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A figure of merit for efficiency roll-off in 
TADF-based organic LEDs

S. Diesing1,2,3, L. Zhang1,2,3, E. Zysman-Colman2 ✉ & I. D. W. Samuel1,3 ✉

Organic light-emitting diodes (OLEDs) are a revolutionary light-emitting display 
technology that has been successfully commercialized in mobile phones and 
televisions1,2. The injected charges form both singlet and triplet excitons, and for high 
efficiency it is important to enable triplets as well as singlets to emit light. At present, 
materials that harvest triplets by thermally activated delayed fluorescence (TADF) are a 
very active field of research as an alternative to phosphorescent emitters that usually 
use heavy metal atoms3,4. Although excellent progress has been made, in most TADF 
OLEDs there is a severe decrease of efficiency as the drive current is increased, known as 
efficiency roll-off. So far, much of the literature suggests that efficiency roll-off should 
be reduced by minimizing the energy difference between singlet and triplet excited 
states (ΔEST) to maximize the rate of conversion of triplets to singlets by means of 
reverse intersystem crossing (kRISC)5–20. We analyse the efficiency roll-off in a wide range 
of TADF OLEDs and find that neither of these parameters fully accounts for the reported 
efficiency roll-off. By considering the dynamic equilibrium between singlets and 
triplets in TADF materials, we propose a figure of merit for materials design to reduce 
efficiency roll-off and discuss its correlation with reported data of TADF OLEDs. Our 
new figure of merit will guide the design and development of TADF materials that can 
reduce efficiency roll-off. It will help improve the efficiency of TADF OLEDs at realistic 
display operating conditions and expand the use of TADF materials to applications 
that require high brightness, such as lighting, augmented reality and lasing.

Organic light-emitting diodes (OLEDs) are now widely used in displays 
and are being developed for applications in lighting, sensing and 
communications1,2. They consist of layers of charge transporting and 
light-emitting organic semiconductors in between two electrodes, at 
least one of which is transparent. When the injected charges recombine, 
they form both singlet and triplet excitons. Spin statistics suggest three 
triplets form for each singlet, a ratio that has been verified for evapo-
rated OLEDs using low molecular weight emitters21. In OLEDs using 
fluorescent materials, only the singlets emit light. Phosphorescent 
OLED materials were therefore developed to obtain light emission from 
the triplets as well22. These work very well for red and green emission, 
but there is not yet a blue phosphorescent emitter meeting all com-
mercial requirements23. Consequently, there is currently great interest 
in thermally activated delayed fluorescence (TADF) as an alternative 
approach to obtaining light from triplets3,4. Following the pioneering 
work of Adachi and coworkers in 2011, there have been more than 4,000 
papers with the keyword thermally activated delayed fluorescence24,25 
(based on results from 16 February 2024 that mention thermally acti-
vated delayed fluorescence or TADF since 2011).

A problem in both organic and inorganic LEDs is that as the drive 
current is increased for more light output, the efficiency decreases26. 
This is known as efficiency roll-off and is illustrated in Fig. 1a, which 
shows the efficiency as a function of current density for prototypi-
cal examples of fluorescent, phosphorescent and TADF OLEDs3,27,28. 

Figure 1a shows that the phosphorescent and TADF OLEDs have more 
than four times the efficiency of the fluorescent OLEDs, but that their 
efficiency decreases and particularly severely for the TADF OLEDs as 
the current density is increased. To compare the behaviour of a wide 
range of OLEDs of each type, we define J90 as the current density at 
which the external quantum efficiency (EQE) falls to 90% of its peak 
value, as illustrated in Fig. 1b.

We have extracted J90 from published data on a wide range of OLEDs 
together with their EQE at a practical luminance of 1,000 cd m−2. These 
are plotted for each class of OLEDs and each colour in Fig. 1c. The ideal 
behaviour would be high J90 (for low efficiency roll-off) and high EQE: 
that is, the top right quadrant of the graph. Most fluorescent OLEDs 
fall in the green rectangle (A), which is a region of high J90 but low 
EQE. Most phosphorescent OLEDs (and a few others) fall in the blue 
rectangle (B). The upper half of this rectangle represents OLEDs with 
high efficiency and fairly high J90. TADF OLEDs fall mainly in region 
C. Notably, there is a much wider spread of both EQE and J90 than for 
the other classes of OLEDs, possibly because TADF OLEDs is a much 
younger field. The upper right part of region C shows that there are 
some reports of TADF OLEDs with high EQE and moderately high J90, 
although lower than for good phosphorescent devices. However, region 
C also extends to extremely low values of J90 that is, there are many TADF 
devices experiencing significant efficiency roll-off at current densities 
below 0.1 mA cm−2. Even for a green device, this would correspond 
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to a brightness of at most 100 cd m−2, whereas typical displays run at 
400 cd m−2 and their individual pixels often run at much higher bright-
ness to achieve an average 400 cd m−2 on the display29. Hence, many 
reported TADF OLEDs have severe efficiency roll-off and even the best 
have significant efficiency roll-off ( J90 of a few mA cm−2).

Efficiency roll-off in TADF devices
This brings us to the central question of this analysis, which is, what can 
be done in terms of emitter design to reduce efficiency roll-off (that 
is, increase J90)? In other words, which photophysical processes need 
to be tuned by molecular design to minimize inherent limitations of 
the emitter that contribute to efficiency roll-off? Efficiency roll-off 
arises both from the emitter design and the device design, but for an 
optimized device design (for example, balanced charge carriers and 
wide recombination zone) it will ultimately be limited by the proper-
ties of the emitter.

To identify the crucial parameters for emitter design, we first need 
to consider what causes efficiency roll-off. Studies in phosphorescent 
OLEDs have shown that triplet–triplet annihilation (TTA) and triplet–
polaron annihilation (TPA) are the main loss mechanisms as the cur-
rent density is increased29–31. A similar understanding is developing in 
TADF OLEDs in which TTA, TPA and singlet–triplet annihilation (STA) 
may all contribute32–34. These are all bimolecular processes and thus 
much more severe at higher excitation densities. Furthermore, as all 
these processes involve triplets, they can be mitigated by reducing 
the triplet lifetime and hence reducing the triplet population. This 
has been achieved successfully in phosphorescent OLEDs by engi-
neering the light-emitting material (for example, by using an iridium 
complex) to show a large radiative rate constant from the triplet state 
and thus achieving a relatively short triplet lifetime of around 1 µs.  

For comparison, delayed fluorescence lifetimes in organic TADF mate-
rials range from 1 µs to beyond 500 μs. We briefly note that as well as 
reducing efficiency, bimolecular processes involving triplets are also 
a main mechanism of device degradation, providing a further reason 
to reduce the triplet population in operating devices35.

Hence to reduce efficiency roll-off, we need to reduce triplet lifetime 
or, more precisely, the triplet population during device operation. 
This, however, is not as simply achieved as in the case of phosphores-
cence. The key photophysical processes in a TADF emitter are shown 
in Fig. 2. Singlets are converted to triplets via intersystem crossing 
(ISC) with rate constant kISC, and triplets to singlets via reverse inter-
system crossing (RISC) at rate constant kRISC. There is potentially radi-
ative and non-radiative decay of both triplets and singlets, although 
in a good TADF material kr

S will be much larger than any of knr
S , kr

T and 
knr

T  (refs. 36,37). The main approach advocated in the literature for 
reducing efficiency roll-off is to increase kRISC, commonly by reducing the 
energy difference between singlet and triplet excited states (∆EST) 
through molecular design by reducing the exchange integral between 
the highest occupied and lowest unoccupied molecular orbitals. In 
addition, there have been other attempts to increase kRISC, for example 
by the use of heavy atoms, to increase spin–orbit coupling (SOC)5,38. 
The emphasis on kRISC is so strong that since 2016 there have been 16 
publications in the Nature family alone exploring kRISC (refs. 5–20). 
However, the expected improvement in J90 has not always materialized.

To understand how J90 depends on kRISC, we have plotted the graph 
shown in Fig. 3. There is some correlation (Spearman correlation 
ρ = 0.638) in so far as there is a tendency towards higher J90 for higher 
kRISC, but there is an enormous spread of the data (considering this is 
a log–log plot). For example, the blue dashed rectangle shows that J90 
of roughly 2 mA cm−2 can be achieved with kRISC from 2 to 20 × 105 s−1. 
The insufficiency of kRISC as a guide for molecular design is vividly 
demonstrated by the red dashed rectangle that shows J90 for mole-
cules designed with a high kRISC of 8–15 × 105 s−1. The values of J90 range 
from 0.03 to 40 mA cm−2, that is, by more than three orders of mag-
nitude, showing kRISC alone is inadequate as a predictor of efficiency  
roll-off.

Derivation of FOM
To develop guidelines for TADF materials design to reduce efficiency 
roll-off in OLEDs, we should first look more closely at Fig. 2 and the 
mechanism of TADF.
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Fig. 1 | Examples of efficiency roll-off. a, Efficiency roll-off of prototypical 
fluorescent (Alq3), phosphorescent (Ir(ppy)2acac) and TADF (4CzIPN) 
OLEDs3,27,28. b, Schematic graph showing definition of J90. c, Graph of the 
relation between J90 and EQE1,000 for TADF5,38,39,48–113, fluorescent (Fluo.)28,114–129 
and phosphorescent (Phos.)86–88,128–155 devices emitting in the red (R), green (G) 
and blue (B) regions of the spectrum (for the references, see Methods).
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Fig. 2 | Simplified Jablonski diagram of a TADF emitter. The excited singlet 
and triplet states S1 and T1, respectively, are shown in equilibrium due to the 
occurrence of both intersystem crossing (kISC) and reverse intersystem crossing 
(kRISC) enabled by the small energy gap (ΔEST) between S1 and T1. A TADF OLED 
emits light by radiative decay from kS ( )1 r

S , whereas non-radiative decay from 
both kS ( )1 nr

S  and kT ( )1 nr
T , as well as the negligible radiative decay from kT ( )1 r

T  are 
other deactivation pathways of excited species.
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The physics of TADF is often studied using transient photolumi-
nescence (PL) measurements in which the emitter is excited using a 
laser pulse. Excitons are generated in the excited singlet state (S1), and 
the decay of the excited state is slowed by cycling to and from the tri-
plet state (T1) by ISC and RISC, respectively. In an OLED, charge injec-
tion leads to a buildup of both S1 (25%) and T1 (75%) excitons as well as 
polarons. There is a dynamic equilibrium between S1 and T1 facilitated 
by the ISC/RISC cycling. To ascertain on which side the dynamic equi-
librium lies, an equilibrium constant Keq is defined as

K =
[S ]
[T ]

. (1)eq
1

1

For a three-level TADF OLED under low constant current electrical 
excitation, the equilibrium constant is given as follows (see Methods 
for the derivation)

K
k k

k k
=

3 +

3 +
, (2)eq

RISC
T

S
ISC

where kS is the sum of the rate constants for ISC (kISC), radiative k( )r
S  and 

non-radiative k( )nr
S  decay from S1, and kT is the sum of the rate constants 

for RISC (kRISC), radiative k( )r
T  and non-radiative k( )nr

T  decay from T1. As 
explained earlier, to minimize the EQE roll-off a low T1 population is 
necessary to suppress TTA and to a lesser extent STA and TPA. For an 
OLED operated at high brightness this translates to the requirement 
of maximizing the S1 population relative to the T1 population, which 
can be achieved by maximizing Keq. Furthermore, according to Le Chat-
elier’s principle, an equilibrium can be moved to a desired product by 
removing the product from the equilibrium. Here, the radiative decay 
of S1 excitons is the desired product. Therefore, to minimize the frac-
tion of triplet excitons in the steady-state OLED emitters should be 
developed (or selected) to maximize the product of radiative rate con-
stant and equilibrium constant. In a good OLED, nearly all electrically 
excited excitons decay radiatively, that is k k= = 0nr

S
nr
T . Thus, for a TADF 

emitter with photoluminescence quantum yield near unity and no 
phosphorescence contribution k( = 0)r

T , which is reasonable for good 
organic emitters, a figure of merit (FOM) for efficiency roll-off can be 
formulated as

k K
k k

k k
=

4

3 + 4
. (3)r

S
eq

r
S

RISC

r
S

ISC

Figure 4 shows J90 plotted as a function of this FOM. There is a stronger 
correlation with J90 (ρ = 0.700) than kRISC with J90 (ρ = 0.638). Higher 
k Kr

S
eq leads to higher J90. Accordingly, maximizing k Kr

S
eq and thus min-

imizing the T1 population under electrical excitation is a better strategy 
for improving efficiency roll-off than considering kRISC alone. Figure 4 
compares efficiency roll-off as a function of our FOM (black circles) 
with efficiency roll-off as a function of kRISC (small grey circles). The 
FOM has a narrower spread of values as would be expected for the 
improved correlation.

It is interesting to apply this FOM to recent attempts to increase kRISC 
by incorporating heavy atoms into the molecule to increase SOC5,38. 
These studies are shown by red crosses in Figs. 3 and 4. This strategy 
is broadly successful at leading to fast kRISC but does not necessarily 
lead to the highest J90 as kISC also increases, or kr

S decreases. This inter-
play between these parameters is captured by the FOM as can be seen 
from the red crosses in Fig. 4 being in the same region as other materi-
als. At the same time, incorporation of these larger atoms that result 
in weaker bonds also leads to faster non-radiative pathways and poten-
tially poor device stability. Here, we can see that kRISC and the proposed 
FOM give distinct assessments of the heavy atom approach, and that 
the latter is a better predictor of J90 for future molecular design. 
Another possible guide for design is (as for phosphorescent devices) 
short delayed fluorescence lifetime (τDF)39. The correlation of J90 with 
τDF is shown in Extended Data Fig. 1a. There is a good correlation 
(ρ = −0.685), although still some scatter. Actually, τDF has a much 
stronger correlation with the proposed FOM (ρ = −0.801) than with 
kRISC (ρ = −0.709). In other words, the proposed FOM not only predicts 
the efficiency roll-off, but also clarifies the key physical processes that 
need to be optimized to achieve low efficiency roll-off. Although meas-
uring τDF would be an effective way of screening materials for low 
potential efficiency roll-off after they have been synthesized, our FOM 
gives more insight into how to design a material for low efficiency 
roll-off by showing the exact combination of rate constants that should 
be optimized.

For many TADF materials kISC is substantially faster than kr
S, in which 

case the FOM can be simplified to
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Fig. 3 | Data analysis. J90 of the reported TADF OLEDs with respect to kRISC 
(Spearman correlation ρ = 0.638). Red crosses present TADF molecules 
containing heavy atoms that benefit from enhanced SOC to increase kRISC.  
Data inside the dashed boxes are for comparison.
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atoms that enhance SOC, which leads to an increase in kRISC. In grey circles, the 
correlation of J90 and kRISC from Fig. 3 is shown for comparison.
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This simplified FOM highlights the competition between kISC, kRISC 

and kr
S very clearly. It is equivalent to k Kr

S
eq in the regime where kr

S is 
smaller than kISC (Extended Data Fig. 2).

Other factors affecting efficiency roll-off
Although there is a good correlation between J90 and the proposed 
FOM, there is a significant spread of data points in Fig. 4. This can be 
understood to arise because efficiency roll-off involves a combination 
of the intrinsic properties of the emitting molecule with the extrinsic 
properties of the device. An analogous situation exists when using 
photoluminescence quantum yield as a predictor of device efficiency: 
whether a material realizes its full potential also depends on the device. 
Similarly, our FOM describes the best that could be achieved with a par-
ticular light-emitting material in a device limited by the triplet popula-
tion. In real devices, many factors, especially imperfect charge balance, 
could lead to worse performance than this ideal case, and hence can 
explain the spread of the data in Fig. 4. In addition, at low current density 
some devices show efficiency increasing with current density, as can 
be seen for the devices in Fig. 1a. As J90 is taken as a reduction from peak 
efficiency, this will lead to higher values of J90 than in devices with peak 
efficiency at very low current. There is another example of this effect 
in Extended Data Fig. 3 that compares two 2CzPN devices3,40. It should 
also be noted that practice for determining rate constants varies37,41, 
which could also contribute to the spread.

Another important factor that could contribute to the spread of data 
is that the effect of a given triplet population depends on the material. 
In particular, reported TTA rate constants γTT are widely spread over 
eight orders of magnitude (10−18–10−10 cm3 s−1)32,33,42,43. So, increasing 
the FOM will reduce triplet population, and is beneficial (increases J90) 
but the improvement arising from the reduced triplet population 
depends on the value of γTT. Similar considerations apply to STA, in 
which again there is a range of γST, and the relative importance of STA 
and TTA depends on the relative values of γTT and γST. As these rate 
constants are not yet widely measured, we have not at this stage 
attempted to incorporate them into a FOM. However, we show their 
potential effect in Extended Data Fig. 4, which shows calculations of 
how J90 would depend on FOM for systems with kr

S between 105 and 
1010 s−1, k k/ISC r

S between 10−1 and 103, and k Kr
S

eq between 102 and 108 s−1 
for a range of values of γST, γTT and kr

S. Extended Data Fig. 3a shows how 
for a given FOM, each order of magnitude change in γTT leads to an 
order of magnitude change in J90. Extended Data Fig. 4b shows the 
potential interplay between TTA and STA. The J90 value behaves nearly 
linearly with k Kr

S
eq when only TTA is considered (red dots, the slope is 2).  

If only STA is considered, there is still a correlation; however, at the 
same FOM, higher J90 is achieved when kr

S is large. If both TTA and STA 
are significant, then the efficiency is limited by TTA at low FOM and by 
kr

S at high FOM.
We also note that the kinetics of thin films can result in a multi- 

exponential transient PL, which is caused by conformational disorder44. 
Such a decay can be analysed using a Laplace transformation of the 
three-level kinetics of each conformer45. Our analysis does not include 
conformational disorder but could be applied in a similar manner to 
the analysis of multi-exponential transient PL caused by conforma-
tional disorder.

Conclusion
Our analysis has important implications for the rapidly growing field 
of TADF OLED development. At present, many such devices suffer 
such severe efficiency roll-off that they are unsuitable for practical 
application and, as we have shown, current emitter design focusing 
on maximizing kRISC alone is not an effective strategy. On the basis of 
the insight from considering the quasi-equilibrium in TADF, we instead 
propose that the focus of materials design and development should 

shift to maximizing a FOM that combines the physical processes that 
determine efficiency roll-off. Target values of the FOM will depend on 
the requirements of particular applications, as well as device design 
and severity of bimolecular effects. We estimate values of FOM required 
for materials with chromaticity close to the BT2020 standard46, and 
with Gaussian emission spectra of width 15 nm in the blue, 30 nm in the 
green and 45 nm in the red. We use the calculation for Extended Data 
Fig. 4a with γTT = 10−13 cm3 s−1 and find the FOM required to achieve 90% 
of a peak EQE of 25% at a brightness of 1,000 cd m−2. We find that for a 
deep blue emitter (λmax = 467 nm, CIE 1931 colour space (0.131, 0.049)) a 
FOM of at least 1.5 × 105 s−1 is required. For a green emitter (λmax = 529 nm, 
CIE (0.169, 0.772)) a FOM of 5.1 × 104 s−1 would be required, and for red 
(λmax = 650 nm, CIE (0.708, 0.292)) an FOM of at least 1.3 × 105 s−1 is 
needed.

In terms of material design for low efficiency roll-off, it is not nec-
essary to maximize kRISC, but it is very desirable to maximize kRISC 
relative to kISC (without sacrificing kr

S). It is also a useful strategy to 
seek materials with high kr

S (providing kRISC/kISC is not reduced), which 
is also the underlying physics for hyperfluorescent OLEDs47, where 
the rate constant of Förster resonance energy transfer takes the place 
of kr

S in the FOM and lowers the triplet population on the TADF sen-
sitizer. At the same time, there is a need to understand which process 
dominates the efficiency roll-off. Whereas all main annihilation pro-
cesses scale with the triplet population and thus inversely with our 
proposed FOM, the relative importance of these processes in each 
OLED is not sufficiently known. Therefore, there is a need to measure 
both γST and γTT in a wider set of devices to fully understand how  
the excited-state kinetics of the emitter need to be engineered to 
reduce efficiency roll-off.

We hope that our FOM and these insights will enable the field of TADF 
OLEDs to overcome the challenge of efficiency roll-off and advance 
more rapidly to applications in displays, lighting and beyond.
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Analysis
Methods

Data collection
We considered the reported efficiency roll-off behaviour of TADF OLEDs 
published in peer-reviewed journals between 2016 and 2022. The data 
of the OLED and emitter were included in the analysis if the following 
criteria were met:
1.	 The reported OLED was vacuum-processed, in a bottom-emitting 

device structure with a TADF emitter in a host material.
2.	Photophysical characterization of the thin film used as the emission 

layer was reported.
3.	The photoluminescence quantum of the emitter film was reported 

to exceed 60%.
4.	The calculation of all TADF rate constants was clearly detailed.
5.	 Device data clearly showed J90 data or the presented device data 

allowed for a reasonable estimation of J90.

Applying these criteria led to a total of 66 devices from 46 publica-
tions being included in our analysis5,38,39,48–84,156–160.

For comparison, Fig. 1c shows the relation between J90 and the EQE 
at 1,000 cd m−2 (EQE1,000) for TADF OLEDs5,38,39,48–113 with representative 
fluorescent28,114–129 and phosphorescent86–88,128–155 devices across red, 
green and blue colours.

Steady-state population of the excited states
The kinetics of a TADF emitter as shown in Fig. 2 under electrical excita-
tion can be described by the rate equations for the excited singlet state 
(S1) and the triplet state (T1) when neglecting annihilation processes 
as follows.
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where kS is the sum of the rate constants for ISC (kISC), radiative k( )r
S  and 

non-radiative k( )nr
S  decay from S1, where kT is the sum of the rate con-

stants for RISC (kRISC), radiative k( )r
T  and non-radiative k( )nr

T  decay from 
T1, and γ is the Langevin recombination rate. The derivative of the 
polaron population [n]t can be sufficiently approximated by not dis-
tinguishing between the charge of the polaron as
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where J(t) is the current density at time t, d is the thickness of the emis-
sion zone and e is the elementary charge.

In normal device operation, the OLED is driven at constant current 
density ( J(t) = Jconst) so the excited-state populations reach a steady 
state given by equation (8).
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The steady-state population of S1 and T1 ([S1] and [T1], respectively) 
can be obtained by substituting the differential equation for S1 in steady 
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By inserting equation (8) in equations (13) and (14) the steady-state 
populations are given as a function of the current density as
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Calculation of J90 for OLED examples
A set of 1,287 kinetic parameters for the equations (5) and (6) was gen-
erated, using the permutation of the input variables in Extended Data 
Table 1, with
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and a thickness of the emission zone of d = 10 nm, a Langevin recom-
bination rate161 of γ = 6.8 × 10−17 m

s

3
 as well as all other rate constants  

set to 0.
For the calculation of Extended Data Fig. 3a,b, the bimolecular 

rate constants were set to the values shown in the figure.  J90 was 
obtained by minimizing equation (18) using the python package  
scipy162.
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where ηIQE( J) is the internal quantum efficiency (IQE) at current density 
J considering annihilation processes and ηIQE

