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Stiff competition
arising from J. B. Berger, H. N. G. Wadley & R. M. McMeeking, Nature 543, 533–537 (2017); https://doi.org/10.1038/nature21075

The paper of Berger, Wadley & McMeeking1 presents beautiful results 
on structured composites near the edge of maximal stiffness for a given 
porosity. However, it appears that the authors were unaware of the 
large body of work on this subject, much of it summarized in refs 2–6.  
In particular, their claim that “a material geometry that achieves the 
theoretical upper bounds for isotropic elasticity and strain energy stor-
age (the Hashin–Shtrikman upper bounds) has yet to be identified” is 
not accurate. Multiscale elastically isotropic composites with simultane-
ously maximal bulk and shear modulus—and hence maximal stiffness 
and energy storage—were identified independently in refs 7–9. There is 
a Reply to this Comment by J. B. Berger et al., Nature 564, https://doi.
org/10.1038/s41586-018-0725-7 (2018).

Moreover, the simple argument made in ref. 8—that the Hashin–
Shtrikman bounds are attained if the actual field in the material 
matches the trial field, which is constant in one phase—shows that 
any hierarchical laminate, in which layers of the stiffer phase are 
sequentially added to the composite in different orientations, neces-
sarily achieves these upper bounds if layering is done so that the final 
material is elastically isotropic. Later it was established by Bourdin 
and Kohn10 that no separation of length scales is needed if the volume  
fraction of the stiffer phase is small. These geometries are formed 
by the union of families of parallel plates, with each family having 
a different orientation, and include the cubic foam, octet foam and 
cubic + octet foam described in ref. 1. The novelty of ref. 1 is that 
it shows that this class of microstructure also works well if the  
volume fraction is moderate. Other porous three-dimensional micro-
geometries with very large bulk and shear moduli, at a moderate  
volume fraction of 0.338, have been found using topology optimiza-
tion methods11 (see, in particular, point e in figure 9 of ref. 11). Yet it is 
still not known if a single-scale geometry can exactly attain the shear 
bounds away from the low-density limit. Single-scale geometries can 
achieve the bulk modulus bounds12–14.

To finish, we briefly mention important results that cover more 
general questions than those addressed in ref. 1 to bring readers 
up to speed on current developments. If the second material is not 
void, there are improved bounds that couple the possible bulk and 
shear moduli15,16, and the range of possible (bulk, shear) pairs has 
been explored numerically11,17. A recent paper18 goes a long way to 
completely characterizing the possible elasticity tensors of three- 
dimensional printed, possibly anisotropic, materials constructed from 
a given isotropic material with given porosity. These materials include 
elastically isotropic microstructures that asymptotically attain the 
Hashin–Shtrikman upper bulk modulus bound for any given volume 
fraction, yet have an arbitrarily small shear modulus. If one allows the 
starting material to be as stiff as one likes, and replaces the void mate-
rial by a material that is as compliant as one likes, then one can get any 
desired elasticity tensor19—a result also suggested by numerics17. In 
fact, non-local effective behaviours are possible too and, remarkably, 
these have also been completely characterized for linear elasticity20. 
In principle, one can obtain composites for which uniform strains 
cost little energy, but gradients in the strains (double gradients of the 
displacement) cost considerable energy (see, for example, ref. 21 for 
some interesting examples).
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Berger et al. reply
replying to G. W. Milton, Nature 564, https://doi.org/10.1038/s41586-018-0724-8 (2018)

In the accompanying Comment1, Milton correctly points out that mate-
rial geometries that achieve the Hashin–Shtrikman upper bounds2 have 
been previously identified. We thank G. W. Milton for his interest in 
our work3 and welcome his insights, including those that look beyond 
our contribution in regard to elasticities that are realizable.

Milton correctly refutes our statement that “a material geometry that 
achieves the theoretical upper bounds for isotropic elasticity and strain 
energy storage (the Hashin–Shtrikman upper bounds2) has yet to be 
identified”. In his Comment1, Milton has pointed to many studies that 
have identified material combinations and multi-length-scale geome-
tries that achieve the Hashin–Shtrikman2 theoretical upper bound4–6. 
We acknowledge and accept this correction of our claim.

Retrospectively, it is clear that we should have qualified our claim and 
placed it in the narrower context of our study (namely, the design of a 
single-length-scale, single-material, elastically isotropic lattice that is 
easily fabricated)—a context motivated by the need for lightweighting 
and the continuing discovery of multifunctional structural systems. We 
did describe (to our knowledge, for the first time) a single-length-scale 
biphasic material geometry—specifically, a combination of void and 
solid phases—that performs at, or nearly at, the Hashin–Shtrikman 
upper bounds for both the bulk and shear moduli simultaneously, over 
a wide range of relative lattice densities. This design is simple and man-
ufacturable and was demonstrated to achieve, or nearly achieve, the 
Hashin–Shtrikman2 theoretical upper bounds. In addition, because 
it is composed of two anisotropic but maximally efficient sub-geome-
tries, it enables the creation of multifunctional lightweight structures. 
In our paper3, we provided analytical proof of our design’s maximal 
elastic performance, as well as numerical evidence of its optimal elastic 
performance over a wide range of relative densities. In this restricted 
‘single-length-scale, single-material’ context, we assess our claim to be 
accurate, and accept that we were remiss in not stating this context 
more clearly.

The summarizing works7–10 cited by Milton present techniques for 
generating optimal material microstructures. However, none directly 
addresses the problem that we sought to solve. Milton states that 

material geometries that achieve the Hashin–Shtrikman upper bounds  
simultaneously have previously been identified4–6. Although this is true, 
we find that there are notable differences that clearly differentiate our 
work from these studies. These are perhaps most evident in the geometric  
simplicity of our design and its implications for the fabricability, and 
therefore the utility, of our design as an engineering material system.

Although Norris4 identified a microstructure that simultaneously 
achieves the Hashin–Shtrikman upper bounds, this solution consists 
of solid disks embedded in vacuum, which is impractical. Francfort and 
Murat6 proved mathematically that laminates that stack in three dimen-
sions can also simultaneously achieve the Hashin–Shtrikman upper 
bounds. However, the authors specify that both phases are solid, so 
low-density, single-solid-material systems with void space, such as ours, 
are not accessible. In both cases, voided regions can be approximated as 
a very-low-density phase. However, the design of this porous phase is 
still an issue, which is essentially identical to the fundamental problem 
of identifying a single-length-scale maximally stiff isotropic material 
geometry. This only adds to the difficulty of the solution by requiring 
material geometries to be constructed at even smaller length scales.

Ranked laminates have previously been shown to simultaneously 
achieve the Hashin–Shtrikman upper bounds5. Such laminates rely on 
multiple length scales, and at each level the smaller-scale composites 
are assumed to be isotropic and effectively continuous. We purposely 
avoid such complexity in our approach, in an effort to achieve simple 
and therefore manufacturable geometries.

Bourdin and Kohn11 studied a family of material geometries that 
contain parallel planes of material and that would appear to contain the 
cubic and octet geometries. These materials were found to simultane-
ously achieve the Hashin–Shtrikman upper bounds in the low-density 
limit—an aspect paralleled in our work. The authors performed numer-
ical calculations to obtain two-dimensional solutions but did not go on 
to generate three-dimensional designs—thus avoiding what might be 
the most practical application of ref. 11. Our work does parallel ref. 11  
in the recognition that sheets of material are required for optimal per-
formance. This insight, regretfully, appears to have been overlooked 
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Fig. 1 | Young’s, shear and bulk moduli. Finite-element analysis results 
indicate that with the addition of fillets, the normalized elastic moduli of 
the cubic + octet foam can achieve more than 98% of the theoretical upper 
limit for specific strain energy storage when the relative density is 
moderate to low, ρ ρ/ ≤ .26 4%S ; ρ  is the effective density of the cellular 
material and ρS is the density of the constituent (solid) material (ν is the 

Poisson ratio). The filleted design with a wall thickness ratio of / =t t 3c t  
at ρ ρ/ = .26 4%S  has a shear performance that reaches 96.7% of the 
Hashin–Shtrikman upper limit. By varying the wall thickness ratio, 
isotropy can be achieved independently of the total performance, so that 
98% of the shear upper bound can be realized at this relative density.
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by the broader community, and we are unaware of any subsequent 
study that utilized it as a design principle to identify a manufacturable 
three-dimensional solution such as ours.

There are numerous studies that involve mathematical approaches 
to achieve extremal performance in composite systems. One of the 
primary issues with the further development of these systems into 
structural materials is the often-complex nature of these designs. For 
example, Cherkaev7 describes composites that are assumed to be com-
posed of small fragments, which are necessarily much smaller than the 
domain under consideration, with ranked laminates being a subset of 
these materials. The practicality of fabricating such complex geometries 
is questionable, since Cherkaev himself suggests that these are most 
useful as design guidelines for more practical approaches7.

There is certainly a large and interesting body of work in the area of 
topology and geometry optimization that address a space that encom-
passes and goes beyond the scope of our work—some of which Milton 
highlights12–18. We appreciate his identification of the parallels between 
our work and this important area of study.

While it is still not known whether a material geometry exists that 
can achieve the Hashin–Shtrikman shear upper bound away from the 
low-density limit, the cubic + octet foam achieves 94.7% of the Hashin–
Shtrikman upper bound on shear modulus, and 95.2% of the bound on 
Young’s modulus, at a moderate relative density of 0.338, while having 
a Zener anisotropy ratio of 1.01. By reducing stress concentrations by 
rounding the joints where webs intersect (that is, with the addition of 
fillets), these can be increased to 96.4%, 98.1% and 1.02, respectively 
(this is with a wall thickness ratio of / =t t 3c t —not / = /t t 8 3 9c t , 
which is isotropic in the low-density limit3; tc and tt are the wall thick-
nesses of the cubic and octet sub-geometries, respectively) (Fig. 1). 
These can easily be made isotropic by varying the ratio of the wall 
thicknesses, tc/tt. This improvement is not the result of rigorous opti-
mization, but rather a simple ad hoc approach that leaves room for 
potentially even better-performing designs. If the results of Andreassen 
et al.19 are indeed relevant and noteworthy, as Milton points out, then 
it pays to mention that the cubic + octet foam does, in essence, achieve 
the theoretical upper bounds for structural efficiency away from the 
low-density limit (Fig. 2), including that for shear modulus, and that 
the identification of such a material geometry is not a completely open 
problem.

In the papers discussed above we find no description or illustration 
of a simple three-dimensional, low-density geometry with a single 
length scale and fabricated using a single solid material, that achieves 
the Hashin–Shtrikman upper bounds on elastic moduli; that is, we find 
nothing similar to the geometry that we have developed. Although the 
work of Bourdin and Kohn11 does appear to facilitate the generation of 
our extremal design, the authors do not use their numerical scheme to 
solve any three-dimensional problems, and their proofs address only 
the low-density limit. We acknowledge that Professor Milton has pro-
vided a helpful summary of theoretical approaches that complement 
the approach that we have taken. However, considering the limited 
space available for the presentation of our study, the focus of our paper3 
was to describe and discuss our design approach and the mechanical 
properties of the resulting topology. This focus determined the empha-
sis of the work that we presented and restricted the literature that we 
selected to cite.
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Fig. 2 | Total stiffness. The total specific strain energy storage of the 
cubic + octet foam is enhanced by the addition of fillets. This topology 
achieves more than 96.6% of the upper bounds when ρ ρ/ ≤ .40 0%S .
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