
Perspective
https://doi.org/10.1038/s41588-019-0385-z

1Department of Computer Science, Stanford University, Stanford, CA, USA. 2Department of Genetics, Stanford University, Stanford, CA, USA. 3Department 
of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. 4Section of Genetic Medicine, Department 
of Medicine, University of Chicago, Chicago, IL, USA. 5New York Genome Center, New York, NY, USA. 6Department of Computer Science, Columbia 
University, New York, NY, USA. 7Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia. 8Clinical Gene Networks AB, Stockholm, Sweden. 
9Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA. 10Department of Genetics & Genomic Sciences, Institute of Genomics 
and Multiscale Biology,  Icahn School of Medicine at Mount Sinai, New York, NY, USA. 11Department of Pathophysiology, Institute of Biomedicine 
and Translational Medicine, University of Tartu, Tartu, Estonia. 12Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, 
Karolinska Universitetssjukhuset, Huddinge, Sweden. 13Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. 
14Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. 15Department of Biomedical Data Science, 
Stanford University, Stanford, CA, USA. *e-mail: johan.bjorkegren@mssm.edu; haky@uchicago.edu; pasaniuc@ucla.edu; mrivas@stanford.edu;  
akundaje@stanford.edu

GWAS have robustly associated thousands of genomic loci 
with complex traits. Despite this success, GWAS loci are 
often difficult to interpret: linkage disequilibrium (LD) 

often obscures the causal variants driving the association, and the 
causal genes mediating variant effects on the trait are rarely ascer-
tainable from GWAS data alone1. This interpretation challenge has 
motivated the development of methods to prioritize causal genes at 
GWAS loci.

One such family of methods is TWAS, which leverage expres-
sion reference panels (eQTL cohorts with expression and genotype 
data) to discover gene–trait associations from GWAS datasets2–4. 
First, the expression panel is used to learn per-gene predictive mod-
els of expression variation by using allele counts of genetic variants 
in the gene’s vicinity (typically within 500 kilobases or 1 mega-
base). These models are used to predict gene expression for each 
individual in the GWAS cohort. Finally, statistical associations are 
estimated between predicted gene expression and the trait (Fig. 1a). 
Expression prediction and association may be performed sequen-
tially with individual-level GWAS data (PrediXcan2) or simultane-
ously with summary-level GWAS data (Fusion3 and S-PrediXcan4). 
Closely related methods include SMR/HEIDI5–7, which performs 
Mendelian randomization (MR) from gene expression to trait, and 
GWAS–eQTL colocalization methods such as Sherlock8, coloc9,10, 
QTLMatch11, eCaviar12, enloc13 and RTC14, which discover genes 

whose expression is regulated by the same causal variants that 
underlie a GWAS hit.

TWAS have garnered substantial interest within genetics and 
have been conducted for many traits and tissues15,16. Although 
TWAS methods are statistical tests associating genetically pre-
dicted expression and disease risk, with no guarantees of causality, 
a key reason for their appeal is the promise of prioritizing candi-
date causal genes (genes mediating the phenotypic effects of causal 
genetic variants) and tissues underlying GWAS loci. Unfortunately, 
there is a prevalent misconception that TWAS are causal-gene tests 
and that TWAS associations represent bona fide causal genes; in the 
following sections, we provide guidelines for interpreting TWAS 
results, highlighting scenarios in which TWAS accurately priori-
tize candidate causal genes and others for which TWAS-prioritized 
genes are likely to be non-causal.

As a motivating example illustrating both the successes and inter-
pretational challenges of TWAS, consider C4A, a causal gene for schizo-
phrenia. Variants at the C4A locus contribute to schizophrenia risk by 
increasing the brain expression of C4A17. A TWAS has strongly asso-
ciated C4A with schizophrenia on the basis of brain expression data 
from the Genotype-Tissue Expression (GTEx) project18. Notably, C4A 
is by far the most significantly associated gene within 100 kilobases 
in brain tissues. C4A is also the most significantly associated gene in 
any tissue (Supplementary Table 1), even compared with other closely 
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related genes in the complement system (C4B, CFB and C2). However, 
8 of the 12 other genes within 100 kilobases are at least marginally sig-
nificant (P <0.05) in some brain tissue, and 11 of 12 are highly signifi-
cant (P <5 × 10−5) in at least one tissue. C4A is also more significantly 
associated with schizophrenia in the pancreas than in any brain tissue.

TWAS-significant loci contain multiple associated genes
GWAS are well known to rarely identify single variant–trait associa-
tions but instead to identify blocks of associated variants in LD (Fig. 
1b). Analogously, TWAS frequently identify multiple hit genes per 
locus16 (Fig. 1c).

To explore this phenomenon, we performed TWAS in two traits 
and two tissues with Fusion and S-PrediXcan, by using GWAS  

summary statistics for low-density lipoprotein (LDL) cholesterol19 
and Crohn’s disease20, and the 522 liver and 447 whole-blood expres-
sion samples from the Stockholm–Tartu Atherosclerosis Reverse 
Networks Engineering Task (STARNET) cohort21 (Supplementary 
Fig. 2 and Supplementary Note). We grouped hit genes within 2.5 
megabases and found some loci with a single hit gene but others 
with as many as 11 hit genes (Supplementary Fig. 3).

Correlated expression across individuals may cause  
false hits
We explored the extent to which co-regulation can lead to multi-
hit loci. Co-regulation is conventionally measured by correlating 
the expression of a pair of genes across individuals. Do genes with  
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Fig. 1 | TWAS, like GWAS, frequently has multiple significant associations per locus. a, An overview of TWAS. Briefly, TWAS involves: (i) training a 
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correlated expression with a strong TWAS hit also tend to be TWAS 
hits? We analyzed the SORT1 locus in LDL/liver (TWAS P = 1 × 
10−243; Fig. 2a), the strongest hit locus across all four Fusion TWAS.

Although SORT1 has strong evidence of causality, its locus con-
tains eight hit genes in addition to SORT1, and their TWAS P val-
ues are highly related to their expression correlation with SORT1 
(Spearman correlation = 0.75; Fig. 2b). A similar pattern holds for 
S-PrediXcan (Supplementary Fig. 5). The two most correlated genes, 
PSRC1 and CELSR2, were previously noted22 to share an eQTL with 
SORT1 in the liver (rs646776). Given SORT1’s strong evidence of 
causality and the other genes’ lack of strong literature evidence, the 
most parsimonious (though certainly not the only) explanation is 
that most or all other genes are non-causal and are prioritized only 
because of correlation with SORT1.

Correlated predicted expression may also cause false hits
However, expression correlation is not the whole story: TWAS 
tests for association with genetically predicted expression, not 
total expression. Total expression includes genetic, environmental 
and technical components, and the genetic component includes 
contributions from common cis eQTLs (the only component reli-
ably detectable in current TWAS methods), rare cis eQTLs and 
trans eQTLs. Predicted expression represents only a small compo-
nent of total expression: a large-scale twin study23 has found that 
common cis eQTLs explain only approximately 10% of genetic 
variance in expression.

Predicted expression correlations between same-locus genes are 
generally slightly higher than total expression correlations, some-
times substantially so (Fig. 3a and Supplementary Figs. 4 and 5d). 
A gene pair can have correlated predicted expression if the same 
causal eQTL regulates both genes or if two causal eQTLs in LD each 
regulate one of the genes24. Although only the first case counts as 
mechanistic co-regulation, we consider both cases together, because 
they are not designed to be distinguishable by TWAS: the two genes’ 
TWAS models can rely on distinct variants even in the first case 
or rely on the same variant even in the second case. For instance, 
given a causal eQTL in near-perfect LD with another variant, an 
L1-penalized linear expression model (for example, LASSO or 
ElasticNet) may place the most weight on only one of the two vari-
ants, but which variant is chosen could change depending on statis-
tical fluctuations in the training set.

Predicted expression correlation may lead to non-causal genes 
being prioritized before causal genes, even if the total expression 

correlation is low. This type of confounding has also been observed 
in gene-set analysis25. For instance, SARS is the main outlier in Fig. 
2b and is as significant as SORT1 despite having a total expression 
correlation of only ~0.2, because of its high predicted expression 
correlation of ~0.9 (Fig. 3a). SARS is also an outlier in PrediXcan for 
the same reason (Supplementary Fig. 5d).

Another example is the IRF2BP2 locus in LDL/liver (Fig. 3b). 
IRF2BP2 encodes an inflammation-suppressing regulatory factor 
with causal evidence from mouse models. RP4-781K5.7 is a largely 
uncharacterized long non-coding RNA that lacks evidence of func-
tion; most long non-coding RNAs are non-essential for cell fitness26, 
and current evidence is compatible with most non-coding RNAs 
being non-functional27. Despite a negligible total expression corre-
lation between the two genes (–0.02), IRF2BP2’s Fusion expression 
model includes GWAS hit rs556107 with a negative weight, whereas 
RP4-781K5.7’s includes the same variant (plus two linked variants) 
with a positive weight (Fig. 3c), thus resulting in almost perfectly 
anti-correlated predicted expression (–0.94) and both genes being 
TWAS hits. IRF2BP2 and RP4-781K5.7 are also both hits with 
S-PrediXcan, and both S-PrediXcan and Fusion place the largest 
weight on rs556107 but with opposite signs (Supplementary Fig. 6).

We simulated expression and trait data (ntrait = 50,000 individ-
uals; nexpression = 500) for 1,000 random genomic loci by using the 
FOCUS simulation framework24 and conducted TWAS by using 
L2-penalized linear regression (Supplementary Note). As expected, 
a larger predicted expression correlation increased the probabil-
ity of having a larger TWAS z score than that of the causal gene 
(Supplementary Table 2). However, this probability remained mod-
estly high even when the predicted expression correlation was low, 
thus implying that predicted expression, though better than true 
expression, still imperfectly captures co-regulation.

Shared GWAS variants may cause false hits
More generally, pairs of gene models may share variants (or at least 
LD partners) even if the predicted expression correlation is low, 
because other variants distinct between the models may ‘dilute’ the 
correlation. For instance, at the NOD2 locus for Crohn’s disease/
whole blood, NOD2 is a known causal gene, but four other genes 
are also Fusion hits (Fig. 4a), none of which have strong causal evi-
dence (though rare variants in ADCY7 have been associated with 
ulcerative colitis28). The model for the strongest hit gene, BRD7, 
places the most weight on rs1872691, the strongest GWAS hit in 
NOD2’s model (Fig. 4b). However, NOD2’s model places the most 
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weight on two weaker GWAS hits, rs7202124 and rs1981760. Thus, 
even though co-regulation with NOD2 may explain why BRD7 is a 
TWAS hit, this co-regulation is not captured by the metrics that we 
discussed: both the predicted expression (–0.03) and total expres-
sion (0.05) correlations are near 0. The same five genes are also 
S-PrediXcan hits, and NOD2 and BRD7’s models share the same 
rs1872691 variant, as with Fusion (Supplementary Fig. 7).

Most generally, models need not even share the same GWAS vari-
ants (or LD partners) to have spurious hits. For instance, rs4643314, 
the strongest GWAS hit in BRD7’s Fusion model, is neither shared 
nor in strong LD with any variants in NOD2’s model, although it 
is in weak LD with rs1872691 (Fig. 4b). Although the most par-
simonious explanation is that BRD7 is also causal, and rs4643314 
acts through BRD7, BRD7 lacks evidence of causality. An alternate 
explanation is that only NOD2 is causal, rs4643314 acts through 
NOD2 (but also happens to co-regulate BRD7), and NOD2’s model 
erroneously fails to include it (a false negative). One trivial reason 
for false negatives is variants outside the 500 kilobase/1 megabase 
window included in the model, which can be solved by increasing 

the window. More problematic causes include bias in the expression 
panel (‘Discussion’) and, for methods using GWAS summary statis-
tics, LD mismatch between the expression panel and GWAS. This 
scenario might occur even without any false negatives, for exam-
ple, if a variant in LD with rs4643314 deleteriously affects NOD2’s 
coding sequence as well as regulating BRD7, because TWAS is not 
designed to detect coding effects. Figure 5 illustrates the various 
types of co-regulation that may lead to non-causal TWAS hits.

Bias with expression panels from non-trait-related tissues
Tissues with large expression panels (whole blood or lymphoblas-
toid) are commonly used to maximize power, even when they are 
mechanistically less related to the trait. To date, our case studies 
have used expression from mechanistically related tissues: liver for 
LDL and whole blood for Crohn’s disease. What if we swap these 
tissues and use tissues without a clear mechanistic relationship? 
The architecture of eQTLs differs substantially across tissues: even 
among strong eQTLs in GTEx (P ≈ 1 × 10−10), one-quarter show a 
switch in the most significantly associated gene across tissues18.
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We curated candidate causal genes from the literature 
(Supplementary Table 3) at nine LDL/liver and four Crohn’s disease/
whole-blood Fusion TWAS loci and examined how the hit strengths 
changed when we swapped tissues (Fig. 6). Notably, almost every 
candidate causal gene (9 of 11 for LDL and 5 of 6 for Crohn’s dis-
ease) was no longer a hit in the ‘opposite’ tissue, because of either 
insufficient expression (n = 4: PPARG, LPA, LPIN3 and SLC22A4) 
or insufficiently heritable cis expression according to Fusion’s like-
lihood-ratio test (n = 10: SORT1, IRF2BP2, TNKS, FADS3, ALDH2, 
KPNB1, SLC22A5, IRF1, CARD9, STAT3). This trend held globally, 
albeit less strongly: genome-wide, 3,085 of 5,858 LDL/liver genes 
(53%) dropped out after switching to whole blood, and 1,202 of 2,118 
Crohn’s disease/whole-blood genes (57%) dropped out after switch-
ing to liver. Just because a gene does not drop out, and is present  

in both tissues as a result of shared cross-tissue regulatory architec-
ture, causality is not necessarily implied.

More problematically, 15 other genes at the same loci were still 
hits (eight in LDL/whole blood and seven in Crohn’s disease/liver), 
five with P <1 × 10−20. This result suggests that the strategy of con-
ducting TWAS in a sub-optimal tissue with a large expression panel 
is especially problematic because even if there are hits at a locus, the 
causal gene may not be among them.

Combining the whole-blood and liver reference panels by aver-
aging each individual’s expression in the two tissues (equivalent, 
for L1- and/or L2-penalized regression, to concatenating the two 
panels) performed more poorly than using the mechanistically 
related tissue alone but better than using the less related tissue alone 
(Supplementary Fig. 8).
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TWAS improves causal-gene prioritization
We investigated TWAS’s performance at ranking (prioritizing) 
causal genes at loci from the previous section. We compared Fusion 
to two simple gene-ranking baselines (Supplementary Table 4): 
transcription-start-site proximity to the most significant GWAS 
variant within 2.5 megabases of any gene at the locus (‘proximity’) 
and median expression across GTEx individuals in the liver (for 
LDL genes) or whole blood (for Crohn’s disease genes) (‘expres-
sion’). Genes with more significant TWAS P values, smaller dis-
tances to the lead GWAS variant or higher expression had higher 
rankings. The mean rank of the 17 candidate causal genes was 3.9 
by random per-locus ranking, 2.0 by TWAS, 2.2 by proximity (P = 
0.5, two-tailed Wilcoxon signed-rank test) and 2.9 by expression (P 
= 0.006). Hence, Fusion outperforms both baselines but does not 
significantly outperform proximity.

Suggested best practices and future opportunities
We highlighted two vulnerabilities—co-regulation and tissue bias—
that affect TWAS’s performance in causal-gene prioritization. In 
this section, we discuss current best practices and future opportuni-
ties for their mitigation.

One emerging approach to address co-regulation repurposes 
GWAS fine-mapping to TWAS, on the basis of the analogy between 
LD in GWAS and co-regulation in TWAS. Fine-mapping of causal 
gene sets (FOCUS)24 directly models predicted expression cor-
relations and uses them to assign genes posterior probabilities of 
causality. At the SORT1 locus, FOCUS includes SORT1, SARS and 
CELSR2 in the 90%-credible set; at the IRF2BP2 locus, FOCUS 
includes both IRF2BP2 and RP4-781K5.7 (Fig. 2d). We recommend 

using fine-mapping methods such as FOCUS or, at a minimum, 
considering relative association strengths (P values and effect sizes) 
at a locus when interpreting TWAS results. If individual-level data 
are available, inferring effects jointly through penalized regres-
sion (for example, LASSO or Ridge) offers a flexible alternative 
(Supplementary Tables 5 and 6). Nonetheless, TWAS fine-mapping 
is more challenging than GWAS fine-mapping: predicted expres-
sion only imperfectly captures cis expression, owing to both vari-
ance and bias in the expression modeling (Box 1).

To address tissue bias, we recommend using an expression panel 
from only the most mechanistically related tissue available, even 
when it is smaller than other tissues’. However, using a slightly less 
related tissue (for example, a different region of the brain) would 
be advisable if the sample size would be substantially increased; the 
trade-off between tissue bias and sample size should be evaluated on 
a case-by-case basis. When a trait’s most related tissue is not known 
a priori, a recent approach based on LD Score regression29 can be 
used to select among multiple reference panels. Methods to handle 
cross-tissue pleiotropy and cell-type heterogeneity, discussed above 
in the context of fine-mapping, can also mitigate tissue bias. If no 
sufficiently large reference panels from closely related tissues are 
available, we recommend aggregating information across all avail-
able tissues in a tissue-agnostic manner4,30.

