highly digitized, such 
as medical images. Progress in artificial intelligence (machine and 
deep learning) has been remarkable in terms of computational 
power and algorithms. The number of deep-learning applications 
in genomics is increasing2. Bottlenecks exist at the very basic level of 
data management, including standardization, capture, storage and 
retrieval. In addition, there is limited awareness and a lack of imple-
mentation of emerging technologies for data protection and secure 
analytics. Themes of genomics, bioinformatics, genomic medicine, 
ethics, data sharing, privacy and community engagement are par-
ticularly relevant to the Electronic Medical Records and Genomics 
Network (eMERGE; https://emerge-network.org/).

In this Perspective, we do not offer a detailed review of the cur-
rent status of medical data sciences. Instead, we specifically focus on 
the management of healthcare research data, with an emphasis on 
relevance to genomics research. We highlight areas that are pillars 
supporting the use of data for analytics and emergent technologies 
supporting secure analytics. Finally, we describe the current trends 
of shifting the ownership of medical data to the end user or patient. 
Effectively, these trends result in medical data leaving the institu-
tions and entering the public arena, thus creating a new balance that 
may facilitate research but also may void some existing guardrails 
for data protection. The various evolving concepts in data usage and 
analytics discussed herein are represented in Fig. 1.

Notably, an overarching theme in this Perspective—as indicated 
in the title—is the concept of medical data as an asset. An asset is 
defined in the accounting and finance conceptual frameworks3 as “a 
resource controlled by the entity as a result of past events and from 
which future economic benefits are expected to flow to the entity.” 
This concept is important because several components of this defi-
nition—‘controlling entity’, ‘result from past events’ and ‘future ben-
efits’—are integral to the present perspective.

Data management and data infrastructure
EMRs are complex. They include unstructured (for example, free 
text), structured (for example, insurance codes and claims) and 
processed data (for example, laboratory quantitative results) (Fig. 
2). They do not include easy access to the raw data, whether they 
be sequence data represented by FASTQ files that are not attached 
to a genome sequencing report or raw data from imaging or other 
medical instruments. Altogether, a ‘classical’ EMR may comprise 3.5 
gigabytes of data, whereas experimental deep-phenotyping medical 
exams including high-content imaging and genomics4 may gener-
ate more than 120 gigabytes of data for a single individual (includ-
ing approximately 120 gigabytes for genomes and 6 gigabytes for 
exomes5). The diversity of records and the fragmentation of data 
across platforms pose challenges in downstream analysis. Therefore, 
modernizing the very basic infrastructures for data acquisition, 
storage and management is a priority. A sane practice would call 
for standards for data lakes (repositories storing large sets of data in 
native format), databases and application programming interfaces 
(APIs) to support diverse uses.

Health systems are expected to generate more than 2,000 exa-
bytes of data per year (one exabyte is one billion gigabytes), includ-
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ing the generation of approximately 25 petabytes of genomic data 
annually worldwide by 2030 (ref. 6). Hospital information technol-
ogy (IT) systems may be ill prepared to manage the large volumes of 
data currently generated by imaging and genomics. The adoption of 
cloud services remains questioned by some in the medical field. A 
cloud-storage service must sign a business-associate agreement with 
the medical institution and must be Health Insurance Portability 
and Accountability Act of 1996 (HIPAA) compliant. Several com-
mercial cloud offerings include encryption of data in transit and at 
rest and enable two-step authentication.

Data access and retrieval are generally viewed from the stand-
point of institutional needs, such as for billing purposes, whereas 
less attention is given to the end user or patient. We have argued in 
the past that medical-record documents should be easily and intui-
tively searchable and retrievable so that patients can query for any 
term and find their related health documents or images quickly7. 
This concept, reflecting how easily people interact with tools such 
as Google, suggests that access to EMR files should also be built by 
using consumer-centric technologies. In genomics, the concept can 
also be extended to clinical or biomedical researchers who could 
benefit from search engines to rapidly query genome variants—
an approach that we have used to support the searchability of the 
non-coding genome (https://omni.telentilab.com/).

