Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial transcriptomics in health and disease

Abstract

The ability to localize hundreds of macromolecules to discrete locations, structures and cell types in a tissue is a powerful approach to understand the cellular and spatial organization of an organ. Spatially resolved transcriptomic technologies enable mapping of transcripts at single-cell or near single-cell resolution in a multiplex manner. The rapid development of spatial transcriptomic technologies has accelerated the pace of discovery in several fields, including nephrology. Its application to preclinical models and human samples has provided spatial information about new cell types discovered by single-cell sequencing and new insights into the cell–cell interactions within neighbourhoods, and has improved our understanding of the changes that occur in response to injury. Integration of spatial transcriptomic technologies with other omics methods, such as proteomics and spatial epigenetics, will further facilitate the generation of comprehensive molecular atlases, and provide insights into the dynamic relationships of molecular components in homeostasis and disease. This Review provides an overview of current and emerging spatial transcriptomic methods, their applications and remaining challenges for the field.

Key points

  • Spatially resolved transcriptomic technologies allow the spatial mapping of transcripts at single-cell or near single-cell resolution in a multiplex manner, and currently include sequencing-based technologies and imaging-based methodologies. Sequencing-based technologies include whole transcriptome-wide in situ capture and region of interest-based spatial RNA analysis platforms; imaging-based technologies include a variety of massively multiplexed in situ hybridization methodologies.

  • Key data outputs from spatial transcriptomic technologies include the anchoring of cell types and states derived from disaggregated single-cell technologies, determination of spatially variable gene expression, and the annotation of functional neighbourhoods.

  • Spatial technologies enable the localization of biologically relevant cellular interactions in the histopathological context and identification of disease-relevant cell signalling pathways associated with morphological and histopathological changes.

  • Spatial technologies are rapidly advancing to provide single-cell signatures at a whole transcriptome level. Further, these technologies are becoming increasingly multiplexed with orthogonal technologies such as spatial proteomics or epigenomics to define gene and protein regulatory patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methodologies underlying spatial transcriptomic technologies.
Fig. 2: Analytical workflow for the processing of spatial transcriptomic data.
Fig. 3: Establishment of neighbourhoods.
Fig. 4: Examples of neighbourhoods in health and disease.

Similar content being viewed by others

References

  1. Gall, J. G. The origin of in situ hybridization – a personal history. Methods 98, 4–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 41, 773–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40, 1360–1369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dries, R. et al. Advances in spatial transcriptomic data analysis. Genome Res. 31, 1706–1718 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jain, S. et al. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nat. Cell Biol. 25, 1089–1100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Boer, I. H. et al. Rationale and design of the Kidney Precision Medicine Project. Kidney Int. 99, 498–510 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. HuBMAP Consortium. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature 574, 187–192 (2019).

    Article  CAS  Google Scholar 

  12. SenNet, C. NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nat. Aging 2, 1090–1100 (2022).

    Article  Google Scholar 

  13. Oxburgh, L. et al. (Re)Building a Kidney. J. Am. Soc. Nephrol. 28, 1370–1378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Regev, A. et al. The Human Cell Atlas. Elife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan, Y. et al. Expansion spatial transcriptomics. Nat. Methods 20, 1179–1182 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Wirth, J. et al. Spatial transcriptomics using multiplexed deterministic barcoding in tissue. Nat. Commun. 14, 1523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salem, F. et al. The spatially resolved transcriptional profile of acute T cell-mediated rejection in a kidney allograft. Kidney Int. 101, 131–136 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111–117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, Y. et al. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 7, eabg4755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Groiss, S. et al. Highly resolved spatial transcriptomics for detection of rare events in cells. Preprint at bioRxiv, https://doi.org/10.1101/2021.10.11.463936 (2021).

  32. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Melo Ferreira, R. et al. Integration of spatial and single cell transcriptomics localizes epithelial-immune cross-talk in kidney injury. JCI Insight 6, e147703 (2021).

    Article  PubMed  Google Scholar 

  36. Brbic, M. et al. Annotation of spatially resolved single-cell data with STELLAR. Nat. Methods 19, 1411–1418 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Wei, R. et al. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190–1199 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Melo Ferreira, R., Freije, B. J. & Eadon, M. T. Deconvolution tactics and normalization in renal spatial transcriptomics. Front. Physiol. 12, 812947 (2021).

    Article  PubMed  Google Scholar 

  42. Zeng, Z., Li, Y., Li, Y. & Luo, Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol. 23, 83 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qian, J. et al. Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace. Nat. Commun. 14, 2484 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, J. et al. Dimension-agnostic and granularity-based spatially variable gene identification using BSP. Nat. Commun. 14, 7367 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keller, M. S. et al. Vitessce: a framework for integrative visualization of multimodal and spatially-resolved single-cell data. Preprint at OSF Preprints, https://doi.org/10.31219/osf.io/y8thv (2023).

  46. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winfree, S. et al. Integrated cytometry with machine learning applied to high-content imaging of human kidney tissue for in situ cell classification and neighborhood analysis. Lab. Invest. 103, 100104 (2023).

    Article  PubMed  Google Scholar 

  49. Li, Z., Song, T., Yong, J. & Kuang, R. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion. PLoS Comput. Biol. 17, e1008218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, J. et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12, 3545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. et al. Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain. Sci. Rep. 13, 9567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Canela, V. H. et al. A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease. Nat. Commun. 14, 4140 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gisch, D. L. et al. The chromatin landscape of healthy and injured cell types in the human kidney. Nat. Commun. 15, 433 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lucarelli, N. et al. Correlating deep learning-based automated reference kidney histomorphometry with patient demographics and creatinine. Kidney360 4, 1726–1737 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shickel, B. et al. Spatially aware transformer networks for contextual prediction of diabetic nephropathy progression from whole slide images. Proc. SPIE Int. Soc. Opt. Eng. 12471, 124710K (2023).

    PubMed  PubMed Central  Google Scholar 

  60. Zheng, Y. et al. Deep-learning-driven quantification of interstitial fibrosis in digitized kidney biopsies. Am. J. Pathol. 191, 1442–1453 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. FUSION: Functional Unit State Identification and Navigation with WSI. Welcome to FUSION! fusion, http://fusion.hubmapconsortium.org/ (2023).

  62. Ferkowicz, M. J. et al. Molecular signatures of glomerular neovascularization in a patient with diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 19, 266–275 (2023).

    Article  PubMed  Google Scholar 

  63. Janosevic, D. et al. The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline. Elife 10, e62270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheung, M. D. et al. Resident macrophage subpopulations occupy distinct microenvironments in the kidney. JCI Insight 7, e161078 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang, Z. et al. Integrated single-nucleus sequencing and spatial architecture analysis identified distinct injured-proximal tubular types in calculi rats. Cell Biosci. 13, 92 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dixon, E. E., Wu, H., Muto, Y., Wilson, P. C. & Humphreys, B. D. Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model. J. Am. Soc. Nephrol. 33, 279–289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, H. et al. High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing. Nat. Commun. 15, 1396 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kayhan, M. et al. Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease. Nat. Commun. 14, 3236 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Onoda, N. et al. Spatial and single-cell transcriptome analysis reveals changes in gene expression in response to drug perturbation in rat kidney. DNA Res 29, dsac007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sanchez-Ferras, O. et al. A coordinated progression of progenitor cell states initiates urinary tract development. Nat. Commun. 12, 2627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hodgin, J. B. et al. Quantification of glomerular structural lesions: associations with clinical outcomes and transcriptomic profiles in nephrotic syndrome. Am. J. Kidney Dis. 79, 807–819.e1 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Mariani, L. H. et al. CureGN study rationale, design, and methods: establishing a large prospective observational study of glomerular disease. Am. J. Kidney Dis. 73, 218–229 (2019).

    Article  PubMed  Google Scholar 

  73. Townsend, R. R. et al. Rationale and design of the Transformative Research in Diabetic Nephropathy (TRIDENT) Study. Kidney Int. 97, 10–13 (2020).

    Article  PubMed  Google Scholar 

  74. Hickey, J. W. et al. Organization of the human intestine at single-cell resolution. Nature 619, 572–584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hunter, M. V., Moncada, R., Weiss, J. M., Yanai, I. & White, R. M. Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface. Nat. Commun. 12, 6278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lake, B. B. et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat. Commun. 10, 2832 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chen, D. et al. Single-cell RNA-seq with spatial transcriptomics to create an atlas of human diabetic kidney disease. Faseb J. 37, e22938 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Abedini, A. et al. Spatially resolved human kidney multi-omics single cell atlas highlights the key role of the fibrotic microenvironment in kidney disease progression. Preprint at bioRxiv, https://doi.org/10.1101/2022.10.24.513598 (2024).

  79. Marshall, J. L. et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25, 104097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Raghubar, A. M. et al. Spatially resolved transcriptomes of mammalian kidneys illustrate the molecular complexity and interactions of functional nephron segments. Front. Med. 9, 873923 (2022).

    Article  Google Scholar 

  81. Cheung, M. D. et al. Spatiotemporal immune atlas of a clinical-grade gene-edited pig-to-human kidney xenotransplant. Nat. Commun. 15, 3140 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zimmerman, S. M. et al. Spatially resolved whole transcriptome profiling in human and mouse tissue using digital spatial profiling. Genome Res. 32, 1892–1905 (2022).

    PubMed  PubMed Central  Google Scholar 

  83. El-Achkar, T. M. et al. A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiol. Genomics 53, 1–11 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 14, 1155 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J. is supported by NIH funding (U54DK134301, U01DK114933, UH3DK114933 and P50DK133943). M.T.E. is supported by NIH funding (R01AT011463-01A1, U54 DK134301-01 and U01 DK114923).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sanjay Jain or Michael T. Eadon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Andrew Mallett, Christoph Kuppe and Yutaka Suzuki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Eadon, M.T. Spatial transcriptomics in health and disease. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00841-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00841-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing