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Ghost roads and the destruction of Asia-
Pacific tropical forests
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Roads are expanding at the fastest pace in human history. This is the case especially  
in biodiversity-rich tropical nations, where roads can result in forest loss and 
fragmentation, wildfires, illicit land invasions and negative societal effects1–5. Many 
roads are being constructed illegally or informally and do not appear on any existing 
road map6–10; the toll of such ‘ghost roads’ on ecosystems is poorly understood. Here 
we use around 7,000 h of effort by trained volunteers to map ghost roads across the 
tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive 
sampling revealed a total of 1.37 million km of roads in our plots—from 3.0 to 6.6 times 
more roads than were found in leading datasets of roads globally. Across our study 
area, road building almost always preceded local forest loss, and road density was  
by far the strongest correlate11 of deforestation out of 38 potential biophysical  
and socioeconomic covariates. The relationship between road density and forest loss 
was nonlinear, with deforestation peaking soon after roads penetrate a landscape 
and then declining as roads multiply and remaining accessible forests largely 
disappear. Notably, after controlling for lower road density inside protected areas, 
we found that protected areas had only modest additional effects on preventing 
forest loss, implying that their most vital conservation function is limiting roads  
and road-related environmental disruption. Collectively, our findings suggest that 
burgeoning, poorly studied ghost roads are among the gravest of all direct threats to 
tropical forests.

By the middle of this century, Earth is expected to have some 25 mil-
lion km of new paved roads relative to 2010—enough to encircle the 
planet more than 600 times1. Roads serve a number of important 
societal functions, such as promoting trade and increasing access to 
natural resources and arable land7,8,12. Without effective planning and 
law enforcement, however, roads can also unleash a Pandora’s box of 
environmental ills and societal challenges2,13–16. Unfortunately, many 
new roads are being constructed informally or illegally, especially in 
lower-income nations where governance is often hindered by corrup-
tion and ineffective law enforcement7,15. These ‘ghost roads’, invisible on 
official road maps, are one of the most vexing direct threats to tropical 
forests and their wild and human inhabitants6,7.

We define ghost roads operationally as those missing from the two 
leading global-road datasets: the Global Roads Inventory Project17 
(GRIP) and OpenStreetMap18 (OSM). Ghost roads include informally 
or illicitly constructed roads, bulldozed tracks in logged forests, roads 
in palm-oil plantations and other roads that are missing from exist-
ing road datasets for various reasons. Such roads can be either paved 
or unpaved, although most are unpaved. Ghost roads are being con-
structed by a range of people, including legal or illegal agriculturalists, 
miners, loggers, land grabbers, land speculators and drug traffickers, 
among others6–9.

The accuracy and completeness of existing road maps vary greatly 
among nations and regions, and are typically poorest in developing 
nations with large forest estates19,20. To assess the extent of ghost roads, 
we carried out an intensive sampling effort (1.42 million plots of 1 km2 
each) across a range of human-altered and native-forested regions of 
Borneo, Sumatra and New Guinea—three of the world’s largest conti-
nental islands. We manually mapped and digitized roads on each island 
using recent (circa 2019) high-resolution satellite imagery in Google 
Earth. Mapping was conducted by 210 trained volunteers or research-
ers whose individual mapping accuracy was quality-checked by one 
or more co-authors of this study, using test datasets (Supplementary 
Information and Supplementary Fig. 1). Each mapper was required to 
attain an accuracy of more than 90% on test datasets (including road 
omissions and commissions) before commencing road-mapping.

After generating high-accuracy road data, we (1) compared the extent 
of roads from our data directly with those from the two leading global-
road datasets (GRIP17 and OSM18); (2) assessed how roads and other 
key socioeconomic and environmental variables influence forest loss; 
(3) gauged how protected areas affect the proliferation of roads and 
associated environmental disruption; and (4) used a temporal analy-
sis to assess whether roads tend to precede, or follow, deforestation 
across our study area.
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Road extent and density
We compared our road data with those from the two global-road 
databases, GRIP and OSM, using the same 1.42 million plots for all 
datasets. Road extent (the percentage of mapped 1-km2 cells contain-
ing at least one road) was 13.2% using GRIP and 18.3% using OSM, but a 
much higher 32.9% when using our road data (Fig. 1b). In addition, the 
total length of mapped roads was 3.0–6.6 times greater when using 
our dataset (1.37 million km) than when using the GRIP (0.21 million 
km) and OSM (0.45 million km) datasets. Compared with GRIP and 
OSM, our data revealed that 35–45% of unmapped roads were in oil-
palm or other plantations (23–33% in large plantations; 11–12% in 
small plantations), 31–39% were in intact forests and 17–28% were in  
non-plantation agriculture (see Supplementary Fig. 2 and Supplemen-
tary Information for land-use definitions). Unmapped roads were less 
prevalent in urban areas, degraded forest and other land-use types 
(Supplementary Fig. 2).

Our findings show that the extent and length of roads, at least in 
our study area, are severely underestimated in leading road databases 
and official government statistics (Fig. 1 and Supplementary Table 2). 
Moreover, these badly deficient road data partly underlie popular con-
servation metrics, such as the ‘human footprint’ index21,22 and ‘roadless’ 
or ‘wilderness’ areas5,23, that are widely used in conservation research 
and management (see below).

Modelling forest loss
Next, we tested the relative importance of roads and other potential 
spatial predictors in driving forest loss in our 1.42 million plots. To do 
this we first created a comprehensive land-cover map for our study 
region and then quantified the percentage of land cleared per plot 
(hereafter termed ‘forest loss’) as our response variable. Our map was 
explicitly designed to accurately detect forest loss while not misclas-
sifying current land covers, such as oil-palm or wood-pulp plantations, 
as forested land, or open vegetation, such as wetlands, as deforested 
land (Supplementary Information). We then identified 38 key environ-
mental, demographic or socioeconomic variables potentially related 
to deforestation (Supplementary Table 4). Included among these 
were neighbourhood road density (total length of roads within a 5-km 
radius of each plot) and road proximity (linear distance of the plot to 
the nearest road). Much road building in the tropics is linked to agri-
culture—the largest ultimate driver of deforestation in the Asia-Pacific 
region24–26—which itself is influenced by underlying socioeconomic and 
demographic factors27,28. Roads also promote deforestation by mark-
edly reducing the costs of transporting timber, bulk minerals, fossil 
fuels and poached wildlife to domestic or international markets27,29.

To model forest loss on the basis of our 38 potential predictor vari-
ables, we developed a generalized linear model with LASSO regular-
ization11 (a technique that encourages simple, sparse models, with 
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Fig. 1 | Road density in the tropical Asia-Pacific region is much higher than 
indicated by available global datasets. a, The study region, comprising part 
or all of Indonesia, Malaysia and Papua New Guinea (the yellow triangle shows 
the location of inset panels c–e). b, Cumulative plots comparing the total length 
of roads and proportion of land potentially affected by roads (road extent, 

percentage of 1-km2 cells containing roads) in this study versus data from OSM 
and GRIP. Sites are ordered from highest to lowest road length. c–e, Mapped 
roads in a landscape in Sabah, Malaysian Borneo, as shown by GRIP (c; blue 
lines, imagery circa 2018), OSM (d; red lines, circa 2020) and this study (e; black 
lines, circa 2019), respectively.
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fewer parameters and less model variance and bias). Out of these 38 
potential predictors, 14 had a discernible relationship with forest loss 
(Supplementary Information), and their effects were then contrasted 
using road datasets from this study, GRIP and OSM (Fig. 2). Notably, 
the marginal relationship between road density and forest loss was 
distinctly nonlinear (Fig. 2a). This sigmoidal curve suggests a gen-
eral threshold effect of roads, with deforestation rates being highest 
when new roads are first constructed in a landscape, and then gradually 
decreasing as road density increases. Forests are expected to decline 
most sharply when roads initially encroach, up to a road density of 
around 4 km km−2, with accessible forests becoming largely depleted 
if road density exceeds around 7.5 km km−2. Broadly similar dynamics 
have been observed in rural communities experiencing ‘boom-and-
bust’ development in the Brazilian Amazon30, where initial road building 
triggers rapid forest loss followed by declines in environmental and 
human welfare as forest resources are increasingly exhausted.

In our final LASSO regression model, several other variables—annual 
rainfall, distance to nearest city, topographic slope, soil coarse fraction, 
distance to nearest road, and country—had modest explanatory power, 
with each having beta (slope) values significantly smaller than that of 
road density (Fig. 2b–j). Marginal relationships of these variables with 
forest loss largely followed expected trends (that is, forest loss was 
highest near townships or cities, in flatter areas and in less-rainy locales 
where forest burning is easier) (Fig. 2b–j). Notably, protected-area 
coverage (with a beta value of just −0.01) had little influence on model 
performance. We did not evaluate various other potential drivers of 
deforestation, especially ultimate factors (for example, poverty, access 
to global markets and social norms)27 for which we lacked adequately 
spatially resolved data. Thus, although road density was the strongest 

spatial predictor of forest loss in our study, we were unable to consider 
every conceivable driver of deforestation in our model.

We also ran separate LASSO models for each country and then com-
pared their performance with that of our region-wide LASSO model, 
which indicated that Indonesia had a higher marginal rate of forest loss 
than did either Malaysia or Papua New Guinea. Notably, the region-wide 
model performed better (pseudo R2 = 0.667) than the three country-
level models (pseudo R2 = 0.540, generated by using area-weighted 
averages for each nation) (Supplementary Fig. 3). In addition, we reran 
our LASSO regression while excluding large-scale oil-palm and pulp-
wood plantations (Supplementary Fig. 4), which are associated with 
considerable deforestation in the Asia-Pacific region24. This produced 
only negligible changes in model slope parameters and overall outcome 
(Supplementary Information), underscoring the robustness of our 
region-wide model.

The LASSO model based on our road data, which included ghost 
roads, differed in three important ways from those based on the GRIP 
and OSM datasets (Fig. 2k–m). First, the model with our improved 
road data was considerably stronger, explaining more of the total devi-
ance in the response variable (66.7%) than did either the GRIP- or the 
OSM-based models (49.8% and 51.0%, respectively). As a result, our 
model was better at predicting spatial patterns of forest loss across 
our study area (Fig. 2). Second, when using our road data, road den-
sity was a much stronger correlate of forest loss (with a beta value of 
1.35, which is around 1.4–2.8 times greater than OSM- and GRIP-based 
values, respectively). Third, the effect of country on forest-conversion 
rates differed substantially (particularly for Indonesia and Papua New 
Guinea) when using GRIP or OSM data, compared with our comprehen-
sive road dataset. Hence, the widely used GRIP and OSM datasets are 
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Fig. 2 | Environmental and socioeconomic features that influence forest 
loss across the tropical Asia-Pacific region. a–j, Partial differential plots 
showing relationships between the 10 most influential features and forest 
cover (road density (a), annual rainfall (b), distance to city (c), slope (d), soil 
coarse fraction (e), distance to road (f), soil carbon (g), population density (h), 

soil sand fraction (i) and gross domestic product (GDP) ( j)). The x-axis values 
indicate the number of standard deviations from the mean; see Supplementary 
Table 5. k–m, Spatial predictors of deforestation, showing slope (beta) values 
for model using our road data (k) and the difference in slope values when using 
alternative road data from GRIP (l) and OSM (m). Abs, absolute values.
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not just seriously incomplete but also markedly inconsistent among 
nations or geographic regions (Supplementary Table 2)—with develop-
ing nations generally having much poorer road data than do wealthier 
nations5,18.

Roads and protected areas
Next, we assessed the degree to which areas that are designated as  
protected by the International Union for Conservation of Nature 
(categories I–VI) limit road incursions and forest loss, relative to non-
protected areas, using the three road datasets. We first used propensity-
score matching31 to account for non-random locations of protected  
areas, such as biases toward steeper or less productive lands (Supp-
lementary Information). We then used separate propensity-score 
analyses to assess the capacity of protected areas to reduce both road 
incursions and forest loss.

When comparing matched sites, we found that average road density 
was more than twice as high (256.7%) outside protected areas than 
inside them (Fig. 3a). However, after accounting for lower road densities 
inside protected areas, the marginal effects of protected-area coverage 
on forest loss were surprisingly modest: less than 1% in magnitude when 
based on the road datasets from this study, and less than 1.5% in magni-
tude when based on data from OSM or GRIP (Fig. 3b). This suggests that, 
on a per-kilometre basis, roads inside protected areas lead to nearly as 
much forest loss as do roads outside protected areas. We assert that 
the most crucial conservation function of terrestrial protected areas, 
at least in the Asia-Pacific region, is limiting road incursions and their 
many associated impacts on forests.

Roads precede forest loss
Finally, to test whether roads tend to precede deforestation, or rather, 
follow it, we evaluated the temporal sequence of land-use change in 
12 large land parcels (each around 400 km2 in area) arrayed across 
Sumatra, Borneo and New Guinea (Fig. 4a). We created 35 annual road 
maps using annual Landsat imagery from 1985 to 2020 and then identi-
fied the spatio-temporal relationship between road construction and 
deforestation using published annual deforestation data32 (Supple-
mentary Information). We summarized this relationship by classifying 
areas in each parcel that were deforested before, during or after road 

construction, as well as areas that were deforested independently of 
roads (more than 2 km from the nearest road).

In our 12 study locations, the probability of deforestation was low 
before road construction, but spiked immediately after nearby roads 
were created (Fig. 4b). Our assessment showed that the large majority 
of deforestation—92.2%, on average—occurred after, or concurrently 
with, the construction of nearby roads (Fig. 4c). Forest loss preceded 
road construction in just 5.1% of the total area sampled. These trends 
indicate that forest loss in our study region is overwhelmingly trig-
gered by ongoing road expansion, rather than vice versa. The 12 
study locations include some large-scale oil-palm and pulpwood  
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Nature | www.nature.com | 5

plantations, in which forest loss also typically followed road construc-
tion (Supplementary Fig. 3).

Summary and conclusions
Using road data generated by trained volunteers, we recorded 3.0–6.6 
times more roads in the Asia-Pacific region than were found in leading 
global-road datasets, while revealing vast numbers of unmapped ‘ghost 
roads’. These findings have key implications for forest conservation. 
As a consequence of rapidly proliferating ghost roads, government 
datasets on roads often have large blind spots and inconsistencies, 
inhibiting spatial planning, law enforcement and the collection 
of government rents and royalties on exploited natural resources  
(Supplementary Table 2).

Striking gaps in road maps are not at all unusual, especially for devel-
oping nations2–10. For instance, studies in the Brazilian Amazon6,33,34, 
Cameroon35 and the Solomon Islands10,36 also detected many unmapped 
or illegal roads, ranging from 2.8 to 9.9 times those recorded in OSM or 
government sources—values that broadly overlap with and even exceed 
those observed in our Asia-Pacific study area. Protected areas in this 
region provided considerable protection against road incursions, con-
taining just a third as many roads as did comparable unprotected areas 
(Fig. 3a). On a per-kilometre basis, however, roads inside protected 
areas caused nearly as much forest loss as did those in unprotected 
areas (Fig. 3b). This underscores, in our view, an urgent need to limit 
unregulated road expansion in protected areas as a general conser-
vation strategy37–40.

Although global-road databases are gradually improving in quality41, 
their many gaps and inconsistencies greatly limit their value for com-
paring different nations, regions and ecosystem types. Furthermore, 
popular conservation metrics, such as the human footprint21,22 and 
roadless or wilderness areas23, are being based in part on seriously 
incomplete road data. For example, the estimated human footprint 
in the environmentally critical region of east–central Borneo differs 
markedly when it is based on a recent OSM road map (Fig. 5a), com-
pared with when it is based on our road data (Fig. 5b). Among these 
differences, the mapped region in Borneo had twice as much land area 
with ‘very high’ disturbance (28.4% versus 14.5%), and only half as much 
land with ‘low’ disturbance (6.6% versus 13.6%), when based on our 
updated road map and forest-disturbance classifications from the 
human-footprint study22.

The road-mapping element of this study required around 7,000 h 
of effort by more than 200 trained volunteers or study authors. Such 
an intensive undertaking is justified only because human eyes still 
outperform articial intelligence (AI)-based methods for identifying 
and mapping roads (especially when more-accurate, higher-resolution 
images are used, as in this study). At larger spatial scales, the required 

effort is even more daunting. For example, a global-scale analysis 
using our methods would require around 640,000 h of effort simply 
to map all of Earth’s current roads just once. For this reason, a viable 
AI-based road-mapping system is urgently needed42. Such schemes 
are under development33,43–45 and could potentially be trained using 
major datasets such as ours, aiming to provide accurate, global-scale 
road coverage in near real time. In practical terms, such an automated 
system is one of the most urgent conservation needs for tropical forests 
today. Nothing else will keep pace with the contemporary avalanche 
of proliferating roads.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-024-07303-5.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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