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Broadly neutralizing antibodies overcome 
SARS-CoV-2 Omicron antigenic shift
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The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid 
substitutions in the spike protein, 15 of which are in the receptor-binding domain 
(RBD), thereby raising concerns about the effectiveness of available vaccines and 
antibody-based therapeutics. Here we show that the Omicron RBD binds to human 
ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse 
ACE2. Marked reductions in neutralizing activity were observed against Omicron 
compared to the ancestral pseudovirus in plasma from convalescent individuals and 
from individuals who had been vaccinated against SARS-CoV-2, but this loss was less 
pronounced after a third dose of vaccine. Most monoclonal antibodies that are 
directed against the receptor-binding motif lost in vitro neutralizing activity against 
Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, 
including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly 
neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through 
recognition of antigenic sites outside the receptor-binding motif, including 
sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune 
evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal 
antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 
variants and other sarbecoviruses may prove key to controlling the ongoing pandemic 
and future zoonotic spillovers.

The evolution of RNA viruses can result in immune escape and modula-
tion of binding to host receptors through the accumulation of muta-
tions5. Previously emerged SARS-CoV-2 variants of concern (VOCs) 
have developed resistance to neutralizing antibodies, including some 
clinical antibodies that are used as therapeutics6–8. The B.1.351 (Beta) 
VOC showed the greatest magnitude of immune evasion from serum 
neutralizing antibodies6,7, whereas B.1.617.2 (Delta) quickly outcom-
peted all other circulating isolates through the acquisition of muta-
tions that enhanced transmission and pathogenicity9–11 and eroded 
the neutralizing activity of antibody responses9.

The Omicron (B.1.1.529) variant was first detected in November 
2021, was immediately declared to be a VOC by the World Health 
Organization (WHO) and quickly rose in frequency worldwide.  
The Omicron variant is substantially mutated compared to any 

previously described SARS-CoV-2 isolates, including 37 substitu-
tions of residues in the spike protein in the predominant haplotype 
(Fig. 1a, Extended Data Figs. 1–4). Fifteen of the Omicron mutations 
are clustered in the RBD, which is the main target of neutralizing anti-
bodies after infection or vaccination12,13, suggesting that Omicron 
might escape infection- and vaccine-elicited antibodies and thera-
peutic monoclonal antibodies. Nine of these mutations map to the 
receptor-binding motif (RBM), which is the RBD subdomain that 
directly interacts with the host receptor, ACE214.

Preliminary reports indicate that the neutralizing activity of plasma 
from individuals who had received the Pfizer–BioNTech BNT162b2 
vaccine is reduced against the Omicron variant15,16, documenting a 
substantial—albeit not complete—escape from mRNA-vaccine-elicited 
neutralizing antibodies. Another report also shows that vaccine 
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effectiveness against symptomatic disease induced by the Omicron 
variant is significantly lower than for the Delta variant17. The potential 
for booster doses to ameliorate this decline in neutralization is being 
investigated. In addition, the neutralizing activity of several thera-
peutic monoclonal antibodies appears to be decreased or abolished 
against Omicron16,18.

To understand the consequences of the high number of muta-
tions found in the Omicron spike protein, we used a pseudovirus 
assay to study receptor use and neutralization mediated by mono-
clonal and polyclonal antibodies, as well as surface plasmon reso-
nance (SPR) to measure binding of the RBD to human and mouse 
ACE2 receptors.

Omicron RBD binds ACE2 with increased affinity
At present, 23 out of the 37 amino acid mutations in the Omicron spike 
protein have been individually observed previously in SARS-CoV-2 
variants of interest, VOCs or other sarbecoviruses, whereas the 
remaining 14 substitutions have not to our knowledge been described 
before (Extended Data Fig. 5a). Analysis of the GISAID database indi-
cates that there are rarely more than 10–15 Omicron spike muta-
tions present in a given non-Omicron haplotype or Pango lineage 
(Extended Data Fig. 5b–d). Although we have not formally assessed 
the possibility of recombination events, persistent replication in 
immunocompromised individuals or inter-species ping-pong trans-
mission5 are possible scenarios for the rapid accumulation of muta-
tions that could have been selected on the basis of viral fitness and 
immune evasion.

Several of the Omicron RBD mutations are found at positions that 
are key contact sites with human ACE2, such as K417N, Q493R and 
G496S19. Except for N501Y, which increases ACE2-binding affinity by 
sixfold20,21, all other substitutions were shown by deep mutational 
scanning either to reduce binding or to have no effect on human ACE2 
affinity when present individually22, resulting in an overall predicted 
decrease of binding affinity (Supplementary Table 1). However, we 
found that the Omicron RBD has a 2.4-fold increased binding affinity 
to human ACE2 (Fig. 1b, c, Extended Data Fig. 6a), suggesting epistasis 
of the full constellation of RBD mutations. It remains to be determined 
whether and how the spike mutations in Omicron may influence the 
dynamics of RBD opening, which may also affect the engagement of 
the RBD with ACE2.

The presence of the N501Y mutation has previously been reported to 
enable some SARS-CoV-2 VOCs to infect mice23. As Omicron contains 
the N501Y mutation, along with 14 other RBD mutations, we investi-
gated whether the Omicron RBD binds mouse ACE2 using SPR (Fig. 1b, 
Extended Data Fig. 6). The Omicron RBD binds mouse ACE2 with a 
1:1 binding affinity of 470 nM (Fig. 1b), whereas weak binding of the 
Beta RBD and very weak binding of the Alpha RBD to mouse ACE2 was 
observed (Fig. 1b, Extended Data Fig. 6b), consistent with previous 
reports23,24. Conversely, our assay did not detect any binding of the 
Wuhan-Hu-1, Delta or K417N RBDs to mouse ACE2. The enhanced bind-
ing of the Omicron RBD to mouse ACE2 is likely to be explained by the 
Q493R substitution, which is similar to the Q493K mutation isolated in 
mouse-adapted SARS-CoV-219. Our binding data correlate with ourob-
servation of Omicron spike protein-mediated but not Wuhan-Hu-1/G614  
spike protein-mediated entry of VSV pseudoviruses into mouse 
ACE2-expressing cells (Fig. 1d), as recently reported25. Collectively, 
these findings highlight the plasticity of the SARS-CoV-2 RBM, which 
in the case of the Omicron VOC acquired enhanced binding to human 
and mouse ACE2 orthologues, relative to other SARS-CoV-2 isolates. 
The influence of these findings on viral load and replication kinetics 
in humans and animal models remains to be evaluated, owing to the 
interplay of additional factors besides receptor binding. Preliminary 
data suggest that Omicron appears to be attenuated in some laboratory 
mouse strains (M.S.D., personal communication) and that it replicates 
less efficiently in human lung tissue as compared to Delta26.

Extent of Omicron escape from plasma antibodies
To investigate the magnitude of immune evasion that is mediated 
by the 37 mutations present in the Omicron spike protein, we used 
Wuhan-Hu-1 and Omicron spike VSV pseudoviruses and compared 
plasma neutralizing activity in different cohorts of convalescent 
individuals (that is, individuals who had recovered from COVID-19) 
or individuals who had been vaccinated with six major COVID-19 
vaccines (mRNA-1273, BNT162b2, AZD1222, Ad26.COV2.S, Sputnik 
V and BBIBP-CorV) (Fig. 2, Supplementary Figs. 1–3, Extended Data 
Table 1).

Fig. 1 | The Omicron RBD shows increased binding to human ACE2 and gains 
binding to mouse ACE2. a, Omicron mutations are shown in a primary 
structure of the SARS-CoV-2 spike protein, with domains and cleavage sites 
highlighted. BH, beta hairpin; C, C domain; CD, connector domain;  CH, central 
helix; D, domain D; FP, fusion peptide;HR1/2, heptad repeat 1/2; SH, stem 
helix; SP, signal peptide; TM, transmembrane domain;UH, upstream helix.  
b, Single-cycle kinetics SPR analysis of ACE2 binding to six RBD variants. ACE2 
is injected successively at 11, 33, 100 and 300 nM (human) or 33, 100, 300 and 
900 nM (mouse). Dashed black curves show fits to a 1:1 binding model. White 
and grey stripes indicate association and dissociation phases, respectively.  
KD, dissociation constant; RU, response units. c, Quantification of human ACE2 
binding data (mean ± s.d. of three replicates). Asterisks indicate that Delta was 
measured in a separate experiment with a different chip surface and capture 
tag. Delta fold change (FC) is calculated relative to the affinity of Wuhan-Hu-1 
measured in parallel (91 ± 1.6 nM). d, Entry of Wuhan-Hu-1, Alpha, Beta, Delta, 
Gamma, Kappa and Omicron spike VSV pseudoviruses into mouse 
ACE2-expressing HEK293T cells. RLU, luciferase relative light units. Shown are 
two biological replicates (technical triplicates). Lines, geometric mean.
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Convalescent individuals and individuals who had been vaccinated 
with Ad26.COV2.S (single dose), Sputnik V or BBIBP-CorV had no detect-
able neutralizing activity against Omicron, with only one convalescent 
subject and three BBIBP-CorV vaccinees exhibiting ID50 values above 10 
(Fig. 2a). Individuals who were immunized with mRNA-1273, BNT162b2 
and AZD1222 had more potent neutralizing activity against Wuhan-Hu-1 
and retained detectable neutralization against Omicron, with decreases 
of 39-, 37- and 21-fold, respectively (Fig. 2a). The dampening of neutral-
izing activity against Omicron was comparable to that observed against 
SARS-CoV, a virus that differs from Wuhan-Hu-1 by 52 residues in the RBD. 
Reductions of neutralization potency were less pronounced in vaccinated 
individuals who had been previously infected (fivefold; Fig. 2b) and in 
individuals undergoing dialysis (fourfold; Fig. 2c) who were boosted with 
a third mRNA vaccine dose. In the same cohort of individuals undergoing 
dialysis, the levels of antibodies that neutralize the vaccine-matched 
Wuhan-Hu-1 strain were found to be low (less than 1/100) or undetectable 
in 44% of individuals after the second dose of mRNA vaccine27.

Collectively, these findings provide evidence of a substantial reduc-
tion in plasma neutralizing activity against Omicron as compared to 

the ancestral virus, with neutralizing activity probably falling below 
the protective threshold in several cases28. Our data further indicate 
that multiple exposures to the ancestral virus through infection or 
vaccination result in the production of antibodies that can neutralize 
divergent viruses, such as Omicron or even SARS-CoV, as a consequence 
of affinity maturation or epitope masking by immune-dominant RBM 
antibodies28–30.

Broadly neutralizing antibodies inhibit Omicron
Neutralizing monoclonal antibodies with demonstrated in vivo effi-
cacy in the prevention or treatment of COVID-1931–37 can be divided 
into two groups on the basis of whether they do or do not block the 
binding of the spike protein to ACE2. Of the eight currently authorized 
or approved monoclonal antibodies, seven (LY-CoV555, LY-CoV016, 
REGN10987, REGN10933, COV2-2130, COV2-2196 and CT-P59; all syn-
thesized on the basis of publicly available sequences) block the binding 
of spike protein to ACE2 and are often used as two-antibody cocktails8. 
They bind to epitopes that overlap with the RBM (Fig. 3a), which is 

Fig. 2 | Neutralization of Omicron SARS-CoV-2 VSV pseudovirus by plasma 
from convalescent and vaccinated individuals. Plasma neutralizing activity 
in convalescent or vaccinated individuals (mRNA-1273, BNT162b2, AZD1222, 
Ad26.COV2.S (single dose), Sputnik V and BBIBP-CorV). a, Pairwise neutralizing 
antibody titres (half-maximum inhibitory dose; ID50) against Wuhan-Hu-1 
(D614G), Beta and Omicron VOCs, and SARS-CoV. Vero E6-TMPRSS2 cells were 
used as target cells. Data are the geometric mean of n = 3 biologically 
independent experiments except for SARS-CoV for which n = 1. b, Pairwise 
neutralizing antibody titres of plasma (ID50) against Wuhan-Hu-1 and Omicron. 
Data are the geometric mean of n = 2 biologically independent experiments.  
c, Plasma neutralizing activity in individuals undergoing dialysis who received 

three doses of either the BNT162b2 or mRNA-1273. Pairwise neutralizing 
antibody titres of plasma (ID50) against Wuhan-Hu-1 and Omicron. One 
representative experiment out of two is shown. Vero E6 cells were used as 
target cells in b, c, Line, geometric mean of 1/ID50 titres. Shown is the 
percentage of samples that lost detectable neutralization against Omicron or 
SARS-CoV, excluding  samples with 1/ID50 below the limit of detection. The 
demographics of enrolled donors are provided in Extended Data Table 1. 
Statistical significance is set as P < 0.05 and P values are indicated with 
asterisks (*P = 0.033; **P = 0.002; ***P < 0.001), using a paired two-sided t-test 
(Wilcoxon rank test).
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structurally and evolutionary plastic38, as shown by the accumulation 
of mutations throughout the pandemic and the genetic diversity of 
this subdomain among ACE2-using sarbecoviruses39. Combining two 
such ACE2-blocking monoclonal antibodies can provide greater resist-
ance to variant viruses that carry RBM mutations31. The second class of 
monoclonal antibodies, represented by sotrovimab, do not block ACE2 
binding but neutralize SARS-CoV-2 by targeting non-RBM epitopes 
that are shared across many sarbecoviruses, including SARS-CoV4,40.

We compared the in vitro neutralizing activity of these thera-
peutic monoclonal antibodies side-by-side against Wuhan-Hu-1 
and Omicron spike proteins using VSV pseudoviruses (Fig. 3). 
Although sotrovimab had a threefold-reduced potency against 
Omicron and Omicron-R346K variant VSV pseudoviruses, all of 
the other (RBM-specific) monoclonal antibodies completely lost 
their neutralizing activity—with the exception of the combina-
tion of COV2-2130 and COV2-2196, for which we determined an 

Fig. 3 | Neutralization of Omicron SARS-CoV-2 VSV pseudovirus by 
clinical-stage monoclonal antibodies. a, RBD sequence of SARS-CoV-2 
Wuhan-Hu-1 with highlighted footprints of ACE2 (light blue) and monoclonal 
antibodies (mAbs; coloured according to the RBD antigenic site recognized). 
The Omicron RBD is also shown, and amino acid substitutions are boxed.  
b, Neutralization of SARS-CoV-2 VSV pseudoviruses displaying Wuhan-Hu-1 
(white) or Omicron (coloured as in Fig. 4b) spike proteins by clinical-stage 
monoclonal antibodies. Data are representative of at least two independent 
experiments. Shown is the mean of two technical replicates. c, Geometric mean 
half-maximum inhibitory concentration (IC50) values for Omicron (coloured as 

in Fig. 4b) and Wuhan-Hu-1 (white) (top), and geometric mean fold change 
(bottom). Vero E6 cells were used as target cells. Shown in blue (right) is 
neutralization of authentic virus by sotrovimab (WA1/2020 versus hCoV-19/
USA/WI-WSLH-221686/2021). Non-neutralizing IC50 titres and fold change were 
set to 104 and 103, respectively. Orange dots for sotrovimab indicate 
neutralization of Omicron VSV pseudovirus carrying R346K (Omicron-R346K). 
Data are representative of n = 2 biologically independent experiments for most 
monoclonal antibodies; for sotrovimab against Omicron VSV n = 6 and for 
Omicron authentic virus n = 3.
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approximately 100-fold-reduced potency (Fig. 3b, c). Moreover, 
sotrovimab exhibited a reduction of less than twofold in neutral-
izing activity against authentic Omicron SARS-CoV-2 as compared 
to the WA1/2020 D614G virus (Fig. 3c, Extended Data Fig. 7), con-
sistent with recent reports on S309, the parent of sotrovimab41,42. 
The threefold and less-than-twofold decrease in the neutralizing 
activity of sotrovimab against pseudoviruses and authentic virus, 
respectively, is within the currently defined threshold of ‘no change’ 
as defined by the US Food and Drug Administration (FDA; the FDA 
fact sheet for sotrovimab denotes no change as a reduction of less 
than fivefold in susceptibility43). Overall, our findings agree with two 
preliminary reports16,18 and, together with serological data, support 
the conclusion that the Omicron VOC has undergone antigenic shift.

We next tested a larger panel of 36 neutralizing NTD- or RBD-specific 
monoclonal antibodies for which the epitopes have been characterized 

structurally or assigned to a given antigenic site through competition 
studies3,4,9,12,44,45 (Fig. 4a, Extended Data Table 2, Extended Data Fig. 8). 
The four NTD-specific antibodies completely lost activity against Omi-
cron, consistent with the presence of mutations and deletions in the 
NTD antigenic supersite21,45,46. Three out of the twenty-two monoclonal 
antibodies that target the RBD antigenic site I (RBM) retained potent 
neutralizing activity against Omicron, including S2K146, which binds 
the RBD of SARS-CoV-2, SARS-CoV and other sarbecoviruses through 
ACE2 molecular mimicry1. Of the nine monoclonal antibodies that are 
specific for the conserved RBD site II (refs. 4,12), only S2X2593 retained 
activity against Omicron, whereas neutralization was decreased by 
more than tenfold or abolished for the remaining antibodies. Finally, 
the S2H97 monoclonal antibody retained neutralizing activity against 
Omicron through recognition of the highly conserved cryptic site V (ref. 4).  
The panel of 44 monoclonal antibodies tested in this study includes 

Fig. 4 | Neutralization of Omicron SARS-CoV-2 VSV pseudovirus by 
monoclonal antibodies. a, Top, mean IC50 values for Omicron (coloured as in b) 
and Wuhan-Hu-1 (white). Bottom, mean fold change for 4 NTD monoclonal 
antibodies and 32 RBD monoclonal antibodies. Non-neutralizing IC50 titres and 
fold change were set to 104 and 103, respectively. Triangles for S2K146 indicate 
neutralization of Omicron carrying R346K. Vero E6 cells were used as target 

cells. Data are representative of n = 2 biologically independent experiments 
(except for S2K146, for which n = 6). b, The RBD sites targeted by four 
monoclonal antibodies that cross-neutralize Omicron are annotated and 
representative antibodies (the Fv region) bound to spike proteins are shown as 
a composite. Coloured surfaces on the RBD depict the epitopes and the RBM is 
shown as a black outline.
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members of each of the four classes of neutralizing monoclonal anti-
bodies, defined by their cognate RBD-binding sites (sites I, II, IV and V)12.  
Our findings show that a member, or members, of each of the four 
classes can retain Omicron neutralization: S2K146, S2X324 and S2N28 
targeting site I, S2X259 targeting site II, sotrovimab targeting site IV and 
S2H97 targeting site V (Fig. 4b). Several of these monoclonal antibodies 
cross-react with and neutralize sarbecoviruses beyond the SARS-CoV-2 
clade 1b1,3,4, indicating that targeting of conserved epitopes can lead 
to neutralization breadth and resilience to antigenic shift associated 
with viral evolution.

Discussion
The high number of substitutions present in the Omicron spike protein 
marks a pronounced shift in antigenicity and is associated with immune 
evasion of considerable magnitude for SARS-CoV-2. Antigenic shift 
of the influenza virus is defined as genetic reassortment of the RNA 
genome segments, but the mechanism for the abrupt appearance of 
a large number of mutations in SARS-CoV-2 Omicron spike protein 
remains to be determined. Although recombination events are a hall-
mark of coronaviruses47, we and others48 propose that the Omicron 
shift may result from extensive viral replication in immunodeficient 
hosts47,49, although we cannot rule out the possibility of a contribution 
of inter-species ping-pong transmission5 between humans and rodents, 
as previously described for minks50.

Consistent with the variable decrease in plasma neutralizing antibody 
titres, we found that only 6 out of a panel of 44 neutralizing monoclo-
nal antibodies retained potent neutralizing activity against Omicron. 
The monoclonal antibodies that retain neutralization recognize RBD 
antigenic sites that are conserved in Omicron and other sarbecovi-
ruses. Notably, three of these antibodies bind to the RBM, including one 
that is a molecular mimic of the ACE2 receptor (S2K146)1. Collectively, 
these data may guide future efforts to develop SARS-CoV-2 vaccines 
and therapies to counteract antigenic shift and future sarbecovirus 
zoonotic spillovers.
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Methods

Cell lines
Cell lines used in this study were obtained from ATCC (HEK293T and 
Vero E6), Thermo Fisher Scientific (Expi-CHO-S cells, FreeStyle 293-F 
cells and Expi293F cells), Takara (Lenti-X 293T cells) or generated 
in-house (Vero E6-TMPRSS2)40. Vero-TMPRSS251 cells were cultured 
at 37 °C in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS), 10 mM HEPES pH 7.3 and 100 U ml−1 of 
penicillin–streptomycin and supplemented with 5 µg ml−1 of blasticidin. 
None of the cell lines used was authenticated. Cell lines were routinely 
tested for mycoplasma contamination.

Omicron prevalence analysis
The viral sequences and the corresponding metadata were obtained 
from the GISAID EpiCoV project (https://www.gisaid.org/). Analysis was 
performed on sequences submitted to GISAID up to 20 December 2021. 
Spike protein sequences were obtained from the genomic sequences 
with the exonerate52 2 2.4.0–haf93ef1_3 (https://quay.io/repository/
biocontainers/exonerate?tab=tags) using protein to DNA alignment 
with parameters -m protein2dna –refine full –minintron 999999 –per-
cent 20 and using accession YP_009724390.1 as a reference. Multiple 
sequence alignment of all human spike proteins was performed with 
mafft53 7.475–h516909a_0 (https://quay.io/repository/biocontainers/
mafft?tab=tags) with parameters –auto –reorder –mapout –keeplength 
–addfragments using the same reference as above. The –mapout param-
eter was used to retrieve insertions. Spike sequences that contained 
more than 10% ambiguous amino acids or that were less than 80% of 
the canonical protein length were discarded. Figures were generated 
with R 4.0.2 (https://cran.r-project.org/) using the ggplot2 3.3.2 and 
sf 0.9-7 packages. To identify each mutation prevalence, missingness 
(or ambiguous amino acids) was taken into account in both nominator 
and denominator.

Monoclonal antibodies
Sotrovimab and VIR-7832 (VIR-783254 is derived from sotrovimab, Fc 
further engineered to carry GAALIE) were produced at WuXi Biolog-
ics. Antibody VH and VL sequences for the monoclonal antibodies 
COV2-2130 (Protein Data Bank (PDB) ID 7L7E), COV2-2196 (PDB ID 7L7E, 
7L7D), REGN10933 (PDB ID 6XDG), REGN10987 (PDB ID 6XDG) and ADI-
58125 (PCT application WO2021207597, seq. IDs 22301 and 22311) were 
subcloned into heavy chain (human IgG1) and the corresponding light 
chain (human Ig κ-chain, Ig λ-chain) expression vectors respectively 
and produced in transiently transfected ExpiCHO-S cells (Thermo 
Fisher Scientific, A29133) at 37 °C and 8% CO2. Cells were transfected 
using ExpiFectamine. Transfected cells were supplemented 1 day after 
transfection with ExpiCHO Feed and ExpiFectamine CHO Enhancer. 
Cell culture supernatant was collected eight days after transfection and 
filtered through a 0.2-µm filter. Recombinant antibodies were affinity 
purified on an ÄKTA Xpress FPLC device using 5 ml HiTrap MabSelect 
PrismA columns followed by buffer exchange to histidine buffer (20 mM 
histidine, 8% sucrose, pH 6) using HiPrep 26/10 desalting columns. 
Antibody VH and VL sequences for LY-CoV555, LY-CoV016 and CT-P59 
were obtained from PDB IDs 7KMG, 7C01 and 7CM4, respectively, and 
monoclonal antibodies were produced as recombinant IgG1 by ATUM.  
The remaining monoclonal antibodies were discovered at VIR and have 
been produced as recombinant IgG1 in ExpiCHO-S cells as described 
above. The identity of the produced monoclonal antibodies was con-
firmed by liquid chromatography–mass spectrometry (LC–MS) analysis.

IgG mass quantification by LC–MS intact protein mass analysis
Fc N-linked glycan from monoclonal antibodies was removed by PNGase 
F after overnight non-denaturing reaction at room temperature. Degly-
cosylated protein (4 µg) was injected to the LC–MS system to acquire 
intact MS signal. Thermo MS (Q Exactive Plus Orbitrap) was used to 

acquire intact protein mass under denaturing condition with m/z win-
dow from 1,000 to 6,000. BioPharma Finder 3.2 software was used to 
deconvolute the raw m/z data to protein average mass. The theoreti-
cal mass for each monoclonal antibody was calculated with GPMAW 
10.10 software. Post-translational modifications such as N-terminal 
pyroglutamate cyclization, C-terminal lysine cleavage and formation 
of 16–18 disulfide bonds were added into the calculation.

Sample donors
Samples were obtained from SARS-CoV-2 convalescent and vaccinated 
individuals under study protocols approved by the local institutional 
review boards (Canton Ticino Ethics Committee, Switzerland, Comitato 
Etico Milano Area 1). All donors provided written informed consent 
for the use of blood and blood derivatives (such as peripheral blood 
mononuclear cells, sera or plasma) for research. Plasma samples from 
convalescent individuals and individuals who had been vaccinated with 
Ad26.COV2.S, mRNA-1273 or BNT162b2 were obtained from the HAARVI 
study, approved by the University of Washington Human Subjects 
Division Institutional Review Board (STUDY00000959). Samples from 
individuals who had been vaccinated with AZD1222 were obtained from 
INGM, Ospedale Maggio Policlinico of Milan and approved by the local 
review board Study Polimmune. Samples from individuals who had 
been vaccinated with Sputnik V were obtained from healthcare workers 
at the hospital de Clínicas ‘José de San Martín’, Buenos Aires, Argentina. 
Samples from individuals who had been vaccinated with Sinopharm 
were enrolled from Aga Khan University under the institutional review 
board of the UWARN (United World Antivirus Research Network) study.

Pseudovirus neutralization assays
Generation of VSV pseudovirus used in Vero E6 cells. The plasmid 
encoding the Omicron SARS-CoV-2 spike variant was generated by over-
lap PCR mutagenesis of the wild-type plasmid, pcDNA3.1(+)-spike-D1955. 
Replication defective VSV pseudovirus expressing SARS-CoV-2 spike 
proteins corresponding to the ancestral Wuhan-Hu-1 virus and the Omi-
cron VOC were generated as previously described46 with some modi-
fications. Lenti-X 293T cells (Takara) were seeded in 15-cm2 dishes at a 
density of 10 × 106 cells per dish and the following day were transfected 
with 25 µg of spike expression plasmid with TransIT-Lenti (Mirus, 6600) 
according to the manufacturer’s instructions. One day after transfec-
tion, cells were infected with VSV-luc (VSV-G) with a multiplicity of 
infection (MOI) of 3 for 1 h, rinsed three times with PBS containing Ca2+ 
and Mg2+, then incubated for an additional 24 h in complete medium at 
37 °C. The cell supernatant was clarified by centrifugation, aliquoted, 
and frozen at −80 °C.

Generation of VSV pseudovirus used in Vero E6-TMPRSS2 cells. 
Comparison of Omicron SARS-CoV-2 spike VSV to SARS-CoV-2 G614 
spike (YP 009724390.1) VSV and Beta spike VSV used pseudotyped 
particles prepared as described previously9,56. In brief, HEK293T cells 
in DMEM supplemented with 10% FBS, 1% penicillin–streptomycin 
seeded in 10-cm dishes were transfected with the plasmid encoding 
the corresponding spike glycoprotein using Lipofectamine 2000 (Life 
Technologies) following the manufacturer’s instructions. One day 
after transfection, cells were infected with VSV(G*ΔG-luciferase)57 and 
after 2 h were washed five times with DMEM before adding medium 
supplemented with anti-VSV-G antibody (I1-mouse hybridoma super-
natant, CRL-2700, ATCC). Virus pseudotypes were collected 18–24 h 
after inoculation, clarified by centrifugation at 2,500g for 5 min, filtered 
through a 0.45-μm cut-off membrane, concentrated 10 times with a 
30-kDa cut-off membrane, aliquoted and stored at −80 °C.

VSV pseudovirus neutralization. Assay performed using Vero 
E6 cells. Vero E6 cells were grown in DMEM supplemented with 10% 
FBS and seeded into clear bottom white 96 well plates (PerkinElmer, 
6005688) at a density of 20,000 cells per well. The next day, monoclonal 
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antibodies or plasma were serially diluted in pre-warmed complete 
medium, mixed with pseudoviruses and incubated for 1 h at 37 °C in 
round bottom polypropylene plates. Medium from cells was aspi-
rated and 50 µl of virus–monoclonal antibody–plasma complexes 
was added to cells, which were then incubated for 1 h at 37 °C. An ad-
ditional 100 µl of prewarmed complete medium was then added on 
top of complexes and cells were incubated for an additional 16–24 h. 
Conditions were tested in duplicate wells on each plate and eight wells 
per plate contained untreated infected cells (defining the 0% of neu-
tralization, ‘MAX RLU’ value) and infected cells in the presence of S309 
and S2X259 at 20 µg ml−1 each (defining the 100% of neutralization, ‘MIN 
RLU’ value). Virus–monoclonal antibody–plasma-containing medium 
was then aspirated from cells and 100 µl of a 1:2 dilution of SteadyLite 
Plus (PerkinElmer, 6066759) in PBS with Ca2+ and Mg2+ was added to 
cells. Plates were incubated for 15 min at room temperature and then 
were analysed on the Synergy-H1 (Biotek). The average relative light 
units (RLUs) of untreated infected wells (MAX RLUave) was subtracted 
by the average of MIN RLU (MIN RLUave) and used to normalize per
centage of neutralization of individual RLU values of experimental 
data according to the following formula: (1 − (RLUx – MIN RLUave)/ 
(MAX RLUave – MIN RLUave)) × 100. Data were analysed and visualized 
with Prism (v.9.1.0). IC50 (monoclonal antibodies) and ID50 (plasma)  
values were calculated from the interpolated value from the 
log(inhibitor) versus response, using variable slope (four parameters) 
nonlinear regression with an upper constraint of ≤100, and a lower con-
strain equal to 0. Each neutralization experiment was conducted on two 
independent experiments—that is, biological replicates—in which each 
biological replicate contains a technical duplicate. IC50 values across 
biological replicates are presented as arithmetic mean ± s.d. The loss 
or gain of neutralization potency across spike variants was calculated 
by dividing the variant IC50/ID50 by the parental IC50/ID50 within each 
biological replicate, and then visualized as arithmetic mean ± s.d.

Assay performed using Vero E6-TMPRSS2 cells. VeroE6-TMPRSS2 
cells were cultured in DMEM with 10% FBS (Hyclone), 1% penicillin–strep-
tomycin and 8 µg ml−1 puromycin (to ensure retention of TMPRSS2) 
with 5% CO2 in a 37 °C incubator (Thermo Fisher Scientific). Cells were 
trypsinized using 0.05% trypsin and plated to be at 90% confluence the 
following day. In an empty half-area 96-well plate, a 1:3 serial dilution of 
serum was made in DMEM and diluted pseudovirus was then added and 
incubated at room temperature for 30–60 min before addition of the se-
rum–virus mixture to the cells at 37 °C. Two hours later, 40 μl of a DMEM 
solution containing 20% FBS and 2% penicillin–streptomycin (Thermo 
Fisher Scientific, 10,000 units per ml of penicillin and 10,000 µg ml−1 of 
streptomycin when undiluted) was added to each well. After 17–20 h, 
40 μl per well of One-Glo-EX substrate (Promega) was added to the 
cells and they were incubated in the dark for 5–10 min before reading 
on a BioTek plate reader. Measurements were done at least in duplicate 
using distinct batches of pseudoviruses and one representative experi-
ment is shown. RLUs were plotted and normalized in Prism (GraphPad). 
Nonlinear regression of log(inhibitor) versus normalized response was 
used to determine IC50 values from curve fits. Normality was tested using 
the D’Agostino-Pearson test and in the absence of a normal distribution, 
Kruskal–Wallis tests were used to compare two groups to determine 
whether differences reached statistical significance. Fold changes were 
determined by comparing individual IC50 and then averaging the indi-
vidual fold changes for reporting.

Focus reduction neutralization test
The WA1/2020 strain with a D614G substitution was described previ-
ously58. The B.1.1.529 isolate (hCoV-19/USA/WI-WSLH-221686/2021) 
was obtained from a nasal swab and passaged on Vero-TMPRSS2 
cells as described59. The B.1.1.529 isolate was sequenced (GISAID:  
EPI_ISL_7263803) to confirm the stability of substitutions. All virus experi-
ments were performed in an approved biosafety level 3 (BSL-3) facility.

Serial dilutions of sotrovimab were incubated with 102 focus-forming 
units of SARS-CoV-2 (WA1/2020 D614G or B.1.1.529) for 1 h at 37 °C. 
Antibody–virus complexes were added to Vero-TMPRSS2 cell mon-
olayers in 96-well plates and incubated at 37 °C for 1 h. Subsequently, 
cells were overlaid with 1% (w/v) methylcellulose in MEM. Plates were 
collected 30 h later (WA1/2020 D614G on Vero-TMPRSS2 cells) or 70 h 
later (B.1.1.529 on Vero-TMPRSS2 cells) by removal of overlays and fixa-
tion with 4% PFA in PBS for 20 min at room temperature. Plates with 
WA1/2020 D614G were washed and sequentially incubated with an 
oligoclonal pool of SARS2-2, SARS2-11, SARS2-16, SARS2-31, SARS2-38,  
SARS2-57 and SARS2-7160 anti-S antibodies. Plates with B.1.1.529 were 
additionally incubated with a pool of monoclonal antibodies that 
cross-react with SARS-CoV-1 and bind a CR3022-competing epitope 
on the RBD61. All plates were subsequently stained with HRP-conjugated 
goat anti-mouse IgG (Sigma, A8924) in PBS supplemented with 0.1% 
saponin and 0.1% bovine serum albumin. SARS-CoV-2-infected cell 
foci were visualized using TrueBlue peroxidase substrate (KPL) and 
quantitated on an ImmunoSpot microanalyser (Cellular Technolo-
gies). Antibody dose response curves were analysed using nonlinear 
regression analysis with a variable slope (GraphPad Software), and the 
IC50 was calculated.

VSV pseudovirus entry assays using mouse ACE2
HEK293T (293T) cells (ATCC CRL-11268) were cultured in 10% FBS, 1% 
penicillin–streptomycin in DMEM at 37 °C in a humidified 8% CO2 incu-
bator. Transient transfection of mouse ACE2 in 293T cells was done 
18–24 h before infection using Lipofectamine 2000 (Life Technologies) 
and an HDM plasmid containing full-length mouse ACE2 (GenBank: 
Q8R010, synthesized by GenScript) in Opti-MEM. After a 5-h incuba-
tion at 37 °C in a humidified 8% CO2 incubator, DMEM with 10% FBS 
was added and cells were incubated at 37 °C in a humidified 8% CO2 
incubator for 18–24 h. Immediately before infection, 293T cells with 
transient expression of mouse ACE2 were washed with DMEM 1×, then 
plated with pseudovirus at a 1:75 dilution in DMEM. Infection in DMEM 
was done with cells between 60% and 80% confluence for 2.5 h before 
adding FBS and penicillin–streptomycin to final concentrations of 
10% and 1%, respectively. After 18–24 h of infection, One-Glo-EX (Pro-
mega) was added to the cells and they were incubated in the dark for 
5 min before reading on a Synergy H1 Hybrid Multi-Mode plate reader 
(Biotek). Cell entry levels of pseudovirus generated on different days 
(biological replicates) were plotted in GraphPad Prism as individual 
points, and average cell entry across biological replicates was calculated 
as the geometric mean.

Production of recombinant RBD proteins
SARS-CoV-2 RBD proteins for SPR binding assays (residues 328–531 of 
the spike protein from GenBank NC_045512.2 with N-terminal signal 
peptide and C-terminal thrombin cleavage site-TwinStrep-8×His-tag) 
were expressed in Expi293F (Thermo Fisher Scientific) cells at 37 °C and 
8% CO2. Transfections were performed using the ExpiFectamine 293 
Transfection Kit (Thermo Fisher Scientific). Cell culture supernatants 
were collected two to four days after transfection and supplemented 
with 10× PBS to a final concentration of 2.5× PBS (342.5 mM NaCl, 
6.75 mM KCl and 29.75 mM phosphates). SARS-CoV-2 RBDs were puri-
fied using cobalt-based immobilized metal affinity chromatography 
followed by buffer exchange into PBS using a HiPrep 26/10 desalting 
column (Cytiva) or, for the second batch of Omicron RBD used for SPR, 
a Superdex 200 Increase 10/300 GL column (Cytiva).

The SARS-CoV-2 Wuhan-Hu-1 and Delta (B.1.617.2) RBD-Avi constructs 
were synthesized by GenScript into pcDNA3.1- with an N-terminal 
mu-phosphatase signal peptide and a C-terminal octa-histidine tag,  
flexible linker and avi tag (GHHHHHHHHGGSSGLNDIFEAQKIEWHE). 
The boundaries of the construct are N-328RFPN331 and 528KKST531-C (refs. 9,14).  
Proteins were produced in Expi293F cells (Thermo Fisher Scientific) 
grown in suspension using Expi293 Expression Medium (Thermo 



Fisher Scientific) at 37 °C in a humidified 8% CO2 incubator rotating 
at 130 rpm. Cells grown to a density of 3 million cells per ml were trans-
fected using the the ExpiFectamine 293 Transfection Kit (Thermo 
Fisher Scientific) and cultivated for 3–5 days. Proteins were purified 
from clarified supernatants using a nickel HisTrap HP affinity column 
(Cytiva) and washed with 10 column volumes of 20 mM imidazole, 
25 mM sodium phosphate pH 8.0 and 300 mM NaCl before elution on 
a gradient to 500 mM imidazole. Proteins were biotinylated overnight 
using the BirA Biotin-Protein Ligase Kit (Avidity) and purified again 
using theHisTrapHP affinity column. After a wash and elution as before, 
proteins were buffer-exchanged into 20 mM sodium phosphate pH 8 
and 100 mM NaCl, and concentrated using centrifugal filters (Amicon 
Ultra) before being flash-frozen.

Recombinant production of ACE2 orthologues
Recombinant human ACE2 (residues 19–615 from Uniprot Q9BYF1 with 
a C-terminal AviTag-10×His-GGG-tag, and N-terminal signal peptide) 
was produced by ATUM. Protein was purified via Ni Sepharose resin 
followed by isolation of the monomeric hACE2 by size-exclusion chro-
matography using a Superdex 200 Increase 10/300 GL column (Cytiva) 
pre-equilibrated with PBS. The mouse (Mus musculus) ACE2 ectodomain 
construct (GenBank: Q8R0I0) was synthesized by GenScript and placed 
into a pCMV plasmid. The domain boundaries for the ectodomain are 
residues 19–615. The native signal tag was identified using SignalP-5.0 
(residues 1–18) and replaced with an N-terminal mu-phosphatase sig-
nal peptide. This construct was then fused to a sequence encoding a 
thrombin cleavage site and a human Fc fragment or an 8×His tag at the 
C terminus. ACE2-Fc and ACE2-His constructs were produced in Expi293 
cells (Thermo Fisher Scientific, A14527) in Gibco Expi293 Expression 
Medium at 37 °C in a humidified 8% CO2 incubator rotating at 130 rpm. 
The cultures were transfected using PEI-25K (Polyscience) with cells 
grown to a density of 3 million cells per ml and cultivated for 4–5 days. 
Proteins were purified from clarified supernatants using a 1-ml HiTrap 
Protein A HP affinity column (Cytiva) or a 1-ml HisTrap HP affinity col-
umn (Cytiva), concentrated and flash-frozen in 1× PBS, pH 7.4 (10 mM 
Na2HPO4, 1.8 mM KH2PO4, 2.7 mM KCl, 137 mM NaCl).

ACE2-binding measurements using SPR
Measurements were performed using a Biacore T200 instrument, 
in triplicate for monomeric human and mouse ACE2 and duplicate 
for dimeric mouse ACE2. A CM5 chip covalently immobilized with 
StrepTactin XT (IBA LifeSciences) was used for surface capture of 
TwinStrepTag-containing RBDs (Wuhan-Hu-1, Alpha, Beta, Omicron, 
K417N) and a Cytiva Biotin CAPture Kit was used for surface capture of 
biotinylated RBDs (Delta and Wuhan-Hu-1 used for fold-change com-
parison to Delta). Two different batches of Omicron RBD were used 
for the experiments. Running buffer was HBS-EP+ pH 7.4 (Cytiva) and 
measurements were performed at 25 °C. Experiments were performed 
with a threefold dilution series of human ACE2 (300, 100, 33, 11 nM) or 
mouse ACE2 (900, 300, 100, 33 nM) and were run as single-cycle kinet-
ics. Monomeric ACE2-binding data were double-reference-subtracted 
and fit to a 1:1 binding model using Biacore Evaluation software. High 
concentrations of dimeric mouse ACE2 exhibited significant binding 
to the CAP sensor chip reference flow cell.

Statistical analysis
Neutralization measurements were performed in duplicate and RLUs 
were converted to per cent neutralization and plotted with a nonlin-
ear regression model to determine IC50/ID50 values using GraphPad 
Prism software (v.9.0.0). Comparisons between two groups of paired 
two-sided data were made with Wilcoxon rank test.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Materials generated in this study will be made available on request 
and may require a material transfer agreement. Access to GISAID  
(www.gisaid.org) data requires registration. Note: after consulting 
with the local ethical authority, owing to health and data protection 
laws relating to the demographic and clinical information contained 
in the manuscript, we will not be able to fully comply with the require-
ment to share demographic and clinical data of individual patients 
and donors in this study.
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Extended Data Fig. 1 | Schematic of mutations landscape in SARS-CoV-2 VOCs, variants of interest and variants under monitoring. D, deletion; ins, 
insertion; VOI, variant of interest; VUM, variant under monitoring.
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Extended Data Fig. 2 | Amino acid substitutions and their prevalence in the 
Omicron RBD. a, SARS-CoV-2 spike protein in fully open conformation (PDB: 
7K4N) with positions of mutated residues in Omicron highlighted on one 
protomer in green or red spheres in or outside the ACE2 footprint (ACE2), 
respectively. RBM is defined by a 6 Å cut-off in the RBD-ACE2 interface38. Not all 

Omicron mutations are shown. b, Substitutions and their prevalence in 
Omicron sequences reported in GISAID as of 20 December 2021 (ambiguous 
amino acid substitutions are indicated with strikethrough cells). Shown are 
also the prevalence in Omicron (%) and substitutions found in other variants. 
K417N mutation in Delta is found only in a fraction of sequences.



Extended Data Fig. 3 | Amino acid substitutions and their prevalence in the Omicron NTD. Sequences reported in GISAID as of 20 December 2021 (ambiguous 
amino acid substitutions are marked with strikethrough cells). Shown are also the substitutions found in other variants.
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Extended Data Fig. 4 | Amino acid substitutions and their prevalence in Omicron S2. Sequences reported in GISAID as of 20 December 2021 (ambiguous amino 
acid substitutions are marked with strikethrough cells). Shown are also the substitutions found in other variants.



Extended Data Fig. 5 | Characteristics of emergent mutations of Omicron. 
a, Shared mutations of Omicron with other sarbecovirus and with VOC. b, Since 
the beginning of the pandemic there is a progressive coalescence of 
Omicron-defining mutations into non-Omicron haplotypes that may carry as 
many as 10 of the Omicron-defining mutations. c, Pango lineages (dots) rarely 

carry more than 10-15 lineage-defining mutations. d, Exceptionally, some 
non-Omicron haplotypes may carry up to a maximum 19 Omicron-defining 
mutations. Shown are selected exceptional haplotypes. Spike G142D and 
Y145del may also be noted as G142del and Y145D.
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Extended Data Fig. 6 | SPR analysis of human and mouse ACE2. a, Full fit 
results for one representative replicate from each quantifiable SPR dataset 
with a monomeric analyte (1:1 binding model). b, Single-cycle kinetics SPR 
analysis of dimeric mouse ACE2 binding to six RBD variants. Dimeric ACE2 is 
injected successively at 33, 100, 300, and 900 nM. White and grey stripes 

indicate association and dissociation phases, respectively. The asterisk 
indicates where high concentrations of dimeric mouse ACE2 are 
non-specifically binding to the sensor chip surface (Delta experiment was 
performed separately from the other RBD variants, with a different capture tag 
and chip surface).



Extended Data Fig. 7 | Neutralization of SARS-CoV-2 Omicron live virus  by 
sotrovimab in Vero-TMPRSS2 cells. a–f, Neutralization curves in 
Vero-TMPRSS2 cells comparing the sensitivity of SARS-CoV-2 strains with 
sotrovimab with WA1/2020 D614G and hCoV-19/USA/WI-WSLH-221686/2021 

(an infectious clinical isolate of Omicron from a symptomatic individual in the 
United States). Shown are three independent experiments performed in 
technical duplicate.



Article

Extended Data Fig. 8 | Neutralization of WT (D614) and Omicron 
SARS-CoV-2 Spike pseudotyped virus by a panel of 36 monoclonal 
antibodies. a–c, Neutralization of SARS-CoV-2 VSV pseudoviruses carrying 
wild-type D614 (grey) or Omicron (orange) spike protein by NTD-targeting  

(a) and RBD-targeting (b, c) monoclonal antibodies (b, site I; c, sites II and V). 
Data are representative of two independent experiments. Shown is the mean of 
2 technical replicates.



Extended Data Table 1 | Demographics of enrolled donors

Characteristics of the individuals in the analysed cohorts, including gender, age range and type of vaccine received.
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Extended Data Table 2 | Properties of tested monoclonal antibodies

Details of the full set of monoclonal antibodies characterized for their neutralizing activity in Figs. 3, 4, including specificity, V gene usage for the heavy chain, original source, IC50 values, acces-
sion codes of available structures and relevant references. References included in the table are refs. 1–4,9,12,21,31–38,40,44,45,62–71.
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