Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selenium alloyed tellurium oxide for amorphous p-channel transistors

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Abstract

Compared to polycrystalline semiconductors, amorphous semiconductors offer inherent cost-effective, simplicity, and uniform manufacturing. Traditional amorphous hydrogenated Si falls short in electrical properties, necessitating the exploration of new materials. The creation of high-mobility amorphous n-type metal oxides, such as a-InGaZnO1, and their integration into thin-film transistors (TFTs) have propelled advancements in modern large-area electronics and new-generation displays2–8. However, finding comparable p-type counterparts poses significant challenges, impeding the progress of complementary metal-oxide-semiconductor (CMOS) technology and integrated circuits9–11. Here, we introduce a pioneering design strategy for amorphous p-type semiconductors, incorporating high-mobility tellurium within an amorphous tellurium sub-oxide matrix, and demonstrate its utility in high-performance, stable p-channel TFTs, and complementary circuits. Theoretical analysis unveils a delocalised valence band from tellurium 5p bands with shallow acceptor states, enabling excess hole doping and transport. Selenium alloying suppresses hole concentrations and facilitates the p orbital connectivity, realising high-performance p-channel TFTs with an average field-effect hole mobility of ~15 cm2 V−1 s−1 and on/off current ratios of 106 ~ 107, along with wafer-scale uniformity and long-term stabilities under bias stress and ambient aging. This study represents a crucial stride towards establishing commercially viable amorphous p-channel TFT technology and complementary electronics in a low-cost and industry-compatible manner.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ao Liu, Huihui Zhu or Yong-Young Noh.

Supplementary information

Supplementary Information

This file contains Supplementary Information, including Supplementary Figures 1-4, Supplementary Tables 1-2, and additional references.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Kim, YS., Kim, M.G. et al. Selenium alloyed tellurium oxide for amorphous p-channel transistors. Nature (2024). https://doi.org/10.1038/s41586-024-07360-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07360-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing