Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

IMAGING AND SENSING

Ultrafast time-of-flight 3D LiDAR

Time-of-flight 3D imaging is an invaluable remote sensing tool, but raster speeds are currently limited by pulsed-laser scanning rates. By adapting techniques from ultrafast time-stretch imaging, a new LiDAR platform scans orders of magnitude faster than today’s commercial line-scanning pulsed-LiDAR systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-stretch LiDAR operating principle.

References

  1. Lalonde, J. ‐F. et al. J. Field Robot. 23, 839–861 (2006).

    Article  Google Scholar 

  2. Lin, Y., Hyyppa, J. & Jaakkola, A. IEEE Geosci. Remote Sensing Lett. 8, 426–430 (2010).

    Article  ADS  Google Scholar 

  3. Schwarz, B. Nat. Photon. 4, 429–430 (2010).

    Article  ADS  Google Scholar 

  4. Wang, H. et al. Robot. Autonomous Sys. 88, 71–78 (2017).

    Article  Google Scholar 

  5. Jiang, Y., Karpf, S. & Jalali, B. Nat. Photon. https://doi.org/s41566-019-0548-6 (2019).

  6. Sun, B. et al. Science 340, 844–847 (2013).

    Article  ADS  Google Scholar 

  7. Amann, M.-C. et al. Opt. Eng. 40, 10–19 (2001).

    Article  ADS  Google Scholar 

  8. Royo, S. & Maria, B.-G. Appl. Sci. 9, 4093 (2019).

    Article  Google Scholar 

  9. Choi, S. et al. Opt. Express 21, 23611–23618 (2013).

    Article  ADS  Google Scholar 

  10. McManamon, P. Field Guide to Lidar (SPIE, 2015).

  11. Poulton, C. V. et al. Opt. Lett. 42, 4091–4094 (2017).

    Article  ADS  Google Scholar 

  12. Coppinger, F., Bhushan, A. S. & Jalali, B. IEEE Trans. Microw. Theory Tech. 47, 1309–1314 (1999).

    Article  ADS  Google Scholar 

  13. Goda, K., Tsia, K. K. & Jalali, B. Nature 458, 1145–1149 (2009).

    Article  ADS  Google Scholar 

  14. Mahjoubfar, A. et al. Nat. Photon. 11, 341–351 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Lum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lum, D.J. Ultrafast time-of-flight 3D LiDAR. Nat. Photonics 14, 2–4 (2020). https://doi.org/10.1038/s41566-019-0568-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0568-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing