Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defining the balance between optimal immunity and immunopathology in influenza virus infection

Abstract

Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Innate and adaptive immune responses to influenza virus infection.
Fig. 2: Insights and opportunities from influenza virus controlled human infection model studies.
Fig. 3: Immune responses during influenza vaccination versus influenza virus infection.

Similar content being viewed by others

References

  1. Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 (2018).

    Article  PubMed  Google Scholar 

  2. GBD 2017 Influenza Collaborators. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 7, 69–89 (2019).

    Article  Google Scholar 

  3. Kang, M., Zanin, M. & Wong, S. S. Subtype H3N2 influenza A viruses: an unmet challenge in the western Pacific. Vaccines 10, 112 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pendrey, C. G. et al. The re-emergence of influenza following the COVID-19 pandemic in Victoria, Australia, 2021 to 2022. Eur. Surveill. 28, 2300118 (2023).

    Article  Google Scholar 

  5. Zhu, W. & Gu, L. Clinical, epidemiological, and genomic characteristics of a seasonal influenza A virus outbreak in Beijing: a descriptive study. J. Med. Virol. 95, e29106 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Dhanasekaran, V. et al. Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nat. Commun. 13, 1721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Australian influenza surveillance report. Australian Government Department of Health and Aged Care https://www.health.gov.au/sites/default/files/2023-10/aisr-fortnightly-report-no-14-2-october-to-15-october-2023.pdf (2023).

  8. Caini, S. et al. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS ONE 14, e0222381 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ambrose, C. S. & Levin, M. J. The rationale for quadrivalent influenza vaccines. Hum. Vaccin. Immunother. 8, 81–88 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Short, K. R., Kedzierska, K. & van de Sandt, C. E. Back to the future: lessons learned from the 1918 influenza pandemic. Front. Cell Infect. Microbiol. 8, 343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krammer, F. et al. Influenza. Nat. Rev. Dis. Prim. 4, 3 (2018).

    Article  PubMed  Google Scholar 

  12. Gao, R. et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 368, 1888–1897 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wille, M. & Klaassen, M. No evidence for HPAI H5N1 2.3.4.4b incursion into Australia in 2022. Influenza Other Respir. Viruses 17, e13118 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gilbertson, B. & Subbarao, K. Mammalian infections with highly pathogenic avian influenza viruses renew concerns of pandemic potential. J. Exp. Med. 220, e20230447 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalil, A. C. & Thomas, P. G. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care 23, 258 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tran, D. et al. Hospitalization for influenza A versus B. Pediatrics 138, e20154643 (2016).

    Article  PubMed  Google Scholar 

  17. Puig-Barbera, J. et al. Influenza epidemiology and influenza vaccine effectiveness during the 2015-2016 season: results from the Global Influenza Hospital Surveillance Network. BMC Infect. Dis. 19, 415 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bender, B. S. & Small, P. A. Jr. Influenza: pathogenesis and host defense. Semin. Respir. Infect. 7, 38–45 (1992).

    CAS  PubMed  Google Scholar 

  19. Byrd-Leotis, L. et al. Influenza binds phosphorylated glycans from human lung. Sci. Adv. 5, eaav2554 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Z. et al. Structural analyses of Toll-like receptor 7 reveal detailed RNA sequence specificity and recognition mechanism of agonistic ligands. Cell Rep. 25, 3371–3381.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Wisskirchen, C., Ludersdorfer, T. H., Muller, D. A., Moritz, E. & Pavlovic, J. The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J. Virol. 85, 8646–8655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Te Velthuis, A. J. W. et al. Mini viral RNAs act as innate immune agonists during influenza virus infection. Nat. Microbiol. 3, 1234–1242 (2018).

