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Integrated intracellular organization and its 
variations in human iPS cells

Understanding how a subset of expressed genes dictates cellular phenotype is a 
considerable challenge owing to the large numbers of molecules involved, their 
combinatorics and the plethora of cellular behaviours that they determine1,2. Here  
we reduced this complexity by focusing on cellular organization—a key readout and 
driver of cell behaviour3,4—at the level of major cellular structures that represent 
distinct organelles and functional machines, and generated the WTC-11 hiPSC Single- 
Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning  
25 key cellular structures. The scale and quality of this dataset permitted the creation 
of a generalizable analysis framework to convert raw image data of cells and their 
structures into dimensionally reduced, quantitative measurements that can be 
interpreted by humans, and to facilitate data exploration. This framework embraces 
the vast cell-to-cell variability that is observed within a normal population, facilitates 
the integration of cell-by-cell structural data and allows quantitative analyses of 
distinct, separable aspects of organization within and across different cell populations. 
We found that the integrated intracellular organization of interphase cells was robust 
to the wide range of variation in cell shape in the population; that the average locations 
of some structures became polarized in cells at the edges of colonies while maintaining 
the ‘wiring’ of their interactions with other structures; and that, by contrast, changes 
in the location of structures during early mitotic reorganization were accompanied  
by changes in their wiring.

Cellular organization can be defined as the sum total of how all of a cell’s 
components are arranged within it, generating an overall character-
istic size, shape and appearance for a cell of a given type. The models 
and laws for understanding and predicting cellular organization and 
its pivotal role as a determinant of cellular phenotype remain to be 
determined. A first step towards this goal is to identify interpretable 
and testable principles, or ‘rules’, that govern cell organization. One 
approach is through a systematic analysis of the locations and quan-
titative relationships among many different cellular structures within 
large populations of cells and how these relationships vary with the 
morphology and behaviour of the cell itself. To define cell organization 
precisely and quantitatively, however, requires measuring multiple 
distinct aspects of organization; for example, the size (or number) and 
shape of each structure, its locations in the cell, its direct and indirect 
interactions with all the other structures and the temporal changes. 
A population of putatively identical cells might exhibit substantial 
cell-to-cell variability as they respond sensitively to their ever-changing 
internal and external contexts, such as the cell cycle, differentiation or 
changes in their environment. Furthermore, an abnormal cell quantita-
tive phenotype might exhibit not only a shift in the mean but also a shift 
in the variability5. Thus, a meaningful description of cell organization 
requires a formal definition and categorization that includes robust, 
objective and quantitative measurements of both the mean and the 
variability in the descriptors of organization.

Creating such a nuanced, formal quantitative view of cell organiza-
tion will enable the statistical comparisons that identify generaliza-
tions and elucidate how cell organization differs within and across 

different cell populations and during transitions among normal or 
abnormal cell behaviours. It will also permit deeper investigations 
that integrate cell organization with cell behaviour and cell identity, 
including the integration of distinct data types (for example, images 
and various ‘omics), leading to more meaningful and useful definitions 
of cell types and states6–12.

We have initiated our study of cellular organization by focusing on 
the integrated organization of 25 cellular structures that represent 
major intracellular machines and organelles, generating an exten-
sive, high-replicate baseline dataset of 3D live-cell images of normal 
human induced pluripotent stem cells (hiPS cells): the WTC-11 hiPSC 
Single-Cell Image Dataset v1. This dataset was used to develop a gen-
eralizable and extensible quantitative analysis framework based on 
two conceptually distinct coordinate systems to analyse the cells. 
The first coordinate system defines the cell and nuclear shape of each 
individual cell with respect to the total variation in the observed popu-
lation. The second coordinate system specifies the spatial location 
of every cellular structure within an individual cell. When combined, 
the two coordinate systems permitted the development of a suite of 
statistical measurements to quantify distinct aspects of cell organi-
zation, formally distinguishing among three kinds of change while 
controlling for the effects of natural cell-shape variation: (1) changes 
in the average location of individual structures; (2) changes in the vari-
ability of these locations; and (3) changes in the pairwise interactions 
among structures. We applied our framework to three subsets of cells 
in the dataset—the large baseline population of cells in interphase, the 
cells at the outer edges of the epithelial-like hiPS cell colonies, and 
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cells undergoing reorganization during early mitosis—and developed 
data-visualization approaches to summarize these results in a way 
conducive to data exploration.

WTC-11 hiPSC Single-Cell Image Dataset v1
hiPS cells represent an early embryonic cell state and are a useful 
model system for human cells. hiPS cells are naturally immortal, 
karyotypically normal and can be induced to differentiate into other 
cell types13. We previously developed methods and quality-control 
workflows to create the ten inaugural hiPS cell lines in the Allen Cell 
Collection14 (described at https://www.allencell.org/cell-catalog.html), 
each expressing a single endogenously tagged protein representing a 
particular organelle or cellular structure. For this study, we created 15 
new Allen Cell Collection lines that provide a holistic view of cells at the 
level of 25 of their major organelles, cellular structures and compart-
ments (Fig. 1a). We built an automated and standardized microscopy 
imaging pipeline to generate the living colonies, imaged the cells in 
3D using spinning-disk confocal microscopes and then processed the 
images to create the WTC-11 hiPSC Single-Cell Image Dataset v1 (Fig. 1 
and Extended Data Fig. 1). We included fluorescent cell-membrane and 
DNA dyes to reference the locations of fluorescent protein (FP)-tagged 
cellular structures relative to the cell boundary and the nucleus or 
mitotic chromosomes. For each of the 25 cellular structures, we used 
3D segmentations of the tagged protein to identify the location and 
morphology of the structure itself, rather than the location of the 
FP-tagged protein signal (Extended Data Fig. 2). The tightly packed, 
epithelial-like nature of hiPS cells, as well as the need for highly accu-
rate 3D cell boundaries to minimize the misassignment of cellular 
structures to neighbouring cells required deep-learning-based seg-
mentation approaches to create a robust, scalable and highly accurate 
3D cell and nuclear segmentation algorithm15 (Methods), which was 
applied to all 18,100 fields of view (FOVs) to extract the 215,081 cells 
presented in this dataset (Extended Data Fig. 1). Both the FOV images 
and the single-cell dataset are available as downloadable files (see Data 
availability) and through interactive online visual-analysis tools that 
require no software installation or expertise (https://cfe.allencell.org/).  
For the analyses described below, we used subsets of the dataset includ-
ing the baseline interphase dataset (202,847 cells), cells at the edge of 
colonies (5,169 cells) and cells in early mitosis (3,182 cells) (Extended 
Data Fig. 1d).

A PCA-based cell and nuclear shape space
To embrace the great diversity of the 202,847 3D images of cells in 
interphase spanning 25 cellular structures, and to directly compare 
cellular organization across this large population, we built a cell and 
nuclear shape-based coordinate system (Fig. 2), adapting a standard 
principal component analysis (PCA)-based dimensional reduction 
approach16. We aligned all cells along their longest axis in the xy plane, 
preserving their biologically relevant, epithelial-like apical–basal axis. 
We then used a spherical harmonic expansion (SHE)17,18 to accurately 
parameterize each 3D cell and nuclear shape with a set of orthogo-
nal periodic basis set functions, defined on the surface of a sphere 
(Fig. 2a and Extended Data Fig. 3). The joint vectors for all cells (578 
SHE coefficients) were then subjected to PCA. We found that the first 
eight principal components represented about 70% of the total vari-
ance in cell and nuclear shape (Fig. 2b). Thus, with this dimension-
ality reduction, the cell and nuclear shapes for each individual cell 
can be approximately reconstructed from a small vector with only 
eight components. This dimensionality reduction also organizes 
the cells into a simple, intuitive eight-dimensional (8D) generative 
‘shape space’. For example, the origin (0,0,0,0,0,0,0,0) of the shape 
space can be reconstructed through the values of the SHE coefficients 
representing this location in the 8D coordinate system, and can then 

be visualized as an idealized cell shape that statistically represents 
the average, or mean, shape (‘mean cell shape’) of all of the cells in 
the dataset (Fig. 2c). Similarly, idealized shapes can be reconstructed 
by traversing across each of the eight orthogonal axes in the shape 
space (Extended Data Fig. 3b).

To build a human-interpretable understanding of the modes of shape 
variation in our population, we reconstructed cell and nuclear shapes 
at regular intervals along every axis of this shape space (Fig. 2d and 
Supplementary Video 1). These idealized cells represent ‘map points’ 
within the shape space that can be used to identify and cluster indi-
vidual real cells that are similar in shape to each idealized map point 
and to each other. Intuitively, these mathematically orthogonal modes 
of shape variation appear to describe expected variable cell-shape 
features that are independent of one another. Shape mode 1 appeared 
to largely reflect the height of the cell (Extended Data Fig. 3c), which 
was mainly determined by the surface area of the hiPS cell colony and 
the position of the cell in the colony (Supplementary Methods). Shape 
mode 2 appeared to largely reflect the overall volume of the cell, rep-
resentative of cell-cycle progression. The correlation between cell 
height and cell volume was relatively modest (R = 0.34; Extended Data 
Fig. 3c), meaning that cells with a given height may have a wide range 
of volumes and vice versa. Shape mode 1 and shape mode 2 thus dis-
entangle cell volume and cell height from each other. The remaining 
shape modes 3 to 8 represented other systematic ways in which the 
shapes of these epithelial-like cells might vary, such as tilting along the 
major or minor xy axes (shape modes 3 and 4). In shape modes 1, 2 and 
5, nuclear shape changed concomitant with cell shape, whereas for the 
other shape modes it was the position and orientation of the nucleus 
within the cell that adjusted concomitant with cell shape (Fig. 2d,e and 
Supplementary Video 1).

Integrated average morphed cells
This standardized cell and nuclear shape space permits the cluster-
ing of similarly shaped cells and thus facilitates an investigation of 
the location of cellular structures within the confines of cells with 
similar 3D outer cell boundaries and nuclear spatial constraints. For 
example, to determine the average locations of cellular structures 
within the mean cell and nuclear shape, we first identified all of the 
cells within an ‘8-dimensional sphere’ with its origin at the very centre 
of the shape space encompassing the 35,636 cells that lie in this region 
closest to this origin (Fig. 3a and Methods). To directly and quanti-
tatively compare the locations of each of the 25 cellular structures 
in these relatively similarly shaped individual cells, we developed an 
intracellular location coordinate system that took advantage of the 
SHE describing the outer cell boundary, the outer nuclear bound-
ary and the centre of the nucleus and then interpolated between the 
relevant SHE coefficients. This permitted us to map the presence or 
absence of a structure within an individual cell at all of the possible 
points along these concentric 3D shells and store this information in a 
parameterized intracellular location representation (PILR). We could 
then ‘morph’ the locations of this structure, through the PILR, into 
the equivalent locations in an identically bounded reconstructed cell 
shape that represents that cell’s actual shape (Fig. 3b, Extended Data 
Fig. 4 and Methods). For each structure, we averaged the PILRs across 
all of the similarly shaped cells in the 8-dimensional sphere and then 
morphed the average PILR into the equivalent locations within the 
mean cell shape, creating the ‘average morphed cell’ for that struc-
ture (Fig. 3b and Extended Data Fig. 5). These average morphed cells 
represent the relative likelihood of a structure being at a location in 
the cell, conceptually similar to previous approaches that have been 
used to analyse images of cells grown on micropatterns19. We then 
combined these 25 average morphed cells to create an integrated 
visualization of the average locations of all 25 structures (Fig. 3c and 
Supplementary Video 2).

https://www.allencell.org/cell-catalog.html
https://cfe.allencell.org/
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Average pairwise spatial interaction map
To measure the relationships of the average locations of each of the 25 
cellular structures relative to all the others after computational inte-
gration, we calculated the 2D pixel-wise Pearson correlation between 
the averaged PILRs for all pairs of structures within the 8-dimensional 
sphere, representing a measure of the ‘average location similarity’ 
between two structures (Extended Data Fig. 4g). In principle, the overall 
average location similarity among structures could span a range. At one 
extreme, all structures could be coupled, for example, every structure 
depending on every other structure, whereas at the other extreme, 
every structure could be independent from every other structure. We 
performed a hierarchical clustering analysis of these correlation values 
to create a purely data-driven ‘average pairwise spatial interaction map’ 
of cellular structures. Notably, we found that the cellular structures 
clustered naturally into an ordered radial compartmentalization of the 
cell, from the centre of the nucleus outward (Fig. 3d), and also separated 
between the apical and basal domains of the cell. The six top-level clus-
ters included structures localized to the nucleus, nuclear periphery, 
cytoplasm, apical domain (in a dispersed way), cell periphery and basal 
domain, respectively. The spatial interaction map hierarchy confirmed 
the expected strong location similarities within several sets of cellular 
structures (for example, two nucleolar structures (DFC and GC), two 
ER structures (SEC61β and SERCA) and three actin-related structures 
(actin filaments, actin bundles and actomyosin bundles)), validating 
this analysis approach. We found a very high location similarity between 

lysosomes and Golgi, consistent with their enrichment in location in 
the apical cytoplasm and the known role of the Golgi in regulating lyso-
some localization20,21. Mitochondria shared greater location similarity 
with the ER (SEC61β and SERCA) than any other structures, consistent 
with the functional interactions between these cellular structures22,23.

Average spatial interactions are robust
The ability to analyse the location of cellular structures throughout a 
human-interpretable standardized cell and nuclear shape space allows 
us to ask how robust the relative average locations of cellular struc-
tures are when they are subjected to the systematic variation in cell 
and nuclear shape that is present in this dataset. For example, we can 
compare differences in average structure locations between flat and 
tall cells, small and large cells or cells with shapes that are less or more 
polarized. We clustered all cells in the dataset into 9 bins along each of 
the 8 shape modes in regular intervals (as in Fig. 2) to create a total of 
65 cell-shape map points (the centre bin is the same in all modes), into 
which we morphed each of the 25 structures (Supplementary Video 3). 
Of note, we found very little change in the overall average location 
interaction map of these 25 structures throughout the shape space 
(Fig. 3e and Extended Data Fig. 4h). Instead, structures filled whatever 
cytoplasmic space was available to them in the particular shape while 
maintaining their appropriate apical–basal localization and their rela-
tive average locations (three examples for shape mode 3 in Fig. 3f; all 
25 structures through the shape space in Supplementary Video 3).
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Fig. 1 | The WTC-11 hiPSC Single-Cell Image Dataset v1 includes 25 cell lines 
that represent key cellular structures located throughout all of the  
major compartments of the cell. a, Maximum intensity projections of one 
representative cell example per cellular structure, based on segmentations  
of the structure (white), the cell membrane (magenta) and the DNA (cyan).  
The fluorescently tagged protein representing the structure and the cellular 
compartment (Fig. 3d) are indicated. DFC, dense fibrillar component; ER, 
endoplasmic reticulum; GC, granular component. b, Top and side views (single 
slice) of hiPS cells with FP-tagged microtubules (via α-tubulin), grown in tightly 

packed, epithelial-like colonies and labelled with cell-membrane (magenta) 
and DNA (cyan) dyes to permit imaging and segmenting of cells and nuclei. 
Cells were most frequently imaged halfway towards the centres of large, 
well-packed colonies (blue) where they behave most consistently, but were  
also imaged at other locations within the colony, such as at the edges of 
colonies (red). zlab denotes the lab frame of reference. c, Three-dimensional 
visualization of cell and DNA segmentations within a colony of hiPS cells.  
Total numbers of acquisition days, FOVs and cells per cellular structure are  
in Supplementary Data 1 and Extended Data Fig. 1d. Scale bars, 10 µm.
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Variations in structure locations
The combination of the two coordinate systems—the shape space and 
the PILR—creates an analysis framework to investigate not only the aver-
age locations and pairwise interactions, but also their variability. We 
calculated the 2D pixel-wise Pearson correlation between the PILRs for 
all pairs of the 35,636 individual cells, including all 25 cellular structures, 

within the 8-dimensional sphere centred at the mean cell and nuclear 
shape, regardless of whether any 2 cells have the same or different tagged 
structures. This creates a matrix of pairwise structure PILR correlation 
values for all pairs of individual cells (Extended Data Fig. 6a). Correlation 
values from this matrix can then be averaged within all pairs of structures 
to create an average correlation matrix to obtain two distinct measure-
ments of structure location and its variability: the ‘location stereotypy’ 
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that the longest axis of the cell is parallel to the x axis. These aligned images are 
the input for SHE of degree Lmax = 16, resulting in a total of 578 SHE coefficients 
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and nuclear shape and nuclear location with high accuracy. xlab, ylab and zlab 
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reference. Scale bar, 10 μm. b, Frequency of cells per map point bin (left) and 
explained variance (right) for the first eight principal components (PCs) of the 
PCA applied to the SHE coefficients for interphase cells (n = 202,847). Blue 
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nucleus (cyan) for the two most extreme map points (at −2σ, lighter, and 2σ, 
darker) of each shape mode.
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and the ‘location concordance’ (Extended Data Fig. 6b). The diagonal 
of this matrix is the location stereotypy; that is, the average of all the 
pairwise PILR correlation values for a given structure. Structures with 
a high stereotypy value have little cell-to-cell variability in their overall 
absolute positions, whereas structures with a low stereotypy value may 
be more often found in distinct locations amongst different cells. Com-
paring the stereotypy for each structure permitted us to rank structures 

that are most to least stereotyped in their locations within the mean cell 
and nuclear shape (Extended Data Figs. 6b and 7a).

The off-diagonal values in the average correlation matrix are the loca-
tion concordances between pairs of structures—a measure analogous to 
the stereotypy, but representing aspects both of how similar the absolute 
locations of two structures are and how variable those relative locations 
may be among different cells (Extended Data Fig. 6b). For example, in 
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shape mode 3 (major tilt). Scale bars, 5 μm.
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the average spatial interaction map (Fig. 3d), the average location of 
peroxisomes was more similar to that of other cytoplasmic organelles 
(endosomes and mitochondria) than structures in the nucleus or at the 
cell periphery, and this relationship is maintained in the concordance 
between these structures. However, from cell to cell, the absolute loca-
tions of peroxisomes are very variable (amongst the lowest stereotypy 
owing to their sparse, punctate nature) and thus their concordance with 
other cytoplasmic structures (that is, the correlation between their abso-
lute locations) is very low. We investigated how much the stereotypy and 
concordance changed in response to changes in cell shape and found 
that in addition to the average pairwise structure locations (Fig. 3e), 
the variability in individual and pairwise structure locations was also 
extremely robust to overall cell-shape variation in this dataset (Extended 
Data Figs. 6c,d and 7, Supplementary Data 1 and Methods).

Systematic analysis of structure size
Cellular structures also exhibit cell-to-cell variability in their struc-
ture size (or number). It has previously been shown that the volume 
of several cellular structures in the cell correlates with the overall cell 
volume, including the nucleus and mitochondria24. We therefore used 
our large dataset to perform a systematic and comparative analysis of 
the relationship between cellular structure volume and five relevant 
size metrics (cell volume, cell surface area, nuclear volume, nuclear 
surface area and cytoplasmic volume) for 15 of the cellular structures 
in this dataset (Extended Data Fig. 8). Although nuclear structures 
seemed to be most tightly coupled to nuclear size metrics, cytoplas-
mic structures ranged more widely in how well the variance in their 
volumes was uniquely attributable to cell versus nuclear size metrics. 
Unexpectedly, the variance in nuclear speckle (SON) volumes was most 
uniquely attributable to the nuclear surface area and not the nuclear 
volume, although speckles localize throughout the nucleoplasm. This 
is notable in light of the possible connection between transcript splic-
ing (which occurs at nuclear speckles) and increased rates of nuclear 
export25. We found that contributions from other shape modes were 
negligible (Extended Data Fig. 8), suggesting that cell and nuclear size, 
and not other aspects of shape, affect the variability in the size of cel-
lular structures. Overall, these results show that the degree to which 
cell and nuclear size metrics account for the variation in cytoplasmic 
structure volumes is structure dependent, consistent with the wide 
range of cell functions that these structures regulate.

Polarized reorganization in edge cells
Most cells within the tightly packed, epithelial-like hiPS cell colonies 
form cell–cell contacts with their neighbouring cells in a continuous 
circumferential band. Cells located at the edges of colonies (edge 
cells), however, have a distinct morphology because they lack cell–
cell junctions along their outermost edge and have been shown to 
differ in their transcriptional profiles and metabolic activity26,27. To 
determine whether, and precisely how, the cellular organization of 
edge cells differs from that of cells not at the edge, we extended the 
two-coordinate-system analysis framework to permit the compara-
tive analysis of integrated cellular organization in a second, distinct 
cell population within the dataset. We aligned edge cells such that 
their positive x axis was oriented towards the outer edge of the colony 
(Fig. 4a), and then mapped them into the baseline cell and nuclear 
shape space. On average, consistent with expectations, edge cells were 
much more tilted than the baseline interphase population (Fig. 4b,c). 
To directly compare cellular organization in similarly shaped cells, we 
took advantage of the very large size of the baseline dataset to identify 
a set of non-edge cells that were the most similarly shaped to each edge 
cell (Extended Data Fig. 9a). The resultant ‘shape-matched’ dataset 
comprises two distinct populations—edge and non-edge cells—with 
almost identical cell-shape distributions (Fig. 4b,c).

We compared the average locations (through the average morphed 
cells) of the 25 structures in edge cells and shape-matched non-edge 
cells (Fig. 4d, Extended Data Fig. 9b,d and Supplementary Video 4). We 
found a noticeable polarization of cytoplasmic structures and orga-
nelles (for example, mitochondria, microtubules, lysosomes and Golgi 
apparatus), as well as structures representing the actin cytoskeleton 
(for example, actin filaments, actin and actomyosin bundles) towards 
the outer periphery of edge cells. Adherens junctions were polarized 
away from the colony periphery, supporting the lack of cell–cell junc-
tions at the edge. To quantify the changes in the locations of cellular 
structures between the two distinct shape-matched populations, we 
took advantage of the PILR as a high-dimensional representation of 
the intracellular location space. We reduced the PILR dimensionality 
down to the primary axis of greatest difference in intracellular location 
for each cellular structure, first through a PCA and then by a linear 
discriminant analysis (LDA) to identify the linear combination of PCs 
that best separates non-edge and edge cells (Extended Data Fig. 9c and 
Methods). We then reconstructed PILRs and generated morphed cells 
at positions along the one-dimensional LDA axis representing the full 
range of the location phenotype for each structure. For example, the 
more versus less polarized location phenotypes of mitochondria and 
actin bundles seen in the average morphed cells could be reconstructed 
at their appropriate positions along the LDA axis and the polarized 
nature of this location phenotype extrapolated by comparing the 
reconstructions further away from the means (Fig. 4d,e, Extended Data 
Fig. 9d,e and Supplementary Video 4). Individual cells could now also 
be sorted along this LDA axis and further analysed, for example through 
histograms that represent the entire edge and non-edge cell popula-
tions (Fig. 4f,g and Extended Data Fig. 9f–h). The PILR-LDA approach, 
together with visual assessment of average and individual morphed 
cells (Methods), permitted the determination of the biological aver-
age location phenotype (ALP) for each of the 25 cellular structures in 
edge cells (Fig. 4h). This analysis confirmed a polarized relocation of 
cytoplasmic organelles and actin cytoskeletal structures towards the 
edges of colonies in edge cells when compared with shape-matched 
non-edge cells. Thus, cell shape alone does not drive integrated intra-
cellular organization.

We compared the average location similarities, stereotypy and con-
cordance between edge and non-edge cells and found little—if any— 
differences in these (Fig. 4i,j and Extended Data Fig. 9i), despite the ALPs 
found in edge cells for many of these structures. We also compared the 
average structure volumes (15 structures validated for volume analysis) 
and found very few changes between edge and non-edge cells (Methods 
and Supplementary Data 1). One notable result, however, was that the 
median volume ratio of mitochondria relative to cell size was greater 
in edge cells (0.099; n = 322) than in non-edge cells (0.087, n = 299;  
14% effect size increase, rank-sum test P = 9.2 × 10−11). These results may 
reflect previous observations of differences in mitochondrial protein 
composition and function in colony edge cells26 and of mitochondrial 
abundance in cells grown at different densities9. Overall, these results 
suggest that although the average location of many cellular structures 
is changed in edge cells, the relative wiring of these structures to each 
other and the extent to which their locations vary is maintained. This 
suite of measurements thus facilitates a more nuanced identification 
of which distinct aspects of integrated intracellular organization are 
changed between different populations of cells, instead of a more 
generic change in cellular organization.

Integrated early mitotic reorganization
We took advantage of the marked intracellular reorganization that 
occurs as cells enter mitosis28 to further examine the relationship 
between our suite of measurements of the average and relative loca-
tions and the variability of cellular structures. We focused on the two 
earliest stages of mitosis—prophase (m1) and early prometaphase (m2), 
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when the condensing chromosomes still largely form an aggregated, 
nuclear-like structure that could be biologically interpreted in the 
context of our interphase (i) cell and nuclear shape-based coordinate 
system (Extended Data Fig. 10a). We mapped the shapes of m1 and 
m2 cells into the cell and nuclear shape space. Although cells in m1 
were generally larger than average interphase cells, as expected, they 
were also mostly of similar overall shape to cells in interphase. By m2, 

however, cells exhibited mitosis-related changes in shape, including 
increased height and a more uniform rounder cell shape. Analogously 
to our analysis of edge cells, we created the appropriate shape-matched 
datasets for m1 and m2, matched to interphase cell subsets i1 and i2, 
respectively (Extended Data Fig. 10b,c). We extended the analysis 
framework to incorporate a time component through four timing 
of change (TOC) categories (Fig. 5b–d and Methods) permitting the 
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map data are in Supplementary Data 1. Scale bars, 5 μm.



352  |  Nature  |  Vol 613  |  12 January 2023

Article
analysis of intracellular reorganization over three sequential cell-cycle 
stages. We also developed a standardized process to systematically 
identify and flag all entries in the average correlation matrix (stereotypy 
and concordance values) that changed in a significant way between two 
conditions (Extended Data Fig. 10d–f and Methods). This approach 
permitted us to determine whether and when structures underwent 
a change in their individual or pairwise relative locations or in the vari-
ability in these locations.

We found that the ALPs of the 25 structures fell into three classes (also 
at https://imsc.allencell.org/): (1) the locations of structures at the cell 
periphery for example, the plasma membrane, actin-related structures, 
cell–cell adhesions) were largely maintained; (2) most structures within 
or surrounding the nucleus (for example, nucleoli, nuclear envelope 
and ER) disassembled and the FP-tagged proteins were recompartmen-
talized; and (3) most structures within the bulk of the cytoplasm (for 
example, mitochondria and lysosomes) reorganized and redistributed 
throughout the cytoplasm as the microtubules themselves reorgan-
ized and redistributed towards the condensing chromosomes and 
the centre of the cell (Fig. 5a,b and Supplemenrary Video 5). Almost 
all structures that changed locations in early mitosis did so both in 
m1 and in m2 (stepwise TOC category). Exceptions included nuclear 
speckles and cohesins, which did not change location until m2, when 
they began to disassemble. This was at a later stage of mitosis than all 
of the other nuclear and nuclear periphery structures. Peroxisomes 
and endosomes also did not noticeably redistribute towards the centre 
of the cell until m2.

For most nuclear and nuclear periphery-related structures (for exam-
ple, nuclear envelope, speckles and ER), a change in their location coin-
cided with a change in how variable that location was (for example, a 
matched TOC for ALP and stereotypy in Fig. 5b,c). However, for other 
structures, including most of the cytoplasmic structures, there was a 
discrepancy between the timing of change in average location and its 
variability (for example, mitochondria, Golgi, lysosomes in m1 as well 
as histones and microtubules in m2). Some structures that did not show 
any changes in stereotypy were discrete, punctate structures with very 
low stereotypy, for which changes in stereotypy could not be deter-
mined with statistical confidence (for example, cohesins, endosomes 
and desmosomes). All of the structures that maintained their location at 
the cell periphery, and that had stereotypies higher than the statistical 
detection threshold, also did not change how variable their locations 
were (for example, plasma membrane and actin-related structures). 
All changes in stereotypy in early mitosis were due to a decrease in ste-
reotypy, except for histones, which increased in stereotypy. Together, 
these observations show that although a concomitant change (or lack of 
change) in both average location and location variability dominated for 
most structures during early mitotic reorganization, these two distinct 
aspects of an individual structure’s reorganization were separable for 
some cellular structures.

We next analysed changes in the relative pairwise locations and 
their variability in early mitosis through the concordance (Fig. 5d and 
Extended Data Fig. 10d–f). We found that structures that maintained 
their locations and their stereotypies also maintained their concord-
ance when paired with each other. Another 64 of the possible 300 pairs 
of structures changed concordance during early mitosis and these 
changes were highly linked to changes in stereotypy (Fig. 5d): 61/64 
pairs of structures changed in concordance at the same time that at least 
one of the two structures also changed in stereotypy. For example, the 
three cytoplasmic organelles, the mitochondria, lysosomes and Golgi, 
all changed in stereotypy at m2 and all changed concordance with each 
other at m2. In 36 of these cases a concordance change occurred at the 
time of the first stereotypy change of at least one of the two structures 
(Fig. 5d). For example, the time of the first stereotypy change for mito-
chondria and microtubules was at m1 because that was when the micro-
tubules changed stereotypy, whereas the mitochondria did not change 
stereotypy until m2. However, the concordance between this pair of 

structures already changed at m1, along with the microtubules (and 
then further at m2, making the concordance stepwise). These results 
suggest a strong—but not exclusive—relationship between changes 
in average location, stereotypy, and concordance for many cellular 
structures during early mitotic reorganization. For 4 out of 64 cases, 
concordance and stereotypy changed independently for at least one 
time point (Fig. 5d). Most notable were the histones and microtubules, 
both of which are central to early mitotic reorganization. For both of 
these structures, their stepwise ALP was accompanied by a change 
in stereotypy from interphase to m1 and then a change in concord-
ance from m1 to m2, demonstrating that stereotypy and concordance 
measurements are separable even for the same pair of structures at two 
different stages of mitosis.

We performed a meta-analysis to examine all of the possible combina-
tions of the distinct measurements of cell organizational changes used 
in this analysis framework (Fig. 5e). In this study, all observed examples 
of changes in any aspect of intracellular organization included a change 
in the average location of individual cellular structures. Furthermore, in 
most cases, a change in the relative locations and variability of pairs of 
structures (concordance) was associated with a change in the variability 
of at least one of the structures (stereotypy). However, this association 
between stereotypy and concordance was not absolute, as exemplified 
by the behaviour of DNA and microtubules in early mitosis.

Discussion
In summary (Extended Data Fig. 11), in this study we introduced the 
WTC-11 hiPSC Single-Cell Image Dataset v1 and used this resource 
dataset to develop an analysis framework for integrated intracellular 
organization. We applied this analysis framework to a large baseline 
population of cells in interphase, as well as to two subpopulations 
of cells in the dataset, cells at the edges of colonies and cells in early 
mitosis. The results of the meta-analysis investigating the association 
between distinct aspects of cell organization observed throughout this 
study suggest a possible hierarchy of dependencies as cells reorganize: 
(1) the average location of an individual structure changes; (2) the vari-
ability in that structure location changes but only when the structure 
location changes; and (3) the interactions with other structures change, 
but only when location and/or location variability change. However, 
our observations also show that this simple proposed hierarchy among 
these distinct aspects of organization is not absolute—the stereotypy 
and concordance changed independently in several examples, includ-
ing for two of the primary structures responsible for early mitotic reor-
ganization, the DNA and the microtubules. It is possible that these 
potential dependencies, or ‘rules’ of cell organization, are general and 
apply to a range of genetic perturbations, differentiation, signalling 
factors, environmental signals and so on. It is also possible that there 
is a larger set of cell-type or state-dependent organizational rules.

Together, the raw image data of cells in the dataset, the visualizations 
and reconstructions of the average locations of cellular structures 
among the three subsets of cells in this study and the data visualizations 
constitute a rich resource for further discovery and hypothesis genera-
tion. The conceptual aspect of this analysis framework is generalizable 
and extensible; the establishment of the two conceptual coordinate 
systems and their application to perform robust statistical analyses on 
cell shape and intracellular spatial locations and their variability could 
be useful across different cell types and different types of cell popula-
tion comparisons. The experimental and algorithmic implementations 
of this analysis framework are modular, and the choice of which to use 
is dependent on the specific application. We have demonstrated one 
specific application to one particular cell type, the hiPS cell, a karyo-
typically normal cell-culture model system that grows in epithelial-like 
colonies with a mostly consistent appearance, including an assessment 
of the required number of cells for these analyses (Supplementary 
Methods). The specific biological question, cell type or application 

https://imsc.allencell.org/
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will dictate the specific inputs required, such as how many cells or cel-
lular structures are needed, what kind of precision is possible or what 
kinds of segmentation and data-analysis algorithms should be used.

Other systematic image-based approaches have catalogued the loca-
tion of human proteins in several cell types and used the locations of pro-
teins and structures within cells to identify differences in intracellular 
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Fig. 5 | Integrated intracellular reorganization in early mitosis. a, Individual 
cell examples (top) and average morphed cells (bottom) for four cellular 
structures in prophase (m1) and early prometaphase (m2), shape matched  
to interphase cell subsets i1 and i2, respectively (Extended Data Fig. 10b).  
Cyan DNA outlines were left out for the histones and nuclear envelope to better 
see their locations at the nuclear periphery. Scale bars, 5 μm. b, The ALP and  
its timing of change (TOC) for 25 cellular structures in early mitosis. Asterisk 
indicates centriole ALP determined by visual inspection (Supplementary 
Methods). c, Left, heat maps of stereotypy (blue to red) and stereotypy 
differences (green to purple) in early mitosis. Black dots indicate values below 
the measurable cut-offs (Methods). Right, flagged significant stereotypy 
differences for each structure between interphase and both early mitotic 
stages (filled black boxes) as well as the resultant stereotypy TOC. The stereotypy 
of the plasma membrane was so high that, although the absolute difference in 
stereotypy values passed the flag criteria, the relative values were extremely 
small (denoted with ‘x’). d, Timing and types of change in concordance, through 

the PILR average correlation matrix. Bottom triangle: the concordance TOC 
assignments for all pairs of structures. Heat maps of intermediate steps are  
in Extended Data Fig. 10d–g and Supplementary Data 1. Top triangle: types  
of changes in concordance relative to changes in stereotypy as described in  
the results (Methods). Numbers range from n = 6 to 256 cells depending on  
the structure and stage (Supplementary Data 1). Coloured bars at the left of 
heat or colour maps in b–d indicate the cellular structure. Owing to the low 
number of cells in mitosis for some structures, we could not quantitatively 
analyse differences in the average location similarities, although their 
qualitative results matched those based on the concordance values (Extended 
Data Fig. 10g). e, Summary of examples of changes in distinct aspects of 
organization observed throughout this study. Specific examples are indicated 
with numbers: (1) structures that maintained locations in edge cells and early 
mitosis; (2) structures that polarized in edge cells; (3) for example, histones and 
microtubules at m1; (4) for example, histones and microtubules at m2; (5) most 
structures during early mitosis.



354  |  Nature  |  Vol 613  |  12 January 2023

Article
spatial patterns among cells in distinct states6–12,19,29. Our work comple-
ments these approaches with its focus on analyses of 3D cell organization 
at the intermediate level of cellular structures (rather than individual 
proteins), and on the generation of quantitative measurements of dis-
tinct aspects of organization, which enables statistical comparisons and 
provides a more nuanced, systematic definition of cellular organization 
and reorganization. Together, these studies bring a crucial missing 
dimension—that is, the spatiotemporal component—to the single-cell 
revolution30. The full image dataset and analysis algorithms introduced 
here, as well as all the reagents, methods, and tools needed to generate 
them, are shared in an easily accessible way (https://www.allencell.org/).  
These data are available to all for further biological analyses and as 
a benchmark for the development of tools and approaches moving 
towards a holistic understanding of cell behaviour.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
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Methods

Cell lines, cell culturing and quality control
Each gene-edited cell line was created using the parental WTC-11 hiPS 
cell line31 and contains a fluorescent protein endogenously tagged to a 
protein representing a distinct cellular structure (Fig. 1a). Cell lines were 
generated using CRISPR–Cas9-mediated genome editing14 . The tagging 
strategy for AAVS1 safe harbour targeting was altered for expression 
of CAAX-mTagRFP-T32,33. Fifteen additional Allen Cell Collection lines 
were generated using the same methods. The complete list of cell lines 
and reagents can be found in Supplementary Data 2. The cell lines are 
described at https://www.allencell.org/cell-catalog.html and are avail-
able through Coriell at https://www.coriell.org/1/AllenCellCollection. 
For all non-profit institutions, detailed MTAs for each cell line are listed 
on the Coriell website. Please contact Coriell regarding for-profit use of 
the cell lines as some commercial restrictions may apply. All cell lines 
were cultured on an automated cell-culture platform developed on a 
Hamilton Microlab STAR Liquid Handling System (Hamilton Company).  
Cells were cultured in a Cytomat 24 (Thermo Fisher Scientific) at 37 °C 
and 5% CO2 in mTeSR1 medium with and without phenol red (STEMCELL 
Technologies), supplemented with 1% penicillin–streptomycin (Thermo 
Fisher Scientific). Cells were passaged every four days as single cells 
for up to ten passages post-thaw. For imaging, cells were plated on 
Matrigel-coated glass-bottom, black-skirt, 96-well plates with 1.5 optical 
grade cover glass (Cellvis). Cells were regularly assessed for morphol-
ogy, cell stemness marker expression and outsourced cytogenetic 
analyses throughout the three years of data acquisition of the WTC-11 
hiPSC Single-Cell Image Dataset v1 (ref. 34). Standard protocols are 
available at https://www.allencell.org/. Further details are provided 
in the Supplementary Methods.

Microscopy
Imaging was performed on three identical ZEISS spinning-disk confo-
cal microscopes with 10×/0.45 NA Plan-Apochromat or 100×/1.25 W 
C-Apochromat Korr UV Vis IR objectives (Zeiss) and ZEN 2.3 software 
(blue edition; ZEISS) unless otherwise specified. The spinning-disk 
confocal microscopes were equipped with a 1.2× tube lens adapter for a 
final magnification of 12× or 120×, respectively, a CSU-X1 spinning-disk 
scan head (Yokogawa) and two Orca Flash 4.0 cameras (Hamamatsu). 
Standard laser lines were used at the following laser powers meas-
ured with 10× objectives; 405 nm at 0.28 mW, 488 nm at 2.3 mW, 
561 nm at 2.4 mW and 640 nm at 2.4 mW unless otherwise specified. 
An Acousto-Optic Tunable Filter (AOTF) was used to simultaneously 
modulate the intensity of the four laser lines. The following Band Pass 
(BP) filter sets (Chroma) were used to collect emission from the speci-
fied fluorophore: 450/50 nm for detection of DNA dye, 525/50 nm for 
detection of mEGFP tag, 600/50 nm for detection of mTagRFP-T tag and 
706/95 nm for detection of cell-membrane dye. Images were acquired 
with an exposure time of 200 ms unless otherwise specified. Cells were 
imaged in phenol red-free mTeSR1 medium on the stage of microscopes 
outfitted with a humidified environmental chamber to maintain cells 
at 37 °C with 5% O2 during imaging. Transmitted light (bright-field) 
images were acquired using a white LED light source with broad emis-
sion spectrum (pipeline 4.0–4.2) or a red LED light source with peak 
emission of 740 nm with narrow range and a BP filter 706/95 nm for 
bright-field light collection (Pipeline 4.4 only). A Prior NanoScan Z 
100 mm piezo z stage (ZEISS) was used for fast acquisition in z (Pipeline 
4.4 only). Optical control images were acquired daily at the start of each 
data acquisition to monitor microscope performance. Laser power 
was measured monthly and the corresponding percentage adjusted 
accordingly for each wavelength.

Image acquisition
The image acquisition workflow and experimental set-up evolved 
over the three years of dataset collection and was versioned into four 

pipelines. Adjustments included single versus dual camera, filter and 
light sources, as well as addition of a photoprotective cocktail (Sup-
plementary Methods and Extended Data Fig. 1d). Low magnification 
(12×), 2D bright-field overview images of cells in wells were collected 
for cell morphology assessment and for selection of imaging positions 
for high-magnification (120×), 3D, multichannel imaging. Cells were 
imaged in three modes to acquire a variation of locations within hiPS 
cell colonies. Selection of FOV position was performed manually using 
the stage function in ZEN software or using an automated method, 
depending on the mode and the cell line. After the selection of FOV 
position from the well overview acquisition, the DNA of cells was first 
stained for 20 min with NucBlue Live (Thermo Fisher Scientific). Then 
the cell membrane was stained with CellMask Deep Red (CMDR, Thermo 
Fisher Scientific) in the continued presence of NucBlue Live for an 
additional 10 min, and cells were washed once before imaging for a 
maximum of 2.5 h. Three-dimensional FOVs at 120× were acquired at 
the pre-selected positions. Four channels were acquired at each z-step 
(interwoven channels) in the following order: bright field, mEGFP or 
mTagRFP-T, CMDR and NucBlue Live. Further details are provided in 
the Supplementary Methods.

3D FOV image quality control
FOV images acquired with two cameras underwent a channel alignment 
procedure. All 3D FOV images underwent an image quality-control 
procedure, including three automated FOV quality-control steps. 
Typical FOV exclusion criteria were related to microscope acquisition 
system failures (laser, exposure time, z-slice positioning in relation to 
cell height, empty or out of order channels), analysis steps to identify 
outliers or any other issues that would cause downstream processing, 
such as cell, nuclear and cellular structure segmentation, to fail in a 
systematic batch manner. Total days of acquisition and FOV number 
per cellular structure are provided in Supplementary Data 1. Further 
details are provided in the Supplementary Methods.

3D cell and nuclear segmentation
To segment each individual cell and its corresponding DNA from the 
membrane dye and DNA dye channels of each 3D z-stack, we used the 
deep-learning-based cell and nuclear instance segmentation algorithm 
developed as part of Allen Cell & Structure Segmenter, an open-source, 
Python-based 3D segmentation software package15. We combined the 
Segmenter’s Iterative Deep Learning workflow and the Training Assay 
approach to ensure accurate and robust segmentation at scale (18,100 
FOVs) for downstream quantitative analysis. We manually validated a 
subset of the cell and nuclear segmentation results and found that over 
98% of individual cells were well-segmented and over 80% of images 
generated successful cell and nuclear segmentations for all cells in the 
entire FOV. On the basis of these validation results, we decided that the 
cell and nuclear instance segmentation algorithm was sufficiently reli-
able to be applied to all of the FOVs in the dataset. In addition, all cells 
in the final dataset were manually reviewed for basic quality criteria. 
Further details are provided in the Supplementary Methods.

3D cellular structure segmentation
We applied a collection of modular segmentation workflows from the 
Classic Segmentation component of the Segmenter, each optimized 
for the particular morphological features of the target cellular struc-
tures15. Representative examples for each of the 25 FP-tagged cellular 
structures are shown in Extended Data Fig. 2. For each structure, the 
results of the segmentation workflow were evaluated on sets of images 
representing the variation observed across imaged cells (for example, 
different regions of colonies) to ensure consistent segmentation qual-
ity across all images for each structure. We performed an additional 
validation step to determine whether a given target structure segmenta-
tion was sufficient for interpretation in the cellular structure volume 
analysis (Extended Data Fig. 8). We identified ten structures for which 
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there were obvious caveats to the ability to use their target structure 
segmentation for biological interpretations of how much of the target 
structure was present in each cell and thus these ten structures were 
excluded from the structure volume analysis (Extended Data Fig. 2b–d). 
Further details are provided in the Supplementary Methods.

Single-cell datasets, feature extraction and quality control
To build the WTC-11 hiPSC Single-Cell Image Dataset v1, we extracted 
all complete individual cells in each FOV automatically from the cell 
segmentation results (around 12 complete cells per FOV, on average). 
All images were rescaled to isotropic voxel size (0.108333 µm in x,y 
and z). A cropping region of interest (ROI) was created for each cell 
and applied to each of the original intensity z-stacks and cell, nuclear 
and structure segmentations. Features that were calculated for each 
cell included FOV-based features (for example, the lowest and highest 
z position of all cells in the FOV), colony-based features (for example, 
size of the colony), single-cell-based features (for example, cell, nuclear, 
and cellular structure volume), and single-cell deep-learning-based 
annotations of cell-cycle stage (for example, interphase or mitotic). 
The baseline interphase dataset was created by removing all of the 
11,190 mitotic cells, as well as approximately 0.5% of outlier cells. We 
performed an extensive analysis to identify and account for any poten-
tial experimental contributions to cell-shape variation (Extended Data 
Fig. 12). All of the results together confirmed that although cell line 
identity can contribute to variation in cell height because each cell line 
was imaged under a particular set of imaging conditions, which varied 
throughout the imaging pipeline timeline, cell line identity itself does 
not greatly contribute to the variation in cell height observed in the 
baseline interphase dataset. Total numbers of cells per cellular structure 
and per dataset can be found in Extended Data Fig. 1d and Supplemen-
tary Data 1. Further details are provided in the Supplementary Methods.

SHE of cell and nuclear shapes
We used SHE coefficients as shape descriptors for cell and nuclear 
shape18,35. We created a publicly available Python package, aics-shparam 
(see Code availability) to extract SHE coefficients from segmented 
images of cells and nuclei. Cells and nuclei were first rotated in the xy 
plane such that the longest cell axis falls along the x axis. The z axis in the 
lab frame of reference was preserved as it represents the apical–basal 
axis of these epithelial-like cells. We expanded, up to degree Lmax = 16, 
resulting in 289 coefficients for each input. Therefore, the shape of 
each cell in our dataset can be represented by a total of 578 coefficients 
(Fig. 2a). We could also do the reverse and recreate the 3D mesh rep-
resentation of a particular set of SHE coefficients with aics-shparam. 
Further details are provided in the Supplementary Methods.

Building the cell and nuclear shape space
We used PCA to reduce the dimensionality of our joint vectors for all 
cells (578 SHE coefficients) down to eight principal components. We 
used the PCA implementation from the Python library scikit-learn36 
with default parameters (Fig. 2b). Because the sign of a given PC is 
arbitrary, we adjusted the signs where needed to match the naming of 
the shape modes (for example, larger cells have a more positive PC). 
We also translated the location of the nuclear mesh back to its correct 
location relative to the centre of the cell. To prevent cells with extreme 
shapes from affecting the interpretation of the PCs, we excluded all cells 
that fell into the range 0th to 1st or 99th to 100th percentiles of each 
PC from subsequent analysis (remaining n = 175,147 cells) We z-scored 
all PCs independently by dividing the PC values by the standard devia-
tion (σ) of that PC. The combination of the first eight ‘shape modes’ 
(z-scored PCs) created the 8D shape space. We used the inverse of the 
PCA transform generated above to map coordinates from the shape 
space back into SHE coefficients, which, in turn, were used to recon-
struct the corresponding 3D shape. For example, the eight-component 
vector (0,0,0,0,0,0,0,0) represents the origin of the shape space and 

its corresponding 3D shape is called the ‘mean cell and nuclear shape’ 
(Fig. 2c). In addition to the joint cell and nuclear shape space, we also 
generated independent cell-only and nucleus-only shape spaces for the 
baseline interphase dataset (Extended Data Fig. 3e–f), a joint cell and 
nuclear shape space for cells located at the edges of hiPS cell colonies, 
and one each joint cell and nuclear shape space for cells in prophase and 
in early prometaphase. Finally, we created three joint cell and nuclear 
shape spaces for the three shape-matched datasets described below. 
Further details are provided in the Supplementary Methods.

PILRs
The nuclear centroid of each cell was defined as the SHE coefficients 
representing a one-pixel radius (0.108 µm) 3D spherical mesh. Then, 
pre-computed SHE coefficients were interpolated to create a series of 
successive 3D concentric mesh shells from the centroid of the nucleus 
to the nuclear boundary and from the nuclear boundary to the cell 
boundary. The xyz coordinates of points in the 3D meshes map to corre-
sponding xyz locations in the aligned segmented images that were used 
to generate the SHE coefficients in the first place. Thus, the presence or 
absence of a segmentation result at each mesh xyz coordinate could be 
organized as a matrix as shown in Fig. 3b. This matrix encodes a PILR of 
the cell. This process could also be performed using the intensity value 
at a given xyz location in the original FP image (Extended Data Fig. 4). A 
PILR could then be used to map the cellular structure locations from one 
cell and nuclear shape into the equivalent locations in any other cell and 
nuclear shape, thus generating a ‘morphed cell’ and its reconstructed 
image. Further details are provided in the Supplementary Methods.

Integrating average morphed cells in the mean cell and nuclear 
shape
We identified and grouped a set of cells by their absolute proximity in 
8D space to the origin of the shape space, map point (0,0,0,0,0,0,0,0). 
We determined the radius of a sphere centred at this origin such that the 
number of cells per structure within this sphere was as similar as pos-
sible to the average number of cells found in the centre bins of all of the 
shape modes. A total of 35,633 cells across all 25 structures were found 
to be within this radius of 2.1σ (see Supplementary Data 1 for numbers 
of cells per structure). We computed the average of all the PILRs for 
each structure for all cells within the 8-dimensional sphere. We then 
morphed these average PILRs into the mean cell and nuclear shape, 
creating an integrated average morphed cell. Any cellular structures 
could be rendered simultaneously to illustrate the spatial relationships 
of different structures on the basis of their average location in cells of 
a particular shape.

Pairwise average interaction map of cellular structures
We calculated the 2D pixel-wise Pearson correlation between the aver-
aged PILRs for all pairs of cellular structures within the 8-dimensional 
sphere, representing a measure of the average location similarity 
between two structures (Extended Data Fig. 4g). All correlation values 
used throughout this paper were calculated using the function corrcoef 
from the Python package NumPy37. The average location similarities 
were organized in a 25 × 25 matrix that represents an average pairwise 
spatial interaction map of cellular structures (Fig. 3d). This correla-
tion matrix was used as input for a hierarchical clustering algorithm 
to cluster all 25 cellular structures according to their average location 
similarities. We used the function cluster.hierarchy.linkage of type 
‘average’ from the Python package scipy38 to produce the clustering 
represented by the dendrogram in Fig. 3d. We also computed the aver-
age location similarity for every map point along each shape mode. 
For a given map point, the correlations were computed between the 
averaged PILRs over all cells that fall into the corresponding map point 
bin. The heat maps of the resulting matrices for all shape modes and 
bins between −2σ and 2σ are shown in Fig. 3e and Extended Data Fig. 4h 
and the data can be found in Supplementary Data 1.



Location stereotypy and location concordance
We calculated the 2D pixel-wise Pearson correlation between the PILRs 
for all pairs of individual cells within the 8-dimensional sphere cen-
tred at the origin of our shape space. This computation results in a 
35,633 × 35,633 correlation matrix (Extended Data Fig. 6a). Correlation 
values from this matrix were averaged within each pair of structures 
to create an average correlation matrix. Two distinct measurements 
of structure location and its variation were derived from this average 
correlation matrix. The diagonal values are the location stereotypy of 
a given structure and the off-diagonal values are the location concord-
ance between two structures (Extended Data Fig. 6b). We also computed 
the average correlation matrices for every map point along each shape 
mode. For a given map point, the correlations were computed between 
PILRs over all cells that fall into the corresponding map point bin and 
then averaged. Heat maps and values of location stereotypy and loca-
tion concordance for all shape modes and map points can be found in 
Extended Data Figs. 6c,d and 7c,d and Supplementary Data 1.

Shape-matched datasets
To compare a second, distinct population of cells, such as cells at the 
edges of colonies or cells in early mitosis, with the baseline interphase 
cell dataset we created shape-matched datasets. We first mapped cell 
and nuclear shapes from the second population into the shape space of 
the baseline dataset by transforming the SHE coefficients from the sec-
ond population using the same PCs obtained for the baseline dataset. 
Here we did not exclude cells that fell into the range 0th to 1st or 99th 
to 100th percentiles of each PC in the baseline dataset because these 
cells could have shapes more similar to the second population. We then 
calculated the distance in 8D shape space between every possible pair 
of cells in both datasets (Extended Data Fig. 9a). Finally, for every cell in 
the second dataset, we flagged its nearest neighbour within the baseline 
dataset. The same cell in the baseline dataset could be flagged more 
than once for multiple different cells within the second dataset. This 
occurred roughly 12% of the time. The resultant shape-matched dataset 
is the set of unique flagged cells in the baseline dataset combined with 
cells in the second dataset. The mean cell shape of this shape-matched 
dataset is the cell and nuclear shape corresponding to the origin of 
the corresponding shape-matched shape space. Further details are 
provided in the Supplementary Methods.

LDA
We performed a PCA dimensionality reduction on all of the PILRs 
for a given cellular structure in a given shape-matched dataset. This 
reduced the initial dimensionality of 532,610 pixels in each PILR down 
to 32 dimensions (or the total number of cells available if fewer than 
32). The dimensionally reduced data were then used as input for a 
LDA to identify the linear combination of reduced dimensions that 
best separated the two populations of cells within the shape-matched 
dataset. LDA generates a discriminant axis along which we could recon-
struct corresponding PILRs using the inverse of the PCA transform 
(Extended Data Fig. 9c and Supplementary Methods). These PILR 
reconstructions were morphed into the mean cell and nuclear shape 
for that shape-matched dataset (for example, Supplementary Videos 4 
and 5). These reconstructions represent the full range of the ALP for 
that structure. Each cell was also assigned a location along the discri-
minant axis (for example, histograms in Extended Data Fig. 9h and 
Supplementary Videos 4 and 5).

Workflow to flag significant changes in location stereotypy and 
concordance in early mitosis
To flag whether a difference in location stereotypy or concordance was 
significant, we first set a threshold cut-off value of Pearson correlation 
ρ = 0.03, below which a stereotypy or concordance value was too low 
to be used for the subsequent detection of a difference between the 

baseline dataset and its shape-matched comparison dataset. Next, we 
set a cut-off threshold for the Pearson correlation value of the differ-
ence (ρdiff) in stereotypy or concordance of ρdiff = 0.02 (Supplementary 
Methods). We next applied this workflow to flag all entries in the three 
early mitotic average correlation difference matrices that showed a sig-
nificant change between interphase, prophase and early prometaphase 
(i1–m1, i2–m2 and m1–m2). The first cut-off, ρ = 0.03, was applied to 
the interphase cells when comparing to each early mitotic (i1 for i1–m1; 
i2 for i2–m2) and to prophase when comparing between the two early 
mitotic stages (m1 for m1–m2) as in Fig. 5c and Extended Data Fig. 10f. 
This flagging procedure resulted in three binarized versions of the 
matrix, in which each flagged entry is marked in black. The combined 
pattern of flags in these three matrices permits us to identify the TOC 
for each of the flagged entries (Fig. 5c,d). The four TOC categories 
included: (1) m1-only: changes that occurred from interphase to m1 
but not any further in m2; (2) stepwise: changes that occurred both 
from interphase to m1 and from m1 to m2; (3) m2-change: changes that 
occurred from m1 to m2 only; and (4) no change or cases for which 
changes could not be determined for technical reasons (Fig. 5b and 
Supplementary Methods). We used all possible combinations of the 
TOC for the two stereotypies and single concordance for each pair of 
structures to assess the overall relationship between stereotypy and 
concordance in early mitosis, which we consolidated and summa-
rized into three categories (top triangle; Fig. 5d and Supplementary 
Methods).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated during this study, including FOVs, single-cell 
images and 12× colony overviews, are available at Quilt as packages. 
Supplementary Data 1 contains (1) a summary of all of the numbers 
of FOVs, imaging days and cells for all analyses; (2) the correlation 
values used to generate the heat map data for the average location 
similarities, stereotypy and concordance, including difference heat 
maps; and (3) additional data on the comparative analysis of cellu-
lar structure volumes in edge and non-edge cells. The full dataset is 
available at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_cell_image_dataset. The dataset containing the non-edge 
cells shape-matched to edge cells is available at https://open.quiltdata.
com/b/allencell/packages/aics/hipsc_single_nonedge_cell_image_dataset. 
The edge cells dataset is available at https://open.quiltdata.com/b/
allencell/packages/aics/hipsc_single_edge_cell_image_dataset. The 
interphase cells (i1) shape-matched to prophase cells (m1) dataset is 
available at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_i1_cell_image_dataset. The prophase dataset (m1) data-
set is available at https://open.quiltdata.com/b/allencell/packages/
aics/hipsc_single_m1_cell_image_dataset. The dataset containing the 
interphase cells (i2) shape-matched to early-prometaphase cells (m2) 
is available at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_i2_cell_image_dataset. The early-prometaphase dataset 
(m2) dataset is available at https://open.quiltdata.com/b/allencell/
packages/aics/hipsc_single_m2_cell_image_dataset. The 12× colony 
dataset is available at https://open.quiltdata.com/b/allencell/packages/
aics/hipsc_12x_overview_image_dataset. The supplementary MYH10 
repeat dataset is available at https://open.quiltdata.com/b/allencell/
packages/aics/hipsc_single_cell_image_dataset_supp_myh10. The sup-
plementary training set of 5,664 cells used to train the single-cell classifier 
is available at https://open.quiltdata.com/b/allencell/packages/aics/
mitotic_annotation. The Cell Feature Explorer—215,081 cells (from 18,100 
FOVs); 25 structures; 10 features ± apical and radial proximity is available 
at https://cfe.allencell.org. Source data are provided with this paper.
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Code availability
Custom codes were central to the conclusions of the paper. All neces-
sary code to reproduce the results in this paper has been deposited in 
GitHub. This includes code for downloading our datasets, single-cell 
feature extraction, cellular parameterization and organelle size scal-
ing. Jupyter notebooks to reproduce the figures shown in the paper 
are also provided. The released custom code repositories use the 
following Python packages in parts: NumPy37 v.1.21.5, Scipy38 v.1.7.3, 
scikit-image39 v.0.19.1, scikit-learn36 v.1.0.1, Seaborn40 v.0.11.1, PyTorch41 
v.1.0.0, PyTorchLightning42 v.0.7.6, VTK43 v.9.0.1, ITK44 v.5.2.0, pandas45 
v.1.3.5, matplotlib46 v.3.5.1, aicsshparam v.0.1.1, aicscytoparam v.0.1.6, 
pyshtools47 v.4.9.1, actk v.0.2.2 and aicsimageio48 v.3.3.2 and v.4.1.0. We 
also use the softwares: R Statistical Software49 v.2022.02.2+485, napari50 
v.0.2.8, ChimeraX51 v.1.3, the Allen Cell & Structure Segmenter15 (aicsseg-
mentation v.0.1.20, aicsmlsegmentation v.0.0.7, segmenter-model-zoo 
v.0.0.5) and label free52 (see below for version). Tutorials and a demo for 
how to access the data for different purposes are available at https://
github.com/AllenCell/quilt-data-access-tutorials. The main codebase 
used in this paper provides functions for computing features, shape 
space, shape modes, stereotypy, concordance and morphed cells. 
The repository also contains the notebooks used to generate the fig-
ures shown in the paper. This codebase is available at https://github.
com/AllenCell/cvapipe_analysis. The code for shape parameterization 
via spherical harmonics is available at https://github.com/AllenCell/
aics-shparam. The code for cellular parameterization is available at 
https://github.com/AllenCell/aics-cytoparam. The code for organelle 
size-scaling analysis is available at https://github.com/AllenCell/stem-
cellorganellesizescaling. The mitotic image classifier code35,40, (for 
both training and testing) and all trained models is available at https://
github.com/AllenCell/image_classifier_3d.The segmentation code used 
to reproduce the deep learning cell and nuclear segmentations, trained 
models and demo Jupyter notebook is available at https://github.com/
AllenCell/segmenter_model_zoo.The segmentation code used to repro-
duce structure segmentation from a set of algorithms to choose from, 
each with restricted numbers of parameters to tune, is available at 
https://github.com/AllenCell/aics-segmentation.The code used to gen-
erate the contact sheet quality-control single-cell visualizations of all 
segmented cells is available at https://github.com/AllenCellModeling/
actk. The code to create the 12× colony dataset is available at https://
github.com/AllenCell/colony-processing. The customized label-free 
code used as part of the cell and nuclear segmentation model is avail-
able at https://github.com/AllenCellModeling/pytorch_fnet/tree/50c
433c2e72d2d42886b48c5faf5449725d195a5. Software will be shared 
under the Allen Institute Software License and Contribution Agree-
ment, subject to any applicable third-party licensing restrictions. 
Datasets will be shared under the Allen Institute Terms of Use: https://
alleninstitute.org/legal/terms-use/.
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Extended Data Fig. 1 | Creation of the WTC-11 hiPSC Single-Cell Image 
Dataset v1 that contains over 200,000 live, high-resolution, 3D cells 
spanning 25 cellular structures. The dataset was generated by a microscopy 
pipeline composed of three main parts; Data Collection, Image Processing and 
Single-Cell Feature Extraction. a. Data Collection: the sample preparation 
starts with a vial of frozen gene-edited hiPS cells from a line from the Allen Cell 
Collection, expressing an endogenous, fluorescently tagged protein 
representing a particular cellular structure. The cells are cultured in 6-well 
plates on an automated cell-culture platform. At each passage cells are seeded 
into optical grade, glass-bottom 96-well plates to create imaging samples. 
Bright-field overview images of each well are inspected and only wells meeting 
pre-determined quality controls are passaged from the 6-well plates and 
imaged from the 96-well plates. The image acquisition of live cells starts with a 
12X overview image of each well on a spinning-disk confocal microscope to 
keep track of the position of each image within each colony. Imaging sessions 
are conducted using three modes to capture variations in colony area, 
locations within the colony, and enrich for images with mitotic cells as needed. 
In mode A, the 12X overview images of colonies are segmented by an automated 
script to generate sets of coordinates for positions within imageable colonies, 
located approximately halfway between the colony edge and colony centre. 
Imageable colonies are those that meet size, morphology, and position-within-
a-well criteria. In mode B, the microscope operator adjusts the location of the 
field of view (FOV) to enrich for mitotic cells via appropriate cell and DNA 
morphology visible with live bright-field viewing and confirmed by DNA 
staining (yellow arrows). In mode C, three regions of colonies are imaged, the 
edge, ridge ( just inward from the edge), and centre. The combination of these 
three imaging modes permitted sampling across all regions of the hiPS cell 
colonies (Extended Data Fig. 12). Cells were labelled with fluorescent DNA and 
membrane dyes and then imaged at each pre-selected colony position. Z-stacks 
were acquired at 120X in four channels, representing the bright-field, cell-
membrane dye (magenta), DNA dye (cyan) and the fluorescently tagged cellular 

structure (grayscale), also shown in (b). Mode A and C panels show Golgi (via 
sialyltransferase) and microtubules (via alpha-tubulin), respectively. b. Image 
Processing: The WTC-11 hiPSC Single-Cell Image Dataset v1 consists of a total of 
18,100 FOVs curated specifically for successful cell and cellular structure 
segmentations, which are available for download. An example z-stack is shown. 
On the left is the maximum intensity projection of all 65 slices with all fluorescent 
channels combined, in the colours indicated in the panels on the right. “Cutting” 
the z-stack in half exposes the view of a single slice (slice 32) in the middle of the 
stack, shown for each individual channel, including the bright-field channel. 
We applied 3D segmentation algorithms to each of the fluorescent channels to 
identify boundaries in 3D of the cells via the membrane dye (magenta), the nuclei 
and mitotic DNA via the DNA dye (cyan), and each of the 25 cellular structures 
via their fluorescent protein tag (grayscale; Golgi shown here). Resulting 3D 
segmentations for cell membrane, DNA, and structure channels are also shown 
as a side view, the xz-cross-section along the yellow dotted line. All segmentation 
algorithms were developed and performed using the Allen Cell & Structure 
Segmenter. c. Single Cell Feature Extraction: A total of 215,081 single cells were 
segmented from the FOVs. Every individual cell was labelled with a unique ID 
and metadata related to the sample, experiment, and microscopy was collected 
and associated with each individual cell for future data provenance. Appropriate 
features were extracted for each cell from the cell, the nucleus or mitotic DNA, 
and the cellular structure segmentations, including measurements such as the 
height and volume. These cells, including the images and the segmentations as 
well as the metadata and features are all available for download. Scale bars are 
10 µm unless otherwise noted. d. Number of cells for each cellular structure in 
the WTC-11 hiPSC Single-Cell Image Dataset v1, sorted by their acquisition order. 
This table includes all of the various different subsets of the data used 
throughout the study, including the baseline interphase dataset (excluding 
outliers, see Methods), mitotic cells, cells within the 8-dimensional sphere 
(Fig. 3), cells at the edges of colonies (Fig. 4) and cells in early stages of mitosis 
(m1 and m2, Fig. 5).
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Extended Data Fig. 2 | Overview of cell, nuclear and cellular structure 
segmentations and caveats. a. Panels show a representative single z-slice of 
the FP-tagged protein (left) and the target segmentation (right), demonstrating 
the degree of accuracy of the structure segmentations used for analysis. Several 
of these segmentations have specific types of caveats (b–d and Methods) that 
may affect interpretation of downstream analyses. b. The limits of the cell 
boundary segmentation algorithm include potential errors for the very top 
slices of each cell. Desmosomes, which localize to the cell periphery at the top of 
the cell, demonstrate this caveat well. Four sequential z-slices (z = 42-48) moving 
upwards towards the top of the cell-membrane dye signal are shown. In z = 42, 
both the cell-membrane dye and the cell segmentation clearly identify the true 
cell boundary (yellow arrows) and in z = 48, the in-focus desmosomes also line 
up well along the true cell boundary. However, in z = 46, the cell-membrane dye 
indicates two possible cell boundaries due to the slanted nature of the top of  
this cell and the out of focus light spreading from slices above and below. The  
in-focus desmosomes identify the inner possible boundary as the true cell 
boundary (yellow arrows). However, the segmented cell boundary is incorrect 
(cyan arrows). In z = 44 the desmosomes are not yet in focus, thus the true cell 
boundary is likely somewhere between that determined in z = 42 and z = 46. This 
error is negligible for overall cell segmentation, but critical for the assignment 
of desmosome locations in the cell. In this example shown, desmosomes are not 
located directly at the segmented cell periphery but still close by, such that a 
measurement of the total volume of desmosomes in this cell is still appropriate. 
However, it is equally likely that desmosomes, or any other structure localizing 
to the upper cell periphery could be mis-assigned to a neighbouring cell. Thus 
these structures were not considered validated for cellular structure volume 
analyses (Methods). c. Structures localizing or partially localizing to a thin 3D 
surface, such as the cell or nuclear periphery, may suffer from non-uniform 
accuracy between the middle and the top/bottom of that structure due to the 
anisotropic resolution of the images. Seven sequential z-slices (left) and target 
segmentations (right) of nuclear pores on the nuclear surface demonstrate this 
caveat well. The density of segmented nuclear pores is greatest at z = 36 and 
declines as the imaging plane moves upward through the nucleus. Consistently 
accurate detection for nuclear pores at both the centre and the top of the 
nucleus was not possible due to this effect and would require further algorithm 
development. The segmentation accuracy was sufficient to identify the general 
location of nuclear pores in cells for the location-based analyses but not 
sufficient to be validated for use in the cellular structure volume analysis. This 
caveat was also observed for other structures localizing to the nuclear and cell 
periphery (Methods). d. The segmentation target for cohesins (via SMC-1A) is to 

detect the most contrasted locations of cohesins in nuclei. This segmentation 
works well for nuclei in most of interphase (see example in (a)). However, SMC-1A 
moves from the cytoplasm back into the nucleus after mitosis. The amount of 
tagged SMC-1A protein in the nucleus and thus its segmentation depends on 
how far into interphase a cell is. Three examples of tagged SMC-1A are shown 
(left panels) along with the target segmentations (right panels). For a cell in early 
interphase (far left) SMC-1A is both in the cytoplasm and nucleus, but at low 
levels such that the target segmentation is quite sparse. For a cell well into 
interphase (far right), the target segmentation is as in (a). In the centre is a 
nucleus with moderate levels of SMC-1A and thus fewer cohesin locations 
segmented. e. Demonstration of the cell membrane Training Assay concept. 
Top row: tagged cell-membrane channel (via CAAX; left) and cell-membrane dye 
channel (right) images as single slices near the centre of the z-stack. Second row: 
corresponding side views of the same z-stacks. Bottom row: CAAX-based 
segmentation (left) and filled version for the cell-membrane dye-based 
segmentation performed on the dye image after training via the cell membrane 
Training Assay (right). The cell membrane at the top of cells is often very dim in 
the dye images (yellow arrows) due to both the very thin nature of the top 
membrane and photobleaching during z-stack acquisition. However, the top of 
these same cells is much more visible in the tagged plasma membrane cell line 
(cyan arrows), permitting successful CAAX-based segmentations. We leveraged 
the information contained in the CAAX images by using the CAAX-based 
segmentation as the training target for a deep learning cell-membrane dye-
based segmentation model. f. Demonstration of the DNA dye Training Assay 
concept. Top row: tagged nuclear envelope channel (via lamin B1; left) and DNA 
dye channel (right) images as a single slice near the centre of the z-stack. Second 
row: corresponding side views of the same z-stacks. Bottom row: lamin B1-based 
segmentation (left) and filled version for the DNA dye-based segmentation 
performed on the dye image after training via the DNA dye Training Assay 
(right). The top boundaries of nuclei are often very blurry in the DNA dye images 
(yellow arrows) due to the “filled” nature of how the DNA dye demarcates the 
nuclear boundary combined with the diffraction of light and lower axial 
resolution. However, the top boundaries of nuclei in these same cells are clearly 
identifiable in the tagged nuclear envelope cell line (cyan arrows), permitting 
accurate nuclear segmentations via lamin B1. We leveraged the image information 
in the lamin B1 images by using the filled lamin B1-based segmentation as the 
training target for a deep learning DNA dye-based segmentation model. Total 
numbers of acquisition days, FOVs, and cells per cellular structure are in 
Supplementary Data 1 and Extended Data Fig. 1d.Scale bars are 3 µm for a–d and 
5 µm for e–f.



Extended Data Fig. 3 | A PCA-based cell and nuclear shape space reveals 
interpretable modes of shape variation in hiPS cells (supporting figure).  
a. Mean distance between points in the original 3D meshes of cell (top) and 
nucleus (bottom) to their corresponding closest points in the reconstructed 
meshes and vice versa as the number of coefficients in the SHE increases. Each 
grey line is one cell (left; n = 300 randomly selected samples) or nucleus (right; 
n = 300 randomly selected samples). Black lines represent the mean. The 
dashed vertical lines indicate the number of coefficients for SHE degree 
Lmax = 16. b. Two examples of how nine map points for each of the eight shape 
modes are used as the input for an inverse PCA transform to obtain the 
corresponding SHE coefficients and their corresponding 3D reconstructions 
at these map points. Three 2D views of the 3D shape are shown as in Fig. 2c.  
The top view corresponds to an intersection between the 3D mesh of the cell 
and nucleus reconstructions and the xy plane. Side views 1 and 2 correspond to 
an intersection between the 3D meshes and the xz- or yz-planes, respectively.  

c. Pairwise correlations for cell volume, cell height, and shape modes. Each 
point represents a single cell (n = 202,847). Points are colour-coded based on 
an empirical density estimate. The grey line represents the best linear fit. The 
green curve represents the non-overlapping window average (y-axis) within 
100 equally spaced bins (x axis). Only results for bins with more than 50 points 
are reported. Pearson correlation values are indicated in the upper triangle 
part of the figure (black for non-zero values). d. Bar graph plots of the total 
variance explained by each PC for the shape spaces obtained when only nuclear 
(e) and cell (f) SHE coefficients are used as input for the PCA dimensionality 
reduction described in Fig. 2. e–f. Most relevant 2D view of 3D shapes 
reconstructed at each of the nine map points of each of the eight shape modes 
(given human-interpretable names). The centre bin in all modes is the identical 
mean cell shape. At the far right is an overlay of 2D views of the nucleus (e) or 
cell (f) for the two most extreme map points (at −2σ, lighter shade and +2σ, 
darker shade) of each shape mode.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Creating and comparing integrated average cells 
throughout the shape space via SHE coefficient-based parameterization 
and 3D morphing. a. “3-channel original z-stack” (bottom left image), shows a 
3D visualization of the original FP intensities of tagged mitochondria (grayscale) 
in a single cell and nucleus, visualized via cell-membrane dye (magenta) and DNA 
dye (cyan). Moving rightward along the bottom row are the steps to create the 
PILR of the mitochondria via the FP signal in this cell. “3D reconstruction” (second 
image) shows the SHE-based 3D reconstruction meshes of the segmentations of 
this cell and nucleus. Next, “cellular mapping” shows the result of interpolating 
the SHE coefficients to create a series of successive 3D concentric mesh shells 
(different colours) from the centroid of the nucleus (black dot) to the nuclear 
(inner) and then to the cell (outer) boundary to create the nuclear and cytoplasmic 
mapping, respectively. The intensity values in the FP channel are recorded at 
each mesh vertex location, resulting in the “PILR” that is shown in matrix format 
in the fourth image. “Voxelization” shows the result when this PILR is converted 
back into a 3D image, voxel by voxel, into the same reconstructed cell and nuclear 
shape. Because this internal mapping is discrete, the resultant reconstructed 
image will have gaps. At the top, “original FP image (left) is the original image 
and “nearest neighbour interpolation” (right) is the voxelized PILR, now with the 
gaps filled using nearest neighbour interpolation. Voxel-wise Pearson correlation 
in 3D is used to compare these original and reconstructed FP images. b. Example 
PILRs (in matrix format as in a) for one cell for each of five cellular structures.  
Top view and side view 1 are shown on the far left. Top and bottom PILR matrices 
for each structure are based on the original FP image (grayscale on black 
background) or the structure segmentations (binary on white background), 
respectively. c. The FP-image-based PILR takes all intensities in the image into 
account, including any FP-tagged protein not localized to the target structure 
that the protein represents. For example, FP-tagged paxillin localized to matrix 
adhesions at the bottom of the cell but also throughout the cytoplasm. Two 
images of multiple cells (cell membrane indicated by magenta lines) in an FOV 
with labelled matrix adhesions (via paxillin) at two z positions in the z-stack. 
Top left triangles in each image show the original FP image. Matrix adhesions 
are visible near the bottom of the cells (left) but considerable FP-tagged paxillin 
signal is visible both at the bottom and centre (right) of cells. However, the 
segmentation target defined for this cell line included only the high intensity 
regions representing the matrix adhesions near the bottom of the cells. 
Bottom right triangles in each image show the result of the matrix adhesion 
specific segmentation. Total numbers of acquisition days, FOVs, and cells for 
FP-tagged paxillin are in Supplementary Data 1 and Extended Data Fig. 1d.  

d. Using the structure segmentation-based PILR permits the creation of 
average morphed cells containing the locations of the cellular structures that 
each tagged protein represents. Average morphed cells representing matrix 
adhesions (top row) and mitochondria (bottom row) generated using either  
the original FP images (left column) or the target structure segmentations 
(right column) of cells within the 8-dimensional sphere morphed into the mean 
cell shape. The analyses in this paper focus on the structure segmentation-
based PILRs; but conceptually the same approach could also be applied to  
the raw intensity images. e. Bar graphs of voxel-wise Pearson correlation 
between original intensity images of FP-tagged proteins (left) or of structure 
segmentations (right) and the images reconstructed from the PILR. Error bars 
represent ± one standard deviation around the mean (n = 32 cells per structure). 
Cells were selected from centre bin of Shape Mode 1. The correlation for cohesins 
(via segmentations) is indicated with a striped fill pattern. This structure has a 
significantly changing target structure segmentation depending on how much 
tagged cohesin has re-entered the nucleus after mitosis, causing the much lower 
correlation value (Extended Data Fig. 2d). f. Example cell from the top of (a) to 
show the original and PILR-based reconstructed image but here based on the 
structure segmentations. Numbered insets are zoomed in regions. Cell and 
nuclear boundaries in a–f are shown in magenta and cyan lines, respectively.  
g. Overview of the process to calculate the average location similarity between 
all pairwise-combinations of the 25 cellular structures within the 8-dimensional 
shape space sphere. The 2D pixel-wise Pearson correlation was calculated 
between pairs of averaged PILRs for each structure. This created a correlation 
matrix including each of the 25 cellular structures with elements of this matrix 
representing the average location similarity between two cellular structures. 
h. Heat maps for the −2σ and 2σ shape space map points for each of the eight 
shape modes as in Fig. 3e, but here heat map values correspond to the difference 
in average structure similarity between the mean cell shape and either, the −2σ 
and 2σ shape space map points (bottom and top triangles, respectively), for 
each of the eight shape modes (numbers of cells in Supplementary Data 1). Due 
to technical considerations related to the PILR construction (Methods) or due  
to especially low number of cells in some bins (Supplementary Data 1), some 
structures displayed changes in the magnitude of the average location similarity 
with other structures in the shape mode bins furthest from the mean (−2σ and 
2σ, mainly for Shape Mode 1) and so these decreases may not be biologically 
meaningful. Additional difference heat maps for intermediate shape mode bins 
are available in Supplementary Data  1.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Overview panel for creating aggregated morphed 
cells for all 25 cellular structures. a. Each row represents one of the 25 cellular 
structures (indicated by the colour bar on the far left). From left to right, on the 
left side of the large arrow, the first three sets of three images each show top 
view and side view 1 of three examples of individual cells with shapes similar to 
the mean cell shape (origin of the 8-dimensional sphere). For each set of three 
images, the left is the maximum intensity projection (MIP) of the original FP 
image (grayscale on black background), the centre is the average intensity 
projection of the structure segmentation image (AIP; binary on white 
background), and the right is the AIP for the structure segmentation-based 
PILR for that cell morphed into the mean cell shape. For nuclear envelope and 
nuclear pores, the centre slice, through the centre of the nucleus, of the 
original FP image is shown instead of the MIP. For these two structures and for 

histones, the cyan DNA outline has been left out to see the location of these 
structures at the nuclear periphery. b. On the right side of the large arrow are 
three different types of aggregations of the indicated number of individual 
morphed cells based on the structure segmentation PILRs. On the left is the 
average morphed cell, the centre is the standard deviation (std.) morphed cell, 
and the right is the “structure-localized coefficient of variation” (SLCV) morphed 
cell, representing a quantitative measure of how variable the location of a 
structure is at any given voxel (Supplementary Methods). Contrast settings for 
FP and AIP images were adjusted per cellular structure to best represent its 
location. Heat maps for average morphed cells indicate relative likelihood of a 
structure being at a given location in the cell. Heat map ranges for standard 
deviation morphed cell and SLCV morphed cell are as described (Supplementary 
Methods). Scale bars are 5 µm.
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Extended Data Fig. 6 | Location stereotypy and concordance are robust to 
systematic variation in cell and nuclear shape. a. Heat map of the 2D 
pixel-wise Pearson correlation matrix for all pairs of cellular structure PILRs 
among all cells in the 8-dimensional sphere. Each entry in this matrix represents 
the correlation between the PILR of two cells. Coloured triangles to the left of, 
and the thicker black lines within, the matrix indicate the regions (blocks) of  
the matrix corresponding to cells with the indicated tagged structure. The 
dimensions of each block correspond to the number of cells. b. Average 
correlation matrix. Left: the location stereotypy for a cellular structure is the 
average of all the values in the blocks along the diagonal of the correlation 
matrix in (a). The numbers on the right indicate structures ranked by their 
stereotypy from greatest to least. Right: the location concordance for any two 

pairs of structures is the average of all the values in the corresponding structure 
pair block in the correlation matrix in (a). The diagonal of the concordance  
heat map corresponds to the stereotypy. Arrows indicate examples of the 
relationships between the heat maps in (a) and (b). c. Stereotypy heat maps for 
each of the eight shape modes (SM). Each row represents a different cellular 
structure and each column represent the nine binned map points along each 
shape mode (Fig. 2b). d. Concordance heat maps for the −2σ and 2σ shape space 
map points for each of the eight shape modes. The lower and upper triangles 
represent the −2σ and 2σ map points, respectively. Numbers of cells and heat 
map data in Supplementary Data  1. Colour bars on the left of heat maps indicate 
the cellular structure.



Extended Data Fig. 7 | Comparing location stereotypy and concordance 
throughout the cell and nuclear shape space. a. Box plots of the diagonal 
values for each of the 25 cellular structures in the 3D voxel-wise Pearson 
correlation matrix heat map for all cells in the 8-dimensional sphere (Extended 
Data Fig. 6a). The thicker and shorter horizontal black line inside the box is the 
location stereotypy, the average of all the values in that structure’s block in the 
correlation matrix. Dots represent the raw data (one dot per correlation value; 
1,000 randomly selected points are shown). The box extends from the first 
quartile (Q1) to the third quartile (Q3) of the data, with a line at the median.  
The whiskers extend from the box by 1.5x the interquartile range (IQR). 
Numbers of cells are in Supplementary Data  1. Colour bars along the bottom  
(x axis) indicate the cellular structure. Numbers above the colour bar indicate 
structures ranked by their stereotypy from greatest to least. The structures with 
the greatest location stereotypy were the nuclear envelope (lamin B1) and the 
plasma membrane (via CAAX domain of K-Ras, “CAAX”). These observations are 
effectively positive controls, because these two structures should be very 
similar to the cell and nuclear boundary shapes that were used as fixed points in 
the SHE interpolation. In decreasing order of stereotypy, the next highest were 
two nucleolar compartments, the Dense Fibrillar Component (DFC, via 
fibrillarin) and the Granular Component (GC, via nucleophosmin), followed by 
the ER (both Sec61 beta and SERCA) and microtubules. Structures with the least 
location stereotypy included those with a low number of discrete separated 
locations near the top or bottom of the cell such as centrioles (via centrin-2), 

desmosomes (desmoplakin), and matrix adhesions (paxillin) as well as 
structures with sparse, punctate locations such as cohesins (SMC-1A), 
endosomes (Rab-5A) and peroxisomes (PMP34). b. The process to create the 
Pearson correlation matrix for the 8-dimensional sphere (Extended Data Fig. 6a) 
was repeated for the reconstructed cell and nuclear shapes at each of the nine 
map points for each of the eight shape modes. Shown here are the resulting 
correlation matrices along Shape Mode 1. Each entry in this matrix represents 
the correlation between the cellular structure PILR of two cells. Thicker black 
lines within the matrix indicate the regions (blocks) of the matrix corresponding 
to cells with a tagged structure. The size of each dimension of each block 
corresponds to the number of cells. c. Heat maps of the difference in location 
stereotypy for each of the eight shape modes (SM). Each heat map represents a 
shape mode, each column represents the nine binned map points along that 
shape mode (Fig. 2b), and each row represents a different cellular structure. 
Each heat map value corresponds to the stereotypy difference between the 
mean cell shape and the cell shape in the indicated shape mode bin for that 
cellular structure. d. Heat maps of the difference in location concordance 
between the mean cell shape and either, the −2σ and 2σ shape space map points 
(bottom and top triangles, respectively), for each of the eight shape modes. 
Numbers of cells are in Supplementary Data 1. Colour bars on the left of heat 
maps indicate the cellular structure. Additional concordance difference heat 
maps are available in Supplementary Data 1.



Article

Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Statistical analysis of the variation in cell, nuclear 
and cellular structure sizes. a. Heat map in four parts summarizing the results 
of a systematic, comparative analysis of the relationship between the volumes 
of the15 cellular structures validated for structural volume analysis and five cell 
and nuclear size metrics: the volume and surface area of the cell and the 
nucleus, and fifth, the cytoplasmic volume (the difference between cell and 
nuclear volumes), referred to as cell vol, cell area, nuc vol, nuc area, and cyto vol, 
respectively; Supplementary Methods). The number of cells in a–k are either all 
cells (n = 202,847) or per cellular structure (Extended Data Fig. 1d). The leftmost 
column (green heat map, scaling rate) indicates the percentage increase in 
structure volume given one doubling in cell volume over a well-represented 
volume range in the cell population (1160 to 2320 µm3). For example, the volume 
of mitochondria increased by an average 84% (from 108 to 199 µm3) for this 
doubling in cell volume (a doubling is an increase of 100%). The structures with 
the greatest relative scaling rates were the peroxisomes, followed closely by 
both nucleolar structures and then microtubules, all of which nearly doubled in 
structure volume with the doubling of cell volume. Simple linear regression 
was used to fit the data and to calculate the percent of the variation in cellular 
structure volumes that can be explained by each of the five cell and nuclear size 
metrics (next five columns in a, blue-red heat map, explained variance). The 
percent explained variance was substantially greater for some structures,  
such as mitochondria (54%) than for other structures, such as endosomes (2%). 
For nuclear structures like the nucleolar DFC, more of the variance in their 
volumes could be explained by nuclear volume than by cell volume (77% vs. 68%, 
respectively). A multivariate model was applied to calculate the total percentage  
of the variance explained for each of these structures by the combination of all four 
cell and nuclear size metrics (centre single column, all metrics). At the lowest end 
were the centrioles, which are discrete structures that double in number during 
the cell cycle, but with a negligible volume increase. Centrioles should not get 
continuously bigger as cells grow and were thus invariant with all size metrics. 
At the highest end were the nuclear envelope and the plasma membrane, which, 
as expected, correlated well with nuclear and cell surface areas, respectively. 
Notably, the volumes of all three nuclear body structures (nucleolar DFC, GC, 
and speckles) had high explained variances. Cell and nuclear metrics show a 
large degree of collinearity, which makes it non-trivial to isolate the effect of 
one particular cell or nuclear metric on structure volume. The multivariate 
model was used to calculate the unique contributions of both cell size metrics, 
both nuclear size metrics, and each of the four metrics individually (last six 
columns, orange heat map, unique explained variance). For all five nucleus-
related structures, the variance in structure volume was better explained by 
nuclear size metrics than by cellular size metrics. For the nuclear envelope, 

more of the variance was uniquely attributable to the nuclear surface area than 
nuclear volume; this anticipated result confirmed the validity of this approach. 
b. Scatterplot of nuclear vs. cell volumes for all cells, coloured based on an 
empirical density estimate. The green line is a running average and the grey line 
is the linear regression model, also used to calculate the scaling rate (see a).  
c. Line plots showing the scaling rate for three cellular structures (yellow line 
and numbers in top left corners). The regions filled in grey are the interquartile 
range (IQR) measured across cells that were binned in 10 cell volume bins. The 
xy axes to the far left are used to indicate the values of the tick marks in each  
of the three plots. d–g. Scatterplots and statistical measures as in (b), for 
mitochondria (d), endosomes (e), and nucleoli (DFC, f and g). h. Scatterplot of 
the relative volume scaling rate vs. the total percent explained variance for the 
15 cellular structures. Error bars are 5-95% confidence intervals calculated via 
bootstrap (n = 100). Structures along top and right side are rank ordered. The 
structures with the lowest relative volume scaling rates were also the structures 
identified as having the lowest explained variance (endosomes, centrioles).  
For most structures, however, relative scaling rates were at least 60%, consistent 
with the simple expectation that larger cells typically would also have larger 
organelles. Two structures whose volumes correlated most strongly with 
nuclear surface area (nuclear envelope, nuclear speckles) showed lower scaling 
rates. This was consistent with surface area generally scaling less quickly than 
volume. For example, doubling the size of a perfect sphere leads to only a 59% 
increase in its surface area. The peroxisomes stood out as exhibiting an unusual 
pattern of both a high relative volume scaling rate and great variability in 
peroxisome volume from cell to cell. i. Scatter plot of nuclear surface area vs. 
nuclear volume for all cells (blue points), cells with spherical nuclei (n = 19,927, 
brown points), perfect spheres (magenta dashed line) and linear and non- 
linear model fits on spherical cells or all cells (cyan and black as indicated; 
Supplementary Methods). The volume (V) and surface area (A) of a sphere  
don’t scale linearly, instead A ~ V2/3. However, on this dataset a linear model of 
nuclear volume explains as much variation in nuclear area as a model with the 
theoretically correct non-linear scaling factor. j. Scatterplot of explained 
variance for linear vs non-linear models for all cases in the heat map of explained 
variance in a (n = 190; Supplementary Methods). Median (across 100 bootstraps 
of the regression model; blue points) and 95% confidence interval (from 2.5%  
to 97.5% across the 100 bootstraps; red lines) are indicated. k. Heat map of 
percent explained variance between size-scaling metrics (rows) and shape 
modes (SM, columns). Correlations of structure volume to Shape Mode 5 likely 
occur due the moderate correlation between Shape Mode 5 (elongation) and 
cell surface area.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | ALPs in shape-matched non-edge and edge cells. 
 a. Cell and nuclear SHE coefficients from a comparison dataset (e.g., edge 
cells; red dots) are transformed according to the SHE PCA of a baseline dataset 
(e.g. interphase cells; black + grey dots) resulting in the embedding of the 
comparison dataset cells into the baseline 8D shape space. Each cell in the 
comparison dataset is matched to its nearest neighbour in the shape space that 
is also in the baseline dataset (lines connecting black and red dots), creating the 
shape-matched dataset. b. Average morphed cells for six cellular structures in 
shape-matched non-edge and edge cells. For five of these structures, the ALP is 
a redistribution of the structure towards the outer edge of the colony, while for 
adherens junctions (via beta-catenin) the ALP is a redistribution of junctions 
away from the colony edge. c. Dimensionality of PILRs of cells in the shape-
matched dataset is first reduced to 32 via PCA (see Methods). LDA is then 
applied to these 32 PCs to find the axis of greatest separation (solid purple line) 
between the two groups of cells in the dataset (black and red dots). Data points 
are projected along the discriminant axis to determine the frequency of cells. 
d. Average morphed cells for actin bundles (via alpha-actinin-1) in non-edge and 

edge cells. e. PILR-LDA based reconstructions of actin bundles in average 
morphed cells at five positions (in σ units) along the LDA axis. Dotted lines 
correspond to the locations of the mean non-edge (black) and edge (red) cells 
in (d). f. Frequency of cells along the LDA axis within non-edge and edge cell 
populations. Dotted vertical lines indicate the means. g. Top view and side view 
1 of three examples of each non-edge and edge cells along the LDA axis. Top  
row shows the original and bottom row the morphed visualizations for each  
of these cells. Images are average projections of the segmented structure.  
h. Frequency of cells along the LDA axis within non-edge and edge cell populations 
for the five structures in (b). Dotted vertical lines indicate the means. PILR-LDA 
based reconstructions of average morphed cells at five positions (in σ units) 
along the LDA axis for all 25 cellular structures as well as single-cell examples 
available in Supplementary Video 3. i. Heat maps of the differences in average 
location similarity (left), stereotypy (centre) and concordance (right) for the  
25 cellular structures in shape-matched non-edge vs. edge cells (numbers of 
cells and heat map data in Supplementary Data 1).
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Integrated intracellular reorganization in early 
mitosis (supporting figure). a. We investigated two stages of early mitosis—
prophase (m1) and early prometaphase (m2), when the condensing chromosomes 
still largely form an aggregated, nuclear-like structure that could be biologically 
interpreted in the context of our cell and nuclear shape-based coordinate system. 
Due to the breakdown of the nucleus and the condensation of DNA in these early 
stages of mitosis, the outline of the DNA-dye-based segmentation was no longer 
appropriate for SHE-based parameterization. Instead, we replaced the nuclear 
segmentation of cells in both datasets with their convex-hull counterpart.  
b. Mean cell (magenta or purple) and nuclear (cyan or green) shape for all interphase 
cells (1st column), cells in prophase (m1), shape-matched interphase 1 and m1 cells 
(i1 + m1), cells in early prometaphase (m2), and shape-matched interphase 2 and 
m2 cells (i2 + m2), respectively. c. Frequency of cells for the eight shape modes 

(SM) for all interphase (grey), i1 (black) and m1 (red) cells (top two rows), i2 (black) 
and m2 (red) cells (bottom two rows). d. Concordance heat maps for interphase 
cells in the two shape-matched interphase datasets (i1, i2) and their corresponding 
prophase (m1) and early prometaphase (m2) mitotic cells. e. Heat maps of the 
differences in concordance in early mitosis for i1–i2, i1–m1, m1–m2, and i2–m2 
stages. f. Flagged significant concordance differences (black boxes) for each of 
the difference heat maps shown in (e). g. Average structure similarity heat maps 
for interphase cells in the two shape-matched interphase datasets (i1, i2) and 
their corresponding prophase (m1) and early prometaphase (m2) mitotic cells. 
Due to the low number of cells in mitosis for some structures, we did not 
quantitatively analyse differences in the average location similarities, although 
their qualitative results matched those based on the concordance values. Heat 
maps in Supplementary Data 1.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Summary of this study. a. The Allen Cell Collection of 
high-quality gene-edited FP-tagged cell lines and the standardized microscopy 
imaging pipeline, combined with new tools for image analysis permitted us to 
create the WTC-11 hiPSC Single-Cell Image Dataset v1 of over 200,000 living 
cells and 25 cellular structures in 3D. b. We created two distinct conceptual 
coordinate systems to analyse our cells. The first maps the shape of an individual 
cell with respect to the total shape variation observed in the entire population  
via a 3D cell and nuclear shape space (via SHE). The second maps the location of 
every cellular structure within an individual cell (via the PILR). c. With these two 
coordinate systems we created an analysis framework to measure distinct 
aspects of integrated intracellular organization, including measurements of 
structure volume variations as well as the locations of cellular structures. This 
included the average locations both of individual structures and all pairs of 
structures (ALP and average structure similarities), as well as the variability in 
these locations (stereotypy and concordance). d. This suite of measurements 
was applied to our large baseline dataset of interphase cells and showed that 
integrated intracellular organization was very robust across the wide range of 
cell shapes in the normal interphase population. e. Two cell subpopulations 
stood out morphologically in the dataset: colony edge cells and mitotic cells, 
prompting us to assess their organization. To do this, we developed a process 
to match each individual cell in the chosen subpopulation with a “control” 
(interphase) cell of similar overall shape, and then used analysis of these shape-
matched pairs to visualize and quantify the location phenotype of greatest 
difference between the two populations (via the PILR-LDA). f. First, we compared 
the intracellular organization of cells at the edges of hiPS cell colonies compared 
with shape-matched non-edge cells. We found that some structures showed a 
polarized location towards the colony edge but this change in location was not 
accompanied by any other changes in pairwise structure locations or variations, 
suggesting that while the locations changed, the variability and relationships 

among structures (average structure similarities, stereotypy, and concordance) 
i.e., the “wiring”, of the cell did not. g. In contrast, our second subpopulation 
comparison focused on early mitotic cells confirmed that they undergo a 
dramatic intracellular reorganization, in which not only the average locations of 
structures, but also their wiring, changed substantially. To assess these changes 
with a robust quantitative perspective, we developed new workflows to formally 
identify when significant changes in any of these measurements occurred in  
the first two early stages of mitosis, and then summarized and visualized these 
results in a way that could facilitate further data exploration and hypothesis 
generation. We found that all structures except those located at the cell 
periphery changed their average locations during early mitosis. Furthermore,  
all structures that changed location (other than the four for which stereotypy 
was statistically not measurable) also changed in at least one other aspect of their 
organization (stereotypy, concordance, or both) during at least one of the two 
stages of early mitosis. Thus, structure location changes of cells in early mitosis, 
unlike in edge cells, were accompanied by changes in their wiring. This suggests 
that edge cells and early mitotic cells may represent distinct classes of cellular 
reorganization, perhaps related to the specific cellular processes underlying 
them. h. We performed a meta-analysis to investigate the association between 
distinct aspects of cell organization observed throughout this study. The 
results of this meta-analysis prompted us to suggest a possible hierarchy of 
dependencies as cells reorganize, as outlined in the Discussion. However, our 
observations also demonstrate that this simple proposed hierarchy among 
these distinct aspects of organization is not absolute. It is possible that these 
potential dependencies, or “rules” of cell organization, are general and apply  
to a range of genetic perturbations, differentiation, signalling factors, 
environmental signals, etc. It is also possible that there is a larger set of cell  
type or state-dependent organizational rules.
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Extended Data Fig. 12 | Statistical analysis for quality control of the WTC-11 
hiPSC Single-Cell Image Dataset v1. a. Box plots of principal component 
values for all cell lines together (first bin in dark green) and per tagged 
structure cell line, plotted in pipeline timeline order, the order that structure 
datasets were collected (total n = 175,147; n per structure in Supplementary 
Data 1). The box extends from the first quartile (Q1) to the third quartile (Q3)  
of the data, with a line at the median. The whiskers extend from the box by 1.5x 
the interquartile range (IQR and dots represent outliers beyond the IQR. The 
dashed horizontal line spanning the entire plot represents the median value for 
all cell lines together (first bin in dark green). The colours for each cell line refer 
to the pipeline workflow (see Methods for details). Triangles indicated structures 
for which the IQR does not overlap with the mean value for all cell lines. b. Left 
plots shows the distributions of cell height (top) and cell volume (bottom) for 
all cell lines together (first bin in dark green; n = 202,847) and per tagged 
structure cell line, plotted in pipeline timeline order (n per structure in 
Supplementary Data 1 and Extended Data Fig. 1d). Structure names in red 
indicate those structures imaged with an adjusted Matrigel coating protocol 
towards the end of the pipeline timeline. The centre plots show a comparison  
of cell height (or volume, bottom) between actomyosin bundle-tagged cells  
(via non-muscle myosin IIB) in the main dataset (Pipeline 4.1; n = 6,223) and in a 
repeat dataset imaged with Pipeline 4.4 settings with the adjusted Matrigel 
coating protocol (n = 380). The right plots shows a comparison of cell height  
(or volume, bottom) between all cell lines imaged pre-Pipeline 4.4, during 
Pipeline 4.4 with original Matrigel coating and during Pipeline 4.4 with adjusted 
Matrigel coating. Percentages shown in the plot are the relative height reduction 
compared to the mean height of cell lines imaged pre-Pipeline 4.4. c. The top 
image diagrams circular mapping of imaged colonies (via the 12X overview 
images). Two cells are represented by two red dots within an FOV, represented by 
a rectangle. The FOV centre is at distance d from the closest edge of the colony. 
The two cells are then mapped into a unit circle that serves as a template to 
visualize the radial location of the two cells. The radial location is the FOV relative 
distance to the edge of the colony, ℓ = d/Reff, where Reff represents the effective 
radius of the colony. The angular location of a cell (θ1 and θ2 for the two cells in  
the image) is independently drawn from a uniform distribution of angles in the 

range [0,2π]. Cells from the dataset that were associated with a colony size (see 
Methods) were grouped into four bins, each with similar number of cells, based 
on the area of the colony where they came from. The colony area range of each 
bin is 15k-230k µm2, 230k-377k µm2, 377-620k µm2 and 620k-14,285k µm2. Each 
point represents one cell within the colony area bin that was mapped into the  
unit circle. The unit circle was then rescaled to match the mean colony area for 
that bin. Points are colour-coded by their corresponding cell height. Listed above 
each circle is the mean colony area in that bin to which the unit circle is scaled. 
Below each circle are profile plots of cell height as a function of the radial distance 
for each of the cell (in black). The red curve represents the rolling average. Each 
row of circular colony mappings represents a different aggregation of the data 
based on the imaging mode: the first row is for all imaging modes (modes A, B and 
C; n = 104,269), the second row is for modes A and B only (n = 75,146) and third row 
is for mode C only (n = 29,123). d. Circular colony mappings as in (c) where points 
(cells) are now colour-coded by values of the shape modes. Circular colony 
mappings are shown for Shape Modes 1 and 2, and profile plots (as in c), for Shape 
Modes 3-8 (all imaging modes, n = 104,269). e. Scatter plots on the far left show 
true values of cell height compared to cell height values predicted by random 
forest regression models (n = 95; see Methods) that include either all experimental 
variables (top plot) or all experimental variables except for the cell line identity 
(bottom plot). The error bars on the predicted values are obtained via 
bootstrapping (n = 100). The centre column shows box plots representing the 
feature importance for each of the two models as measured by the increase in 
the mean squared error (MSE) when all values of that corresponding feature are 
shuffled across samples. The box extends from the first quartile (Q1) to the 
third quartile (Q3) of the data, with a line at the median. The whiskers extend 
from the box by 1.5x the interquartile range (IQR and dots represent outliers 
beyond the IQR. The right top plot is the Pearson correlation matrix between 
five continuous experimental variables used in training the regression models. 
The bottom right plot is the Cramer’s V correlation matrix between six 
categorical experimental variables used in training the regression models. 
Variables with correlation above the significance threshold 0.3 are assumed to 
be highly correlated53.
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