When reference panels have highly dissimilar sizes across tissues, 
the tissue with the most significant TWAS P value cannot necessar-
ily be assumed to be causal, because reference-panel size affects the  
P value. For this reason, we recommend considering TWAS effect 
size in addition to P value when investigating causal tissues for 
TWAS-associated genes. Even when all reference panels are similarly  
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Fig. 6 | Most candidate causal genes drop out after switching to a tissue with a less clear mechanistic relationship to the trait, owing to a lack of 
sufficient expression or sufficiently heritable expression. Fusion TWAS P values at nine LDL/liver and four Crohn’s disease/whole-blood multi-hit loci, 
using expression from tissues with a clear (top row) or less clear or absent (bottom row) mechanistic relationship to the trait. Candidate causal genes are 
labeled and colored red.
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sized, the exact combination of tissue, cell type and context (for 
example, developmental stage and cellular stress) mediating the 
causal gene’s effect may not be captured by any panel, and this may 
be the case even if TWAS finds the correct causal gene (for example, 
C4A is correctly chosen on the basis of RNA-seq on adult samples 
even though its causal effect on schizophrenia probably occurs in 
adolescence). Furthermore, bias may alter the pattern of TWAS  
P values and effect sizes across tissues in unexpected ways. We cau-
tion against over-interpretation.

Several emerging topics in TWAS deserve further men-
tion. Multi-tissue TWAS methods such as UTMOST30 increase 
power by jointly training expression models across multiple tis-
sues. MulTiXcan31 fits a multivariate regression with phenotype 
as the outcome and a gene’s expression across multiple tissues or 
contexts as the inputs to increase power. The adaptive sum of a 
powered score test32 increases power by adaptively adjusting how 
much to exponentiate the weighted genotypes (genotypes times 
expression model weights) in the final expression-trait test, from 
γ = 1 (for example, Fusion or PrediXcan) or γ = 2 (for example, 
SKAT33) to γ = ∞ (in which all weight is placed on the most sig-
nificant GWAS variant, a method more appropriate than stan-
dard TWAS when there are few associated variants). Mogil et al.34 
have shown that between-population allele-frequency differences 
worsen cross-ancestry expression predictions, thus underscoring 
the importance of gathering diverse expression cohorts. Finally, 
the emerging ability to generate very large expression panels offers 
the promise of using trans eQTL signals to overcome the co-regu-
lation problem35,36: although all genes at a locus may show GWAS 
signal at their cis eQTLs, owing to co-regulation, only the true 
causal genes are expected to show significant GWAS signal at their 
trans eQTLs as well.

Discussion
In our case studies, we assumed that the single gene with substan-
tial causal evidence was the sole causal gene at the locus, with some 
exceptions (FADS1/2/3 and SLC22A4/5–IRF1). Nonetheless, other 
loci may contain multiple causal genes. Indeed, under an omnigenic 
model37, every gene may be causal to some degree, although TWAS 
identification of marginally causal genes as strong hits due to co-
regulation (effect size inflation) remains problematic. Furthermore, 
the expression of a ‘non-causal’ gene may causally influence expres-
sion of the causal gene merely by being transcribed, even if the gene 
is non-coding or its protein product is non-causal38.

Co-regulation and tissue bias affect other methods integrating 
GWAS and expression data. Testing of gene–trait associations based 
on MR5–7 is vulnerable, because co-regulation, as a form of pleiot-
ropy, violates one of the core assumptions of MR39. Although the 
HEIDI test5 corrects for the case in which two genes have distinct 
but linked causal variants, it does not correct for the case in which 
they share the same causal variant. GWAS–eQTL colocalization 
methods such as Sherlock8, coloc9,10, QTLMatch11, eCaviar12, enloc13 
and RTC14 are also vulnerable. The more tightly a pair of genes is 
co-regulated in cis, the more difficult it becomes to distinguish cau-
sality on the basis of GWAS and expression data alone. Our results 
underscore the need for computational and experimental methods 
that move beyond expression variation across individuals to com-
plement TWAS in identifying causal genes at GWAS loci.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.
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