    Article  Google Scholar 

  24. Goffic, R. L. et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2, e53 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Poux, C. et al. A single-stranded oligonucleotide inhibits Toll-like receptor 3 activation and reduces influenza A (H1N1) infection. Front. Immunol. 10, 2161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rappe, J. C. F. et al. A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. J. Exp. Med. 218, e20201631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jansen, A. J. G. et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv. 4, 2967–2978 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koupenova, M. et al. The role of platelets in mediating a response to human influenza infection. Nat. Commun. 10, 1780 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Galani, I. E. et al. Interferon-λ mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46, 875–890.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Klinkhammer, J. et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife 7, e33354 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Davidson, S., Crotta, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon αβ in acute influenza infection. Nat. Commun. 5, 3864 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Major, J. et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369, 712–717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Korteweg, C. & Gu, J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am. J. Pathol. 172, 1155–1170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinheimer, V. K. et al. Influenza A viruses target type II pneumocytes in the human lung. J. Infect. Dis. 206, 1685–1694 (2012).

    Article  PubMed  Google Scholar 

  35. Stegemann-Koniszewski, S. et al. Alveolar type II epithelial cells contribute to the anti-influenza A virus response in the lung by integrating pathogen- and microenvironment-derived signals. mBio 7, e00276-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Short, K. R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 47, 954–966 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Dunning, J. et al. Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza. Nat. Immunol. 19, 625–635 (2018). This paper provides an extensive analysis of acute host responses in adults hospitalized with influenza revealing distinct IFN-related signatures associated with milder disease and neutrophil-dominated inflammatory responses with severe outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sidhu, J. K. et al. Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19. J. Infect. Dis. https://doi.org/10.1093/infdis/jiad590 (2023).

  39. Garcia-Sastre, A. Induction and evasion of type I interferon responses by influenza viruses. Virus Res. 162, 12–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Xia, H. et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33, 108234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Jong, M. D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, Z. et al. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc. Natl Acad. Sci. USA 111, 769–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen, T. H. O. et al. Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nat. Commun. 12, 2691 (2021). This study characterizes immune cellular networks in longitudinal samples from patients hospitalized with acute influenza, providing a detailed description of factors driving susceptibility, severity and recovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thwaites, R. S. et al. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Sci. Immunol. 6, eabg9873 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, H. et al. Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. PLoS Pathog. 14, e1006821 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang, Z. et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat. Commun. 6, 6833 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183, 996–1012.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koutsakos, M. et al. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell Rep. Med. 2, 100208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oshansky, C. M. et al. Mucosal immune responses predict clinical outcomes during influenza infection independently of age and viral load. Am. J. Respir. Crit. Care Med. 189, 449–462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jenne, C. N. et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13, 169–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Veras, F. P. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 217, e20201129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang, B. M. et al. Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection. Nat. Commun. 10, 3422 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Corry, J. et al. Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates. PLoS Pathog. 18, e1010395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu, L. et al. High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza A infection. J. Infect. Dis. 217, 428–437 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Lim, K. et al. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, aaa4352 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cheung, C. Y. et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360, 1831–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ferreira, A. C. et al. Severe influenza infection is associated with inflammatory programmed cell death in infected macrophages. Front. Cell Infect. Microbiol. 13, 1067285 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, W. C. et al. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J. Virol. 85, 6844–6855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wong, S. S. et al. Severe influenza is characterized by prolonged immune activation: results from the SHIVERS cohort study. J. Infect. Dis. 217, 245–256 (2018). This study shows that persistent immune activation characterized by increased monocyte and CD8+ T cell responses is observed in influenza virus-confirmed hospitalized patients with severe acute respiratory illness in line with decreased levels of regulatory mediators and excessive inflammatory cytokines in blood.

    Article  CAS  PubMed  Google Scholar 

  60. Cole, S. L. et al. M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza. JCI Insight 2, e91868 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smeeth, L. et al. Risk of myocardial infarction and stroke after acute infection or vaccination. N. Engl. J. Med. 351, 2611–2618 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Lichenstein, R., Magder, L. S., King, R. E. & King, J. C. Jr. The relationship between influenza outbreaks and acute ischemic heart disease in Maryland residents over a 7-year period. J. Infect. Dis. 206, 821–827 (2012).

    Article  PubMed  Google Scholar 

  63. Ichiyama, T. et al. Analysis of cytokine levels and NF-kappaB activation in peripheral blood mononuclear cells in influenza virus-associated encephalopathy. Cytokine 27, 31–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Kawada, J. et al. Systemic cytokine responses in patients with influenza-associated encephalopathy. J. Infect. Dis. 188, 690–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Gonzalez, B. E. & Brust, D. G. Novel influenza A (H1N1) presenting as an acute febrile encephalopathy in a mother and daughter. Clin. Infect. Dis. 49, 1966–1967 (2009).

    Article  PubMed  Google Scholar 

  66. Lee, N. et al. Acute encephalopathy associated with influenza A infection in adults. Emerg. Infect. Dis. 16, 139–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sivadon-Tardy, V. et al. Guillain-Barre syndrome and influenza virus infection. Clin. Infect. Dis. 48, 48–56 (2009).

    Article  PubMed  Google Scholar 

  68. Tam, C. C., O’Brien, S. J. & Rodrigues, L. C. Influenza, campylobacter and mycoplasma infections, and hospital admissions for Guillain-Barre syndrome, England. Emerg. Infect. Dis. 12, 1880–1887 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Han, F. et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 70, 410–417 (2011).

    Article  PubMed  Google Scholar 

  70. Ayala, E., Kagawa, F. T., Wehner, J. H., Tam, J. & Upadhyay, D. Rhabdomyolysis associated with 2009 influenza A(H1N1). JAMA 302, 1863–1864 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Everitt, A. R. et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519–523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y. H. et al. Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals. Nat. Commun. 4, 1418 (2013).

    Article  PubMed  Google Scholar 

  73. Pan, Y. et al. IFITM3 Rs12252-C variant increases potential risk for severe influenza virus infection in Chinese population. Front. Cell Infect. Microbiol. 7, 294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lopez-Rodriguez, M. et al. IFITM3 and severe influenza virus infection. No evidence of genetic association. Eur. J. Clin. Microbiol. Infect. Dis. 35, 1811–1817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mills, T. C. et al. IFITM3 and susceptibility to respiratory viral infections in the community. J. Infect. Dis. 209, 1028–1031 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Randolph, A. G. et al. Evaluation of IFITM3 rs12252 association with severe pediatric influenza infection. J. Infect. Dis. 216, 14–21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Allen, E. K. et al. SNP-mediated disruption of CTCF binding at the IFITM3 promoter is associated with risk of severe influenza in humans. Nat. Med. 23, 975–983 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Y. et al. Genetic variants in IL1A and IL1B contribute to the susceptibility to 2009 pandemic H1N1 influenza A virus. BMC Immunol. 14, 37 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Garcia-Ramirez, R. A. et al. TNF, IL6, and IL1B polymorphisms are associated with severe influenza A (H1N1) virus infection in the Mexican population. PLoS ONE 10, e0144832 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Keynan, Y. et al. Chemokine receptor 5 Δ32 allele in patients with severe pandemic (H1N1) 2009. Emerg. Infect. Dis. 16, 1621–1622 (2017).

    Article  Google Scholar 

  81. Zhou, J. et al. A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection. J. Infect. Dis. 206, 495–503 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Zuniga, J. et al. Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. Eur. Respir. J. 39, 604–610 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, Y. et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science 373, 918–922 (2021). This study identifies a multitude of single-nucleotide polymorphisms within the MX1 gene that are associated with increased susceptibility to H7N9 infection and shows these to impact MxA-mediated antiviral activity.

    Article  CAS  PubMed  Google Scholar 

  84. Cheng, Z. et al. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza. J. Infect. Dis. 212, 1214–1221 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Esposito, S. et al. Toll-like receptor 3 gene polymorphisms and severity of pandemic A/H1N1/2009 influenza in otherwise healthy children. Virol. J. 9, 270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lim, H. K. et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J. Exp. Med. 216, 2038–2056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, N. et al. IFITM3, TLR3, and CD55 gene SNPs and cumulative genetic risks for severe outcomes in Chinese patients with H7N9/H1N1pdm09 influenza. J. Infect. Dis. 216, 97–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Ciancanelli, M. J. et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hernandez, N. et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215, 2567–2585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McCullers, J. A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. Rev. Microbiol. 12, 252–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Brundage, J. F. Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness. Lancet Infect. Dis. 6, 303–312 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Morens, D. M., Taubenberger, J. K. & Fauci, A. S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 198, 962–970 (2008).

    Article  PubMed  Google Scholar 

  93. Russell, C. D. et al. Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. Lancet Microbe 2, e354–e365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wrammert, J. et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Herati, R. S. et al. Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Sci. Immunol. 2 (2017).

  96. Bentebibel, S. E. et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci. Transl. Med. 5, 176ra132 (2013).

    Article  Google Scholar 

  97. Koutsakos, M. et al. Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity. Sci. Transl. Med. 10, eaan8405 (2018). This study describes the role of the antibody axis following influenza vaccination and defines haemagglutinin-specific B cells in different tissues.

    Article  PubMed  Google Scholar 

  98. Turner, J. S. et al. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 586, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thevarajan, I. et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat. Med. 26, 453–455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andrews, S. F. et al. An influenza H1 hemagglutinin stem-only immunogen elicits a broadly cross-reactive B cell response in humans. Sci. Transl. Med. 15, eade4976 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Hansen, L. et al. Human anti-N1 monoclonal antibodies elicited by pandemic H1N1 virus infection broadly inhibit HxN1 viruses in vitro and in vivo. Immunity 56, 1927–1938.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Sutton, H. J. et al. Atypical B cells are part of an alternative lineage of B cells that participates in responses to vaccination and infection in humans. Cell Rep. 34, 108684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nellore, A. et al. A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity 56, 847–863.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nguyen, T. H. O. et al. Robust SARS-CoV-2 T cell responses with common TCRαβ motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells. Cell Rep. Med. 4, 101017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lartey, S. et al. Live-attenuated influenza vaccine induces tonsillar follicular T helper cell responses that correlate with antibody induction. J. Infect. Dis. 221, 21–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Brenna, E. et al. CD4+ T follicular helper cells in human tonsils and blood are clonally convergent but divergent from non-Tfh CD4+ cells. Cell Rep. 30, 137–152.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McMichael, A. J., Gotch, F. M., Noble, G. R. & Beare, P. A. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309, 13–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  108. Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Moskophidis, D. & Kioussis, D. Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J. Exp. Med. 188, 223–232 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Valkenburg, S. A. et al. Molecular basis for universal HLA-A*02:01-restricted CD8+ T-cell immunity against influenza viruses. Proc. Natl Acad. Sci. USA 113, 4440–4445 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wagstaffe, H. R. et al. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci. Immunol. 9, eadj9285 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Hensen, L. et al. CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nat. Commun. 12, 2931 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van de Sandt, C. E. et al. Challenging immunodominance of influenza-specific CD8+ T cell responses restricted by the risk-associated HLA-A*68:01 allomorph. Nat. Commun. 10, 5579 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Grant, E. et al. Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ T-cell responses. Immunol. Cell Biol. 91, 184–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Habel, J. R. et al. HLA-A*11:01-restricted CD8+ T cell immunity against influenza A and influenza B viruses in Indigenous and non-Indigenous people. PLoS Pathog. 18, e1010337 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bhatt, S., Holmes, E. C. & Pybus, O. G. The genomic rate of molecular adaptation of the human influenza A virus. Mol. Biol. Evol. 28, 2443–2451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Quinones-Parra, S. et al. Preexisting CD8+ T cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc. Natl Acad. Sci. USA 111, 1049–1054 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Koutsakos, M. et al. Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nat. Immunol. 20, 613–625 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Nayak, J. L. et al. CD4+ T-cell expansion predicts neutralizing antibody responses to monovalent, inactivated 2009 pandemic influenza A(H1N1) virus subtype H1N1 vaccine. J. Infect. Dis. 207, 297–305 (2012).

    Article  PubMed  Google Scholar 

  120. Nayak, J. L., Richards, K. A., Yang, H., Treanor, J. J. & Sant, A. J. Effect of influenza A(H5N1) vaccine prepandemic priming on CD4+ T-cell responses. J. Infect. Dis. 211, 1408–1417 (2014).

    Article  PubMed  Google Scholar 

  121. Alam, S., Knowlden, Z. A. G., Sangster, M. Y. & Sant, A. J. CD4 T cell help is limiting and selective during the primary B cell response to influenza virus infection. J. Virol. 88, 314–324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cohen, K. W. et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep. Med. 2, 100354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Taus, E. et al. Dominant CD8+ T cell nucleocapsid targeting in SARS-CoV-2 infection and broad spike targeting from vaccination. Front. Immunol. 13, 835830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mudd, P. A. et al. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 185, 603–613.e15 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. McKinney, D. M. et al. A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population. Immunogenetics 65, 357–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hertz, T. et al. HLA targeting efficiency correlates with human T-cell response magnitude and with mortality from influenza A infection. Proc. Natl Acad. Sci. USA 110, 13492–13497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Falfán-Valencia, R. et al. An increased frequency in HLA class I alleles and haplotypes suggests genetic susceptibility to influenza A (H1N1) 2009 pandemic: a case-control study. J. Immunol. Res. 2018, 3174868 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Augusto, D. G. et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 620, 128–136 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Peng, Y. et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hillaire, M. L. et al. Characterization of the human CD8+ T cell response following infection with 2009 pandemic influenza H1N1 virus. J. Virol. 85, 12057–12061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sant, S. et al. Single-cell approach to influenza-specific CD8+ T cell receptor repertoires across different age groups, tissues, and following influenza virus infection. Front. Immunol. 9, 1453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rowntree, L. C. et al. SARS-CoV-2-specific T cell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection. Immunity 55, 1299–1315.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. van de Sandt, C. E. et al. Human influenza A virus-specific CD8+ T-cell response is long-lived. J. Infect. Dis. 212, 81–85 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mettelman, R. C. et al. Baseline innate and T cell populations are correlates of protection against symptomatic influenza virus infection independent of serology. Nat. Immunol. 24, 1511–1526 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Pizzolla, A. et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J. Clin. Invest. 128, 721–733 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pizzolla, A. et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2, eaam6970 (2017).

    Article  PubMed  Google Scholar 

  138. Messaoudi, I., Guevara Patiño, J. A., Dyall, R., LeMaoult, J. & Nikolich-Zugich, J. Direct link between MHC polymorphism, T cell avidity, and diversity in immune defense. Science 298, 1797–1800 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Ndhlovu, Z. M. et al. Magnitude and kinetics of CD8+ T cell activation during hyperacute HIV infection impact viral set point. Immunity 43, 591–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, Z. et al. Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease. Nat. Commun. 9, 824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. van de Sandt, C. E. et al. Newborn and child-like molecular signatures in older adults stem from TCR shifts across human lifespan. Nat. Immunol. 24, 1890–1907 (2023). This study shows a detailed examination of influenza virus-specific CD8+ T cell immunity across the human lifespan, identifying age-related changes in the T cell repertoire with implications for sustaining optimal immunity.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Jia, X. et al. High expression of CD38 and MHC class II on CD8+ T cells during severe influenza disease reflects bystander activation and trogocytosis. Clin. Transl. Immunol. 10, e1336 (2021).

    Article  CAS  Google Scholar 

  143. Paterson, S. et al. Innate-like gene expression of lung-resident memory CD8+ T cells during experimental human influenza: a clinical study. Am. J. Respir. Crit. Care Med. 204, 826–841 (2021). This study provides a transcriptomic analysis of blood and lung CD8+ T cells after experimental influenza virus infection, identifying innate-like functions of CD8+ TRM cells; it also associates pre-existing blood influenza virus-specific CD8+ T cell frequency with lower viral shedding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sherman, A. C., Mehta, A., Dickert, N. W., Anderson, E. J. & Rouphael, N. The future of flu: a review of the human challenge model and systems biology for advancement of influenza vaccinology. Front. Cell Infect. Microbiol. 9, 107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Carrat, F. et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am. J. Epidemiol. 167, 775–785 (2008). This study provides a meta-analysis of more than 1,000 volunteers experimentally infected with influenza virus, defining viral and symptom kinetics across viral strains.

    Article  PubMed  Google Scholar 

  146. Chiu, C., Ellebedy, A. H., Wrammert, J. & Ahmed, R. B cell responses to influenza infection and vaccination. Curr. Top. Microbiol. Immunol. 386, 381–398 (2015).

    CAS  PubMed  Google Scholar 

  147. Hobson, D., Curry, R. L., Beare, A. S. & Ward-Gardner, A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. 70, 767–777 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gould, V. M. W. et al. Nasal IgA provides protection against human influenza challenge in volunteers with low serum influenza antibody titre. Front. Microbiol. 8, 900 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Park, J. K. et al. Evaluation of preexisting anti-hemagglutinin stalk antibody as a correlate of protection in a healthy volunteer challenge with influenza A/H1N1pdm virus. mBio 9, e02284-17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Han, A. et al. Safety and efficacy of CR6261 in an influenza A H1N1 healthy human challenge model. Clin. Infect. Dis. 73, e4260–e4268 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Wilkinson, T. M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Pleguezuelos, O. et al. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. NPJ Vaccines 5, 22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Francis, T., Pearson, H. E., Salk, J. E. & Brown, P. N. Immunity in human subjects artificially infected with influenza virus, type B. Am. J. Public Health Nations Health 34, 317–334 (1944).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Memoli, M. J. et al. Influenza A reinfection in sequential human challenge: implications for protective immunity and “universal” vaccine development. Clin. Infect. Dis. 70, 748–753 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. La Gruta, N. L., Kedzierska, K., Stambas, J. & Doherty, P. C. A question of self-preservation: immunopathology in influenza virus infection. Immunol. Cell Biol. 85, 85–92 (2007).

    Article  PubMed  Google Scholar 

  156. Woods, C. W. et al. A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2. PLoS ONE 8, e52198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sobel Leonard, A. et al. Deep sequencing of influenza A virus from a human challenge study reveals a selective bottleneck and only limited intrahost genetic diversification. J. Virol. 90, 11247–11258 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Killingley, B. et al. Use of a human influenza challenge model to assess person-to-person transmission: proof-of-concept study. J. Infect. Dis. 205, 35–43 (2012). This study develops the influenza human challenge model to study viral transmission.

    Article  PubMed  Google Scholar 

  159. Nguyen-Van-Tam, J. S. et al. Minimal transmission in an influenza A (H3N2) human challenge-transmission model within a controlled exposure environment. PLoS Pathog. 16, e1008704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bueno de Mesquita, P. J., Noakes, C. J. & Milton, D. K. Quantitative aerobiologic analysis of an influenza human challenge-transmission trial. Indoor Air 30, 1189–1198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bell, J. A. et al. Artificially induced Asian influenza in vaccinated and unvaccinated volunteers. J. Am. Med. Assoc. 165, 1366–1373 (1957).

    Article  CAS  PubMed  Google Scholar 

  162. Balasingam, S. & Wilder-Smith, A. Randomized controlled trials for influenza drugs and vaccines: a review of controlled human infection studies. Int. J. Infect. Dis. 49, 18–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Cox, R. J. Correlates of protection to influenza virus, where do we go from here? Hum. Vaccin. Immunother. 9, 405–408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Centers for Disease Control and Prevention (CDC). Fluzone high-dose seasonal influenza vaccine. Centers for Disease Control and Prevention https://www.cdc.gov/flu/prevent/qa_fluzone.htm (2023).

  165. Yager, E. J. et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205, 711–723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Goodwin, K., Viboud, C. & Simonsen, L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24, 1159–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, Q., Bastard, P., Effort, C. H. G., Cobat, A. & Casanova, J. L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603, 587–598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, Q. et al. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J. Exp. Med. 219, e20220514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Van Kerkhove, M. D. et al. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med. 8, e1001053 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Prasad, N. et al. Influenza-associated outcomes among pregnant, postpartum, and nonpregnant women of reproductive age. J. Infect. Dis. 219, 1893–1903 (2019).

    Article  PubMed  Google Scholar 

  171. Yates, L. et al. Influenza A/H1N1v in pregnancy: an investigation of the characteristics and management of affected women and the relationship to pregnancy outcomes for mother and infant. Health Technol. Assess. 14, 109–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Håberg, S. E. et al. Risk of fetal death after pandemic influenza virus infection or vaccination. N. Engl. J. Med. 368, 333–340 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Le Gars, M. et al. Increased proinflammatory responses of monocytes and plasmacytoid dendritic cells to influenza A virus infection during pregnancy. J. Infect. Dis. 214, 1666–1671 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Vanders, R. L., Gibson, P. G., Murphy, V. E. & Wark, P. A. Plasmacytoid dendritic cells and CD8 T cells from pregnant women show altered phenotype and function following H1N1/09 infection. J. Infect. Dis. 208, 1062–1070 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Savic, M. et al. Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1) virus infection during pregnancy. PLoS ONE 12, e0188055 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Le Gars, M. et al. Pregnancy-induced alterations in NK cell phenotype and function. Front. Immunol. 10, 2469 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kay, A. W. et al. Enhanced natural killer-cell and T-cell responses to influenza A virus during pregnancy. Proc. Natl Acad. Sci. USA 111, 14506–14511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Allotey, J. et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 370, m3320 (2020).

    Article  PubMed  Google Scholar 

  179. Ferrara, A. et al. Perinatal complications in individuals in California with or without SARS-CoV-2 infection during pregnancy. JAMA Intern. Med. 182, 503–512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Habel, J. R. et al. Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and γδ T cell perturbations. JCI Insight 8, e167157 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Flint, S. M. et al. Disproportionate impact of pandemic (H1N1) 2009 influenza on Indigenous people in the top end of Australia’s Northern Territory. Med. J. Aust. 192, 617–622 (2010).

    Article  PubMed  Google Scholar 

  182. Li-Kim-Moy, J. et al. Australian vaccine preventable disease epidemiological review series: influenza 2006 to 2015. Commun. Dis. Intell. Q. Rep. 40, E482–e495 (2016).

    PubMed  Google Scholar 

  183. Betts, J. M. et al. Influenza-associated hospitalisation and mortality rates among global Indigenous populations; a systematic review and meta-analysis. PLoS Glob. Public Health 3, e0001294 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hensen, L. et al. Robust and prototypical immune responses toward influenza vaccines in the high-risk group of Indigenous Australians. Proc. Natl Acad. Sci. USA 118, e2109388118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang, W. et al. Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities. Nat. Immunol. 24, 966–978 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kochanek, K. D., Murphy, S. L., Xu, J. & Arias, E. Deaths: final data for 2017. Natl Vital Stat. Rep. 68, 9 (2019).

    Google Scholar 

  188. Qin, R. et al. Prevaccination glycan markers of response to an influenza vaccine implicate the complement pathway. J. Proteome Res. 21, 1974–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hulme, K. D., Noye, E. C., Short, K. R. & Labzin, L. I. Dysregulated inflammation during obesity: driving disease severity in influenza virus and SARS-CoV-2 infections. Front. Immunol. 12, 770066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Neidich, S. D. et al. Increased risk of influenza among vaccinated adults who are obese. Int. J. Obes. 41, 1324–1330 (2017).

    Article  CAS  Google Scholar 

  191. Honce, R. & Schultz-Cherry, S. Impact of obesity on influenza A virus pathogenesis, immune response, and evolution. Front. Immunol. 10, 1071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tong, M. Z. et al. Elevated BMI reduces the humoral response to SARS-CoV-2 infection. Clin. Transl. Immunol. 12, e1476 (2023).

    Article  CAS  Google Scholar 

  193. Near, A. M., Tse, J., Young-Xu, Y., Hong, D. K. & Reyes, C. M. Burden of influenza hospitalization among high-risk groups in the United States. BMC Health Serv. Res. 22, 1209 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Zhang, W. et al. Robust immunity to influenza vaccination in haematopoietic stem cell transplant recipients following reconstitution of humoral and adaptive immunity. Clin. Transl. Immunol. 12, e1456 (2023).

    Article  CAS  Google Scholar 

  195. Künzli, M. et al. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci. Immunol. 7, eadd3075 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Pardi, N. et al. Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses. Nat. Commun. 13, 4677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. van de Ven, K. et al. A universal influenza mRNA vaccine candidate boosts T cell responses and reduces zoonotic influenza virus disease in ferrets. Sci. Adv. 8, eadc9937 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378, 899–904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jorgensen, S. E. et al. Defective RNA sensing by RIG-I in severe influenza virus infection. Clin. Exp. Immunol. 192, 366–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bravo Garcia-Morato, M. et al. Impaired control of multiple viral infections in a family with complete IRF9 deficiency. J. Allergy Clin. Immunol. 144, 309–312.e10 (2019).

    Article  PubMed  Google Scholar 

  201. Prabhu, S. S., Chakraborty, T. T., Kumar, N. & Banerjee, I. Association between IFITM3 rs12252 polymorphism and influenza susceptibility and severity: a meta-analysis. Gene 674, 70–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Xuan, Y. et al. IFITM3 rs12252 T>C polymorphism is associated with the risk of severe influenza: a meta-analysis. Epidemiol. Infect. 143, 2975–2984 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Rogo, L. D. et al. Seasonal influenza A/H3N2 virus infection and IL-1β, IL-10, IL-17, and IL-28 polymorphisms in Iranian population. J. Med. Virol. 88, 2078–2084 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Maestri, A. et al. Siaα2-3Galβ1- receptor genetic variants are associated with influenza A(H1N1)pdm09 severity. PLoS ONE 10, e0139681 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Habibi, M. S. et al. Impaired antibody-mediated protection and defective IgA B-cell memory in experimental infection of adults with respiratory syncytial virus. Am. J. Respir. Crit. Care Med. 191, 1040–1049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bartsch, Y. C. et al. Antibody effector functions are associated with protection from respiratory syncytial virus. Cell 185, 4873–4886.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Habibi, M. S. et al. Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection. Science 370, eaba9301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Jozwik, A. et al. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat. Commun. 6, 10224 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Tyrrell, D. A. A view from the common cold unit. Antivir. Res. 18, 105–125 (1992).

    Article  CAS  PubMed  Google Scholar 

  210. Coultas, J. A., Cafferkey, J., Mallia, P. & Johnston, S. L. Experimental antiviral therapeutic studies for human rhinovirus infections. J. Exp. Pharmacol. 13, 645–659 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Hansel, T. T. et al. A comprehensive evaluation of nasal and bronchial cytokines and chemokines following experimental rhinovirus infection in allergic asthma: increased interferons (IFN-γ and IFN-λ) and type 2 inflammation (IL-5 and IL-13). EBioMedicine 19, 128–138 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Mallia, P. et al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am. J. Respir. Crit. Care Med. 183, 734–742 (2011).

    Article  PubMed  Google Scholar 

  213. Killingley, B. et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat. Med. 28, 1031–1041 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.K. is a recipient of a National Health and Medical Research Council (NHMRC) L1 Fellowship (1173871). T.H.O.N. and L.C.R. are recipients of a NHMRC EL1 Fellowship (1194036, 2026357). K.K., T.H.O.N. and L.C.R. are supported by NHMRC MRFF Award (2016062). B.Y.C. is supported by NHMRC Ideas Grants (2001346 and 2019097). R.S.T. is supported by the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre (BRC; NIHR Imperial BRC grant P70668), the Health Protection Research Unit (HPRU) in Respiratory Infections at Imperial College London in partnership with Public Health England/UK Health Security Agency and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UH2AI176172. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

T.H.O.N., L.C.R. and B.Y.C. contributed equally to all aspects of the article. All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Katherine Kedzierska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Andreas Wack and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H.O., Rowntree, L.C., Chua, B.Y. et al. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01029-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01029-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing