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Non-reciprocal band structures in an 
exciton–polariton Floquet optical lattice
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Elena A. Ostrovskaya    5, Alexander Stegmaier    6, Ronny Thomale    6, 
Christian Schneider    7, Siddhartha Dam    8, Sebastian Klembt    8, 
Sven Höfling    8, Seigo Tarucha1 & Michael D. Fraser    1,2 

Periodic temporal modulation of Hamiltonians can induce geometrical 
and topological phenomena in the dynamics of quantum states. Using 
the interference between two lasers, we demonstrate an off-resonant 
optical lattice for a polariton condensate with controllable potential 
depths and nearest-neighbour coupling strength. Temporal modulation 
is introduced via a gigahertz frequency detuning between pump lasers, 
creating a polariton ‘conveyor belt’. The breaking of time-reversal symmetry 
causes band structures to become non-reciprocal and acquire a universal 
tilt given by Planck’s constant and the frequency of modulation (hΔf). 
The non-reciprocal tilting is connected to the non-trivial topology of 
the Floquet–Bloch bands, which have a finite Chern number. Detailed 
characterization of the lattice potential depth and its dynamics highlights 
the role of high-energy carriers in the formation of optical potential 
landscapes for polaritons, demonstrating the possibility of modulation 
faster than the polariton lifetime and opening a pathway towards Floquet 
engineering in polariton condensates.

The adiabatic modulation of a quantum Hamiltonian around a closed 
loop in parameter space causes eigenstates to acquire a geometric 
phase—the Berry phase1. For periodically driven systems, the additional 
accumulation of geometric phase can lead to the formation of novel 
topological invariants2 and induce topologically protected transport 
and edge modes3–6. Combined with a spatially periodic potential, eigen-
states can be defined on a Floquet–Brillouin zone7,8, and topological 
winding around this zone can cause non-reciprocal transport and has 
been observed in a wide range of spatio-temporally modulated physical 
systems, both classical and quantum9–13. Non-reciprocity also emerges 
in the shearing and tilting of the momentum-space band structure, 

which is proportional to the Chern number of the Floquet–Bloch 
bands13–16. In this Article, the formation of non-reciprocal topological 
band structures is demonstrated in an exciton–polariton condensate.

Exciton–polaritons are mixed light–matter quasiparticles that 
emerge from the strong coupling of semiconductor microcavity pho-
tons and quantum well excitons17. Under strong non-resonant pump-
ing, there is a phase transition from a thermal state to a quantum state 
with long-range spatial and temporal coherence—a polariton conden-
sate18. Lithographic methods for engineering the polariton potential 
landscape have been commonly exploited to emulate the physics of 
many-body two-dimensional systems using polariton condensates19–22. 
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positions of maximum gain and a decrease in the background occupa-
tion, allowing us to resolve the quantized, trapped states occurring 
at the intensity minima where the potential energy is minimum. To 
achieve frequency modulation, two different lasers were used, which 
washes out the spatial structure over experimental imaging time scales, 
even for Δf ≈ 0 (Supplementary Section II). However, the polariton 
emission in momentum space still shows the formation of quantized 
states (Fig. 1c). While the exact band in which a condensate(s) forms 
will depend on the periodicity of the lattice29,39 and the stability of the 
interference pattern, the band formation itself is robust and can be 
controlled through the angle between the lasers (Δklaser) and the rela-
tive power of the angled beam (Pm). Shallow (small Pm) and wide (small 
Δklaser) fringes lead to more closely separated bands, and vice versa 
(Fig. 1c), intuitively corresponding to a potential proportional to the 
fringe pattern. A quantitative demonstration that the periodicity of 
the laser interference is transferred to the polariton wavefunction is 
given by the formation of Brillouin zones (BZs) in the dispersion images. 
The distance between emission peaks of the first excited state (p band) 
falls within the expected second BZ in the extended scheme (Fig. 1d, 
blue-grey), and the distance between energy maxima of the ground 
state (s band) corresponds to the expected edge of the first BZ of a lat-
tice with period a of 2π/Δklaser (Fig. 1d, purple-magenta). The presence 
of ground-state curvature additionally proves that hopping between 
adjacent sites is non-negligible and that interfering laser beams can 
provide a simpler alternative to typical wavefront shaping for the simu-
lation of spatially periodic Hamiltonians in microcavities40.

The measured energy mode structure was compared with an exci-
ton–photon mean-field model, where gain and polariton nonlinearity 
are neglected for simplicity and where the nonlinear interactions with 

While there have been proposals on how to achieve non-reciprocity 
with such static potentials23–25, experimental demonstrations have so 
far been absent. An alternative to lithographic approaches for creating 
static potentials uses spatially patterned non-resonant optical fields. 
Drawing from the unique light–matter properties of polaritons, a 
carrier distribution proportional to the optical field interacts nonlin-
early with the condensate. The created potential has both real26 and 
imaginary (non-Hermitian)27 components that have been used to create 
optical traps28,29, to control the hopping between individual sites30–32 
and to create non-Hermitian lattices33,34.

While optical fields are typically patterned via spatial phase or 
intensity modulation of laser wavefronts, this work uses the angled 
interference between two lasers to create a spatio-temporally peri-
odic laser intensity pattern—an optical conveyor belt (Fig. 1a). We 
experimentally demonstrate the formation of Floquet–Bloch bands 
and connect the emergence of non-reciprocity in a moving conveyor 
belt to the Berry phase acquired through the temporal modulation 
and the corresponding Chern number. We additionally quantify the 
limit on the speed at which optical potentials can be used to modulate 
polariton condensates, for example, to create Floquet topological 
lattices35, to rotate polariton condensates36,37 or to control recently 
proposed polariton qubits38.

Results
Using one laser to create the interference pattern, the spatially periodic 
carrier distribution can be directly resolved in real space (Fig. 1b). Below 
threshold (top panel), the polariton ground state has a periodically 
modulated energy, with the highest energy at the interference maxima. 
Above threshold (bottom panel), there is strong emission from the 
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Fig. 1 | Band structures of a polariton conveyor belt. a, A diagram of the sample 
excitation. The angle between the lasers (Δklaser = 0.3–0.7 μm−1) controls the fringe 
periodicity, while the frequency offset (|Δf| < 7 GHz) controls their speed and 
movement. The normal-incidence laser has P1 = 1.2Pth with a condensation threshold 
Pth of 100 mW. The angle-offset laser has Pm = 1−110 mW. b, Example real-space 
tomography (intensity normalized) just below and just above the condensation 
threshold. The red-coloured diagram on top corresponds to the intensity of the 
laser interference pattern. c, Example band structures (intensity normalized) at 
zero frequency offset for different lattice periods and depths. Thin white lines 

show the results of spectral peak finding and clustering as described in Methods. 
Black dashed lines correspond to the fitted Bloch modes. The energy width of the 
ground state (in terms of nearest neighbour hopping  J) is marked in green. d, The 
average size of the first (∆k0) and second (∆k1) BZs as functions of ∆klaser (between 
7 and 52 samples). Shaded regions correspond to the expected edge of the first BZ 
(purple-magenta, ∆k0 ≈ π/a), where a is the fringe period) and of the boundaries of 
the second BZ in the extended scheme (blue-grey, 2π/a < ∆k1 < 4π/a). Error bars are 
estimated by averaging datasets with different Pm.
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the pump-generated carriers28 are reduced to an effective potential Veff 
for the exciton field χ, expressed as

iℏ∂tψ = − ℏ2∇2

2meff
ψ + ℏΩRχ −

δ
2
ψ + Vshiftψ

iℏ∂tχ = Veff cos (Δklaserx − 2πΔft) χ + ℏΩRψ + δ
2
χ + Vshiftχ,

(1)

where ψ is the photon field, meff is the photon effective mass, δ is the 
exciton–photon detuning, Vshift is the average energy of excitons and 
photons and 2ℏΩR is the photon–exciton Rabi splitting. The exciton 
mass can be safely neglected as it is much larger (by five orders of mag-
nitude) than that of the photon. The Bloch bands of equation (1) were 
calculated numerically, and a least-squares fitting to the experimental 
splitting between s and p bands (Fig. 1c, thin light-grey lines) was used 
to estimate Veff, after which the s band energy was used to estimate 
Vshift. The results of this fit are superimposed on Fig. 1c (dashed black), 
displaying good agreement in the band energies and momentum struc-
tures of the model and the dispersion spectra.

When |Δf| > 0, the laser interference pattern that creates the lattice 
potential moves along the surface of the microcavity. The direction 
of movement of this conveyor belt is controlled by the signs of ∆f and 
∆klaser. For positive (negative) ∆f, the conveyor belt moves in the same 
(opposite) direction as ∆klaser. Bands are still present in the far-field 

emission of the microcavity, but in response to the lattice motion they 
become tilted with respect to the momentum axis (Fig. 2a). These bands 
are non-reciprocal in that the energy of a Bloch wave will depend on its 
direction of motion, with higher-energy emission coming from waves 
moving in the same direction of motion as the conveyor belt, which can 
be intuitively understood as the Doppler effect. This non-reciprocity is 
quantified by measuring the tilt of the bands, extracted from the energy 
difference between the forward and backward edges of the BZ, that is, 
ΔE = E(π⁄a) – E(−π⁄a) (Fig. 2a, inset), which is linearly proportional to ∆f. 
The constant of proportionality is universal and independent of ∆klaser 
and Pm and corresponds to Planck’s constant (Fig. 2b).

This universality can be understood by considering the space–time 
Floquet–Brillouin zone where band tilting arises from topological 
winding around the 1 + 1D unit cell8. It is known that the tilting energy 
in classical waves is connected to the Chern number Cn of the band 
ΔE = CnhΔf (ref. 41), but the argument is generally applicable to any 
wave in a spatio-temporally periodic medium.

This can be proven by considering the quasi-energy of the Floquet 
state in terms of the instantaneous normalized eigenfunctions ψk(t) 
and energies ϵk(t) (ref. 42). In the case of adiabatic evolution, it can be 
expressed as

Ωk =
1
T∫

T

0
dtϵk(t) +

1
T Im [∫

T

0
dt ⟨ψk | ∂tψk⟩] ,
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Fig. 2 | Universal band tilting in a moving conveyor. a, An example band 
structure of a moving conveyor. The thin light-grey line is the result of spectral 
peak finding and clustering. The dashed grey lines are linear fits to this clustered 
data. The energy shift at the BZ boundary ∆E (inset) is extracted from the linear 
fit. b, The average (from 50–200 samples) energy shift at the BZ boundary as a 
function of the frequency for different modulation laser angles. Errors (shaded 

regions) are estimated by averaging over datasets with different Pm and over 
different bands in each band structure. c, Experimental band structures for a 
fixed ∆klaser and Pm as a function of frequency between the pump lasers. d, The 
simulated far-field emission of Floquet–Bloch solutions to the fitted polariton 
Hamiltonian for the parameters in c.
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where the first term is the dynamical phase acquired from eigenstate 
evolution and the second is the Berry phase acquired from the specific 
path taken in parameter space during the adiabatic evolution. The 
difference between the nth band quasi-energies at the two BZ edges 
can be written as the winding of the Berry phase around the Floquet–
Brillouin zone thus

ΔEn = ℏ (Ωπ/L −Ω−π/L) =
ℏ
T ∮

BZ

dk∂kIm [∫
T

0
dt ⟨ψk | ∂tψk⟩]

which is equal to the Chern number Cn of the band, so

ΔE = h ||Δf ||Cn.

Numerical calculation of the Chern numbers using the direct diagonali-
zation eigenfunctions of equation (1) confirms that the Chern number 
of all bands is the same, that is, Cn = ±1 = sign(Δf), and that topological 
edge modes are present under closed boundary conditions (Supple-
mentary Section III). Additional agreement comes when comparing 
the experimental far-field patterns as a function of frequency (Fig. 2c) 
with the simulated far-field emission pattern of randomly occupied 
Floquet–Bloch bands (Fig. 2d). There is good agreement in the band 
splitting, anharmonicity and momentum structure in addition to 
the tilting magnitude and direction of the bands. For larger lattice 
periods (Fig. 1c, middle and Supplementary Section IV), the theory 
starts to deviate from experiment with regard to the anharmonicity 
of higher-order bands, with experimental bands being more closely 
separated than the theory predicts. An extension of equation (1) to 
include complex potentials27,43 can improve the agreement between 

theory and experiment (Supplementary Section IV), but nonetheless, 
the present theory accurately captures the observed band tilting for 
all parameters studied.

An additional feature in the frequency dependence of the bands is 
the reduction of the separation between them, indicating a reduction 
in the confining potential and setting a limit on the speed at which 
non-resonant optical potentials can be used to modulate polariton 
condensates. To understand the microscopic behaviour behind the 
potential formation and its dynamical time scales, we present the 
results of the fitting procedure of equation (1) as a function of modu-
lation depth, lattice period and frequency of the conveyor belt. For a 
static conveyor belt, the power and period dependence of Veff and Vshift 
are shown in Fig. 3a,b. For lattices with large period (|Δklaser| < 0.5 μm−1), 
Vshift is linearly proportional to Pm (Fig. 3b, dash-dotted) while Veff has 
a square root dependence on Pm (Fig. 3a, dark-grey dash-dotted).  
As the lattice period gets smaller, both Vshift and Veff decrease and have 
a less pronounced dependence on pump power. At the smallest peri-
ods (|Δklaser| > 0.5 μm−1), Veff shifts from a square root to a fourth root 
dependence on Pm (Fig. 3a, light-grey dash-dotted).

The detailed power dependence described above sets limits on the 
underlying microscopic processes that create the optical potential. 
These have typically been considered to be a single phenomenological 
excitonic reservoir, proportional to the pump laser and with its density 
pinned by stimulated scattering into the condensate, which implies that 
the shape and depth of the potential are pinned at threshold28,30–32,34. 
This explanation can capture the two different functional dependencies 
of the effective potential depth only by considering the relaxation 
processes from the free-carrier plasma (neh). At typical estimated experi-
mental plasma densities (~109 cm−2; Supplementary Section V), excitons 
form through both geminate (∝ neh) and bimolecular processes (∝ n2

eh) 
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Fig. 3 | Formation dynamics of a non-resonant potential. a, The average 
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and fourth root fits for long and short period lattices, respectively. b, The 
average fitted potential shift Vshift as a function of Pm for different ∆klaser. The 
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ground-state bandwidth as a function of Pm for the experiment (solid) and fitted 
theory (dashed). d,e, the average effective potential depth as a function of ∆f, 
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(ref. 44). Given that the plasma density is proportional to the laser 
intensity Ilaser = P1 + Pm + 2√P1Pm cos (Δklaserx) , it follows that the 
exciton reservoir density has both square and fourth root terms 
(nR ∝ n2

eh ∝ √Pm, 4√Pm; Supplementary Section V), which qualitatively 
and intuitively explain the observed potential’s dependencies on 
increasing modulation power in Fig. 3. Additional processes such as 
exciton diffusion, the non-Hermitian potential27,43 and direct interaction 
with the electron–hole plasma45 need to be included to explain the 
simultaneous reduction in potential depth with the change in power 
dependence. However, despite the potential for additional refinement, 
there is order-of-magnitude agreement between the directly measured 
nearest-neighbour hopping  J (Fig. 1c, green label and Fig. 3c, solid lines) 
and the hopping from of the fitted model (Fig. 3c, dashed lines).  
As expected for tightly bound sites, the hopping strength decreases 
approximately exponentially as a function of Pm and increases with 
smaller lattice period, while the measured hopping is of magnitude 
comparable to that inferred in previous experiments using optical 
confinement30,31,46.

The results of the least squares fitting for the potential depth 
as a function of Δf is shown in Fig. 3d,e (for fixed lattice periods) and 
Fig. 3f (for fixed modulation power). The datasets for other ∆klaser/Pm 
are qualitatively similar, and all share two main features: the potential 
depth decreases with increasing frequency offset, and it saturates at 
a non-zero value at high frequency. Firstly, the functional form of the 
decay changes with lattice period, with large period lattices (Fig. 3d) 
having a sharper decay curve as compared with short period lattices 
(Fig. 3e). Nonetheless, the decay constant (τdecay = 210 ± 80 ps) is inde-
pendent of Pm and ∆klaser (Supplementary Section VI) and corresponds 
to the inability of the exciton reservoir to adiabatically follow the move-
ment of the laser fringes. The similarity between the measured τdecay and 
previous measurements of relaxation time scales47 supports the conclu-
sion that the reduction in potential depth is due to the slow relaxation 
from the free-carrier plasma to the exciton reservoir. Secondly, the 
saturation value of Veff at high Δf is independent of ∆klaser (Fig. 3f) and 
is 20–75% of the value at ∆f = 0 (see also Supplementary Section VI). 
The fact that this remaining potential lattice is independent of the 
lattice period suggests that it arises directly from interaction of the 
polaritons with the free carriers45 before any relaxation processes and 
scatterings start to introduce spatial diffusion and scattering. Hence, 
both the decay and saturation of Veff with increasing modulation speed 
can be explained within the same phenomenological framework: a 
free-carrier plasma that instantaneously follows the laser intensity 
and an exciton reservoir that is thermally populated from this plasma 
and feeds the condensate via stimulated scattering. This means that, 
while slow modulation (Δf < 1/210 ps) will always be strongest, it is 
possible to use the electron–hole plasma to modulate the energy of 
GaAs polaritons faster than their thermal relaxation time scale. This is 
crucial to achieve effective Floquet Hamiltonians in the high-frequency 
approximation, which would allow the generation of artificial gauge 
fields48,49. Given a typical hopping measured in this work (J = 5 μeV), 
the high-frequency regime is within experimental reach (Δf = 10 GHz 
corresponds to 40 μeV modulation).

Discussion
We have demonstrated the formation of spatio-temporal potential lat-
tices in exciton–polariton condensates. Using the simple interference 
between two lasers, we have created potential lattices with a control-
lable depth (up to ~4 meV) and tunable nearest-neighbour hopping. 
Detailed power and frequency dependencies of the potential depth 
have highlighted the crucial role of the electron–hole plasma in the 
formation of the non-resonant potential, demonstrating that modula-
tion is possible at speeds higher than the thermal relaxation. Finally, we 
observed universal tilting of bands in the adiabatic modulation limit and 
directly linked it to non-trivial Chern numbers Cn = ±1 of the instantane-
ous eigenstates, which is analogous to Thouless pumping in the limit 

of a sliding lattice50–52. The non-zero Chern number demonstrates the 
topological non-triviality of the non-reciprocal tilting. The simplicity 
of the technique opens the door to future experiments using addi-
tional modulation frequencies53 and extensions into two-dimensional 
geometries54 that can result in higher Chern numbers41 and lead to the 
experimental confirmation of topologically protected edge states in 
modulated polariton lattices. Additionally, the possibility of modula-
tion at non-adiabatic speeds using the non-resonant plasma is a step-
pingstone towards creating artificial gauge fields and opens the door 
to studying Floquet topological phase transitions in polariton conden-
sates35 and other phase-coherent states in semiconductor microcavi-
ties55 and studying the interplay between polariton non-Hermicity, band 
topology and non-reciprocity.
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Methods
Sample
The microcavity sample used consisted of 35 (30) AlAs/Al0.15Ga0.85As 
mirror pairs for the bottom (top) distributed Bragg reflectors (DBRs) 
forming a 5λ/2 cavity (λ being the resonance wavelength) with four sets 
of (3 × 13)-nm-wide GaAs/Al0.3Ga0.7As. As quantum wells, leading to a 
Rabi splitting of 2ℏΩ ≈ 8.5 meV. At k ≈ 0, the cavity energy was 7 meV 
below the exciton energy and the lower polariton lifetime was 22 ps.

Laser interference
Two continuous wave lasers were used to simultaneously excite the 
microcavity: a single-mode, cavity-locked Ti:sapphire (~120 mW = 
1.2Pth) and a single-mode, tapered amplifier (TA) semiconductor laser 
(<1 W, 20 GHz mode-hope free tuning, 1–90% of Ti:sapphire power). 
Both lasers were chopped into ~10 μs pulses synchronized with the 
camera capture using acousto-optic modulators to prevent sample 
heating and defocused with a cylindrical lens, providing a 50 × 16 μm 
elliptical condensate on the microcavity.

The TA was offset from the Ti:sapphire both in angle and in fre-
quency, creating intensity fringes on the sample surface (a = 9–20 μm) 
that moved with speeds of up to 0.2 μm ps−1. To achieve the angle 
offset, both lasers were initially aligned at normal incidence on the 
microcavity, and the TA was beam-walked to come in at a variable 
angle (0.3–0.7 μm−1) while maintaining maximal spatial overlap. The 
frequency offset was controlled via the output grating of the laser 
diode of the TA and monitored using the beat signal between the 
two lasers measured on a fast photodiode. The modulation range 
was 20 GHz with an accuracy of 100 MHz (mostly limited by slow 
frequency drift).

Measurement
The sample was held in a continuous-flow helium cryostat at 4 K. An 
objective with a numerical aperture of 0.4 was used to focus the lasers 
and collect the emitted photoluminescence, which was separated from 
the laser light using a dichroic mirror. The photoluminescence passed 
through a high-resolution spectrometer (with a minimum full-width at 
half-maximum of ~60 μeV) and was then imaged with a charge-coupled 
device camera.

Band analysis
To extract the experimental band structures, images were smooth-
ened, and energy peaks were detected for each value of momentum 
ky and then clustered using the AgglomerativeClustering function 
in scikit-learn56. The clustering metric prioritizes clustering along 
the mode momenta and takes into consideration the energy tilting 
for non-zero frequency offset between the lasers. Peak fitting and  
clustering were supervised to ensure consistent results for all experi-
mental conditions.

Data availability
Raw data is available on figshare at https://doi.org/10.6084/
m9.figshare.25217435 (ref. 57).

Code availability
The code used to analyse data and perform simulations are both avail-
able via GitHub at https://github.com/YagoDel/microcavities (ref. 58).
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