Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Diverse geochemical conditions for prebiotic chemistry in shallow-sea alkaline hydrothermal vents

Abstract

Hydrothermal systems, where geothermally heated water discharges through a planet’s crust, occur on land or underwater. Hydrothermal systems have been proposed as environments that could support the emergence of life, with particular attention given to deep-sea vents and on-land hot springs. We propose that alkaline hydrothermal vents in shallow waters (<200 m depth), high-energy environments that display diverse and variable geochemistry, should also be considered in origin-of-life scenarios for the early Earth. Two active alkaline shallow vents—the Strytan Hydrothermal Field in Iceland and the Prony Hydrothermal Field in New Caledonia—provide examples of the conditions found in shallow-sea vents that may be relevant for facilitating prebiotic chemical reactions. These conditions include wet–dry cycling, temperature variations, and influxes of both saltwater and freshwater. We argue that the spatial and temporal geochemical variability in shallow-vent hydrothermal systems can support a range of prebiotic chemical reactions required for the emergence of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Prony and Strytan Hydrothermal Fields provide examples of alkaline shallow-sea vents that might be analogous to prebiotically relevant early Earth environments.
Fig. 2: Hydrothermal chimneys at the Kaori site, Prony Hydrothermal Field, are exposed to the air during low tide.
Fig. 3: A shallow vent on the early Earth could have provided various different environments for prebiotic chemistry.

Similar content being viewed by others

References

  1. Russell, M. J. & Hall, A. J. In Evolution of Early Earth’s Atmosphere,Hydrosphere, and Biosphere—Constraints from Ore Deposits (eds Kesler, S. and Ohmoto, H.) (Geological Society of America Memoir, 2006)

  2. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 806–814 (2008).

    Article  Google Scholar 

  3. Kelley, D. S. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001).

    Article  Google Scholar 

  4. Price, R. et al. Alkaline vents and steep Na+ gradients from ridge-flank basalts—implications for the origin and evolution of life. Geology 45, 1135–1138 (2017).

    Article  Google Scholar 

  5. Russell, M. J. Green rust: the simple organizing ‘seed’ of all life? Life 8, 35 (2018).

    Article  Google Scholar 

  6. Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).

    Article  Google Scholar 

  7. Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y. & Koonin, E. V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl Acad. Sci. USA 109, E821–E830 (2012).

    Article  Google Scholar 

  8. Deamer, D., Damer, B. & Kompanichenko, V. Hydrothermal chemistry and the origin of cellular life. Astrobiology 19, 1523–1537 (2019).

    Article  Google Scholar 

  9. Russell, M. J. The ‘water problem’(sic), the illusory pond and life’s submarine emergence—a review. Life 11, 429 (2021).

    Article  Google Scholar 

  10. Price, R. E. & Giovannelli, D. A Review of the Geochemistry and Microbiology of Marine Shallow-Water Hydrothermal Vents (Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2017).

  11. Beaulieu, S. E. & Szafrański, K. M. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields Version 3.4 (PANGAEA, accessed 7 February 2021); https://doi.pangaea.de/10.1594/PANGAEA.917894

  12. Yücel, M. et al. Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (eastern Mediterranean). Chem. Geol. 356, 11–20 (2013).

    Article  Google Scholar 

  13. Valsami-Jones, E. et al. The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos Island, Hellenic Volcanic Arc. J. Volcanol. Geotherm. Res. 148, 130–151 (2005).

    Article  Google Scholar 

  14. Marteinsson, V. T. et al. Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, northern Iceland, and a novel thermal microbial habitat. Appl. Environ. Microbiol. 67, 827–833 (2001).

    Article  Google Scholar 

  15. Rempfert, K. R. et al. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front. Microbiol. 8, 56 (2017).

    Article  Google Scholar 

  16. Monnin, C. et al. Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences 11, 5687–5706 (2014).

    Article  Google Scholar 

  17. Garnier, J. Voyage Autour du Monde, La Nouvelle-Calédonie (Côte Orientale) (Plon, 1871).

  18. Barnes, S. J. & Arndt, N. T. in Earth’s Oldest Rocks 2nd edn (eds van Kranendonk, M. et al.) 103–132 (Elsevier, 2019).

  19. Miyazaki, Y. & Korenaga, J. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature 603, 86–90 (2022).

    Article  Google Scholar 

  20. Rosas, J. C. & Korenaga, J. Archaean seafloors shallowed with age due to radiogenic heating in the mantle. Nat. Geosci. 14, 51–56 (2021).

    Article  Google Scholar 

  21. Banks, D. & Frengstad, B. Evolution of groundwater chemical composition by plagioclase hydrolysis in Norwegian anorthosites. Geochim. Cosmochim. Acta 70, 1337–1355 (2006).

    Article  Google Scholar 

  22. Macleod, G., McKeown, C., Hall, A. J. & Russell, M. J. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig. Life Evol. Biosph. 24, 19–41 (1994).

    Article  Google Scholar 

  23. Ueda, H. et al. Chemical nature of hydrothermal fluids generated by serpentinization and carbonation of komatiite: implications for H2-rich hydrothermal system and ocean chemistry in the early Earth. Geochem. Geophys. Geosyst. 22, e2021GC009827 (2021).

    Article  Google Scholar 

  24. Nie, N. X. et al. Iron and oxygen isotope fractionation during iron UV photo-oxidation: implications for early Earth and Mars. Earth Planet. Sci. Lett. 458, 179–191 (2017).

    Article  Google Scholar 

  25. Konhauser, K. O. et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87–100 (2007).

    Article  Google Scholar 

  26. Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 128, 511–530 (2016).

    Article  Google Scholar 

  27. Wong, M. L., Charnay, B. D., Gao, P., Yung, Y. L. & Russell, M. J. Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 17, 975–983 (2017).

    Article  Google Scholar 

  28. Ranjan, S., Todd, Z. R., Rimmer, P. B., Sasselov, D. D. & Babbin, A. R. Nitrogen oxide concentrations in natural waters on early Earth. Geochem. Geophys. Geosyst. 20, 2021–2039 (2019).

    Article  Google Scholar 

  29. Nishizawa, M. et al. Stable abiotic production of ammonia from nitrate in komatiite‐hosted hydrothermal systems in the Hadean and Archean oceans. Minerals 11, 321 (2021).

    Article  Google Scholar 

  30. Hansen, H. C. B., Guldberg, S., Erbs, M. & Koch, C. B. Kinetics of nitrate reduction by green rusts—effects of interlayer anion and Fe(II):Fe(III) ratio. Appl. Clay Sci. 18, 81–91 (2001).

    Article  Google Scholar 

  31. Monnard, P.-E., Apel, C. L., Kanavarioti, A. & Deamer, D. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).

    Article  Google Scholar 

  32. Maurer, S. E. & Nguyen, G. Prebiotic vesicle formation and the necessity of salts. Orig. Life Evol. Biosph. 46, 215–222 (2016).

    Article  Google Scholar 

  33. Milshteyn, D., Damer, B., Havig, J. & Deamer, D. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 8, E11 (2018).

    Article  Google Scholar 

  34. Novikov, Y. & Copley, S. D. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions. Proc. Natl Acad. Sci. USA 110, 13283–13288 (2013).

    Article  Google Scholar 

  35. Roldan, A. et al. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chem. Commun. 51, 7501 (2015).

    Article  Google Scholar 

  36. Barge, L. M., Flores, E., Baum, M. M., VanderVelde, D. & Russell, M. J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl Acad. Sci. USA 116, 4828–4833 (2019).

    Article  Google Scholar 

  37. Muchowska, K. B. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

    Article  Google Scholar 

  38. Guzman, M. I. & Martin, S. T. Prebiotic metabolism: production by mineral photoelectrochemistry of α-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9, 833–842 (2009).

    Article  Google Scholar 

  39. Bonfio, C. et al. UV-light-driven prebiotic synthesis of iron–sulfur clusters. Nat. Chem. 9, 1229–1234 (2017).

    Article  Google Scholar 

  40. Zhang, X. V. & Martin, S. T. Driving parts of Krebs cycle in reverse through mineral photochemistry. J. Am. Chem. Soc. 128, 16032–16033 (2006).

    Article  Google Scholar 

  41. Forsythe, J. G. et al. Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proc. Natl Acad. Sci. USA 114, E7652–E7659 (2017).

    Article  Google Scholar 

  42. Frenkel-Pinter, M. et al. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl Acad. Sci. USA 116, 16338–16346 (2019).

    Article  Google Scholar 

  43. Lathe, R. Fast tidal cycling and the origin of life. Icarus 168, 18–22 (2004).

    Article  Google Scholar 

  44. Lathe, R. Early tides: response to Varga et al. Icarus 180, 277–280 (2006).

    Article  Google Scholar 

  45. Ranjan, S. et al. UV transmission in natural waters on prebiotic Earth. Astrobiology 22, 242–258 (2022).

    Google Scholar 

  46. Green, N. J., Xu, J. & Sutherland, J. D. Illuminating life’s origins: UV photochemistry in abiotic synthesis of biomolecules. J. Am. