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Attosecond electron microscopy by 
free-electron homodyne detection
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Time-resolved electron microscopy aims to track nanoscale excitations 
and dynamic states of matter at a temporal resolution ultimately reaching 
the attosecond regime. Periodically time-varying fields in an illuminated 
specimen cause free-electron inelastic scattering, which enables the 
spectroscopic imaging of near-field intensities. However, access to the 
evolution of nanoscale fields and structures within the cycle of light 
requires sensitivity to the optical phase. Here we introduce free-electron 
homodyne detection as a universally applicable approach to electron 
microscopy of phase-resolved optical responses at high spatiotemporal 
resolution. In this scheme, a phase-controlled reference interaction serves 
as the local oscillator to extract arbitrary sample-induced modulations of 
a free-electron wavefunction. We demonstrate this principle through the 
phase-resolved imaging of plasmonic fields with few-nanometre spatial 
and sub-cycle temporal resolutions. Due to its sensitivity to both phase- 
and amplitude-modulated electron beams, free-electron homodyne 
detection measurements will be able to detect and amplify weak signals 
stemming from a wide variety of microscopic origins, including linear and 
nonlinear optical polarizations, atomic and molecular resonances, and 
attosecond-modulated structure factors.

The desire to map the structure and dynamic evolution of materials 
on their intrinsic spatiotemporal scales of ångströms and attoseconds 
has been a major driving force behind methodological developments 
in condensed matter science. Although structural information is avail-
able from X-ray1–3 and electron4–6 imaging and diffraction, temporal 
resolution down to the attosecond regime is provided by a growing 
suite of methods in optical spectroscopy7–9. Ultrafast electron micros-
copy combines the strengths of optical techniques with nanoscale 
spatial resolution10–13 for imaging non-equilibrium phenomena such 
as structural phase transformations14, strain wave and polariton propa-
gation15,16. In this approach, electrons are synchronized with optical 
excitations driven by femtosecond laser pulses, commonly used to 
trigger dynamical processes in solids, nanostructures and molecules. 

The characterization of the associated microscopic couplings and 
correlations with ultimate spatiotemporal resolution will facilitate 
future applications in materials synthesis, energy conversion and light 
harvesting.

The response of a material to an optical stimulus includes both 
linear and nonlinear contributions17,18, which intrinsically involve a 
temporal evolution shorter than the optical period19–23. Pulses with a 
sub-cycle temporal structure are employed to probe such dynamics24,25. 
For example, high-harmonic generation facilitates the creation of 
attosecond extreme ultraviolet pulses26 or pulse trains27,28 for spectros-
copy. In electron microscopy, the generation of energy sidebands by 
coherent inelastic electron scattering29–31 allows sub-cycle bunching 
of the electron beam through dispersive propagation32,33, promising 
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For illustration, we consider the sample responses g and a at the 
fundamental frequency only (dropping the index n). In the limit of weak 
interactions, these responses generate electron energy sidebands with 
populations P±1 ∝ ∣g∣2, ∣a∣2 (for ∣g∣, ∣a∣ ≪ 1), which are separated from the 
initial beam energy by ±ℏω (refs. 29–32). We are now interested in the 
quantitative and phase-resolved determination of these modulations, 
which constitute the attosecond sample response. This is achieved by 
inducing a subsequent coherent and phase-controllable light interac-
tion with the electron beam, which serves as a local oscillator (that is, 
a reference) for the electron wavefunction modulations. Either ampli-
tude or phase modulation could be used as the local oscillator, but, for 
simplicity and experimental practicality (that is, readily available 
through PINEM), we consider a phase-modulating local oscillator gref 
with a controllable phase ϕref = arg{gref}. The local oscillator leads to 
final-state interference in the electron energy sidebands, in distinctive 
manners for amplitude and phase modulations. Specifically, the sym-
metric (S) and antisymmetric (A) components of the first-order side-
band populations directly encode the phase- and amplitude-modulation 
response of the material, respectively. Approximated to first order in 
the strength of the reference, these independent FREHD signals become

S = P+1 + P−1 ∝ |g||gref| cos (ϕref − ϕg) + const. (1a)

A = P+1 − P−1 ∝ |a||gref| cos (ϕref − ϕa) + const. (1b)

These complementary dependencies arise from the varying symmetries 
of the complex sideband amplitudes produced by amplitude and phase 
modulation, as derived in Methods (see also Extended Data Fig. 1). A 
generalization of these expressions to arbitrary harmonic responses 
and references requires the application of free-electron quantum state 
reconstruction, as recently introduced in refs. 35,53.

attosecond microscopy34–39 with high spatial resolution. Recent works 
demonstrated attosecond electron pulse trains within the stringent 
spatial constraints imposed by electron microscopes35,39,40, whereas 
very recent breakthroughs enable nanometric attosecond imaging41–44.

Results
The principle of free-electron homodyne detection
In this Article we introduce free-electron homodyne detection (FREHD) 
as a universal scheme for attosecond electron microscopy of arbitrary 
periodic sample responses. The technique is based on a nanoscale read-
out of coherent amplitude or phase modulations of the free-electron 
wavefunction. Not requiring a density structuring of the beam, FREHD 
will enable the spatially resolved mapping of sub-cycle optical, elec-
tronic or structural dynamics. We experimentally demonstrate the 
capabilities of this approach in the phase-resolved imaging of plas-
monic near fields at the few-nanometre scale.

The method presented here transfers the notion of homodyne 
detection in optics and radiofrequency technology to electron beams, 
with conceptual similarities but also notable additional features. In 
optics, homodyne detection is frequently used to characterize states 
of light in relation to a local oscillator45. Specifically, the signal to be 
probed is brought to interference with a reference wave derived from 
the same source (the local oscillator) by mixing both at a beam split-
ter. A key advantage of this scheme is sensitivity to the relative phase 
between the signal and the reference. Moreover, a coherent amplifica-
tion of the signal of interest is accomplished using a sufficiently strong 
local oscillator, although shot-noise constraints for weak signals are 
generally known to remain in place46 (Methods).

Analagously, FREHD facilitates the nanoscale probing of micro-
scopic sample responses by an electron beam in a phase-resolved 
manner and with an added sensitivity to nonlinear sub-cycle tempo-
ral evolution. Figure 1 schematically illustrates the principle of the 
technique. We consider an optical excitation at a frequency ω that 
induces a response in an investigated specimen, generally contain-
ing contributions at both the fundamental driving frequency and 
its harmonics 2ω, 3ω, …, nω. An electron beam transmitted through 
or diffracted by the sample experiences a modulation governed by 
the detailed electronic and structural response to the excitation. For 
example, a time-periodic variation of the magnitude of the structure 
factor in a crystalline specimen47 leads to amplitude modulation of the 
electron wavefunction along its propagation direction (Fig. 1, left). By 
contrast, phase oscillations of the structure factor—as well as localized 
optical near fields and nonlinear optical polarizations48 with vector 
components along the beam path—result in a longitudinal phase (that 
is, momentum) modulation of the wavefunction by inelastic electron–
light scattering (Fig. 1, right), as leveraged in photon-induced near-field 
electron microscopy11,29–32 (PINEM).

Consequently, the electron wavefunction is modulated in its ampli-
tude and/or phase upon traversing a sample plane at velocity ve.  
These modulations are characterized by their strength and their phase 
with respect to the optical carrier wave. Specifically, an nth harmonic 
modulation of the electron wavefunction amplitude along the  
propagation direction z is described by multiplication with 
[1 + |an| sin(nωz/ve + ϕa,n)]. This modulation is fully determined by the 
complex coefficient an = |an| exp(iϕa,n). Similarly, phase modulation 
is described by the complex coefficient gn = |gn| exp(iϕg,n) ,  
which corresponds to multiplication of the electron wavefunction by 
exp[−2i|gn| sin(nωz/ve + ϕg,n)]. Generally, combinations of both types 
of modulation at different harmonics are possible, and probably occur 
in diffractive probing of strongly light-driven charge densities17,20. In 
the past, electron phase modulation was primarily considered, typically 
resulting in multiple higher-order sidebands in the electron energy 
spectrum11,29,32,49–52. Yet, in direct analogy to radiofrequency technology, 
amplitude modulation is expected to produce a single pair of energy 
sidebands for each harmonic.
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Fig. 1 | Measurement of arbitrary amplitude and phase responses by 
free-electron homodyne detection. Optical excitation of an investigated 
sample at frequency ω, inducing a response at the fundamental driving frequency 
and its harmonics. A transmitted or diffracted electron beam experiences 
modulation in its amplitude and/or phase, which traces the response. For 
example, a modulation of the magnitude of the structure factor f(k) of a material 
leads to an amplitude modulation of a diffracted electron wavefunction (left), 
whereas localized optical fields and polarizations typically result in a phase 
modulation (right). A second interaction with a local oscillator—serving as a 
reference or mixer with variable phase—yields antisymmetric and symmetric 
signals, respectively, in the final electron kinetic energy spectrum, which is 
measured in this homodyne detection scheme.
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From a fundamental viewpoint, the described approach exploits 
the quantum coherence of sequential interactions with free-electron 
beams, which were previously demonstrated in the context of 
Ramsey-type phase control54, used for the quantitative measurement 
of attosecond electron pulses35, and underlined recent demonstrations 
of cathodoluminescence interference from sequential scatterings55. 
Analogously, sequential interactions have been employed to create 
energy-filtered holograms of travelling surface plasmons56. Harnessing 
such phase-locked interactions in a universally applicable microscopy 
scheme to retrieve sub-cycle information requires both high spatial 
resolution and a controlled means of varying the phase of the local 
oscillator in a way that is independent of the sample under investiga-
tion. In essence, such a technique must combine free-electron quantum 
state reconstruction (achieved so far only for collimated beams35) with 
high spatial resolution.

Implementation of FREHD at high spatial resolution
Next, we experimentally implement and demonstrate FREHD for 
resolving the plasmonic near-field evolution at a gold nanoprism 
with sub-cycle temporal (that is, phase) resolution using a 5 nm probe 
beam. The measurements are conducted at the Göttingen ultrafast 

transmission electron microscope (UTEM), which is equipped with a 
laser-triggered electron gun that generates photoelectron pulses for 
the femtosecond probing of structural, magnetic and optical excita-
tions12. Figure 2 illustrates the geometry employed in the experiment. 
As a key element, a custom-designed double specimen holder allows 
for the positioning of a reference membrane sample in proximity (here: 
210 μm) below the specimen under investigation. (We note that placing 
the reference above the sample is of course equally possible. Generally, 
however, dispersive effects must be considered, which will differ in both 
scenarios.) Using a piezo actuator between the two arms of the double 
holder, the distance z between the sample and the reference membrane 
can be precisely controlled, as shown in Fig. 2a,b. A laser beam incident 
at −6° relative to the axis of the TEM column illuminates both the sam-
ple and reference, which are traversed by the 200 keV electron beam 
focused on the sample to a spot size of about 5 nm. The surface normal 
of the sample plane is tilted by about 13.2° from the electron beam, 
and away from the incident laser beam (Fig. 2c). This ensures that the 
optical phase fronts propagating at the vacuum speed of light match 
the modulations of the electron wavefunction, propagating at the 
electron group velocity ve ≈ 0.695c0 (refs. 36,49,57). Thus, in the plane 
of the reference membrane (Fig. 2d), each part of the weakly conical 
electron beam interacts with the same optical phase.

As a model system to study nanometric optical excitations58, we 
use a colloidal triangular gold nanoprism with a thickness of about 
7 nm and a side length of 100 nm. Inelastic electron–light scattering 
at the optical near field of the nanoparticle induces a PINEM-type elec-
tron phase modulation with a spatially dependent coefficient g that is 
proportional to the local longitudinal electrical field Ez (Methods)30,31. 
In scanning TEM, we raster the focused electron probe across the 
investigated gold nanoprism, and an electron kinetic energy spectrum 
is measured at every position to image the spatial distribution of the 
optical near field.

For a given point in the scanning routine, we observe an interaction- 
induced sinusoidal modulation of the electron wave with the reference 
phase, as sketched in Fig. 2e. This results from the coherent super-
position of light–electron interactions taking place at the sample 
(coupling coefficient g) and at the reference membrane (coupling gref).  
Importantly, both modulations add up coherently54 in the total 
coupling coefficient gtotal = g + gref. The magnitude ∣gtotal∣ of the total 
modulation governs the magnitude and number of populated  
sidebands and is directly obtained from fits to the measured spectra 
(Methods).
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Fig. 2 | Implementation of FREHD at high spatial resolution. a, Schematic of 
a focused electron beam and co-propagating laser beam traversing the sample 
and reference. A dedicated dual-plane holder allows for an independent vertical 
displacement of the reference (here, a silicon membrane). b, Side view of the 
piezo-controlled holder. c,d, Geometry of the experimental configuration 
(c). Focused to a 5 nm spot size at the sample, the electron beam has diverged 
to a beam diameter of about 13 μm at the reference. The sample is tilted by a 
predetermined angle to ensure electron–light phase matching. In this way, 
the phase fronts of the laser light and of the modulated electron wavefunction 
are matched at the reference membrane (see d). e, Top: stimulated inelastic 
scattering at an investigated nanostructure (here, a plasmonic nanoprism) 
leads to quantum-coherent electron phase modulation. The displacement of 
the reference plane controls the phase of the reference interaction ϕref and the 
resulting final sideband populations. Bottom: the magnitude of the total phase 
modulation is measured by raster scanning, recording kinetic energy spectra at 
each in-plane position and for a set of reference phases. These interferograms 
yield a spatial map of the complex phase modulation induced by the sample.
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Fig. 3 | Recorded FREHD interferograms for an optically excited gold 
nanoprism. a, Spatial scans of the magnitude of the total phase modulation 
for four different values of the reference phase ϕref. b, Interferograms 
(∣gtotal∣2 as a function of relative phase) at the pixel positions indicated by the 
colour-coordinated dots in a (bottom right) and c (solid lines, sinusoidal fits).  
c, Dark-field image of the nanoprism.
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As the electron group velocity and the light phase velocity dif-
fer, changing the position of the reference plane Δz modifies the 
phase of the reference, which allows for cycling through constructive 
and destructive interference of both actions (2π phase change for 
Δz = 2.1 μm). We record electron spectra in raster scans of the sample 
plane for a discrete set of reference phases across a complete cycle, 
selected by displacements of the second membrane. These measure-
ments yield a stack of ∣gtotal∣ maps as a function of the reference phase 
(Fig. 2e).

Recording a complete interferogram (total electron–light cou-
pling strength as a function of relative phase) for every lateral position 
yields

|gtotal|2 = |g|2 + |gref|2 + 2 γ |g||gref| cos (ϕg − ϕref) , (2)

where ϕg − ϕref denotes the phase difference between g and gref. A 
coherence factor (0 ≤ γ ≤ 1) is introduced here to account for imper-
fect interference conditions arising from amplitude or phase aver-
aging (for example, due to polychromaticity of the laser during the 
two interactions, as shown in Extended Data Fig. 2, the finite size of 
the probe, dispersion effects and deviations from perfect velocity 
matching at different propagation angles). Strictly speaking, dispersive 
propagation between the interactions planes, leading to attosecond 
electron bunching33,35–37,39, needs to be taken into account, but this only 
represents a small correction at the propagation distances and field 
strengths considered.

Attosecond evolution of a nanometric plasmonic field
Figure 3a shows images of the measured total interaction strength at 
four fixed reference phases across the full cycle. The interference of 
different plasmonic modes in the nanoprism leads to lobes and nodes 
at the nanoprism edge and centre. These features are generally aligned 
to the main axis of the weakly elliptical incident laser polarization (indi-
cated in Fig. 3a, top left). Moderate birefringence in the pump beam 
path of the electron microscope leads to an ellipticity of the incident 
radiation on the nanoprism of about 0.25 ± 0.05, which we estimate by 
comparison with the simulation. It is apparent that the intensity of the 
lobes varies during the interference cycle, and maxima appear at dif-
ferent locations. Figure 3b displays phase-dependent total coupling 
strengths for the positions indicated both in Fig. 3a (bottom right) and 

in the dark-field image in Fig. 3c. The complex coupling coefficients are 
retrieved from fits to equation (2) at each pixel (solid lines in Fig. 3b).  
A uniform magnitude and phase of the reference (∣gref∣ = 0.370 ±  
0.004, ϕref = ± 0.1 rad), as well as a single coherence factor γ = 0.67, 
describe the entire dataset well. We obtain a coupling coefficient with 
∣g∣ = 0.281 ± 0.017 and ϕ = (1.64 ± 0.034) rad =̂ (836 ± 18) as  in the peak 
of the excited plasmon mode (dark blue curve in Fig. 3b). The typical 
uncertainty in the phase determination at a single pixel in the region 
of the plasmonic peaks is about 45 mrad.

Figure 4 displays the complex response of the nanoprism in terms 
of its magnitude (Fig. 4a) and complex amplitude (Fig. 4b). Here, the 
depicted phase is shown relative to that of the silicon nitride (Si3N4) 
membrane supporting the nanostructure, and the substrate’s small 
uniform background coupling coefficient gSi3N4 = 0.091 is subtracted. 
The measurement clearly shows that the local maxima of the optical 
near field exhibit different optical phases. As they represent the com-
plete information about the field, these measurements can be depicted 
in a time-domain sequence (Fig. 4c), illustrating the real part of the 
out-of-plane optical electric field Ez ∝ |g| cos(ϕg − ωt) as frames of an 
attosecond movie. Notably, the handedness of the elliptical laser polari-
zation appears as a time-dependent rotation of the maxima around 
the nanoprism.

We repeat these measurements for an orthogonal incident polari-
zation state, that is, with a rotation of the major polarization axis by 90° 
(Fig. 4d–f) and the opposite helicity, which clearly lead to pronounced 
oscillations along different axes of the nanoprism and an inversion of the 
apparent rotation angle of the near-field features. The experimental char-
acterization of these complex electric near fields for two non-collinear 
polarizations constitutes a full polarization-dependent characterization 
of the near-field optical response. Hence, near fields resulting from 
arbitrary incident polarization states are immediately retrieved by a 
corresponding linear combination of these two measurement results.

Discussion
In the broader area of phase-resolved near-field imaging using scan-
ning probe techniques59–61, photoelectron emission22,62,63, electron 
deflection64 and Lorentz microscopy of optical fields41, as well as the 
control of quantum emitters65, FREHD has a set of unique strengths. It 
is non-invasive, perfectly linear in its response, and allows for consist-
ently high and practically sample-independent spatial resolution, which 
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Fig. 4 | Measured electric field evolution at a gold nanoprism. a,b, The 
interferogram analysis in Fig. 3 yields the magnitude (a) and complex amplitude 
(b) of the sample-induced phase modulation g. c, Temporal sequence of the 
out-of-plane electric field evolution within the optical cycle. d–f, Corresponding 

measurement for a weakly elliptical polarization state with the major axis rotated 
by 90°. The most pronounced maxima in both measurements are clearly aligned 
with the polarization angle. See Supplementary Videos 1 and 2 for the complete 
temporal evolution shown in c and f.
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can be further correlated with detailed structural characterization of 
the specimen down to the atomic scale. Due to the direct dependence 
of the sideband populations on the electric field strength, FREHD can 
also provide calibrated quantitative values of the local field. Several 
spatial Fourier components of the field along the beam path would 
be required to determine the spatial field decay away from the struc-
ture, which could be attained by measurements at different electron 
velocities. Moreover, several propagation angles could be combined 
in a tomographic approach of the vectorial near field63,66. A full recon-
struction of the vectorial near field in three dimensions seems possible 
if using such data in conjunction with further physical constraints 
such as Maxwell’s equations and boundary conditions. Furthermore, 
the technique can be applied to recover sub-cycle fundamental and 
higher-harmonic phase profiles of any local field distribution, including 
orbital angular momentum states and topological near fields such as 
vortices22, skyrmions63 and merons67.

The approach is not limited to electromagnetic fields, but will 
rather detect any modulation imprinted onto an electron beam by an 
electronic or structural material response. Notably, this covers attosec-
ond charge-density dynamics causing subtle light-driven changes of 
the structure factor47 at the fundamental frequency and its harmonics. 
Extended Data Fig. 1 details the spectrally symmetric and antisymmet-
ric contributions of amplitude and phase modulations at the funda-
mental and second-harmonic frequencies. The resulting characteristic 
phase-dependent signatures allow for an unambiguous determination 
of different amplitude and phase modulations, providing, for example, 
a retrieval of nonlinear polarizations48, partial coherence or a complete 
quantum state reconstruction of free-electron density matrices35,53.

Detecting such small modulations is facilitated by the intrinsic 
coherent amplification of the signal by the local oscillator, which fol-
lows from the linear (rather than quadratic) scaling of the sideband 
populations with modulation amplitude. For example, a weak modu-
lation of g = 0.01—leading to only a P1 ≈ 0.01% sideband population in 
the absence of a reference—can be amplified to an interferogram with 
sideband populations varying by 16.8% ± 0.6% (gref = 0.45). Depending 
on experimental conditions, such considerable amplifications ren-
der the detection of very weak objects feasible by overcoming given 
levels of background or detector noise. Broadly speaking, FREHD will 
greatly simplify reaching shot-noise (or quantum) limited detection 
of small signals. In direct analogy to optical homodyne detection46 or 
interferometric single biomolecule imaging68, under perfect detec-
tion conditions, the technique does not overcome the fundamental 
signal-to-noise limits of how many electrons are required to quan-
tify the strength of a weakly scattering object (see considerations in 
Methods). Pixelated event-based detection, as utilized in our work, 
approaches unity quantum efficiency and features a practical absence 
of read and dark noise. Nonetheless, even with such detectors, physical 
backgrounds stemming from, for example, elastic and inelastic scatter-
ing cannot be completely avoided. Hence, there is a substantial practi-
cal advantage offered by coherent signal amplification, analogously to 
optical interferometric scattering microscopy69. Ultimately, besides 
the benefit of phase sensitivity, these features may bring individual 
quantum systems, such as molecules, atoms or colour centres, closer 
to spectroscopically enhanced detection in electron microscopy.

In the present implementation, we measured quasi-periodic sig-
nals with a well-defined carrier frequency in a phase-resolved manner. 
In general, the approach can be translated to the detection of isolated 
attosecond responses of materials spanning a single optical cycle or 
less. To this end, the optical excitation and ideally also the electron 
pulse should be shorter than a single cycle, with a correspondingly 
large bandwidth. In this case, the measurement of sideband amplitudes 
would be replaced by overall shifts in the then continuous electron 
energy spectrum.

In conclusion, we present a general approach for attosecond 
phase-resolved electron microscopy at few-nanometre spatial 

resolution. Quantitative detection of wavefunction modulations 
imprinted onto a focused electron probe is achieved using a 
phase-matched local oscillator interaction at a movable reference 
plane. FREHD generalizes the high-resolution measurement of atto-
second materials responses in electron microscopy, without a need for 
electron density bunching, and represents a first realization of a larger 
class of possible multidimensional optical spectroscopies that may 
enable the local readout of couplings, correlations and decoherence.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
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butions and competing interests; and statements of data and code avail-
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Methods
Samples and piezo double holder
The top sample consists of colloidal gold nanoprisms70 drop cast onto 
a 50-nm-thick standard Si3N4 TEM membrane with a window size of 
100 μm. The solution consists of nanoprisms with varying geometries, 
having slightly heterogeneous sizes and shapes with a typical thickness 
of about 7 nm. The nanoprism investigated in our experiments exhibits 
a side length of about 100 nm. Characterization via electron energy-loss 
spectroscopy in conventional TEM mode (continuous electron emission) 
identifies the energy of the edge and centre modes at 1.58 eV (785 nm) and 
1.82 eV (681 nm), respectively. The corresponding spectra (Extended Data 
Fig. 3a) and maps at different energies (Extended Data Fig. 3b) are shown 
together with two dark-field micrographs (Extended Data Fig. 3c,d). The 
zero-loss peak has been deconvolved to reveal low-energy losses.

The bottom reference sample is a plain standard single-crystalline 
silicon membrane with a thickness of 30 nm and a window size of 
500 μm. It acts like a mirror and produces a homogeneous reference 
near field. The reference sample is positioned 215 μm below the top 
sample membrane in a custom-designed double holder and can be 
translated by 2.2 μm relative to the top sample along the membrane’s 
normal (z-direction) by a preloaded, voltage-controlled piezo actuator.

Experimental geometry
The nanoprism sample and the reference plane are probed simultane-
ously in scanning TEM mode with 30 mrad semi-convergence angle of 
the electron beam, which is focused down to a 5 nm spot diameter on 
the nanoprism. These focussing conditions lead to an electron beam 
diameter of about 12.9 μm on the reference membrane.

The sample and reference planes are both excited with a laser 
incident at an angle of −6° relative to the electron beam axis. The whole 
sample holder is tilted along the holder axis by 13.2° from the perpen-
dicular orientation to the electron beam axis (see Fig. 2c) to match 
the phase velocity of the laser excitation and the group velocity of the 
200 keV electrons, resulting in a spatially homogeneous optical refer-
ence phase along directions normal to the electron beam.

Ultrafast transmission electron microscopy
The experiments were performed at the Göttingen UTEM12. Photo-
electron pulses are generated from a thermal Schottky field emitter 
tip using femtosecond laser pulses12,71,72 (centre wavelength = 515 nm, 
pulse duration = 150 fs and repetition rate = 2 MHz) and accelerated to 
200 keV. The electron pulse duration at the sample plane is governed 
by Coulomb interaction73,74 leading to about 200 fs pulses under the 
given laser conditions. Laser excitation of the sample is provided by 
tunable-wavelength femtosecond pulses from an optical parametric 
amplifier (here at 960 nm central wavelength and 105 cm−1 bandwidth) 
and polarization control via retarding quarter and half waveplates. 
To provide a time-homogeneous excitation for the duration of the 
electron pulses, the excitation pulses are stretched to a duration of 
about 600 fs using a dispersive SF6 glass rod (group delay dispersion 
(GDD) = 29,200 fs2). The resulting kinetic energy spectrum of the elec-
trons induced by inelastic electron–light scattering is dispersed by a 
magnetic prism and recorded for each scanning position (pixel dwell 
time = 30 ms) with a hybrid pixel detector.

The acquisition of 64 px × 64 px with a short dwell time for the 
recording of the spectrum of 30 ms takes roughly 3 min per image and 
50 min in total to record the full interference cycle at 16 different ϕref. 
The resulting dataset consists of 65,536 spectrograms.

Homodyne detection of sub-cycle light-driven dynamics
Pump–probe studies of field-driven dynamics are usually performed by 
combining a harmonic optical excitation (light frequency ω) with prob-
ing pulses of durations below the optical cycle T = 2π/ω (for example, 
isolated pulses or pulse trains in the optical domain7,75, and recently 
attosecond electron pulse trains35–37,44,76). Sub-cycle light-driven 

dynamics can also be probed by reconstructing the full quantum state 
of a system using coherent excitation and probing schemes, thus giving 
access to its full temporal evolution, as performed for interferometric 
frequency-resolved optical gating or reconstruction algorithms such 
as SQUIRRELS for electrons35. This concept is essential for FREHD  
(Fig. 1), which probes complex light-driven dynamics at the nanoscale 
by coherently modulating the electron wavefunction both at a sample 
(coupling g) and at a reference (coupling gref).

The near-field distribution E(x, y, z, t) = Re {E(x, y, z)e−iωz/ve } imprints 
a sinusoidal phase modulation onto the incident electron wavefunc-
tion Ψinc(z), such that the post-interaction wavefunction becomes

Ψg(z) = exp [2i|g| sin (
ω
ve

z + ϕg)] Ψinc(z), (3)

where we work in the interaction picture. The interaction is described 
by the complex coupling parameter

g(x, y) = e
2ℏω ∫

∞

−∞
Ez(x, y, z)e

−iω z
ve dz, (4)

which represents the spatial Fourier transform of the optical field along 
the electron beam direction at a spatial frequency Δk = ω

ve
, where ve is 

the electron velocity30,31. Incidentally, we define ϕg ≡ arg{−g}. Using the 
Jacobi–Anger relation, the electron wavefunction after inelastic elec-
tron–light scattering is made up of discrete sidebands labelled by an 
integer number N with each of them having an amplitude given in terms 
of a Bessel function JN as31

Ψg,N = JN(2|g|)eiNϕg . (5)

The total transmitted electron probability P is the same of contribu-
tions arising from the discrete harmonic sidebands as

P =
∞
∑

N=−∞
PN = 1, (6)

where PN = |Ψg,N|2 = J2N(2|g|)  is the intensity of sideband N. Obviously, 
∣Ψg(z)∣ = 1 for all values of z, so there is only phase modulation of the 
electron density.

In the weak coupling regime (g ≪ 1), the wavefunction reduces to

Ψg(z) ≈ [1 + 2i|g| sin(ωz/ve + ϕa)] Ψinc(z)

= [1 + g eiωz/ve − g∗e−iωz/ve ]Ψinc(z),
(7)

where the asterisk denotes the complex conjugate and we recover the 
Ψg,N coefficients for N = ± 1.

A situation in which we have amplitude modulation can be repre-
sented by a scattered wavefunction analogous to equation (3),

Ψa(z) = exp [2|a| cos (
ω
ve

z + ϕa)] Ψinc(z), (8)

but now ∣Ψa(z)∣ oscillates with z, in contrast to ∣Ψg(z)∣. For weak coupling 
(a ≪ 1), we have

Ψa(z) ≈ [1 + 2|a| cos(ωz/ve + ϕa)] Ψinc(z)

= [1 + a eiωz/ve + a∗e−iωz/ve ]Ψinc(z),
(9)

where a = |a|eiϕa. Note that the function cos ( ω
ve
z + ϕa) in equation (8) is 

general for harmonic modulation (for example, a sine modulation 
could be accommodated by redefining the phase ϕa).

To consider homodyne interferometric detection, we introduce 
a reference interaction characterized by a coupling coefficient gref that 
produces a phase modulation factor given by equation (7) with g 
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substituted by gref. The total wavefunction resulting from the combina-
tion of all of these modulations (phase, amplitude and reference) can 
be understood as the convolution of different sidebands or, equivalently, 
it is the result of multiplying the incident wavefunction Ψinc(z) by a factor 
exp [2i|g| sin(ωz/ve + ϕg) + 2|a| cos(ωz/ve + ϕa) + 2i|gref| sin(ωz/ve + ϕgref )] . 
Under the assumption of weak interactions, we Taylor-expand this 
expression again and retain only first-order terms in the exponent, so 
the total modulated wavefunction reduces to

Ψtotal(z) ≈ [1 + (a + g + gref) eiωz/ve + (a − g − gref)
∗e−iωz/ve ] Ψinc(z).

The intensities of the first gain and loss sidebands (evolving as eiωz/ve 
and e−iωz/ve in the wavefunction, respectively) are then

P+1 = |a + g + gref|2,

P−1 = |a − g − gref|2,

which produce the signals

S = P+1 + P−1 = 4|g||gref| cos(ϕref − ϕg) + constant, (10a)

A = P+1 − P−1 = 4|a||gref| cos(ϕref − ϕa) + 4|a||g| cos(ϕg − ϕa) + constant
(10b)

in symmetric and antisymmetric detection channels. For a generic 
system in which both phase- and amplitude-modulation interactions 
are present, the symmetric channel thus allows obtaining the phase ϕg 
of the phase modulation component through equation (10a), and once 
this is determined, the antisymmetric channel (equation (10b)) can 
be used to retrieve ϕa. To simplify the discussion, in the main text we 
consider symmetric detection of phase-only modulation and antisym-
metric detection of amplitude-only modulation (see equation (1a)).

This formalism can be depicted in quantum phase space and gen-
eralized to describe amplitude modulations, as shown in Extended 
Data Fig. 1. Different types of coherent sample interactions lead to 
phase-dependent signals, either in the symmetric or antisymmetric 
detection channels. In quantum phase space, the Wigner distribution 
W(x, p) describes an electron after optical modulation, with charac-
teristic features arising, such as conjugate symmetric (for example, 
phase modulation) or symmetric (for example, amplitude modula-
tion) sidebands. The phase-dependent spectrogram after the second 
interaction, accessible in a measurement, is obtained by convolution 
of the initial state with the second reference Wigner function Wref(x, p) 
as S(E) = W(x, p) ∗ Wref(x, p), where the asterisk indicates convolution. 
Noteworthy, dispersive propagation between sample interaction and 
reference leads to a shearing of W(x, p), which transforms an initial 
phase modulation into an amplitude modulation of the electron wave-
function, yielding sub-cycle density modulations and attosecond 
electron pulse trains32. Besides the possibility of a full quantum state 
reconstruction when combined with SQUIRRELS35, FREHD offers fast 
and direct access to complex harmonic modulations of the electron 
state by measuring the symmetric P1 + P−1 or antisymmetric P1 − P−1 
detection channels (weak signal and reference).

Fitting of PINEM spectra
The spectrum is described by equation (5), where each sideband is 
separated by an energy ℏω = 1.29 eV (the laser photon energy) and 
convolved with a zero-loss peak of the full-width at half-maximum 
(FWHM) taken as 0.6 eV. We fit each recorded spectrum to find the 
corresponding value of ∣gtotal∣, taking the transmission and a shift of 
the zero-loss peak as fitting parameters.

Calibration of the reference phase
The reference phase is set by changing the z position of the reference 
membrane plane with a piezo actuator. The voltage operating the piezo 

actuator is applied in open-loop mode, requiring a position calibration. 
For positive voltages, the change in position depends linearly on the 
applied voltage. However, to extend the maximum range of motion in this 
experiment, we also operate the piezo at negative voltages, leading to a 
nonlinear dependence at the zero-voltage crossing, which is corrected 
during calibration using an error function in the range of the zero crossing. 
We calibrate both the width of the error function and the proportionality 
of the adjusted voltage to the resulting phase from a measurement with 
61 phase steps between 0 and 2π. This calibration is evaluated in a region 
clearly separated from the nanoprism on the plain Si3N4 membrane, as 
shown in Extended Data Fig. 4. The proportionality and phase offset are 
determined by fitting a sinusoidal function to the measured interfero-
gram, excluding data points at negative and low voltages (<20 V). The 
width of the error function is determined such that the measured values 
at negative and low voltages lie on the extrapolated sinusoidal fit.

Interferogram visibility
Geometric constraints and imperfections in the experiment are a 
source of phase averaging, and limit the visibility of the interferogram. 
These include minor deviations from perfect velocity matching at dif-
ferent propagation angles and finite size of the probe. Moreover, for 
the given excitation conditions with a chirped laser pulse, the coher-
ence factor is reduced by the fact that the electrons interact with the 
pulse at two different times along its envelope. Consider laser pulses 
with a transform-limited pulse duration τ = FWHMIntensity

√2 ln 2
 and an electric 

field envelope e(t) = exp−(t/τ)
2

. Adding GDD to this pulse results in a 
time-dependent frequency, with the linear chirp given by 
ω(t) = ω0 +

2C
τ2C
(t − t0) , with the chirp parameter C ∶= 2ϕ′′

τ2
 and the  

chirped pulse length τC ∶= τ√1 + C2 . The chirp parameter relates to  

the GDD by C = 2GDD/τ2. The time-dependent phase ϕ(t) is given by

ϕ(t) = ∫ dt′ω(t) = ∫ dt′ω0 +
2C
τ2C

t′

ϕ(t) = ω0t +
C
τ2C

t2 + const.

Each electron interacts two times with this electric field at the first and 
the second interaction plane. The time difference of these interactions 
with respect to the envelope results from the difference of electron 
group velocity and the light phase velocity co-propagating over the 
separation distance d′.

Δt = d′
c0

(1 − 1
ve/c0

)

This time difference is fixed for all electrons in the pulse. However, as 
a result of the linear chirp of the laser pulse, the experienced phase 
difference between both interactions will vary for electrons arriving 
at different times with respect to the laser pulse envelope. The phase 
difference of the electric field at two times separated by Δt is given by

Δϕ = ϕ(t + Δt) − ϕ(t)

Δϕ = ω0Δt +
C
τ2C
(Δt2 + 2tΔt)

Δϕ = 2C
τ2C

tΔt + const.

Δϕ = tΔt
( τ4

4GDD
+ GDD)

+ const.

The ensemble of electrons within the electron pulse is well 
described by a Gaussian pulse where the arrival time of the electron 
follows a normal distribution

telectron ≈ 𝒩𝒩 (0,σ2electron) .
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In the experiment, we measure the ensemble and thus the cosine of 
phase differences

Δϕ ≈ 𝒩𝒩 (0,σ2Δϕ)

σΔϕ = 2C
(1 + C2)

Δt
τ2

σelectron

The resulting contrast is given by the expectation value of the cosine

γ = 𝔼𝔼[Iinterference] = 𝔼𝔼[cosΔϕ] = e−σ
2
Δϕ/2. (11)

For our experimental parameters with a bandwidth-limited laser pulse 
duration of 140 fs (FWHM), a GDD of 29,200 fs2, and an electron pulse 
length of 200 fs (FWHM), we obtain a coherence factor γ = 0.69.

Boundary element method simulation
Electrodynamic simulations of the coupling coefficient g are per-
formed using a boundary element method77 (BEM) as implemented 
in the MNPBEM17 Matlab toolbox78. For a metallic nanostructure of 
volume V delimited by a boundary ∂V and illuminated by a laser, the 
coupling coefficient in equation (4) can be written in terms of surface 
boundary sources as (H.L.-M. et al., manuscript in preparation)

g(R,ω) = e
2ℏω∮∂V

d2sU(s) [ ωc0
hz(s) − qzσ(s)] , (12)

where c0 is the speed of light in vacuum, U is an electron-generated scalar 
potential-like function, σ is the charge density and hz is the z-component 
of the current density induced at the nanostructure boundary, as 
obtained from BEM, and the electron velocity is taken along z. The 
nanoprism shape is extracted from experimental dark-field images 
using a distance regularized level set evolution algorithm (DRLSE)79 that 
renders the 3D meshed surface shown in Extended Data Fig. 5a. We 
neglect the presence of the substrate, but incorporate it by redshifting 
the excitation and model the metal response through its 
frequency-dependent permittivity taken from optical data80. The struc-
ture is illuminated by a light plane wave with an incidence angle of 20° 
with respect to the nanoprism normal, an amplitude of 0.08 V nm−1 and 
a wavelength of 560 nm. This wavelength differs from the one used in 
experiment because the absence of the substrate in the simulations 
causes a blue shift of the plasmonic resonances. The solution of the full 
retarded Maxwell equations plugged in equation (12) leads to the maps 
shown in Extended Data Fig. 5b,c. We obtain a good qualitative agree-
ment with the experimental data, although some discrepancies are to 
be expected due to the imprecise knowledge of the exact experimental 
parameters, for example geometry and exact resonance frequency of 
the sample, as well as angle and polarization of the excitation.

Shot-noise-limited detection of weak scatterers using FREHD
In light of the coherent amplification of weak signals discussed by us42 
and others43,81, it is instructive to discuss the role of shot noise in 
quantum-limited detection. Consider an electron scattering channel 
(for example, a PINEM sideband) characterized by a small amplitude 
gtotal and a probability ∣gtotal∣2 ≪ 1. For N incident electrons, the expecta-
tion value of the number of counts in that channel is P = N∣gtotal∣2 with a 
standard deviation ΔP = √N|gtotal| associated with the corresponding 
Poissonian distribution. In a homodyne measurement approach45,82, 
gtotal = g + gref is the sum of an unknown specimen amplitude g and a 
known reference gref (added, for example, through a second coherent 
PINEM interaction, as considered in this work). In an experiment, we 
determine g from the measured P as g = √P/N − gref (assuming g and gref 
to be real and positive for simplicity), which is measured with an uncer-
tainty Δg ≈ ΔP/2√NP . To determine g with precision η, we set Δg = ηg, 
which, using the equations above, leads to a number of incident 
electrons

N = 1
4η2g2 . (13)

This amounts to N ≈ 2,500 required electrons for identifying a weak 
scatterer with g = 0.1 (that is, 1% scattering probability into the first 
sideband) at 10% precision (that is, η = 0.1). As N is independent of 
gref, it is evident that the homodyne approach does not reduce the 
number of electrons required to detect the weak signal under perfect 
shot-noise-limited conditions. Nonetheless, the above-mentioned 
substantial advantages under real conditions remain.

Data availability
The data shown in the manuscript are available on Edmond—the Open 
Research Data Repository of the Max Planck Society at https://doi.
org/10.17617/3.8MH95A (ref. 83).
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Extended Data Fig. 1 | Measurement of arbitrary amplitude and phase 
responses by free-electron homodyne detection. Periodic excitations of an 
investigated sample resulting in modulations of the amplitude and/or phase 
of the probing electron wavefunction at harmonic frequencies ω, 2ω, 3ω, … of 
the exciting optical carrier frequency. These modulations can be probed by the 
analysis of spectrally symmetric (a-f) and antisymmetric (d-l) signal channels 
in FREHD. PINEM-type phase modulation leads to conjugate symmetric and 
amplitude modulation to symmetric kinetic energy sidebands in the Wigner 

function (first column). Reference interaction with a pure phase modulation 
(that is, convolution with a conjugate symmetric Wigner function; second 
column) yields either symmetric (b) or antisymmetric (h, k) spectrograms for 
non-dispersed electron wave packets. These spectrograms are evaluated using 
virtual homodyne detection of the spectral sidebands P−1 and P1, yielding a phase-
dependent signal characteristic for the initial interaction type (third column). 
Simulation parameters: g = 0.2, a = 0.2, gref = 0.5, λ = 800 nm optical wavelength, 
E0 = 120 keV electron kinetic energy, t = 200 ps propagation time.
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Extended Data Fig. 2 | Interference contrast γ for chirped-pulse double 
interaction. a-c, Interference contrast as a function of group delay dispersion 
(GDD) and electron pulse duration for three different initial transform-limited 
laser pulse durations which corresponds to different initial bandwidths (wider 
to narrower). The white arrow indicates that the electric field envelope of the 

chirped laser is longer than the interaction time difference which is necessary 
to have a sufficient interaction strength at the two points. Our experimental 
parameters correspond to (b) where the chirp and electron pulse duration is 
indicated by the white dot.
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Extended Data Fig. 3 | Electron energy-loss spectroscopy on a gold 
nanoprism. a, Electron energy-loss spectra taken in standard TEM mode at 
different positions on the sample showing different energies for different modes 

(centre, corner and edge). b, Maps at different energies show the spatial profile 
of different modes. c,d, Dark-field micrographs taken before and during the 
spectroscopy measurement.
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Extended Data Fig. 4 | Piezo calibration. The piezo is used both with positive and negative voltages, which leads to a nonlinear dependence of the displacement on 
the applied voltage, especially when the sign of the voltage changes. We correct the nonlinear movement with an error function, as shown in the bottom plot.
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Extended Data Fig. 5 | BEM electrodynamics simulation. a, Top view of the surface mesh used in the BEM simulations. The nanoprism shape is extracted from the 
dark-field image shown in Extended Data Fig. 3d using a DRLSE algorithm79. b, Magnitude and c, phase of the near-field coupling coefficient g simulated with the 
experimental parameters of Fig. 4d,e.
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