Data analytics
An EMR stores patients’ demographics, medical history and diag-
nosis, laboratory results and images, interventions, medications and 
outcomes. Data can be turned into more valuable resources (that 
is, information) through processing and analysis. Many compo-
nents of the EMR require extensive normalization and coding for 
downstream use (Fig. 2). Because medical records are increasingly 

being acquired and stored in digital form, the EMR is the focus of 
the attention of machine learners8, who either create or adapt from 
other fields an expanding number of algorithms. Various protocols 
and toolkits tailor natural language processing (NLP) for clinical 
text (for example, Clinical Language Annotation, Modeling, and 
Processing Toolkit (CLAMP), Word2Vec and Bidirectional Encoder 
Representations from Transformers for Biomedical Text Mining 
(bioBERT)). NLP extracts knowledge of narratives to generate word 
or sentence vectors that can be understood by the learning algo-
rithms. Popular EMR learning algorithms include autoencoders for 
nonlinear dimensionality reduction, convolutional neural networks 
for image analysis and deep attention models for processing clinical 
notes.

Transfer learning is particularly useful in medicine because 
of the current paucity of ground-truth clinical data for training9. 
Transfer learning is the idea of reusing model structure (or so-called 
stored knowledge) to address one problem in handling a different 
question with some relationship to the original problem, for exam-
ple, fine-tuning bioBERT, a new method of pretraining language 
representations.

New algorithms may improve classification accuracy (the ratio 
of the number of correct predictions to the total number of input 
samples) by a few, but impactful, percentage points. Many clinical 
practitioners take point improvements in model performance at 
face value and underestimate the effects of small gains on predic-
tion accuracy. When Google Translate pivoted from using statisti-
cal models to neural networks, the average accuracy of translation 
between English and several languages increased from 76% to 
83% (highlighted in ref. 10). This 7% improvement caused the 
machine translation to approach the accuracy of human translation. 
Similarly, for Google’s voice-recognition software, increasing the 
accuracy rate from 90% to 95%, the threshold for human accuracy 
in voice recognition, took 2.5 years (highlighted in ref. 10).

Despite the progress in data analytics, better algorithms may 
not substitute for the absence of large amounts of labeled, quality 
data, domain knowledge or solid data infrastructures. Specific to 
phenome-wide association studies (for example, https://phewas-
catalog.org/) and to the investigation of rare diseases (for example, 
http://www.orphadata.org/), access to clinical metadata remains the 
main bottleneck in the field.

Data portability, ownership and markets
Healthcare data are a unique asset. They can be copied and dissemi-
nated quickly, unlike traditional physical assets, which can be con-
trolled by one entity at a time. They are unique (nobody is the same, 
and no combination is the same), additive (more data enable bet-
ter understanding of the characteristics and strong statistical power 
in hypothesis testing), non-depletive (they are not a consumable 
resource) and replicable (as a digital resource that can be copied 
to numerous parties quickly). These properties also create unique 
challenges in controlling data assets.

Data portability is the users’ right to control the free movement 
of their data between alternative service providers, thus encour-
aging competition within free markets. It is also a critical compo-
nent in the European Union’s General Data Protection Regulation 
(GDPR)11. Data portability in the US context, however, implies 
weakened protection of health data because of the limited scope of 
‘covered entities’, which are responsible for the security and privacy 
of personal health information12. The disruption of data portabil-
ity is further aggravated because of the interests of data ‘control-
lers’ (for example, direct-to-consumer genomic-testing companies, 
genealogy websites and insurance companies), the formidable 
complexity of healthcare IT infrastructure and the lack of univer-
sal information exchange protocols. Digital giants, such as Apple, 
are trying to support data portability by connecting miscellaneous 
healthcare providers13 to allow patients to download their medical 

Institutions Databases Analytics

Fig. 1 | Evolving concepts in data usage and analytics. Traditionally, 
research has been conducted within institutional confinement (dotted 
line) in compliance with policies and regulations (top). Currently, data 
flows, infrastructures and analytics are changing (bottom), with models 
that contemplate data moving outside the physical limits of the institution 
(dotted line), owing to cloud computing, with the possibility of bringing 
users’ data to their personal devices. Increasingly, analytics (orange 
cogwheels) is brought to the data where they reside and even deployed ‘at 
the edge’, on personal devices. End users or patients may or may not share 
results with the institution.
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records through HealthKit. A major issue for data portability is the 
adoption of standards, and some active efforts, such as Health Level 
Seven International (HL7) and Fast Healthcare Interoperability 
Resources (FHIR), are available for exchanging electronic health 
records (EHRs) and Digital Imaging and Communications in 
Medicine (DICOM) to communicate medical imaging information. 
Importantly, we do not discuss the associated liability in managing 
data; liability risks in the field of genomics have been addressed 
in a recent review14. We also do not discuss that the ethical issues 
are profound when patient data become an asset and trained 
machine-learning models are used without consent15,16. There is a 
potential risk of release of private information, because adversar-
ies could use the models to reverse-engineer and disclose sensi-
tive information of participants involved in the training dataset17. 
We believe that an informed-consent mechanism or educational 
approach should be used to inform the general population on these 
implicit ethical issues related to privacy.

Initiatives such as that of Apple HealthKit leave the door wide 
open for third-party developers to create apps that focus on health. 
More generally, more than 45,000 healthcare apps were available 
as of the third quarter of 2019 (ref. 18). The confluence of medi-
cal records with a wider set of health measurements creates a coex-
istence of EMR and EHR. These terms are used interchangeably; 
however, whereas medical-related attributes are part of health, not 
all health attributes are medical. The health record is a larger con-
cept than the medical record, because it includes aspects such as 
activity, behavioral patterns and diet preference. The distinction 
also affects data ownership, discussed in the next section.

Health records are generated by individuals and belong to indi-
viduals as an asset. Medical records are shared between providers and 
patients to provide the necessary care and support the well-being of 
all society. Researchers, insurance and pharmaceutical companies are 
keen to access personal health data to gain a deeper understanding  
of diagnostics, disease development and potential preventive or 
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Fig. 2 | Structure, management and analysis of EMRs. Many components of EMRs require extensive normalization and coding for downstream use. 
International Classification of Diseases (ICD) code diagnoses, symptoms and procedures, Systematized Nomenclature of Medicine—Clinical Terms 
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treatment options. These demands create a large market in which 
data brokers (for example, Zenome, CoverUS, LunaDNA, Doc.
ai, Medicalchain, ProofWork and Nebula Genomics) connect iso-
lated silos to collect, integrate and monetize data for their custom-
ers. Commercial enterprises in genomics (for example, 23andMe, 
AncestryDNA, MyHeritageDNA and others) build value by using 
customers’ data—users should attentively read the terms and condi-
tions and privacy policies to assess each company’s use of genetic 
data and phenotypic information. This eruption of the entrepre-
neurial sector could be seen as an opportunity, because it marshals a 
different type of incentives for the participation of individuals who 
contribute data. The healthcare data analytics market is expected to 
grow to US$47.7 billion by 2024. Despite the perceived economic 
value, health and medical data are often not managed as an asset.

Data protection and novel technologies for risk mitigation
The key for broad access to medical data relies on solving criti-
cal issues of privacy protection. Traditional approaches of 
data-protection technology, such as Advanced Encryption Standard 
(AES)19, are implemented in cloud storage, thus ensuring strong 
encryption in transit and at rest. However, these methods do not pro-
tect against insider attacks or hackers who gain access to the remote 
server running analysis on decrypted data. Because encrypted data 
must be decrypted for computation (in untrusted servers), there is a 
large exposure of vulnerable attack surfaces.

A new, recently emerged category of encryption frameworks 
called encrypted operations allows operations to be performed 
on encrypted data without exposing their content. The calculated 
results are returned in an encrypted format for decryption, thereby 
ensuring zero information leakage during the entire life cycle of 
the data, from communication to storage to computation. Because 
these frameworks are relatively new and sometimes theoretical, 
they are not as widely known as the ‘encryption at rest’ frameworks. 
However, substantial progress has been made in encryption opera-
tions in recent years, and they have begun to demonstrate practical 
usability. The basic architecture of these three different frameworks 
is illustrated in Fig. 3.

Because of the novelty of these approaches and the great inter-
est in the field of genomics (for example, GenoPri Consortium, 
https://www.genopri.org/; and iDASH workshop, http://www.
humangenomeprivacy.org/), we summarize some of their key char-
acteristics (Table 1). Homomorphic encryption is often deployed 
when users want to access the analytic models built by others 

using private data or offload computational tasks to cost-effective 
third-party computation services20,21. Secure multiparty compu-
tation has been applied for enabling pharmacological collabora-
tion22, genome-wide association analysis23 and privacy-preserving 
distributed genomic tests for HIV treatment24. The major dif-
ference is that the secure, multiparty computation framework 
converts data into secrets distributed among multiple entities to 
support secure collaboration, whereas the homomorphic encryp-
tion framework outsources encrypted data that a single entity could 
store and run unforeseen algorithms upon. The secure enclave 
model25 is highly flexible and can accommodate many tasks, includ-
ing whole-genome-variant searching26. However, it does not offer 
the same level of security protection as homomorphic encryp-
tion or secure multiparty computation, which can be mathemati-
cally proven to safeguard information. These frameworks can also 
be used in combination to provide the best efficiency for certain 
tasks (for example, MedCo27, a system that combines homomorphic 
encryption and secure multiparty computation to protect private 
data sharing while facilitating medical research on pathologies and 
COVID-19 (ref. 28) across several hospitals).

Algorithms that go to the data and smart contracts
The traditional one-institution, one-data-center model is chang-
ing. Many hospitals are moving their data to the cloud (for example, 
the University of California, San Francisco recently established a 
research cloud on Amazon Web Service), thus allowing third-party 
algorithms to be run on the data without moving the data to the 
algorithm developers. When most providers host their EMR data 
in the cloud, the concept of physical isolation is blurred, although 
logical compartmentalization remains to satisfy institutional poli-
cies and regulations. On the end-user or patient side, edge devices, 
such as smartphones, are becoming increasingly powerful. Personal 
health information, such as exercise, vital statistics and physiological 
data, now resides on personal devices, and many apps are running 
directly on these data to analyze personal health without commu-
nicating with a central server. Variant call format (VCF) genome 
sequence files can feasibly reside on a smartphone. Bringing algo-
rithms to data (for example, ‘edge AI’, in which AI algorithms are 
processed locally on a hardware device) has a dual benefit of distrib-
uting the computation and protecting privacy.

The last component of the emerging field of portable medical and 
health data is the ability to create smart contracts with third parties. 
The value of EHRs or EMRs is realized through active use rather 

Table 1 | High-level comparison of different secure frameworks: performance and assumptions

Homomorphic encryption Secure multiparty computation Secure enclave

Memory overhead High High Low

Communication overhead Medium High Low

Computation overhead Medium/High Medium Low

Provable guarantee Yes Yes No

Encrypted data storage Yes Yes Yes

Offline operation Yes No Yes

Requirement for special 
hardware

No No Yes

Virtual memory limitation No No Yes

Summary Most appropriate for secure 
outsourcing when data 
owners want to delegate the 
computation to a third party

Enables secure evaluation of a circuit (for 
example, function) on encrypted genomics data 
from different sources; it is most applicable to 
two or more collaborators who want to conduct 
a common study using combined data without 
revealing private information

Based on a hardware feature of certain central 
processing units; it is itself a mini-computer 
with encrypted memory and boots separately 
from the main device, thus making hacking 
difficult, because the primary operating 
system cannot see the decryption keys
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than depositing them in storage. In that sense, they are digitized liq-
uid assets of individuals. The emergence of blockchain technology 
provides personal vaults to store digital information in an immu-
table distributed ledger, which creates an ecosystem for informa-
tion exchange and utilization. Of note, immutability does not mean 
privacy, and the nature of the liquidity requires high-level consid-
eration of protection of sensitive information. The blockchain tech-
nology also expands the traditional trust-based contractual system 
to executable protocols (via smart contract) in a decentralized and 
distributed environment (Fig. 4).

These new features broaden the horizon for novel applications 
and potential market space for personal health data. For example, 
we have recently participated in research29 using property-rights 
blockchain to match patients to clinical trials. We envision inno-
vative blockchain-based data marketplaces coupled with personal 
medical data vaults as a new model for managing the transfer, prov-
enance and processing of individual health information. However, 
despite this excitement, lasting adoption of blockchain technologies 
in genomics remains to be seen.

The combination of data and algorithms moving to edge devices 
has profound implications for the healthcare industry, because indi-
viduals will be in full control of their own data, and medical service 
providers may no longer act as the central data custodians for all 
personal medical information. Improved privacy protection also 
brings challenges in data sharing, because the big-population model 
still requires the abilities of information exchange and synthesis to 
ensure robustness. The recent surge in federated learning (that is, 
learning a shared prediction model while keeping all training data 
on edge devices) has shed light on such challenges, which ensure 
privacy by design in constructing global models.

Conclusions
We wrote this Perspective with the goal of familiarizing the biomed-
ical research community in general, particularly the genomics and 
genetics community, with the progress, challenges and opportunities  
in the use of EMR data. Progress has included the creation of 
improved data infrastructures that support access to the heteroge-
neous content of clinical records. Challenges include the implemen-

tation and acceptance of novel enabling encryption technologies 
that allow for interinstitutional collaboration and research without 
compromising data security and privacy. Opportunities include 
extension of the health space to the private domain (personal edge 
devices, apps and social media) with the potential to secure owner-
ship of data. The overarching principle is that data are a durable 
asset: they have an intrinsic value that extends beyond the original 
purpose of why and when they were collected.
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