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Understanding how a subset of expressed genes dictates cellular phenotypeisa
considerable challenge owing to the large numbers of molecules involved, their
combinatorics and the plethora of cellular behaviours that they determine*2. Here

we reduced this complexity by focusing on cellular organization—akey readout and
driver of cell behaviour>*—at the level of major cellular structures that represent
distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-
Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning
25key cellular structures. The scale and quality of this dataset permitted the creation
of ageneralizable analysis framework to convert raw image data of cells and their
structures into dimensionally reduced, quantitative measurements that can be
interpreted by humans, and to facilitate data exploration. This framework embraces
the vast cell-to-cell variability that is observed within a normal population, facilitates
the integration of cell-by-cell structural data and allows quantitative analyses of
distinct, separable aspects of organization within and across different cell populations.
We found that the integrated intracellular organization of interphase cells was robust
to the wide range of variationin cell shape in the population; that the average locations
of some structures became polarized in cells at the edges of colonies while maintaining
the ‘wiring’ of their interactions with other structures; and that, by contrast, changes

inthelocation of structures during early mitotic reorganization were accompanied
by changesin their wiring.

Cellular organization can be defined as the sumtotal of how all of a cell’s
components are arranged within it, generating an overall character-
istic size, shape and appearance for a cell of a given type. The models
and laws for understanding and predicting cellular organization and
its pivotal role as a determinant of cellular phenotype remain to be
determined. A first step towards this goal is to identify interpretable
and testable principles, or ‘rules’, that govern cell organization. One
approachis through a systematic analysis of the locations and quan-
titative relationships among many different cellular structures within
large populations of cells and how these relationships vary with the
morphology and behaviour of the cellitself. To define cell organization
precisely and quantitatively, however, requires measuring multiple
distinctaspects of organization; for example, the size (or number) and
shapeof eachstructure, its locations in the cell, its direct and indirect
interactions with all the other structures and the temporal changes.
A population of putatively identical cells might exhibit substantial
cell-to-cell variability as they respond sensitively to their ever-changing
internal and external contexts, such as the cell cycle, differentiation or
changesin their environment. Furthermore, an abnormal cell quantita-
tive phenotype might exhibit not only a shiftin the mean but also a shift
in the variability®. Thus, a meaningful description of cell organization
requires a formal definition and categorization that includes robust,
objective and quantitative measurements of both the mean and the
variability in the descriptors of organization.

Creating such anuanced, formal quantitative view of cell organiza-
tion will enable the statistical comparisons that identify generaliza-
tions and elucidate how cell organization differs within and across

different cell populations and during transitions among normal or
abnormal cell behaviours. It will also permit deeper investigations
that integrate cell organization with cell behaviour and cell identity,
including the integration of distinct data types (for example, images
and various ‘omics), leading to more meaningful and useful definitions
of cell types and states® ™2,

We have initiated our study of cellular organization by focusing on
the integrated organization of 25 cellular structures that represent
major intracellular machines and organelles, generating an exten-
sive, high-replicate baseline dataset of 3D live-cell images of normal
humaninduced pluripotent stem cells (hiPS cells): the WTC-11 hiPSC
Single-Cell Image Dataset v1. This dataset was used to develop agen-
eralizable and extensible quantitative analysis framework based on
two conceptually distinct coordinate systems to analyse the cells.
Thefirst coordinate system defines the cell and nuclear shape of each
individual cellwithrespect to the total variationin the observed popu-
lation. The second coordinate system specifies the spatial location
of every cellular structure within an individual cell. When combined,
the two coordinate systems permitted the development of a suite of
statistical measurements to quantify distinct aspects of cell organi-
zation, formally distinguishing among three kinds of change while
controlling for the effects of natural cell-shape variation: (1) changes
inthe average location of individual structures; (2) changes in the vari-
ability of these locations; and (3) changes in the pairwise interactions
among structures. We applied our framework to three subsets of cells
inthe dataset—thelarge baseline population of cellsininterphase, the
cells at the outer edges of the epithelial-like hiPS cell colonies, and
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cellsundergoing reorganization during early mitosis—and developed
data-visualization approaches to summarize these results in a way
conducive to data exploration.

WTC-11 hiPSC Single-Cell Image Dataset vl

hiPS cells represent an early embryonic cell state and are a useful
model system for human cells. hiPS cells are naturally immortal,
karyotypically normal and can be induced to differentiate into other
cell types®. We previously developed methods and quality-control
workflows to create the ten inaugural hiPS cell lines in the Allen Cell
Collection™ (described at https://www.allencell.org/cell-catalog.html),
eachexpressing asingle endogenously tagged proteinrepresenting a
particular organelle or cellular structure. For this study, we created 15
new Allen Cell Collection lines that provide a holistic view of cells at the
level of 25 of their major organelles, cellular structures and compart-
ments (Fig.1a). We built an automated and standardized microscopy
imaging pipeline to generate the living colonies, imaged the cells in
3D using spinning-disk confocal microscopes and then processed the
images to create the WTC-11 hiPSC Single-Cell Image Dataset v1 (Fig. 1
and Extended DataFig.1). We included fluorescent cell-membrane and
DNA dyes toreference the locations of fluorescent protein (FP)-tagged
cellular structures relative to the cell boundary and the nucleus or
mitotic chromosomes. For each of the 25 cellular structures, we used
3D segmentations of the tagged protein to identify the location and
morphology of the structure itself, rather than the location of the
FP-tagged protein signal (Extended Data Fig. 2). The tightly packed,
epithelial-like nature of hiPS cells, as well as the need for highly accu-
rate 3D cell boundaries to minimize the misassignment of cellular
structures to neighbouring cells required deep-learning-based seg-
mentationapproachesto create arobust, scalable and highly accurate
3D cell and nuclear segmentation algorithm® (Methods), which was
applied to all 18,100 fields of view (FOVs) to extract the 215,081 cells
presented in this dataset (Extended Data Fig.1). Both the FOVimages
and thessingle-cell dataset are available as downloadable files (see Data
availability) and through interactive online visual-analysis tools that
require nosoftwareinstallation or expertise (https://cfe.allencell.org/).
For the analyses described below, we used subsets of the dataset includ-
ing the baseline interphase dataset (202,847 cells), cells at the edge of
colonies (5,169 cells) and cells in early mitosis (3,182 cells) (Extended
DataFig. 1d).

APCA-based cell and nuclear shape space

To embrace the great diversity of the 202,847 3D images of cells in
interphase spanning 25 cellular structures, and to directly compare
cellular organization across this large population, we builta cell and
nuclear shape-based coordinate system (Fig. 2), adapting a standard
principal component analysis (PCA)-based dimensional reduction
approach'®. We aligned all cells along their longest axis in the xy plane,
preservingtheir biologically relevant, epithelial-like apical-basal axis.
We then used a spherical harmonic expansion (SHE)"*® to accurately
parameterize each 3D cell and nuclear shape with a set of orthogo-
nal periodic basis set functions, defined on the surface of asphere
(Fig. 2a and Extended Data Fig. 3). The joint vectors for all cells (578
SHE coefficients) were thensubjected to PCA. We found that the first
eight principal components represented about 70% of the total vari-
ance in cell and nuclear shape (Fig. 2b). Thus, with this dimension-
ality reduction, the cell and nuclear shapes for each individual cell
can be approximately reconstructed from a small vector with only
eight components. This dimensionality reduction also organizes
the cells into a simple, intuitive eight-dimensional (8D) generative
‘shape space’. For example, the origin (0,0,0,0,0,0,0,0) of the shape
space canbereconstructed through the values of the SHE coefficients
representing this locationinthe 8D coordinate system, and canthen
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be visualized as an idealized cell shape that statistically represents
the average, or mean, shape (‘mean cell shape’) of all of the cells in
the dataset (Fig. 2c). Similarly, idealized shapes can be reconstructed
by traversing across each of the eight orthogonal axes in the shape
space (Extended Data Fig. 3b).

To build ahuman-interpretable understanding of the modes of shape
variationinour population, we reconstructed cell and nuclear shapes
atregular intervals along every axis of this shape space (Fig. 2d and
Supplementary Video 1). These idealized cells represent ‘map points’
within the shape space that can be used to identify and cluster indi-
vidual real cells that are similar in shape to each idealized map point
and to each other. Intuitively, these mathematically orthogonal modes
of shape variation appear to describe expected variable cell-shape
features thatareindependent of one another. Shape mode 1appeared
to largely reflect the height of the cell (Extended Data Fig. 3c), which
was mainly determined by the surface area of the hiPS cell colony and
the position ofthe cellin the colony (Supplementary Methods). Shape
mode 2 appeared to largely reflect the overall volume of the cell, rep-
resentative of cell-cycle progression. The correlation between cell
heightand cell volume was relatively modest (R = 0.34; Extended Data
Fig.3c), meaning that cells with a given height may have a wide range
of volumes and vice versa. Shape mode 1and shape mode 2 thus dis-
entangle cell volume and cell height from each other. The remaining
shape modes 3 to 8 represented other systematic ways in which the
shapes of these epithelial-like cells might vary, such as tilting along the
major or minor xy axes (shape modes 3 and 4). In shapemodes1,2 and
5,nuclear shape changed concomitant with cell shape, whereas for the
other shape modes it was the position and orientation of the nucleus
within the cell that adjusted concomitant with cell shape (Fig.2d,e and
Supplementary Video 1).

Integrated average morphed cells

This standardized cell and nuclear shape space permits the cluster-
ing of similarly shaped cells and thus facilitates an investigation of
the location of cellular structures within the confines of cells with
similar 3D outer cell boundaries and nuclear spatial constraints. For
example, to determine the average locations of cellular structures
within the mean cell and nuclear shape, we first identified all of the
cells within an ‘8-dimensional sphere’ withits origin at the very centre
ofthe shape space encompassing the 35,636 cells that lie in this region
closest to this origin (Fig. 3a and Methods). To directly and quanti-
tatively compare the locations of each of the 25 cellular structures
intheserelatively similarly shaped individual cells, we developed an
intracellular location coordinate system that took advantage of the
SHE describing the outer cell boundary, the outer nuclear bound-
ary andthe centre of the nucleus and then interpolated between the
relevant SHE coefficients. This permitted us to map the presence or
absence of a structure within an individual cell at all of the possible
points along these concentric 3D shells and store this informationina
parameterized intracellularlocation representation (PILR). We could
then ‘morph’ the locations of this structure, through the PILR, into
the equivalentlocationsinanidentically bounded reconstructed cell
shape thatrepresents that cell’sactual shape (Fig. 3b, Extended Data
Fig.4 and Methods). For each structure, we averaged the PILRs across
all of the similarly shaped cellsinthe 8-dimensional sphere and then
morphed the average PILR into the equivalent locations within the
mean cell shape, creating the ‘average morphed cell’ for that struc-
ture (Fig. 3band Extended Data Fig. 5). These average morphed cells
represent the relative likelihood of a structure being at alocation in
the cell, conceptually similar to previous approaches that have been
used to analyse images of cells grown on micropatterns'. We then
combined these 25 average morphed cells to create an integrated
visualization of the average locations of all 25 structures (Fig. 3cand
Supplementary Video 2).
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Fig.1| The WTC-11 hiPSC Single-CellImage Dataset vlincludes 25 celllines
thatrepresentkey cellular structureslocated throughoutall of the

major compartments of the cell. a, Maximum intensity projections of one
representative cellexample per cellular structure, based on segmentations
ofthestructure (white), the cellmembrane (magenta) and the DNA (cyan).

The fluorescently tagged protein representing the structure and the cellular
compartment (Fig.3d) areindicated. DFC, dense fibrillar component; ER,
endoplasmicreticulum; GC, granular component. b, Top and side views (single
slice) of hiPS cells with FP-tagged microtubules (via a-tubulin), grownin tightly

Average pairwise spatial interaction map

To measure therelationships of the average locations of each of the 25
cellular structures relative to all the others after computational inte-
gration, we calculated the 2D pixel-wise Pearson correlation between
the averaged PILRs for all pairs of structures within the 8-dimensional
sphere, representing a measure of the ‘average location similarity’
betweentwo structures (Extended DataFig. 4g). Inprinciple, the overall
average location similarity among structures could spanarange. At one
extreme, all structures could be coupled, for example, every structure
depending on every other structure, whereas at the other extreme,
everystructure could be independent fromevery other structure. We
performed a hierarchical clustering analysis of these correlation values
tocreateapurely data-driven ‘average pairwise spatial interaction map’
of cellular structures. Notably, we found that the cellular structures
clustered naturallyinto an ordered radial compartmentalization of the
cell, fromthe centre of the nucleus outward (Fig. 3d), and also separated
between the apicaland basal domains of the cell. The six top-level clus-
ters included structures localized to the nucleus, nuclear periphery,
cytoplasm, apical domain (in a dispersed way), cell periphery and basal
domain, respectively. The spatial interaction map hierarchy confirmed
the expected strong location similarities within several sets of cellular
structures (for example, two nucleolar structures (DFC and GC), two
ER structures (SEC613 and SERCA) and three actin-related structures
(actin filaments, actin bundles and actomyosin bundles)), validating
this analysis approach. We found avery high location similarity between
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packed, epithelial-like colonies and labelled with cell-membrane (magenta)
and DNA (cyan) dyes to permitimaging and segmenting of cellsand nuclei.
Cells were most frequently imaged halfway towards the centres of large,
well-packed colonies (blue) where they behave most consistently, but were
alsoimaged at otherlocations within the colony, such as at the edges of
colonies (red). z,,, denotes the lab frame of reference. ¢, Three-dimensional
visualization of celland DNA segmentations within a colony of hiPS cells.
Total numbers of acquisition days, FOVs and cells per cellular structure are
inSupplementary Dataland Extended DataFig.1d.Scalebars, 10 pm.

lysosomes and Golgi, consistent with their enrichment in locationin
the apical cytoplasmand the knownrole of the Golgiin regulating lyso-
some localization?**, Mitochondriashared greater location similarity
withthe ER (SEC61f3 and SERCA) than any other structures, consistent
with the functional interactions between these cellular structures™?,

Average spatial interactions are robust

The ability to analyse the location of cellular structures throughout a
human-interpretable standardized cell and nuclear shape space allows
us to ask how robust the relative average locations of cellular struc-
tures are when they are subjected to the systematic variation in cell
and nuclear shape that is present in this dataset. For example, we can
compare differences in average structure locations between flat and
tall cells, smalland large cells or cells with shapes that are less or more
polarized. We clustered all cells in the dataset into 9 bins along each of
the 8 shape modes inregular intervals (as in Fig. 2) to create a total of
65 cell-shape map points (the centre binis the sameinallmodes), into
which we morphed each of the 25 structures (Supplementary Video 3).
Of note, we found very little change in the overall average location
interaction map of these 25 structures throughout the shape space
(Fig.3e and Extended Data Fig. 4h). Instead, structures filled whatever
cytoplasmic space was available to themin the particular shape while
maintaining their appropriate apical-basal localization and their rela-
tive average locations (three examples for shape mode 3 in Fig. 3f; all
25 structures through the shape space in Supplementary Video 3).

Nature | Vol 613 | 12 January 2023 | 347



Article

a 3D cell and nuclear Cell is aligned to its Extract first 289 SHE 3D reconstruction b 204 PC1
segmentation longest axis in xy coefficients for each 0-
cell and nucleus 204 PC2
Cell coefficients = 25 TPC3
Yeell x
1 2 289 % 28 TPca
10.7/-8.3| - | 0.6 S o
5 ]
% 204PC5
c
(5] 0
3 204PC6
o
o oo 000
Nuclear coefficients 20PC7
102 289 Correct nuclear location 28: PC8
82|12 .. |01 relative to cell
g g b ol
-20-10 00 10 20 ¢ 20
Standard deviation Explained
(s.d.) bins variance (%)
M Bin of map point (0,0,0,0,0,-1.50,0,0)
[ Map points of shape space Inverse PCA transform 3D reconstruction of shape modes
H
, PC1 O 2
PC2 O g
_§ PC3 A Cell and nuclear coefficients Mean cell ]
5 b4 = shape
= J
% pos ol o, | 2 | .. |289)200|291| .. |578 o
S PCe O 10.7]-3.3] . |06 82]-12[ .. |01 Sz ( )
2 pc7 O ¥, a3
PC8 O YK g
2 16 0 1o 20 22 @
nQ
>
Mean cell
d e

-1.50 -1o

O O O OO -

o E T T T D DD D D 5 W
DO D OO O O wew
OO O -

OO0 OO0 O O w

Shape mode 2
Top view 12.7%

Shape mode 4
Side view2 6.9%

Shape mode 5
Top view 6.5%

Shape mode 6

Top view 4.3%

O OO
e (OO O O©
O O O

Fig.2|APCA-based cell and nuclear shape spacerevealsinterpretable
modes of hiPS cell-shape variation. a, Segmented 3D images of acelland its
nucleus arerotatedin thexyplaneby 6., degrees around the cell centroid such
that thelongest axis of the cellis parallel to thex axis. These aligned images are
theinput for SHE of degree L ,,, =16, resultingin atotal of 578 SHE coefficients
(289 for each the cell and the nucleus), which are used toreconstruct the cell
and nuclear shape and nuclear location with high accuracy. x,,, Yo and zi,
denote thelab frame of reference and x, and y., the rotated cell frame of
reference. Scalebar, 10 pm. b, Frequency of cells per map point bin (left) and
explained variance (right) for the first eight principal components (PCs) of the
PCA applied to the SHE coefficients for interphase cells (n =202,847). Blue
denotes one map pointbin.c, Eight shape modes comprise the celland nuclear
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Variations in structure locations

The combination of the two coordinate systems—the shape space and
the PILR—creates an analysis framework to investigate not only the aver-
age locations and pairwise interactions, but also their variability. We
calculated the 2D pixel-wise Pearson correlation between the PILRs for
all pairsofthe 35,636 individual cells, including all 25 cellular structures,
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shapespace.Eachisanormalized PC (standard deviation (s.d.), g, units) sampled
atnine map points (-20to 2gin steps of 0.50). Three-dimensional shape
reconstructions canbe created at each of these map points—here yellow dots
attheorigin (0,0,0,0,0,0,0,0)—using aninverse PCA transform and its resultant
SHE coefficients. Three 2D views of the 3D shape are shown. d, Most relevant
2Dview of 3D shapesreconstructed at each of the nine map points for each
ofthe eight shape modes (given names that can be interpreted by humans).
Supplementary Video1shows all three 2D views. The centre bininallmodes is
theidentical mean cellshape. e, Overlay of 2D views of the cell (magenta) and
nucleus (cyan) for the two most extreme map points (at -2, lighter, and 20,
darker) ofeachshape mode.

within the 8-dimensional sphere centred at the mean cell and nuclear
shape, regardless of whether any 2 cells have the same or different tagged
structures. This creates a matrix of pairwise structure PILR correlation
values for all pairs ofindividual cells (Extended DataFig. 6a). Correlation
values from this matrix canthenbe averaged within all pairs of structures
to create an average correlation matrix to obtain two distinct measure-
ments of structure location and its variability: the ‘location stereotypy’
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Fig.3|Creating anaverage pairwise spatial interaction map of cellular
structures. a, Diagramillustrating the clustering of the 35,633 cells closest to
theoriginofan 8-dimensional sphere centred at the origin of the shape space.
b, Creating average morphed cells. Top left, 3D visualization of the segmentations
of'acell (magenta), nucleus (cyan), and cellular structure (here Golgiin white).
Bottom left, the equivalent for the mean cell and nuclear shape. ‘Cellular
mapping’shows theresults of interpolating the SHE coefficients to generate
successive 3D concentric mesh shells (different colours) from the centroid of
the nucleus (black dot) to the nuclear (inner) and then to the cell (outer)
boundary to create the nuclear and cytoplasmic mapping, respectively. The
presence or absence of the structure isrecorded at each mesh pointlocation,
resultinginaPILR, shown in matrix format for the Golgi of this cell. The PILR of
anindividual cell or the ‘average PILR’ of the 1,058 Golgi-tagged cells within the
8-dimensional sphere canbe mapped into the mean cell and nuclear shape,

and the ‘location concordance’ (Extended Data Fig. 6b). The diagonal
of this matrix is the location stereotypy; that is, the average of all the
pairwise PILR correlation values for a given structure. Structures with
a high stereotypy value have little cell-to-cell variability in their overall
absolute positions, whereas structures with alow stereotypy value may
be more often foundin distinct locations amongst different cells. Com-
paringthe stereotypy for each structure permitted usto rank structures

generating ‘morphed’ and ‘average morphed’ cells, respectively. Scale bars,
Spm.c,Integrated 3D visualization of 17 of the 25 structures toillustrate their
averagerelative spatial relationships (Supplementary Video 2). d, Average
pairwise spatial interaction map of cellular structures. Heat map of the average
location similarities (Pearson correlations between average PILRs; Extended
DataFig.4g) for every pair of 25 cellular structures for cells in the 8-dimensional
sphere. A clustering algorithm generates the dendrogram (left) with coloured
branchesof the six top-level clusterslengths representing the distance
betweenclusters. e, Average spatial interactions are robust to systematic
variationsin celland nuclear shape. Heat maps for the -2¢ (bottom triangle)
and 20 (top triangle) shape space map points for each of the eight shape modes
(numbers of cellsand heat map datain Supplementary Data1). f, Side view 1 of
average morphed cells for three structures and three bins (0, -1and —20) along
shape mode 3 (major tilt). Scale bars, 5 pm.

thatare most to least stereotyped in their locations within the mean cell
and nuclear shape (Extended Data Figs. 6b and 7a).

The off-diagonal valuesin the average correlation matrix are the loca-
tion concordances between pairs of structures—ameasure analogous to
thestereotypy, but representing aspects both of how similar the absolute
locations of two structures are and how variable those relative locations
may be among different cells (Extended Data Fig. 6b). For example, in
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the average spatial interaction map (Fig. 3d), the average location of
peroxisomes was more similar to that of other cytoplasmic organelles
(endosomes and mitochondria) than structuresinthe nucleusor atthe
cell periphery, and this relationship is maintained in the concordance
between these structures. However, from cell to cell, the absolute loca-
tions of peroxisomes are very variable (amongst the lowest stereotypy
owingtotheir sparse, punctate nature) and thus their concordance with
other cytoplasmicstructures (thatis, the correlation between their abso-
lutelocations) is very low. We investigated how much the stereotypy and
concordance changed in response to changes in cell shape and found
that in addition to the average pairwise structure locations (Fig. 3e),
the variability in individual and pairwise structure locations was also
extremely robust to overall cell-shape variationin this dataset (Extended
DataFigs. 6¢,d and 7, Supplementary Dataland Methods).

Systematic analysis of structure size

Cellular structures also exhibit cell-to-cell variability in their struc-
ture size (or number). It has previously been shown that the volume
of several cellular structures in the cell correlates with the overall cell
volume, including the nucleus and mitochondria®*. We therefore used
our large dataset to performa systematic and comparative analysis of
the relationship between cellular structure volume and five relevant
size metrics (cell volume, cell surface area, nuclear volume, nuclear
surface area and cytoplasmic volume) for 15 of the cellular structures
in this dataset (Extended Data Fig. 8). Although nuclear structures
seemed to be most tightly coupled to nuclear size metrics, cytoplas-
mic structures ranged more widely in how well the variance in their
volumes was uniquely attributable to cell versus nuclear size metrics.
Unexpectedly, the variancein nuclear speckle (SON) volumes was most
uniquely attributable to the nuclear surface area and not the nuclear
volume, although speckles localize throughout the nucleoplasm. This
isnotableinlight of the possible connection between transcript splic-
ing (which occurs at nuclear speckles) and increased rates of nuclear
export®. We found that contributions from other shape modes were
negligible (Extended DataFig. 8), suggesting that celland nuclear size,
and not other aspects of shape, affect the variability in the size of cel-
lular structures. Overall, these results show that the degree to which
cell and nuclear size metrics account for the variation in cytoplasmic
structure volumes is structure dependent, consistent with the wide
range of cell functions that these structures regulate.

Polarized reorganizationin edge cells

Most cells within the tightly packed, epithelial-like hiPS cell colonies
form cell-cell contacts with their neighbouring cells in a continuous
circumferential band. Cells located at the edges of colonies (edge
cells), however, have a distinct morphology because they lack cell-
cell junctions along their outermost edge and have been shown to
differ in their transcriptional profiles and metabolic activity?*%. To
determine whether, and precisely how, the cellular organization of
edge cells differs from that of cells not at the edge, we extended the
two-coordinate-system analysis framework to permit the compara-
tive analysis of integrated cellular organization in a second, distinct
cell population within the dataset. We aligned edge cells such that
their positive x axis was oriented towards the outer edge of the colony
(Fig. 4a), and then mapped them into the baseline cell and nuclear
shapespace. On average, consistent with expectations, edge cells were
much moretilted than the baseline interphase population (Fig. 4b,c).
To directly compare cellular organizationinsimilarly shaped cells, we
took advantage of the very large size of the baseline dataset to identify
asetof non-edge cells that were the most similarly shaped to each edge
cell (Extended Data Fig. 9a). The resultant ‘shape-matched’ dataset
comprises two distinct populations—edge and non-edge cells—with
almost identical cell-shape distributions (Fig. 4b,c).
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We compared the average locations (through the average morphed
cells) of the 25 structures in edge cells and shape-matched non-edge
cells (Fig. 4d, Extended DataFig. 9b,d and Supplementary Video 4). We
found a noticeable polarization of cytoplasmic structures and orga-
nelles (for example, mitochondria, microtubules, lysosomes and Golgi
apparatus), as well as structures representing the actin cytoskeleton
(for example, actin filaments, actin and actomyosin bundles) towards
the outer periphery of edge cells. Adherens junctions were polarized
away from the colony periphery, supporting the lack of cell-cell junc-
tions at the edge. To quantify the changes in the locations of cellular
structures between the two distinct shape-matched populations, we
took advantage of the PILR as a high-dimensional representation of
the intracellular location space. We reduced the PILR dimensionality
downto the primary axis of greatest differenceinintracellularlocation
for each cellular structure, first through a PCA and then by a linear
discriminant analysis (LDA) to identify the linear combination of PCs
thatbest separates non-edge and edge cells (Extended DataFig. 9c and
Methods). We thenreconstructed PILRs and generated morphed cells
at positions along the one-dimensional LDA axis representing the full
range of the location phenotype for each structure. For example, the
more versus less polarized location phenotypes of mitochondriaand
actinbundlesseeninthe average morphed cells could be reconstructed
at their appropriate positions along the LDA axis and the polarized
nature of this location phenotype extrapolated by comparing the
reconstructions further away from the means (Fig. 4d,e, Extended Data
Fig.9d,e and Supplementary Video 4). Individual cells could now also
besorted along this LDA axis and further analysed, for example through
histograms that represent the entire edge and non-edge cell popula-
tions (Fig. 4f,g and Extended Data Fig. 9f-h). The PILR-LDA approach,
together with visual assessment of average and individual morphed
cells (Methods), permitted the determination of the biological aver-
age location phenotype (ALP) for each of the 25 cellular structures in
edge cells (Fig. 4h). This analysis confirmed a polarized relocation of
cytoplasmic organelles and actin cytoskeletal structures towards the
edges of colonies in edge cells when compared with shape-matched
non-edge cells. Thus, cell shape alone does not drive integrated intra-
cellular organization.

We compared the average location similarities, stereotypy and con-
cordance between edge and non-edge cells and found little—if any—
differencesinthese (Fig.4i,jand Extended DataFig. 9i), despite the ALPs
foundin edge cells for many of these structures. We also compared the
average structure volumes (15 structures validated for volume analysis)
andfound very few changes between edge and non-edge cells (Methods
and Supplementary Data1). One notable result, however, was that the
median volume ratio of mitochondria relative to cell size was greater
in edge cells (0.099; n=322) than in non-edge cells (0.087, n=299;
14% effect size increase, rank-sum test P=9.2 x 10™). These results may
reflect previous observations of differences in mitochondrial protein
composition and functionin colony edge cells?® and of mitochondrial
abundancein cellsgrown at different densities’. Overall, these results
suggest that although the average location of many cellular structures
ischangedin edge cells, the relative wiring of these structuresto each
other and the extent to which their locations vary is maintained. This
suite of measurements thus facilitates amore nuanced identification
of which distinct aspects of integrated intracellular organization are
changed between different populations of cells, instead of a more
generic change in cellular organization.

Integrated early mitoticreorganization

We took advantage of the marked intracellular reorganization that
occurs as cells enter mitosis?® to further examine the relationship
between our suite of measurements of the average and relative loca-
tions and the variability of cellular structures. We focused on the two
earliest stages of mitosis—prophase (m1) and early prometaphase (m2),
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Fig.4|Cellular structurelocations are polarized but cellular structure
locationwiringisunalteredincells at the edge of hiPS cell colonies.

a, Alignment. Cells at the edge of the colony are rotated in xy so that the axis
betweenthe cell centroid and the external contour midpointis parallel to the
xaxisand the outer contour edge of the cellis oriented to the right. b, Mean
cell (magenta or purple) and nuclear (cyan or green) shape for allinterphase
cells (left), edge cells (centre) and the shape-matched non-edge cellsand edge
cellscombined. Three 2D views of the 3D shape are shown. Scale bar, 5 pm.