0  is the IQE without con-
sidering annihilation processes. Both are given by
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For ηIQE
0 , the singlet population [S1] and triplet population [T1] were 

obtained from equations (15) and (16), respectively.
For ηIQE( J), [S1] and [T1] were obtained by minimizing the set of diff

erential equations (20) and (21) with [n] given by equation (7), using 
the python package scipy161,162.
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Calculation of target value
The optical power flux Φ leaving an OLED relates to the current  
density J as

∫ ∫ ∫Φ Φ λ λ
hc
λ

I λ η
J

e
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η J
λ

I λ λ= ( )d = ( ) d =
1
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where I(λ) is the relative intensity of the OLED at wavelength λ, ηEQE is the 
ratio of photons leaving the OLED to the number of electrons flowing 
around the electrical circuit (EQE).

The total luminous flux ΦV can be calculated from the optical power 
flux using the photonic sensitivity curve V(λ) as
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where Km = 683 lm W−1 is a fudge factor called the peak response.
Under the assumption of Lambertian emission, the luminance LV of 

the OLED is then given as follows.

∫L
Φ

K
hc

e
η J

λ
I λ V λ λ=

π
=

π
1

( ) ( )d (24)V
V

m EQE

Therefore, the current density required to generate a given lumi-
nance by an OLED with a given normalized spectrum and given EQE 
is given as follows.
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For the calculation of the target value, we have taken three assumed 
spectra for red, green and blue with a Gaussian shape and a full-width 
at half-maximum of 45, 30 and 15 nm, respectively. The centre wave-
length was selected so that the colours of the three spectra are as close 
as possible to the primary colours of the BT.2020 standard in the CIE 
1931 colour space, which are given by the coordinates (0.708, 0.292), 
(0.170,0.797) and (0.131,0.046), respectively46.

The calculation was performed at an EQE of 22.5% for Lv = 1,000 cd m−2, 
indicating a maximum EQE of 25%. The correlation for J90 to the FOM is 

taken from the simulated relationship shown in Extended Data Fig. 4a 
for γTT = 10−13 cm3 s−1 and γST = γTP = 0 as follows.
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Analysis

Extended Data Fig. 1 | Correlation with delayed fluorescence lifetime τDF.  
(a) Dependence of J90 on τDF with a Spearman correlation, ρ, of  −0.685.  
(b) Dependence of τDF on kRISC (ρ = −0.709). (c) Dependence of τDF on k Keqr

S  

(ρ = −0.801). Red crosses identify TADF molecules containing heavy atoms that 
enhance SOC, which leads to an increase in kRISC.



Extended Data Fig. 2 | Simplified Figure of Merit. (a) Correlation between J90 
and the simplified FOM of k r

SkRISC/kISC with a Spearman correlation of ρ = 0.680, 
showing a better correlation than kRISC but a less precise predictor than the FOM 
of k Keqr

S . Red crosses identify TADF molecules containing heavy atoms that 

enhance SOC, which leads to an increase in kRISC. In grey circles, the correlation 
of J90 and kRISC from Fig. 3 is displayed for comparison. (b) Deviation between 
the FOM of k Keqr

S  and its simplification of k k k/RISC ISCr
S  for kRISC = 107 s–1 showing a 

deviation between the FOMs for systems with competitive k r
S and kISC.
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Extended Data Fig. 3 | Device influence on Roll-off. Comparison of efficiency roll-off of two literature 2CzPN OLEDs showing different J90 because of different 
efficiency rise at low current densities3,40.



Extended Data Fig. 4 | Impact of STA and TTA on roll-off. The impact of STA 
and TTA on the correlation between J90 and k Keqr

S  calculated for a simplified 
three-level system with k r

S between 105 s–1 and 1010 s–1, k k/ISC r
S between 10–1 and 

103 and k Keqr
S  between 102 s–1 and 108 s–1 (a) for three different TTA rate 

constants and (b) for a particular STA rate, a particular TTA rate and a 
particular combination of STA and TTA rate.
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Extended Data Table 1 | Parameters for Extended Data Fig. 4

Generating parameters for the tested set of theoretical emitters shown in Extended Data Fig. 4.
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