¢, Frequency of cells for the eight shape modes (SM) for allinterphase (grey),
non-edge (black) and edge (red) cells.d, Average morphed cells for mitochondria
innon-edge and edge cells. e, ALP via LDA. PILR-LDA-based reconstructions of
mitochondriainaverage morphed cells at five positions (in gunits) along the

when the condensing chromosomes still largely form an aggregated,
nuclear-like structure that could be biologically interpreted in the
context of our interphase (i) celland nuclear shape-based coordinate
system (Extended Data Fig. 10a). We mapped the shapes of m1 and
m2 cells into the cell and nuclear shape space. Although cells in m1
were generally larger than average interphase cells, as expected, they
were also mostly of similar overall shape to cells ininterphase. By m2,

LDA axis. Dotted lines correspond to the locations of the mean non-edge
(black) and edge (red) cellsind.f, Frequency of cells along the LDA axis within
non-edge and edge cell populations. Dotted vertical linesindicate the means.
g, Top view and side view 1 of three examples of non-edge and edge cells

along the LDA axis. Top row shows the original and bottom row the morphed
visualizations for each of these cells. Images are average projections of the
segmented structure. h, The ALP for 25 cellular structuresin edge cells. i,j, Heat
maps of the average location similarity (i), stereotypy (j, left) and concordance
(j, right) innon-edge cells (top triangle or left columnin stereotypy) and edge
cells (bottomtriangle or right columnin stereotypy). Numbers of cells and heat
map dataareinSupplementary Data1l.Scale bars, 5pum.

however, cells exhibited mitosis-related changes in shape, including
increased height and amore uniformrounder cell shape. Analogously
toour analysis of edge cells, we created the appropriate shape-matched
datasets for ml and m2, matched to interphase cell subsets il and i2,
respectively (Extended Data Fig. 10b,c). We extended the analysis
framework to incorporate a time component through four timing
of change (TOC) categories (Fig. 5b—d and Methods) permitting the
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analysis of intracellular reorganization over three sequential cell-cycle
stages. We also developed a standardized process to systematically
identify and flag all entriesin the average correlation matrix (stereotypy
and concordance values) that changed in asignificant way between two
conditions (Extended Data Fig. 10d-f and Methods). This approach
permitted us to determine whether and when structures underwent
achangeintheirindividual or pairwise relative locations or in the vari-
ability in these locations.

We found that the ALPs of the 25 structures fellinto three classes (also
athttps://imsc.allencell.org/): (1) thelocations of structures at the cell
periphery for example, the plasmamembrane, actin-related structures,
cell-celladhesions) were largely maintained; (2) most structures within
or surrounding the nucleus (for example, nucleoli, nuclear envelope
and ER) disassembled and the FP-tagged proteins were recompartmen-
talized; and (3) most structures within the bulk of the cytoplasm (for
example, mitochondria and lysosomes) reorganized and redistributed
throughout the cytoplasm as the microtubules themselves reorgan-
ized and redistributed towards the condensing chromosomes and
the centre of the cell (Fig. 5a,b and Supplemenrary Video 5). Almost
all structures that changed locations in early mitosis did so both in
mland in m2 (stepwise TOC category). Exceptions included nuclear
speckles and cohesins, which did not change location until m2, when
they began to disassemble. This was at a later stage of mitosis than all
of the other nuclear and nuclear periphery structures. Peroxisomes
and endosomes also did not noticeably redistribute towards the centre
of the cell until m2.

Formost nuclear and nuclear periphery-related structures (for exam-
ple, nuclear envelope, specklesand ER), achangein their location coin-
cided with a change in how variable that location was (for example, a
matched TOC for ALP and stereotypy in Fig. 5b,c). However, for other
structures, including most of the cytoplasmic structures, there was a
discrepancy between the timing of change in average location and its
variability (for example, mitochondria, Golgi, lysosomes inmlas well
ashistones and microtubulesin m2). Some structures thatdid not show
any changesin stereotypy were discrete, punctate structures with very
low stereotypy, for which changes in stereotypy could not be deter-
mined with statistical confidence (for example, cohesins, endosomes
and desmosomes). All of the structures that maintained their location at
the cell periphery, and that had stereotypies higher than the statistical
detection threshold, also did not change how variable their locations
were (for example, plasma membrane and actin-related structures).
Allchangesinstereotypy in early mitosis were dueto adecreasein ste-
reotypy, except for histones, whichincreased in stereotypy. Together,
these observations show thatalthough a concomitant change (or lack of
change) inboth average location and location variability dominated for
most structures during early mitotic reorganization, these two distinct
aspectsof anindividual structure’sreorganization were separable for
some cellular structures.

We next analysed changes in the relative pairwise locations and
their variability in early mitosis through the concordance (Fig. 5d and
Extended Data Fig. 10d-f). We found that structures that maintained
their locations and their stereotypies also maintained their concord-
ance when paired witheach other. Another 64 of the possible 300 pairs
of structures changed concordance during early mitosis and these
changes were highly linked to changes in stereotypy (Fig. 5d): 61/64
pairs of structures changedin concordance at the same time that at least
one of the two structures also changed in stereotypy. For example, the
three cytoplasmic organelles, the mitochondria, lysosomes and Golgi,
allchangedin stereotypy at m2 and all changed concordance with each
otheratm2.In36 of these cases aconcordance change occurred at the
time of the first stereotypy change of at least one of the two structures
(Fig.5d). Forexample, the time of the first stereotypy change for mito-
chondriaand microtubules was at m1because that was when the micro-
tubules changed stereotypy, whereas the mitochondria did not change
stereotypy until m2. However, the concordance between this pair of
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structures already changed at m1, along with the microtubules (and
then further at m2, making the concordance stepwise). These results
suggest a strong—but not exclusive—relationship between changes
in average location, stereotypy, and concordance for many cellular
structures during early mitotic reorganization. For 4 out of 64 cases,
concordance and stereotypy changed independently for at least one
time point (Fig. 5d). Most notable were the histones and microtubules,
both of which are central to early mitotic reorganization. For both of
these structures, their stepwise ALP was accompanied by a change
in stereotypy from interphase to ml and then a change in concord-
ance from mltom2, demonstrating that stereotypy and concordance
measurements are separable even for the same pair of structures at two
different stages of mitosis.

We performed ameta-analysis to examine all of the possible combina-
tions of the distinct measurements of cell organizational changes used
in this analysis framework (Fig. 5e). Inthis study, all observed examples
of changesinany aspect ofintracellular organizationincluded achange
inthe average location of individual cellular structures. Furthermore, in
most cases, achangeintherelative locations and variability of pairs of
structures (concordance) was associated with a change in the variability
ofatleast one of the structures (stereotypy). However, this association
between stereotypy and concordance was not absolute, as exemplified
by the behaviour of DNA and microtubules in early mitosis.

Discussion

In summary (Extended Data Fig. 11), in this study we introduced the
WTC-11 hiPSC Single-Cell Image Dataset vl and used this resource
dataset to develop an analysis framework for integrated intracellular
organization. We applied this analysis framework to a large baseline
population of cells in interphase, as well as to two subpopulations
of cells in the dataset, cells at the edges of colonies and cells in early
mitosis. Theresults of the meta-analysis investigating the association
between distinctaspects of cell organization observed throughout this
study suggest a possible hierarchy of dependencies as cells reorganize:
(1) the average location of anindividual structure changes; (2) the vari-
ability in that structure location changes but only when the structure
location changes; and (3) the interactions with other structures change,
but only when location and/or location variability change. However,
our observations also show that this simple proposed hierarchy among
these distinct aspects of organizationis not absolute—the stereotypy
and concordance changed independently in several examples, includ-
ing for two of the primary structures responsible for early mitotic reor-
ganization, the DNA and the microtubules. It is possible that these
potential dependencies, or ‘rules’ of cell organization, are general and
apply to a range of genetic perturbations, differentiation, signalling
factors, environmental signals and so on. It is also possible that there
isalarger set of cell-type or state-dependent organizational rules.
Together, the raw image data of cells in the dataset, the visualizations
and reconstructions of the average locations of cellular structures
amongthethree subsets of cellsin this study and the data visualizations
constitutearichresource for further discovery and hypothesis genera-
tion. The conceptual aspect of this analysis framework is generalizable
and extensible; the establishment of the two conceptual coordinate
systems and their application to performrobust statistical analyses on
cellshape andintracellular spatial locations and their variability could
be useful across different cell types and different types of cell popula-
tion comparisons. The experimental and algorithmicimplementations
of this analysis framework are modular, and the choice of which touse
is dependent on the specific application. We have demonstrated one
specific application to one particular cell type, the hiPS cell, a karyo-
typically normal cell-culture model system that grows in epithelial-like
colonieswith amostly consistentappearance, including an assessment
of the required number of cells for these analyses (Supplementary
Methods). The specific biological question, cell type or application
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will dictate the specificinputs required, such as how many cells or cel-
lular structures are needed, what kind of precision is possible or what
kinds of segmentation and data-analysis algorithms should be used.

the PILR average correlation matrix. Bottom triangle: the concordance TOC
assignments for all pairs of structures. Heat maps of intermediate steps are
inExtended DataFig.10d-gand Supplementary Datal. Top triangle: types

of changesin concordancerelative to changesin stereotypy as described in
theresults (Methods). Numbersrange fromn=6t0256 cellsdepending on
thestructure and stage (Supplementary Data1). Coloured bars at the left of
heat or colour mapsinb-dindicate the cellular structure. Owing to the low
number of cells in mitosis for some structures, we could not quantitatively
analyse differencesin the average location similarities, although their
qualitative results matched those based on the concordance values (Extended
DataFig.10g). e, Summary of examples of changesin distinct aspects of
organization observed throughout this study. Specific examples areindicated
withnumbers: (1) structures that maintained locations in edge cells and early
mitosis; (2) structures that polarized in edge cells; (3) for example, histones and
microtubules at m1; (4) for example, histones and microtubules at m2; (5) most
structures during early mitosis.

Other systematicimage-based approaches have catalogued the loca-
tion of human proteinsinseveral cell types and used the locations of pro-
teins and structures within cells to identify differences inintracellular
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spatial patterns among cells in distinct states®*>*?°, Our work comple-
ments these approaches with its focus onanalyses of 3D cell organization
at the intermediate level of cellular structures (rather than individual
proteins), and on the generation of quantitative measurements of dis-
tinctaspects of organization, which enables statistical comparisons and
providesamore nuanced, systematic definition of cellular organization
and reorganization. Together, these studies bring a crucial missing
dimension—that s, the spatiotemporal component—to the single-cell
revolution®. The fullimage dataset and analysis algorithms introduced
here, aswell as all the reagents, methods, and tools needed to generate
them, are sharedin an easily accessible way (https://www.allencell.org/).
These data are available to all for further biological analyses and as
abenchmark for the development of tools and approaches moving
towards a holistic understanding of cell behaviour.
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Methods

Celllines, cell culturing and quality control

Each gene-edited cell line was created using the parental WTC-11 hiPS
cellline* and contains a fluorescent protein endogenously tagged toa
proteinrepresenting adistinct cellular structure (Fig. 1a). Celllines were
generated using CRISPR-Cas9-mediated genome editing™ . The tagging
strategy for AAVSI safe harbour targeting was altered for expression
of CAAX-mTagRFP-T*>*, Fifteen additional Allen Cell Collection lines
were generated using the same methods. The complete list of cell lines
and reagents can be found in Supplementary Data 2. The cell lines are
described at https://www.allencell.org/cell-catalog.html and are avail-
able through Coriell at https://www.coriell.org/1/AllenCellCollection.
Forall non-profitinstitutions, detailed MTAs for each cell line are listed
onthe Coriell website. Please contact Coriell regarding for-profit use of
the cell lines as some commercial restrictions may apply. All cell lines
were cultured on an automated cell-culture platform developed on a
Hamilton Microlab STAR Liquid Handling System (Hamilton Company).
Cellswere culturedinaCytomat 24 (Thermo Fisher Scientific) at 37 °C
and 5% CO,in mTeSR1 mediumwith and without phenol red (STEMCELL
Technologies), supplemented with 1% penicillin-streptomycin (Thermo
Fisher Scientific). Cells were passaged every four days as single cells
for up to ten passages post-thaw. For imaging, cells were plated on
Matrigel-coated glass-bottom, black-skirt, 96-well plates with 1.5 optical
grade cover glass (Cellvis). Cells were regularly assessed for morphol-
ogy, cell stemness marker expression and outsourced cytogenetic
analyses throughout the three years of data acquisition of the WTC-11
hiPSC Single-Cell Image Dataset v1 (ref. **). Standard protocols are
available at https://www.allencell.org/. Further details are provided
inthe Supplementary Methods.

Microscopy

Imaging was performed on three identical ZEISS spinning-disk confo-
cal microscopes with 10x/0.45 NA Plan-Apochromat or 100%/1.25 W
C-Apochromat Korr UV Vis IR objectives (Zeiss) and ZEN 2.3 software
(blue edition; ZEISS) unless otherwise specified. The spinning-disk
confocal microscopes were equipped withal.2x tube lens adapter fora
final magnification of 12x or 120x%, respectively, a CSU-X1 spinning-disk
scan head (Yokogawa) and two Orca Flash 4.0 cameras (Hamamatsu).
Standard laser lines were used at the following laser powers meas-
ured with 10x objectives; 405 nm at 0.28 mW, 488 nm at 2.3 mW,
561 nm at 2.4 mW and 640 nm at 2.4 mW unless otherwise specified.
An Acousto-Optic Tunable Filter (AOTF) was used to simultaneously
modulate theintensity of the four laser lines. The following Band Pass
(BP) filter sets (Chroma) were used to collect emission from the speci-
fied fluorophore: 450/50 nm for detection of DNA dye, 525/50 nm for
detection of mEGFP tag, 600/50 nm for detection of mTagRFP-T tag and
706/95 nm for detection of cell-membrane dye. Images were acquired
with anexposure time of 200 ms unless otherwise specified. Cells were
imaged in phenol red-free mTeSR1 medium on the stage of microscopes
outfitted with a humidified environmental chamber to maintain cells
at 37 °C with 5% O, during imaging. Transmitted light (bright-field)
images were acquired using a white LED light source with broad emis-
sion spectrum (pipeline 4.0-4.2) or ared LED light source with peak
emission of 740 nm with narrow range and a BP filter 706/95 nm for
bright-field light collection (Pipeline 4.4 only). A Prior NanoScan Z
100 mm piezo z stage (ZEISS) was used for fast acquisitionin z (Pipeline
4.4 only). Optical controlimages were acquired daily at the start of each
data acquisition to monitor microscope performance. Laser power
was measured monthly and the corresponding percentage adjusted
accordingly for each wavelength.

Image acquisition
The image acquisition workflow and experimental set-up evolved
over the three years of dataset collection and was versioned into four

pipelines. Adjustments included single versus dual camera, filter and
light sources, as well as addition of a photoprotective cocktail (Sup-
plementary Methods and Extended Data Fig. 1d). Low magnification
(12x), 2D bright-field overview images of cells in wells were collected
for cellmorphology assessment and for selection of imaging positions
for high-magnification (120x), 3D, multichannel imaging. Cells were
imaged in three modes to acquire a variation of locations within hiPS
cell colonies. Selection of FOV position was performed manually using
the stage function in ZEN software or using an automated method,
depending on the mode and the cell line. After the selection of FOV
position from the well overview acquisition, the DNA of cells was first
stained for 20 min with NucBlue Live (Thermo Fisher Scientific). Then
the cellmembrane was stained with CellMask Deep Red (CMDR, Thermo
Fisher Scientific) in the continued presence of NucBlue Live for an
additional 10 min, and cells were washed once before imaging for a
maximum of 2.5 h. Three-dimensional FOVs at 120x were acquired at
the pre-selected positions. Four channels were acquired at each z-step
(interwoven channels) in the following order: bright field, mEGFP or
mTagRFP-T, CMDR and NucBlue Live. Further details are provided in
the Supplementary Methods.

3D FOV image quality control

FOVimagesacquired with two cameras underwent a channel alignment
procedure. All 3D FOV images underwent an image quality-control
procedure, including three automated FOV quality-control steps.
Typical FOV exclusion criteria were related to microscope acquisition
system failures (laser, exposure time, z-slice positioninginrelation to
cell height, empty or out of order channels), analysis steps to identify
outliers orany other issues that would cause downstream processing,
such as cell, nuclear and cellular structure segmentation, to fail in a
systematic batch manner. Total days of acquisition and FOV number
per cellular structure are provided in Supplementary Data 1. Further
details are provided in the Supplementary Methods.

3D cell and nuclear segmentation

To segment each individual cell and its corresponding DNA from the
membrane dye and DNA dye channels of each 3D z-stack, we used the
deep-learning-based cell and nuclear instance segmentation algorithm
developed as part of Allen Cell & Structure Segmenter, an open-source,
Python-based 3D segmentation software package®. We combined the
Segmenter’s Iterative Deep Learning workflow and the Training Assay
approachtoensureaccurate and robust segmentation at scale (18,100
FOVs) for downstream quantitative analysis. We manually validated a
subset of the cell and nuclear segmentation results and found that over
98% of individual cells were well-segmented and over 80% of images
generated successful cell and nuclear segmentations for all cellsin the
entire FOV. On the basis of these validation results, we decided that the
celland nuclear instance segmentation algorithm was sufficiently reli-
able to be applied to all of the FOVs in the dataset. In addition, all cells
in the final dataset were manually reviewed for basic quality criteria.
Further details are provided in the Supplementary Methods.

3D cellular structure segmentation

We applied acollection of modular segmentation workflows from the
Classic Segmentation component of the Segmenter, each optimized
for the particular morphological features of the target cellular struc-
tures”. Representative examples for each of the 25 FP-tagged cellular
structures are shown in Extended Data Fig. 2. For each structure, the
results of the segmentation workflow were evaluated on sets ofimages
representing the variation observed across imaged cells (for example,
different regions of colonies) to ensure consistent segmentation qual-
ity across all images for each structure. We performed an additional
validation step to determine whether agiven target structure segmenta-
tion was sufficient for interpretation in the cellular structure volume
analysis (Extended Data Fig. 8). We identified ten structures for which
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there were obvious caveats to the ability to use their target structure
segmentation for biological interpretations of how much of the target
structure was present in each cell and thus these ten structures were
excluded fromthestructure volume analysis (Extended Data Fig. 2b-d).
Further details are provided in the Supplementary Methods.

Single-cell datasets, feature extraction and quality control

To build the WTC-11 hiPSC Single-Cell Image Dataset v1, we extracted
all complete individual cells in each FOV automatically from the cell
segmentation results (around 12 complete cells per FOV, on average).
Allimages were rescaled to isotropic voxel size (0.108333 pm in x,y
and 2). A cropping region of interest (ROI) was created for each cell
and applied to each of the original intensity z-stacks and cell, nuclear
and structure segmentations. Features that were calculated for each
cellincluded FOV-based features (for example, the lowest and highest
zposition of all cells in the FOV), colony-based features (for example,
size of the colony), single-cell-based features (for example, cell, nuclear,
and cellular structure volume), and single-cell deep-learning-based
annotations of cell-cycle stage (for example, interphase or mitotic).
The baseline interphase dataset was created by removing all of the
11,190 mitotic cells, as well as approximately 0.5% of outlier cells. We
performed an extensive analysis to identify and account for any poten-
tial experimental contributions to cell-shape variation (Extended Data
Fig.12). All of the results together confirmed that although cell line
identity can contribute to variationin cell height because each cellline
was imaged under a particular set ofimaging conditions, which varied
throughout theimaging pipeline timeline, cell lineidentity itself does
not greatly contribute to the variation in cell height observed in the
baselineinterphase dataset. Total numbers of cells per cellular structure
and per dataset can be found in Extended Data Fig. 1d and Supplemen-
taryDatal. Further details are provided in the Supplementary Methods.

SHE of cell and nuclear shapes

We used SHE coefficients as shape descriptors for cell and nuclear
shape™*, We created a publicly available Python package, aics-shparam
(see Code availability) to extract SHE coefficients from segmented
images of cells and nuclei. Cells and nuclei were first rotated in the xy
plane such that the longest cell axis falls along the x axis. The zaxis in the
lab frame of reference was preserved as it represents the apical-basal
axis of these epithelial-like cells. We expanded, up to degree L ,,,, = 16,
resulting in 289 coefficients for each input. Therefore, the shape of
each cellinour dataset can be represented by a total of 578 coefficients
(Fig. 2a). We could also do the reverse and recreate the 3D mesh rep-
resentation of a particular set of SHE coefficients with aics-shparam.
Further details are provided in the Supplementary Methods.

Building the cell and nuclear shape space

We used PCA to reduce the dimensionality of our joint vectors for all
cells (578 SHE coefficients) down to eight principal components. We
used the PCA implementation from the Python library scikit-learn®
with default parameters (Fig. 2b). Because the sign of agiven PC is
arbitrary, we adjusted the signs where needed to match the naming of
the shape modes (for example, larger cells have a more positive PC).
Wealso translated the location of the nuclear meshback to its correct
locationrelative to the centre of the cell. To prevent cells with extreme
shapesfrom affecting the interpretation of the PCs, we excluded all cells
that fell into the range Oth to 1st or 99th to 100th percentiles of each
PC from subsequent analysis (remaining n = 175,147 cells) We z-scored
allPCsindependently by dividing the PC values by the standard devia-
tion (0) of that PC. The combination of the first eight ‘shape modes’
(z-scored PCs) created the 8D shape space. We used the inverse of the
PCA transform generated above to map coordinates from the shape
space back into SHE coefficients, which, in turn, were used to recon-
struct the corresponding 3D shape. For example, the eight-component
vector (0,0,0,0,0,0,0,0) represents the origin of the shape space and

its corresponding 3D shapeis called the ‘mean celland nuclear shape’
(Fig. 2¢c). In addition to the joint cell and nuclear shape space, we also
generated independent cell-only and nucleus-only shape spaces for the
baseline interphase dataset (Extended Data Fig. 3e-f), ajoint cell and
nuclear shape space for cells located at the edges of hiPS cell colonies,
and one eachjoint cell and nuclear shape space for cells in prophase and
inearly prometaphase. Finally, we created three joint celland nuclear
shape spaces for the three shape-matched datasets described below.
Further details are provided in the Supplementary Methods.

PILRs

The nuclear centroid of each cell was defined as the SHE coefficients
representing a one-pixel radius (0.108 um) 3D spherical mesh. Then,
pre-computed SHE coefficients were interpolated to create a series of
successive 3D concentric mesh shells from the centroid of the nucleus
to the nuclear boundary and from the nuclear boundary to the cell
boundary. Thexyz coordinates of pointsin the 3D meshes map to corre-
spondingxyzlocationsinthe aligned segmented images that were used
to generate the SHE coefficients inthe first place. Thus, the presence or
absence of asegmentation result at each meshxyz coordinate could be
organized asamatrix as shownin Fig. 3b. This matrix encodes a PILR of
the cell. This process could also be performed using the intensity value
atagivenxyzlocationintheoriginal FPimage (Extended DataFig.4).A
PILR could thenbe used to map the cellular structure locations from one
celland nuclear shapeinto the equivalentlocationsinany other celland
nuclear shape, thus generating a‘morphed cell’and its reconstructed
image. Further details are provided in the Supplementary Methods.

Integrating average morphed cells in the mean cell and nuclear
shape

Weidentified and grouped a set of cells by their absolute proximity in
8D spaceto the origin of the shape space, map point (0,0,0,0,0,0,0,0).
We determined the radius of asphere centred at this originsuch that the
number of cells per structure within this sphere was as similar as pos-
sible to the average number of cells found in the centre bins of all of the
shape modes. A total of 35,633 cells across all 25 structures were found
tobewithinthis radius of 2.10 (see Supplementary Data1for numbers
of cells per structure). We computed the average of all the PILRs for
each structure for all cells within the 8-dimensional sphere. We then
morphed these average PILRs into the mean cell and nuclear shape,
creating an integrated average morphed cell. Any cellular structures
couldberendered simultaneously toillustrate the spatial relationships
of different structures on the basis of their average location in cells of
aparticular shape.

Pairwise average interaction map of cellular structures

We calculated the 2D pixel-wise Pearson correlation between the aver-
aged PILRs for all pairs of cellular structures within the 8-dimensional
sphere, representing a measure of the average location similarity
betweentwo structures (Extended DataFig. 4g). All correlation values
used throughout this paper were calculated using the function corrcoef
from the Python package NumPy?¥. The average location similarities
were organizedina25x 25 matrix that represents anaverage pairwise
spatial interaction map of cellular structures (Fig. 3d). This correla-
tion matrix was used as input for a hierarchical clustering algorithm
toclusterall 25 cellular structures according to their average location
similarities. We used the function cluster.hierarchy.linkage of type
‘average’ from the Python package scipy®® to produce the clustering
represented by the dendrogramin Fig. 3d. We also computed the aver-
age location similarity for every map point along each shape mode.
For a given map point, the correlations were computed between the
averaged PILRs over all cells that fallinto the corresponding map point
bin. The heat maps of the resulting matrices for all shape modes and
binsbetween-20and 2oare showninFig.3e and Extended DataFig. 4h
and the data can be found in Supplementary Data .



Location stereotypy and location concordance

We calculated the 2D pixel-wise Pearson correlation between the PILRs
for all pairs of individual cells within the 8-dimensional sphere cen-
tred at the origin of our shape space. This computation resultsin a
35,633 x 35,633 correlation matrix (Extended Data Fig. 6a). Correlation
values from this matrix were averaged within each pair of structures
to create an average correlation matrix. Two distinct measurements
of structure location and its variation were derived from this average
correlationmatrix. The diagonal values are the location stereotypy of
agivenstructure and the off-diagonal values are thelocation concord-
ancebetweentwo structures (Extended DataFig. 6b). We also computed
the average correlation matrices for every map point along each shape
mode. Foragiven map point, the correlations were computed between
PILRs over all cells that fall into the corresponding map point bin and
thenaveraged. Heat maps and values of location stereotypy and loca-
tion concordance for all shape modes and map points can be foundin
Extended Data Figs. 6¢,d and 7¢,d and Supplementary Data 1.

Shape-matched datasets

To compare a second, distinct population of cells, such as cells at the
edgesof colonies or cellsin early mitosis, with the baseline interphase
cell dataset we created shape-matched datasets. We first mapped cell
and nuclear shapes from the second populationinto the shape space of
thebaseline dataset by transforming the SHE coefficients from the sec-
ond population using the same PCs obtained for the baseline dataset.
Here we did not exclude cells that fell into the range Oth to 1st or 99th
to 100th percentiles of each PC in the baseline dataset because these
cells could have shapes more similar to the second population. We then
calculated the distance in 8D shape space between every possible pair
of cellsinboth datasets (Extended DataFig. 9a). Finally, for every cellin
the second dataset, we flagged its nearest neighbour withinthe baseline
dataset. The same cell in the baseline dataset could be flagged more
than once for multiple different cells within the second dataset. This
occurred roughly 12% of the time. The resultant shape-matched dataset
isthe set of unique flagged cellsin the baseline dataset combined with
cellsinthe second dataset. The mean cell shape of this shape-matched
dataset is the cell and nuclear shape corresponding to the origin of
the corresponding shape-matched shape space. Further details are
provided in the Supplementary Methods.

LDA

We performed a PCA dimensionality reduction on all of the PILRs
for a given cellular structure in a given shape-matched dataset. This
reduced theinitial dimensionality of 532,610 pixelsin each PILR down
to 32 dimensions (or the total number of cells available if fewer than
32). The dimensionally reduced data were then used as input for a
LDA to identify the linear combination of reduced dimensions that
best separated the two populations of cells within the shape-matched
dataset. LDA generates a discriminant axis along which we could recon-
struct corresponding PILRs using the inverse of the PCA transform
(Extended Data Fig. 9c and Supplementary Methods). These PILR
reconstructions were morphed into the mean cell and nuclear shape
for that shape-matched dataset (for example, Supplementary Videos 4
and 5). These reconstructions represent the full range of the ALP for
that structure. Each cell was also assigned alocation along the discri-
minant axis (for example, histograms in Extended Data Fig. 9h and
Supplementary Videos 4 and 5).

Workflow to flag significant changes in location stereotypy and
concordance in early mitosis

To flag whether adifferenceinlocation stereotypy or concordance was
significant, we firstseta threshold cut-off value of Pearson correlation
p =0.03, below which astereotypy or concordance value was too low
to be used for the subsequent detection of a difference between the

baseline dataset and its shape-matched comparison dataset. Next, we
set a cut-off threshold for the Pearson correlation value of the differ-
ence (pg) in stereotypy or concordance of pg = 0.02 (Supplementary
Methods). We next applied this workflow to flag all entries in the three
early mitotic average correlation difference matrices that showed a sig-
nificant change between interphase, prophase and early prometaphase
(i1-m1, i2-m2 and m1-m2). The first cut-off, p = 0.03, was applied to
theinterphase cells when comparingto each early mitotic (i1 foril-mi;
i2fori2-m2) and to prophase when comparing between the two early
mitoticstages (mlfor ml-m2) asin Fig. 5c and Extended Data Fig. 10f.
This flagging procedure resulted in three binarized versions of the
matrix, in which each flagged entry is marked inblack. The combined
patternofflagsinthese three matrices permits us toidentify the TOC
for each of the flagged entries (Fig. 5¢,d). The four TOC categories
included: (1) ml-only: changes that occurred from interphase to ml
but not any further in m2; (2) stepwise: changes that occurred both
frominterphase to mland from mlto m2;(3) m2-change: changes that
occurred from m1to m2 only; and (4) no change or cases for which
changes could not be determined for technical reasons (Fig. 5b and
Supplementary Methods). We used all possible combinations of the
TOC for the two stereotypies and single concordance for each pair of
structures to assess the overall relationship between stereotypy and
concordance in early mitosis, which we consolidated and summa-
rized into three categories (top triangle; Fig. 5d and Supplementary
Methods).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The datasets generated during this study, including FOVs, single-cell
images and 12x colony overviews, are available at Quilt as packages.
Supplementary Data 1 contains (1) asummary of all of the numbers
of FOVs, imaging days and cells for all analyses; (2) the correlation
values used to generate the heat map data for the average location
similarities, stereotypy and concordance, including difference heat
maps; and (3) additional data on the comparative analysis of cellu-
lar structure volumes in edge and non-edge cells. The full dataset is
available at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_cell_image_dataset. The dataset containingthe non-edge
cells shape-matched to edge cells is available at https://open.quiltdata.
comy/by/allencell/packages/aics/hipsc_single_nonedge_cell_image_dataset.
The edge cells dataset is available at https://open.quiltdata.com/b/
allencell/packages/aics/hipsc_single_edge_cell_image_dataset. The
interphase cells (i1) shape-matched to prophase cells (ml) dataset is
available at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_il_cell_image_dataset. The prophase dataset (m1) data-
set is available at https://open.quiltdata.com/b/allencell/packages/
aics/hipsc_single_mi_cell_image_dataset. The dataset containing the
interphase cells (i2) shape-matched to early-prometaphase cells (m2)
isavailable at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_i2_cell_image_dataset. The early-prometaphase dataset
(m2) dataset is available at https://open.quiltdata.com/b/allencell/
packages/aics/hipsc_single_m2_cell_image_dataset. The 12x colony
datasetisavailable at https://open.quiltdata.com/b/allencell/packages/
aics/hipsc_12x_overview_image_dataset. The supplementary MYH10
repeat dataset is available at https://open.quiltdata.com/b/allencell/
packages/aics/hipsc_single_cell_image_dataset_supp_myhl0. The sup-
plementary training set of 5,664 cells used to train the single-cell classifier
isavailable at https://open.quiltdata.com/b/allencell/packages/aics/
mitotic_annotation. The Cell Feature Explorer—215,081 cells (from 18,100
FOVs); 25 structures; 10 features + apical and radial proximity is available
at https://cfe.allencell.org. Source data are provided with this paper.
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Code availability

Custom codes were central to the conclusions of the paper. All neces-
sary code toreproduce the results in this paper has been depositedin
GitHub. This includes code for downloading our datasets, single-cell
feature extraction, cellular parameterization and organelle size scal-
ing. Jupyter notebooks to reproduce the figures shown in the paper
are also provided. The released custom code repositories use the
following Python packages in parts: NumPy* v.1.21.5, Scipy*® v.1.7.3,
scikit-image®v.0.19.1, scikit-learn®**v.1.0.1, Seaborn*°v.0.11.1, PyTorch*
v.1.0.0, PyTorchLightning*v.0.7.6, VTK**v.9.0.1, ITK**v.5.2.0, pandas®
v.1.3.5, matplotlib*®v.3.5.1, aicsshparamv.0.1.1, aicscytoparam v.0.1.6,
pyshtools*v.4.9.1,actk v.0.2.2 and aicsimageio*®v.3.3.2 and v.4.1.0. We
alsouse the softwares: R Statistical Software* v.2022.02.2+485, napari*
v.0.2.8, ChimeraX®'v.1.3, the Allen Cell & Structure Segmenter” (aicsseg-
mentation v.0.1.20, aicsmlsegmentation v.0.0.7, segmenter-model-zoo
v.0.0.5) and label free® (see below for version). Tutorials and ademo for
how to access the data for different purposes are available at https://
github.com/AllenCell/quilt-data-access-tutorials. The main codebase
used in this paper provides functions for computing features, shape
space, shape modes, stereotypy, concordance and morphed cells.
The repository also contains the notebooks used to generate the fig-
ures shown in the paper. This codebase is available at https://github.
com/AllenCell/cvapipe_analysis. The code for shape parameterization
via spherical harmonics is available at https://github.com/AllenCell/
aics-shparam. The code for cellular parameterization is available at
https://github.com/AllenCell/aics-cytoparam. The code for organelle
size-scaling analysisis available at https://github.com/AllenCell/stem-
cellorganellesizescaling. The mitotic image classifier code®*°, (for
bothtraining and testing) and all trained models is available at https://
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Extended DataFig.1|Creation of the WTC-11 hiPSC Single-Cell Image
Dataset vl that contains over 200,000 live, high-resolution, 3D cells
spanning 25 cellular structures. The dataset was generated by amicroscopy
pipeline composed of three main parts; Data Collection, Image Processing and
Single-Cell Feature Extraction. a. Data Collection: the sample preparation
starts with avial of frozen gene-edited hiPS cells fromaline from the Allen Cell
Collection, expressing anendogenous, fluorescently tagged protein
representing aparticular cellular structure. The cells are cultured in 6-well
platesonanautomated cell-culture platform. Ateach passage cells are seeded
intooptical grade, glass-bottom 96-well plates to create imaging samples.
Bright-field overview images of each well are inspected and only wells meeting
pre-determined quality controls are passaged from the 6-well platesand
imaged from the 96-well plates. Theimage acquisition of live cells starts witha
12X overview image of each well on a spinning-disk confocal microscope to
keep track of the position of eachimage within each colony. Imaging sessions
areconducted using three modes to capture variationsin colony area,
locations within the colony, and enrich forimages with mitotic cells as needed.
InmodeA, the12X overview images of colonies are segmented by an automated
scriptto generate sets of coordinates for positions withinimageable colonies,
located approximately halfway between the colony edge and colony centre.
Imageable colonies are those that meet size, morphology, and position-within-
a-well criteria.In mode B, the microscope operator adjusts the location of the
field of view (FOV) to enrich for mitotic cells via appropriate celland DNA
morphology visible with live bright-field viewing and confirmed by DNA
staining (yellow arrows). Inmode C, threeregions of colonies areimaged, the
edge, ridge (justinward from the edge), and centre. The combination of these
threeimaging modes permitted sampling across all regions of the hiPS cell
colonies (Extended Data Fig.12). Cells were labelled with fluorescent DNA and
membrane dyes and thenimaged at each pre-selected colony position. Z-stacks
were acquired at 120X in four channels, representing the bright-field, cell-
membrane dye (magenta), DNA dye (cyan) and the fluorescently tagged cellular

structure (grayscale), alsoshownin (b). Mode A and C panels show Golgi (via
sialyltransferase) and microtubules (viaalpha-tubulin), respectively. b. Image
Processing: The WTC-11 hiPSC Single-Cell Image Dataset vl consists of a total of
18,100 FOVs curated specifically for successful cell and cellular structure
segmentations, which are available for download. An example z-stack is shown.
Ontheleftisthe maximum intensity projection of all 65 slices with all fluorescent
channels combined, inthe coloursindicated in the panels on the right. “Cutting”
the z-stackin half exposes the view of a single slice (slice 32) in the middle of the
stack, shown for eachindividual channel, including the bright-field channel.
Weapplied 3D segmentation algorithms to each of the fluorescent channels to
identify boundariesin3D of the cells viathe membrane dye (magenta), the nuclei
and mitotic DNA viathe DNA dye (cyan), and each of the 25 cellular structures
viatheir fluorescent protein tag (grayscale; Golgi shown here). Resulting 3D
segmentations for cellmembrane, DNA, and structure channels are also shown
asaside view, the xz-cross-sectionalong the yellow dotted line. Allsegmentation
algorithms were developed and performed using the Allen Cell & Structure
Segmenter.c.Single Cell Feature Extraction: A total of 215,081 single cells were
segmented from the FOVs. Every individual cell was labelled with aunique ID
and metadatarelated to the sample, experiment, and microscopy was collected
andassociated with eachindividual cell for future data provenance. Appropriate
features were extracted for each cell fromthe cell, the nucleus or mitotic DNA,
and the cellular structure segmentations, including measurements such as the
heightand volume. These cells, including theimages and the segmentations as
wellas the metadata and features are all available for download. Scale bars are

10 pmunless otherwise noted. d. Number of cells for each cellular structure in
the WTC-11hiPSC Single-CellImage Dataset v1, sorted by their acquisition order.
Thistableincludesall of the various different subsets of the dataused
throughout the study, including the baseline interphase dataset (excluding
outliers, see Methods), mitotic cells, cells within the 8-dimensional sphere
(Fig.3), cellsat the edges of colonies (Fig. 4) and cells in early stages of mitosis
(mland m2,Fig.5).
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Extended DataFig.2|Overview of cell, nuclear and cellular structure
segmentations and caveats. a. Panels show arepresentative single z-slice of
the FP-tagged protein (left) and the target segmentation (right), demonstrating
the degree of accuracy of the structure segmentations used for analysis. Several
ofthese segmentations have specific types of caveats (b-d and Methods) that
may affectinterpretation of downstreamanalyses. b. The limits of the cell
boundary segmentation algorithminclude potential errors for the very top
slices of each cell. Desmosomes, whichlocalize to the cell periphery at the top of
the cell, demonstrate this caveat well. Four sequential z-slices (z = 42-48) moving
upwards towards the top of the cell-membrane dye signal are shown.Inz=42,
boththe cell-membrane dye and the cell segmentation clearly identify the true
cellboundary (yellow arrows) and inz =48, the in-focus desmosomes alsoline
up wellalong the true cellboundary. However, in z=46, the cell-membrane dye
indicates two possible cellboundaries due to the slanted nature of the top of
this celland the out of focus light spreading fromsslices above and below. The
in-focus desmosomesidentify theinner possible boundary as the true cell
boundary (yellow arrows). However, the segmented cell boundaryisincorrect
(cyanarrows).Inz=44the desmosomesare notyetinfocus, thus the true cell
boundaryislikely somewhere between thatdeterminedinz=42andz=46.This
erroris negligible for overall cell segmentation, but critical for the assignment
of desmosome locationsinthe cell. In this example shown, desmosomes are not
located directly at the segmented cell periphery butstill close by, such thata
measurement of the total volume of desmosomesin this cell is stillappropriate.
However, itisequally likely that desmosomes, or any other structure localizing
tothe upper cell periphery could be mis-assigned to aneighbouring cell. Thus
these structures were not considered validated for cellular structure volume
analyses (Methods). c. Structureslocalizing or partially localizing to athin 3D
surface, such asthe cell or nuclear periphery, may suffer from non-uniform
accuracy between the middle and the top/bottom of that structure due to the
anisotropicresolution of theimages. Seven sequential z-slices (left) and target
segmentations (right) of nuclear pores on the nuclear surface demonstrate this
caveat well. The density of segmented nuclear poresis greatestatz=36and
declines as theimaging plane moves upward through the nucleus. Consistently
accurate detection for nuclear pores atboth the centre and the top of the
nucleus was not possible due to this effect and would require further algorithm
development. The segmentation accuracy was sufficient to identify the general
location of nuclear poresin cells for the location-based analyses but not
sufficient to be validated for usein the cellular structure volume analysis. This
caveatwas also observed for other structureslocalizing to the nuclear and cell
periphery (Methods).d. The segmentation target for cohesins (viaSMC-1A) isto

detectthe most contrasted locations of cohesinsin nuclei. This segmentation
works well for nucleiin most of interphase (see example in (a)). However, SMC-1A
moves from the cytoplasmbackinto the nucleus after mitosis. The amount of
tagged SMC-1A proteinin the nucleus and thus its segmentation depends on
howfarintointerphaseacellis. Three examples of tagged SMC-1A are shown
(left panels) along with the target segmentations (right panels). Foracellinearly
interphase (far left) SMC-1Ais both in the cytoplasm and nucleus, but at low
levelssuch that the target segmentationis quite sparse. For acell wellinto
interphase (far right), the target segmentationisasin (a). Inthe centreisa
nucleus with moderate levels of SMC-1A and thus fewer cohesinlocations
segmented. e. Demonstration of the cellmembrane Training Assay concept.
Top row: tagged cell-membrane channel (via CAAX; left) and cell-membrane dye
channel (right) images as single slices near the centre of the z-stack. Second row:
correspondingside views of the same z-stacks. Bottom row: CAAX-based
segmentation (left) and filled version for the cell-membrane dye-based
segmentation performed on the dyeimage after training via the cellmembrane
Training Assay (right). The cellmembrane at the top of cellsis often very dimin
the dyeimages (yellow arrows) due to both the very thin nature of the top
membrane and photobleaching during z-stack acquisition. However, the top of
these same cellsis much more visible in the tagged plasma membrane cell line
(cyanarrows), permitting successful CAAX-based segmentations. We leveraged
theinformation contained in the CAAX images by using the CAAX-based
segmentationasthetrainingtarget for adeep learning cell-membrane dye-
based segmentation model. f. Demonstration of the DNA dye Training Assay
concept. Top row: tagged nuclear envelope channel (vialamin B1; left) and DNA
dye channel (right) images asasingle slice near the centre of the z-stack. Second
row: corresponding side views of the same z-stacks. Bottom row: lamin Bl-based
segmentation (left) and filled version for the DNA dye-based segmentation
performed onthe dyeimage after training viathe DNA dye Training Assay
(right). The top boundaries of nuclei are often very blurry in the DNA dye images
(yellow arrows) due to the “filled” nature of how the DNA dye demarcates the
nuclear boundary combined with the diffraction of light and lower axial
resolution. However, the top boundaries of nucleiin these same cells are clearly
identifiablein the tagged nuclear envelope cell line (cyan arrows), permitting
accurate nuclear segmentations vialamin B1. Weleveraged theimage information
inthe lamin Blimages by using the filled lamin Bl-based segmentation as the
training target foradeep learning DNA dye-based segmentation model. Total
numbers of acquisition days, FOVs, and cells per cellular structure arein
Supplementary Dataland Extended DataFig.1d.Scalebarsare 3 umfora-dand
Sumfore-f.
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Extended DataFig.3|APCA-based celland nuclear shape space reveals
interpretable modes of shape variationin hiPS cells (supporting figure).
a.Meandistance between pointsin the original 3D meshes of cell (top) and
nucleus (bottom) to their corresponding closest pointsin the reconstructed
meshesand vice versaas the number of coefficients in the SHE increases. Each
greylineis one cell (left; n =300 randomly selected samples) or nucleus (right;
n=300randomlyselected samples). Black lines represent the mean. The
dashed vertical linesindicate the number of coefficients for SHE degree

Lnax =16.b. TWo examples of how nine map points for each of the eight shape
modesare used astheinput foraninverse PCAtransformto obtain the
corresponding SHE coefficients and their corresponding 3D reconstructions
atthese map points. Three 2D views of the 3D shape are shown asin Fig. 2c.
Thetop view correspondsto anintersection betweenthe 3D mesh ofthe cell
and nucleus reconstructions and the xy plane. Side views 1and 2 correspond to
anintersection between the 3D meshes and the xz- or yz-planes, respectively.
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c. Pairwise correlations for cell volume, cell height, and shape modes. Each
pointrepresents asingle cell (n=202,847). Points are colour-coded based on
anempirical density estimate. The grey line represents the best linear fit. The
green curverepresentsthe non-overlapping window average (y-axis) within
100 equally spaced bins (x axis). Only results for bins with more than 50 points
arereported. Pearson correlation values areindicated in the upper triangle
partofthefigure (black for non-zero values). d. Bar graph plots of the total
variance explained by each PC for the shape spaces obtained when only nuclear
(e) and cell (f) SHE coefficients are used as input for the PCA dimensionality
reductiondescribed in Fig. 2. e-f. Most relevant 2D view of 3D shapes
reconstructed at each of the nine map points of each of the eight shape modes
(given human-interpretable names). The centre binin allmodesis the identical
mean cell shape. At the far rightis an overlay of 2D views of the nucleus (e) or
cell (f) for the two most extreme map points (at 20, lighter shade and +20,
darker shade) of each shape mode.
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Extended DataFig. 4 |See next page for caption.




Extended DataFig. 4 |Creatingand comparingintegrated average cells
throughout the shape space via SHE coefficient-based parameterization
and 3D morphing. a.“3-channel original z-stack” (bottom leftimage), shows a
3Dvisualization of the original FP intensities of tagged mitochondria (grayscale)
inasingle celland nucleus, visualized via cell-membrane dye (magenta) and DNA
dye (cyan). Moving rightward along the bottom row are the steps to create the
PILR of the mitochondriaviathe FP signalin this cell. “3D reconstruction” (second
image) shows the SHE-based 3D reconstruction meshes of the segmentations of
this celland nucleus. Next, “cellular mapping”shows the result of interpolating
the SHE coefficients to create aseries of successive 3D concentric mesh shells
(different colours) from the centroid of the nucleus (black dot) to the nuclear
(inner) and then to the cell (outer) boundary to create the nuclear and cytoplasmic
mapping, respectively. Theintensity valuesin the FP channelarerecorded at
eachmeshvertexlocation, resultingin the “PILR” thatis shown in matrix format
inthefourthimage. “Voxelization” shows the result when this PILR is converted
backintoa3Dimage, voxel by voxel, into the same reconstructed celland nuclear
shape. Because this internal mappingis discrete, the resultant reconstructed
image will have gaps. At the top, “original FPimage (left) is the originalimage
and “nearest neighbourinterpolation” (right) is the voxelized PILR, now with the
gapsfilled using nearest neighbour interpolation. Voxel-wise Pearson correlation
in3Disusedtocomparetheseoriginaland reconstructed FPimages. b. Example
PILRs (in matrix formatasin a) for one cell for each of five cellular structures.
Top view and side view 1are shown on the far left. Top and bottom PILR matrices
foreachstructure arebased onthe original FPimage (grayscale on black
background) or the structure segmentations (binary on white background),
respectively. c. The FP-image-based PILR takes all intensities in the image into
account, including any FP-tagged protein notlocalized to the target structure
thatthe proteinrepresents. For example, FP-tagged paxillin localized to matrix
adhesions at the bottom of the cell but also throughout the cytoplasm. Two
images of multiple cells (cellmembrane indicated by magentalines)inan FOV
with labelled matrix adhesions (via paxillin) at two z positions in the z-stack.
Top lefttrianglesin eachimage show the original FPimage. Matrix adhesions
arevisible near the bottom of the cells (left) but considerable FP-tagged paxillin
signalisvisibleboth at the bottom and centre (right) of cells. However, the
segmentation target defined for this cell line included only the high intensity
regions representing the matrix adhesions near the bottom of the cells.
Bottomrighttrianglesin eachimage show the result of the matrix adhesion
specific segmentation. Total numbers of acquisition days, FOVs, and cells for
FP-tagged paxillin arein Supplementary Dataland Extended DataFig. 1d.

d.Usingthestructure segmentation-based PILR permits the creation of
average morphed cells containing the locations of the cellular structures that
eachtagged proteinrepresents. Average morphed cells representing matrix
adhesions (top row) and mitochondria (bottom row) generated using either
the original FPimages (left column) or the target structure segmentations
(right column) of cells within the 8-dimensional sphere morphed into the mean
cellshape. The analysesin this paper focus onthe structure segmentation-
based PILRs; but conceptually the same approach could also be applied to
therawintensity images. e. Bar graphs of voxel-wise Pearson correlation
between original intensity images of FP-tagged proteins (left) or of structure
segmentations (right) and theimagesreconstructed from the PILR. Error bars
represent + one standard deviation around the mean (n =32 cells per structure).
Cellswereselected from centre bin of Shape Mode 1. The correlation for cohesins
(viasegmentations) isindicated with astripedfill pattern. Thisstructure hasa
significantly changing target structure segmentation depending on how much
tagged cohesin hasre-entered the nucleus after mitosis, causing the much lower
correlation value (Extended Data Fig. 2d). f. Example cell from the top of (a) to
show the original and PILR-based reconstructed image but here based onthe
structuresegmentations. Numbered insets are zoomed inregions. Celland
nuclear boundariesina-fareshownin magentaand cyanlines, respectively.
g.Overview of the process to calculate the average location similarity between
all pairwise-combinations of the 25 cellular structures within the 8-dimensional
shapespace sphere. The 2D pixel-wise Pearson correlation was calculated
between pairs of averaged PILRs for each structure. This created a correlation
matrixincluding each of the 25 cellular structures with elements of this matrix
representing the average location similarity between two cellular structures.
h.Heat maps for the—20 and 20 shape space map points for each of the eight
shapemodesasinFig.3e, but here heat map values correspond to the difference
inaverage structure similarity between the mean cell shape and either, the -20
and 2o shape space map points (bottom and top triangles, respectively), for
each of the eight shape modes (numbers of cellsin Supplementary Datal). Due
totechnical considerationsrelated to the PILR construction (Methods) or due
to especially low number of cellsin some bins (Supplementary Data 1), some
structures displayed changesin the magnitude of the average location similarity
with other structuresinthe shape mode bins furthest from the mean (-2o and
20, mainly for Shape Mode 1) and so these decreases may not be biologically
meaningful. Additional difference heat maps for intermediate shape mode bins
areavailablein SupplementaryData 1.
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Extended DataFig. 5|See next page for caption.



Extended DataFig. 5| Overview panel for creating aggregated morphed
cells for all 25 cellular structures. a. Eachrow represents one of the 25 cellular
structures (indicated by the colour bar on the far left). From left to right, on the
leftside of the large arrow, the first three sets of three images each show top
view and side view 1 of three examples of individual cells with shapes similar to
themean cell shape (origin of the 8-dimensional sphere). For each set of three
images, the leftis the maximum intensity projection (MIP) of the original FP
image (grayscale onblack background), the centreis the average intensity
projection of the structure segmentationimage (AIP; binary on white
background), and theright is the AIP for the structure segmentation-based
PILR for that cell morphed into the mean cell shape. For nuclear envelope and
nuclear pores, the centreslice, through the centre of the nucleus, of the
original FP image is shown instead of the MIP. For these two structures and for

histones, the cyan DNA outline hasbeen left out to see the location of these
structures at the nuclear periphery.b. Ontherightside of the large arrow are
threedifferent types ofaggregations of theindicated number of individual
morphed cellsbased onthestructure segmentation PILRs. On theleftis the
average morphed cell, the centreis the standard deviation (std.) morphed cell,
andtherightis the “structure-localized coefficient of variation” (SLCV) morphed
cell, representing a quantitative measure of how variable thelocationofa
structureisatany given voxel (Supplementary Methods). Contrast settings for
FP and AIPimages were adjusted per cellular structure tobest represent its
location. Heat maps for average morphed cellsindicate relative likelihood of a
structurebeingatagivenlocationin the cell. Heat map ranges for standard
deviationmorphed celland SLCV morphed cell are as described (Supplementary
Methods).Scalebarsare 5 pm.
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pixel-wise Pearson correlation matrix for all pairs of cellular structure PILRs
amongallcellsinthe 8-dimensional sphere. Each entryin this matrix represents
the correlation between the PILR of two cells. Coloured triangles to the left of,
and the thicker black lines within, the matrix indicate the regions (blocks) of
thematrix correspondingto cells with the indicated tagged structure. The
dimensions of eachblock correspond to the number of cells. b. Average
correlation matrix. Left: the location stereotypy for a cellular structure is the
average of all the valuesin the blocks along the diagonal of the correlation
matrixin (a). The numbers ontherightindicate structures ranked by their
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pairsof structuresisthe average of all the valuesin the corresponding structure
pairblockinthe correlation matrix in (a). The diagonal of the concordance

heat map corresponds to the stereotypy. Arrows indicate examples of the
relationships between the heat mapsin (a) and (b). c. Stereotypy heat maps for
each of theeight shape modes (SM). Each row represents a different cellular
structure and each columnrepresent the nine binned map points along each
shape mode (Fig. 2b).d. Concordance heat maps for the -20 and 20 shape space
map points for each of the eight shape modes. The lower and upper triangles
represent the -20 and 2o map points, respectively. Numbers of cellsand heat
mapdatainSupplementary Data 1. Colour barsontheleft of heat mapsindicate
the cellular structure.



Q

stereotypy box plots

for cells within the 8-dimensional sphere

& 1.0
c
o os
52
) 0.6
H
o=
oO'g 04 3
c .
O c 4
g ST X
3 L= L= T e
82 ulF T~ o F  obhaF SSE.
< 0
rank: 4 3 15 24 11 1 8 5 7 21 20 12 10 14 6 25 19 18 23 9 2 16 17 13 22
— |
Ty ol *(Gw 12 123 “Ew alﬂ ‘—’a Ia (%] 13 g (%] §, (2] (%] 123 123 (%] (247 oo gﬂ 0 'Ew _éll)
P g 8 5 2 85 8L gux g B 5 £ o 5 3 5§ & £ 65 55 %5 s %8 BO
a = S0 o S Op 9g 0o O o o c o (0] a = 8 8 o o8 ©o ‘“E c > go
- 5 28 5 2 22 2 @ x 2 a 2 2 2 € c c 8 £c of 3 E3 2
= o o 9 = cE © W X o S o B S 5 o TS5 & o §o <
o] ko] I ) @ 04 ®» o ] 3 @ < 8 =2 2 g g2 o = ¢ £ ]
K] o w = 5 c el > o oy = @ £ 5 o ©
§ 2 o © £ £ S = s 8
b correlation between pairs of PILRs across map points of Shape Mode 1
-20 -1.50 -1o -0.50 0 0.50 10 1.50 20

C

scale bar: = n =5,000 cells

X

il

n=6,876 n=12254 n=16,672
C location stereotypy difference
is robust to systematic changes in
cell and nuclear shape

d

Shape Mode 1 (SM1) Shape Mode 2 (SM2)  sM3 SM4
= © “ > o 0 o o
|| = i L
01
-
SMé SM7  SM8
o o ° o o
m
N |u

ShaEe Mode 1 !SM1!' Shape Mode 2 (SM2) E sM3 Sma E SM5 |§

n=17,194
location concordance difference
is robust to systematic changes in cell and nuclear shape

13,344 n=6,687

SM6 SM7 SM8

Extended DataFig.7| Comparinglocation stereotypy and concordance
throughout the cell and nuclear shape space. a. Box plots of the diagonal
values for each of the 25 cellular structuresin the 3D voxel-wise Pearson
correlation matrix heat map for all cellsin the 8-dimensional sphere (Extended
DataFig. 6a). The thicker and shorter horizontal blacklineinside the box is the
location stereotypy, the average of all the valuesin that structure’sblockin the
correlation matrix. Dots represent the raw data (one dot per correlation value;
1,000 randomly selected points are shown). The box extends from the first
quartile (Q1) to the third quartile (Q3) of the data, with aline at the median.

The whiskers extend from the box by 1.5x the interquartile range (IQR).
Numbersof cellsarein Supplementary Data 1. Colour barsalong the bottom

(x axis) indicate the cellular structure. Numbers above the colour bar indicate
structures ranked by their stereotypy from greatest to least. The structures with
thegreatestlocation stereotypy were the nuclear envelope (lamin B1) and the
plasmamembrane (via CAAX domain of K-Ras, “CAAX”). These observations are
effectively positive controls, because these two structures should be very
similar to the celland nuclear boundary shapes that were used as fixed pointsin
the SHE interpolation. In decreasing order of stereotypy, the next highest were
two nucleolar compartments, the Dense Fibrillar Component (DFC, via
fibrillarin) and the Granular Component (GC, via nucleophosmin), followed by
the ER (both Sec61betaand SERCA) and microtubules. Structures with theleast
location stereotypyincluded those with alow number of discrete separated
locations near the top or bottom of the cell such as centrioles (via centrin-2),

desmosomes (desmoplakin), and matrix adhesions (paxillin) as well as
structures with sparse, punctate locations such as cohesins (SMC-1A),
endosomes (Rab-5A) and peroxisomes (PMP34).b. The processto create the
Pearson correlation matrix for the 8-dimensional sphere (Extended Data Fig. 6a)
wasrepeated for the reconstructed cell and nuclear shapes at each of the nine
map points for each of the eight shape modes. Shown here are the resulting
correlation matrices along Shape Mode 1. Each entry in this matrix represents
the correlation between the cellular structure PILR of two cells. Thicker black
lineswithin the matrix indicate the regions (blocks) of the matrix corresponding
to cellswithataggedstructure. The size of each dimension of each block
correspondsto the number of cells. c. Heat maps of the differenceinlocation
stereotypy for each of the eight shape modes (SM). Each heat map represents a
shape mode, each columnrepresents the nine binned map points along that
shapemode (Fig.2b), and eachrow represents a different cellular structure.
Each heat map value corresponds to the stereotypy difference between the
mean cellshape and the cell shape in the indicated shape mode bin for that
cellularstructure.d. Heat maps of the differencein location concordance
between the mean cell shape and either, the -20 and 20 shape space map points
(bottomand top triangles, respectively), for each of the eight shape modes.
Numbers of cellsarein Supplementary Datal. Colour barsontheleft of heat
mapsindicate the cellular structure. Additional concordance difference heat
mapsareavailablein Supplementary Datal.
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Extended DataFig. 8|See next page for caption.



Extended DataFig. 8 |Statistical analysis of the variationincell, nuclear
and cellular structuressizes. a. Heat map in four parts summarizing the results
ofasystematic, comparative analysis of the relationship between the volumes
ofthel5 cellular structures validated for structural volume analysis and five cell
and nuclear size metrics: the volume and surface area of the celland the
nucleus, and fifth, the cytoplasmic volume (the difference between cell and
nuclear volumes), referred to as cellvol, cell area, nuc vol, nuc area, and cytovol,
respectively; Supplementary Methods). The number of cellsina-k are either all
cells (n=202,847) or per cellular structure (Extended Data Fig.1d). The leftmost
column (green heat map, scalingrate) indicates the percentage increasein
structure volume given one doublingin cell volume over a well-represented
volume range in the cell population (1160 to 2320 um?). For example, the volume
of mitochondriaincreased by an average 84% (from 108 to 199 um?®) for this
doublingincell volume (adoublingis anincrease of 100%). The structures with
the greatestrelative scaling rates were the peroxisomes, followed closely by
both nucleolar structures and then microtubules, all of which nearly doubled in
structure volume with the doubling of cell volume. Simple linear regression
wasusedtofitthe dataandto calculate the percent of the variationin cellular
structure volumes that can be explained by each of the five celland nuclear size
metrics (next five columnsina, blue-red heat map, explained variance). The
percent explained variance was substantially greater for some structures,

such as mitochondria (54%) than for other structures, such as endosomes (2%).
Fornuclear structures like the nucleolar DFC, more of the variancein their
volumes could be explained by nuclear volume than by cell volume (77% vs. 68%,
respectively). Amultivariate model was applied to calculate the total percentage
ofthe variance explained for each of these structures by the combination of all four
celland nuclear size metrics (centre single column, all metrics). At the lowest end
werethe centrioles, whichare discrete structures that double innumber during
thecellcycle, but with anegligible volume increase. Centrioles should not get
continuously bigger as cells grow and were thus invariant with all size metrics.
Atthe highestend were the nuclear envelope and the plasma membrane, which,
asexpected, correlated well with nuclear and cell surface areas, respectively.
Notably, the volumes of all three nuclear body structures (nucleolar DFC, GC,
and speckles) had high explained variances. Cell and nuclear metrics showa
large degree of collinearity, which makes it non-trivial to isolate the effect of
one particular cell or nuclear metric on structure volume. The multivariate
modelwas used to calculate the unique contributions of both cell size metrics,
both nuclearsize metrics, and each of the four metrics individually (last six
columns, orange heat map, unique explained variance). For all five nucleus-
related structures, the variance in structure volume was better explained by
nuclear size metrics than by cellular size metrics. For the nuclear envelope,

more of the variance was uniquely attributable to the nuclear surface area than
nuclear volume; this anticipated result confirmed the validity of this approach.
b.Scatterplot of nuclear vs. cell volumes for all cells, coloured based on an
empirical density estimate. Thegreenlineisarunningaverage and thegrey line
isthelinearregressionmodel, also used to calculate the scaling rate (see a).
c.Line plots showing the scaling rate for three cellular structures (yellow line
and numbersintop leftcorners). Theregionsfilledin grey are the interquartile
range (IQR) measured across cells that were binned in 10 cell volume bins. The
xy axestothefarleftare used toindicate the values of the tick marksin each
ofthethree plots. d-g.Scatterplots and statistical measures asin (b), for
mitochondria (d), endosomes (e), and nucleoli (DFC, fand g). h. Scatterplot of
therelative volume scaling rate vs. the total percent explained variance for the
15cellular structures. Error bars are 5-95% confidence intervals calculated via
bootstrap (n=100). Structures along top and right side arerank ordered. The
structures with the lowest relative volume scaling rates were also the structures
identified as having the lowest explained variance (endosomes, centrioles).
For moststructures, however, relative scaling rates were at least 60%, consistent
with the simple expectation thatlarger cells typically would also have larger
organelles. Two structures whose volumes correlated most strongly with
nuclear surface area (nuclear envelope, nuclear speckles) showed lower scaling
rates. This was consistent with surface area generally scaling less quickly than
volume. For example, doubling the size of a perfect sphere leads to only a59%
increaseinits surfacearea. The peroxisomesstood out as exhibiting an unusual
pattern of both ahigh relative volume scaling rate and great variability in
peroxisome volume fromcell to cell.i. Scatter plot of nuclear surfaceareavs.
nuclear volume for all cells (blue points), cells with spherical nuclei (n =19,927,
brown points), perfect spheres (magentadashed line) and linearand non-
linear model fits on spherical cells or all cells (cyanand black as indicated;
Supplementary Methods). The volume (V) and surface area (A) of asphere
don’tscalelinearly, instead A - V¥3. However, on this dataset alinear model of
nuclear volume explains as much variationin nuclear area asamodel with the
theoretically correct non-linear scaling factor.j. Scatterplot of explained
variance for linear vs non-linear models for all cases in the heat map of explained
varianceina (n=190; Supplementary Methods). Median (across 100 bootstraps
ofthe regression model; blue points) and 95% confidence interval (from 2.5%
t097.5% acrossthe100 bootstraps; red lines) areindicated. k. Heat map of
percentexplained variance between size-scaling metrics (rows) and shape
modes (SM, columns). Correlations of structure volume to Shape Mode 5 likely
occur due the moderate correlation between Shape Mode 5 (elongation) and
cellsurfacearea.
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Extended DataFig.9|ALPsinshape-matched non-edge and edge cells.
a.Celland nuclear SHE coefficients fromacomparison dataset (e.g., edge
cells; red dots) are transformed according to the SHE PCA of a baseline dataset
(e.g.interphase cells; black + grey dots) resulting in the embedding of the
comparisondataset cellsinto the baseline 8D shape space.Eachcellinthe
comparisondatasetis matched toits nearest neighbourinthe shapespacethat
isalsointhebaseline dataset (lines connecting black and red dots), creating the
shape-matched dataset. b. Average morphed cells for six cellular structures in
shape-matched non-edge and edge cells. For five of these structures, the ALP is
aredistribution of the structure towards the outer edge of the colony, while for
adherensjunctions (viabeta-catenin) the ALPis aredistribution of junctions
away fromthe colony edge. c. Dimensionality of PILRs of cellsin the shape-
matched datasetis first reduced to 32 viaPCA (see Methods). LDA is then
applied tothese 32 PCsto find the axis of greatest separation (solid purple line)
betweenthe two groups of cellsinthe dataset (black and red dots). Data points
areprojected along the discriminant axis to determine the frequency of cells.
d. Average morphed cells for actinbundles (via alpha-actinin-1) in non-edge and

edgecells. e. PILR-LDA based reconstructions of actinbundles inaverage
morphed cells at five positions (in o units) along the LDA axis. Dotted lines
correspond to thelocations of the mean non-edge (black) and edge (red) cells
in(d).f.Frequency of cells along the LDA axis within non-edge and edge cell
populations. Dotted vertical lines indicate the means. g. Top view and side view
lofthree examples of each non-edge and edge cells along the LDA axis. Top
row shows the original and bottom row the morphed visualizations for each
ofthese cells.Images are average projections of the segmented structure.
h.Frequency of cellsalong the LDA axis within non-edge and edge cell populations
forthe five structuresin (b). Dotted vertical lines indicate the means. PILR-LDA
based reconstructions of average morphed cells at five positions (in o units)
along the LDA axis for all 25 cellular structures as well as single-cell examples
availablein Supplementary Video 3.i. Heat maps of the differencesin average
location similarity (left), stereotypy (centre) and concordance (right) for the
25 cellular structures in shape-matched non-edge vs. edge cells (numbers of
cellsand heat map datain Supplementary Data1).
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Extended DataFig.10|See next page for caption.



Extended DataFig.10 |Integrated intracellular reorganizationinearly
mitosis (supportingfigure). a. We investigated two stages of early mitosis—
prophase (m1) and early prometaphase (m2), when the condensing chromosomes
stilllargely form an aggregated, nuclear-like structure that could be biologically
interpretedin the context of our celland nuclear shape-based coordinate system.
Duetothebreakdown of the nucleus and the condensationof DNAinthese early
stages of mitosis, the outline of the DNA-dye-based segmentation was nolonger
appropriate for SHE-based parameterization. Instead, we replaced the nuclear
segmentation of cells in both datasets with their convex-hull counterpart.

b. Mean cell (magenta or purple) and nuclear (cyan or green) shape for allinterphase
cells (1 column), cells in prophase (m1), shape-matched interphase 1and m1cells
(i1+m1l), cellsin early prometaphase (m2), and shape-matched interphase 2 and
m2cells (i2+m2), respectively. c. Frequency of cells for the eight shape modes

(SM) for allinterphase (grey), il (black) and m1 (red) cells (top two rows), i2 (black)
and m2 (red) cells (bottom two rows). d. Concordance heat maps for interphase
cellsinthetwoshape-matched interphase datasets (i1, i2) and their corresponding
prophase (m1) and early prometaphase (m2) mitotic cells. e. Heat maps of the
differencesin concordancein early mitosis foril-i2,i1-m1, m1-m2, and i2-m2
stages. f. Flagged significant concordance differences (black boxes) for each of
thedifference heat mapsshownin (e). g. Average structure similarity heat maps
forinterphase cellsin the two shape-matched interphase datasets (i1,i2) and
their corresponding prophase (m1) and early prometaphase (m2) mitotic cells.
Due to the low number of cells in mitosis for some structures, we did not
quantitatively analyse differencesin the average location similarities, although
their qualitative results matched those based on the concordance values. Heat
mapsinSupplementary Datal.
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Extended DataFig.11|Summary of this study. a. The Allen Cell Collection of
high-quality gene-edited FP-tagged cell lines and the standardized microscopy
imaging pipeline, combined with new tools forimage analysis permitted us to
create the WTC-11 hiPSC Single-Cell Image Dataset vl of over 200,000 living
cellsand 25 cellular structuresin3D.b. We created two distinct conceptual
coordinate systems toanalyse our cells. The first maps the shape of an individual
cellwithrespecttothetotalshape variation observedin the entire population
viaa3D celland nuclear shape space (viaSHE). The second maps the location of
every cellular structure within anindividual cell (viathe PILR). c. With these two
coordinate systems we created an analysis framework to measure distinct
aspectsofintegrated intracellular organization, including measurements of
structure volume variations as well as the locations of cellular structures. This
included the average locations both of individual structures and all pairs of
structures (ALP and average structure similarities), as well as the variability in
theselocations (stereotypy and concordance). d. This suite of measurements
wasapplied toourlarge baseline dataset of interphase cells and showed that
integrated intracellular organization was very robust across the wide range of
cellshapesinthe normalinterphase population. e. Two cell subpopulations
stood out morphologically in the dataset: colony edge cells and mitotic cells,
prompting us to assess their organization. To do this, we developed a process
tomatcheachindividual cellin the chosen subpopulation with a“control”
(interphase) cell of similar overall shape, and then used analysis of these shape-
matched pairs to visualize and quantify the location phenotype of greatest
difference between the two populations (viathe PILR-LDA).f. First, we compared
theintracellular organization of cells at the edges of hiPS cell colonies compared
with shape-matched non-edge cells. We found that some structures showed a
polarized location towards the colony edge but this change inlocation was not
accompanied by any other changesin pairwise structure locations or variations,
suggesting that while the locations changed, the variability and relationships

amongstructures (average structure similarities, stereotypy, and concordance)
i.e., the “wiring”, of the cell did not. g. In contrast, our second subpopulation
comparison focused on early mitotic cells confirmed that they undergo a
dramaticintracellular reorganization,in which not only the average locations of
structures, butalso their wiring, changed substantially. To assess these changes
witharobust quantitative perspective, we developed new workflows to formally
identify whensignificant changesinany of these measurementsoccurredin
thefirsttwo early stages of mitosis, and then summarized and visualized these
resultsinaway that could facilitate further data exploration and hypothesis
generation. We found that all structures except those located at the cell
periphery changed their average locations during early mitosis. Furthermore,
allstructures that changed location (other than the four for which stereotypy
was statistically not measurable) also changedinatleast one otheraspect of their
organization (stereotypy, concordance, or both) during atleast one of the two
stages of early mitosis. Thus, structure location changes of cellsin early mitosis,
unlikeinedge cells, were accompanied by changes in their wiring. This suggests
thatedge cells and early mitotic cells may represent distinct classes of cellular
reorganization, perhapsrelated to the specific cellular processes underlying
them. h. We performed a meta-analysis to investigate the association between
distinctaspectsof cell organization observed throughout this study. The
results of this meta-analysis prompted us to suggest a possible hierarchy of
dependencies as cells reorganize, as outlined in the Discussion. However, our
observations also demonstrate that thissimple proposed hierarchy among
these distinct aspects of organizationis not absolute. It is possible that these
potential dependencies, or “rules” of cell organization, are general and apply
toarangeof genetic perturbations, differentiation, signalling factors,
environmental signals, etc. Itisalso possible that thereis alarger set of cell
type or state-dependent organizational rules.
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Extended DataFig.12|Statistical analysis for quality control of the WTC-11
hiPSCSingle-CellImage Dataset v1. a. Box plots of principal component
values forall cell lines together (first binin dark green) and per tagged
structure cellline, plotted in pipeline timeline order, the order that structure
datasets were collected (total n=175,147; n per structure in Supplementary
Datal). The box extends from the first quartile (Q1) to the third quartile (Q3)
ofthedata, withalineat the median. The whiskers extend from the box by 1.5x
theinterquartilerange (IQRand dots represent outliersbeyond the IQR. The
dashed horizontal line spanning the entire plot represents the median value for
allcelllines together (first binin dark green). The colours for each cell line refer
tothe pipeline workflow (see Methods for details). Triangles indicated structures
for whichthe IQR does not overlap with the mean value for all cell lines. b. Left
plots shows the distributions of cell height (top) and cell volume (bottom) for
allcelllines together (firstbinindark green; n=202,847) and per tagged
structure cell line, plotted in pipeline timeline order (n per structurein
Supplementary Dataland Extended DataFig.1d). Structure namesinred
indicate those structuresimaged with an adjusted Matrigel coating protocol
towards the end of the pipeline timeline. The centre plots show acomparison

of cell height (or volume, bottom) between actomyosin bundle-tagged cells
(vianon-muscle myosin IIB) in the main dataset (Pipeline4.1;n=6,223) andina
repeat datasetimaged with Pipeline 4.4 settings with the adjusted Matrigel
coating protocol (n =380). The right plots shows acomparison of cell height
(orvolume, bottom) between all cell linesimaged pre-Pipeline 4.4, during
Pipeline 4.4 with original Matrigel coating and during Pipeline 4.4 with adjusted
Matrigel coating. Percentages showninthe plotare therelative height reduction
comparedtothemean height of cell linesimaged pre-Pipeline 4.4.c. The top
image diagrams circular mapping ofimaged colonies (viathe12X overview
images). Two cells are represented by two red dots withinan FOV, represented by
arectangle. The FOV centreisatdistance dfromthe closest edge of the colony.
Thetwo cells are thenmappedinto a unitcircle that serves as atemplate to
visualize the radial location of the two cells. The radial location is the FOV relative
distanceto the edge of the colony, £ = d/R.¢, Where R represents the effective
radius of the colony. The angularlocation of a cell (6, and 6, for the two cellsin
theimage) isindependently drawn from a uniform distribution ofanglesinthe

range [0,2m]. Cells from the dataset that were associated with acolony size (see
Methods) were grouped into four bins, each with similar number of cells, based
ontheareaofthecolony where they came from. The colony arearange of each
binis15k-230k pm?,230k-377k pm?, 377-620k um?and 620k-14,285k pm?. Each
pointrepresentsone cellwithinthe colony areabin that was mapped into the
unitcircle. The unit circle was thenrescaled to match the mean colony area for
thatbin. Points are colour-coded by their corresponding cell height. Listed above
eachcircleis the mean colonyareain thatbin towhich the unitcircleisscaled.
Below each circle are profile plots of cell height as a function of the radial distance
foreachofthecell (inblack). Thered curve represents therolling average. Each
row of circular colony mappings represents adifferent aggregation of the data
based ontheimaging mode: the first rowis for allimaging modes (modes A, Band
C;n=104,269), the second row is for modes A and Bonly (n=75,146) and third row
isformode Conly (n=29,123).d. Circular colony mappings asin (c) where points
(cells) are now colour-coded by values of the shape modes. Circular colony
mappings are shown for Shape Modes1and 2, and profile plots (asinc), for Shape
Modes 3-8 (allimaging modes, n =104,269). e. Scatter plots on the far left show
true values of cell height compared to cell height values predicted by random
forestregressionmodels (n =95; see Methods) thatinclude either all experimental
variables (top plot) or allexperimental variables except for the cell lineidentity
(bottomplot). Theerror barsonthe predicted values are obtained via
bootstrapping (n=100). The centre columnshows box plots representing the
featureimportance for each of the two models as measured by the increase in
the meansquared error (MSE) when all values of that corresponding feature are
shuffled across samples. The box extends from the first quartile (Q1) to the
third quartile (Q3) of the data, with aline at the median. The whiskers extend
fromtheboxby1.5x the interquartilerange (IQR and dots represent outliers
beyondthelQR. Therighttop plotisthe Pearson correlation matrix between
five continuous experimental variables used in training the regression models.
Thebottomrightplotisthe Cramer’sV correlation matrix between six
categorical experimental variables used in training the regression models.
Variables with correlation above the significance threshold 0.3 are assumed to
be highly correlated®.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

O o0 oods
XX X XX

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

LXK
X OO O

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Allimages were acquired with ZEN 2.3 (blue edition); version 23.69.1003; service pack 2.3.69.01000; hotfix 2.3.69.01003

Data analysis Custom codes were central to the conclusion of the paper. All necessary code to reproduce the results in this paper has been deposited in
Github. This includes code for downloading our datasets, single cell feature extraction, cellular parameterization and organelle size scaling.
Jupyter notebooks to reproduce the figures shown in the paper are also provided. The released custom code repositories use the following
Python packages in parts: NumPy v1.21.5, Scipy v1.7.3, scikit-image v0.19.1, scikit-learn v1.0.1, Seaborn v0.11.1, PyTorch v1.0.0,
PyTorchLightning v0.7.6, VTK v9.0.1, ITK v5.2.0, pandas v1.3.5, matplotlib v3.5.1, aicsshparam v0.1.1, aicscytoparam v0.1.6, pyshtools v4.9.1,
actk v0.2.2 and aicsimageio v3.3.2 and v4.1.0. We also use the softwares: R Statistical Software v2022.02.2+485, napari v0.2.8, ChimeraX v1.3,
the Allen Cell & Structure Segmenter (aicssegmentation v0.1.20, aicsmlsegmentation v0.0.7, segmenter-model-zoo v0.0.5), and label free (see
below for version).

e Tutorials and demo for how to access the data for different purposes: https://github.com/AllenCell/quilt-data-access-tutorials

¢ Main codebase used in this paper. It provides functions for computing features, shape space, shape modes, stereotypy, concordance and
morphed cells. The repository also contains the notebooks used to generate the figures shown in the paper: https://github.com/AllenCell/
cvapipe_analysis

 Shape parameterization via spherical harmonics: https://github.com/AllenCell/aics-shparam

e Cellular parameterization: https://github.com/AllenCell/aics-cytoparam

 Organelle size-scaling analysis: https://github.com/AllenCell/stemcellorganellesizescaling

» Mitotic image classifier code35,40, (for both training and testing) and all trained models: https://github.com/AllenCell/image_classifier_3d.
* Segmentation code used to reproduce the deep learning cell and nuclear segmentations, trained models and demo Jupyter notebook:
https://github.com/AllenCell/segmenter_model_zoo

e Segmentation code used to reproduce structure segmentation from a set of algorithms to choose from, each with restricted numbers of
parameters to tune: https://github.com/AllenCell/aics-segmentation.

» Code used to generate the contact sheet quality control single-cell visualizations of all segmented cells: https://github.com/
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AllenCellModeling/actk

» Code to create 12X colony dataset: https://github.com/AllenCell/colony-processing

» Customized label free code used as part of the cell and nuclear segmentation model: https://github.com/AllenCellModeling/pytorch_fnet/
tree/50c433c2e72d2d42886b48c5faf5449725d195a5

 Software will be shared under the Allen Institute Software License and Contribution Agreement, subject to any applicable third-party
licensing restrictions.

« Datasets will be shared under the Allen Institute Terms of Use: https://alleninstitute.org/legal/terms-use/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The Datasets generated during this study, including FOVs, single cell images and 12X colony overviews, are available at Quilt as packages. Source data for all
applicable figure panels is available in Supplementary Information. DataFileS1 contains 1) a summary of all of the numbers of FOVs, imaging days and cells for all
analyses, 2) the correlation values used to generate the heatmap data for the average location similarities, stereotypy, and concordance, including difference
heatmaps, and 3) additional data on the comparative analysis of cellular structure volumes in edge and non-edge cells.

« Full dataset: https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset

* Non-edge cells shape-matched to edge cells: https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_nonedge_cell_image_dataset

» Edge cells dataset: https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_edge_cell_image_dataset

o Interphase cells (i1) shape-matched to prophase cells (m1): https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_il_cell_image_dataset

* Prophase dataset (m1): https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_m1_cell_image_dataset

« Interphase cells (i2) shape-matched to early-prometaphase cells (m2): https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_i2_cell_image_dataset
« Early-prometaphase dataset (m2): https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_m2_cell_image_dataset

* 12X colony dataset:

https://open.quiltdata.com/b/allencell/packages/aics/hipsc_12x_overview_image_dataset

* Supplementary MYH10 repeat dataset: https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset_supp_myh10

« Supplementary training set of 5,664 cells used to train the single cell classifier: https://open.quiltdata.com/b/allencell/packages/aics/mitotic_annotation

o Cell Feature Explorer — 215,081 cells (from 18,100 FOVs); 25 structures; 10 features +/- apical and radial proximity: https://cfe.allencell.org

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The WTC11 hiPSC Single-Cell Image Dataset V1 contains a total of 18,100 FOV's of 25 FP-tagged WTC11 derived clonal hiPSC lines collected
over a three-year timeframe. The target for each cellular structure was ~1000 single cells and the final numbers of acquisition days, FOVs, and
single cells imaged for the overall Dataset are included in DataFileS1 and Extended Data Figure 1d. Derivative “datasets” were created by
subsampling/filtering this dataset as described in the Methods to create e.g., the baseline interphase, 8D sphere, and shape-matched edge
cell and early mitotic datasets for the specific analyses described in the manuscript results. We performed a down-sampling analysis to verify
that the sample sizes for these datasets was sufficient for the specific types of analyses and included these results in the section called “Down-
sampling the dataset to assess dataset size requirements for analyses in this study” in the Supplemental Methods. For the additional analyses
of the shape-matched datasets, we included additional statistical descriptions in the Supplemental Methods.

Data exclusions  Automated scripts were generated to exclude data based on predetermined criteria validated by expert annotators. This was performed for
fields of view and for individually segmented cells to ensure only properly segmented single cell were part of the dataset. In addition, a total
of 1,044 (~0.5%) interphase cells were identified and removed, resulting in a dataset table with 202,847 rows that we refer to as the baseline
interphase dataset throughout the paper. Details provided in the Supplementary Methods.

Replication This extensive dataset was acquired over a period of three years, including changes in the extent of pipeline automation, necessary
adjustments to the microscopes, the lots of Matrigel, and other such experimental factors over the course of the imaging pipeline timeline
(see Imaging workflows section). Therefore, we performed an extensive analysis to identify and account for any potential experimental
contributions to cell shape variation (Extended Data Fig. 12). An analysis of how each of the Shape Modes varied with respect to the timeline
of the imaging pipeline revealed that only Shape Modes 1 and 2, representative of cell height and cell volume, showed any signs of possible
systematic experimental variation (Extended Data Fig. 12). To ensure reproducibility of the analysis results, all analyses were performed via
custom code that can be (re)run on the full Dataset, any of the derived datasets (e.g. baseline interphase, 8D sphere) or any other dataset
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subsets if desired by users. This code also generates each of the figure panels in the manuscript to permit users access to all of the source
data for each panel. Down-sampling analyses to test for dataset size requirements (see Sample Size above) successfully demonstrated
reproducibility of the analysis results when distinct subsets of the dataset were used. Initial attempts at replicating analysis results revealed
the need to fix a random seed for any steps in the custom code using a random number (except in Extended Data Figure 8). Upon fixing the
random seed generator, all attempts at replication were successful. The size scaling analyses described in Extended Data Figure 8 uses
bootstraps for the estimation of some of the displayed metrics. There is a random seed in the bootstraps that is not set to a fixed seed. The
numbers visible in Extended Data Figure 8 are based on these bootstraps, yet are stable, because of the relatively large sample size and
relatively large number of bootstraps.

Randomization  Experimental groups of image data (e.g. the single cells in the Dataset) were based on 25 cell lines and for each cell line, a set of fields of view
were acquired by randomly selecting colonies and areas within colonies based on standardized inclusion/exclusion criteria. The colony and
FOV selection was automated with a script based on these standardized criteria and used for ~1/2 of the dataset collection. See Methods/
Supplemental Methods for further details. Experimental groups for data analyses were generated based on standardized filtering criteria/
algorithms, e.g., whether a cell is at the edge of a colony or in early mitosis. Any subsets of larger datasets or bootstrap analyses were
performed using randomized allocation of cells into these groups. Seeds for random number generation were stored to permit reproducibility
of analyses that include data randomization.

Blinding For data collection, FOV selection was automated and randomized (see Randomization above), thus blinding was not required. Cells acquired
within specific imaging “modes” were pooled for overall Dataset analysis. For example, while “mode C” was enriched for cells at edges of
colonies compared to “mode A”, the determination of “colony edge cell” for analysis did not include any pre-determined requirement/
knowledge of a cell being in mode C, but instead all colony edge cells within the entire dataset were identified programmatically. All allocation
of cells into groups (e.g., “edge cells” or “early mitotic cells”) occurred after data collection. In cases where manual annotations were required
for group allocation or data validation, expert annotators were blind to the datasets they reviewed and annotated. In some validation cases
(e.g. confirming that the code generating morphed cells from original cells was successful), the identity of the experimental group (e.g., cell vs.
non-edge cell) was not blinded but also not relevant to the validation task. All analyses were performed programmatically via custom code
and the identity of individual cells was not used to perform these analyses, although the identity could be tracked to permit examination of
specific cells in graphs depicting analysis results via unique 1D assighments to validate the results.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI D ChIP-seq
Eukaryotic cell lines IZI D Flow cytometry
Palaeontology and archaeology IZI D MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Using the Wild Type WTC-11 hiPSC line background (Kreitzer et al., 2013), we generated the Allen Cell Collection of hiPSC
lines in which each gene-edited cell line harbors a fluorescent protein endogenously tagged to a protein representing a
distinct cellular structure of the cell (Roberts et al., 2017). The cell lines are described at https://www.allencell.org and are
available through Coriell at https://www.coriell.org/1/AllenCellCollection. For all non-profit institutions, detailed MTAs for
each cell line are listed on the Coriell website. Please contact Coriell regarding for-profit use of the cell lines as some
commercial restrictions may apply.

Authentication The identity of the unedited parental line was confirmed with short tandem repeat (STR) profiling testing (29 allelic
polymorphisms across 15 STR loci compared to donor fibroblasts (https://www.coriell.org/1/AllenCellCollection). Since
WTC-11 is the only cell line used by the Allen Institute for Cell Science, edited WTC-11 cells were not re-tested because they
did not come into contact with any other cell lines.

Mycoplasma contamination All cell lines were tested and found negative for Mycoplasma contamination.
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Commonly misidentified lines No commonly misidentified lines were used in this study.
(See ICLAC register)
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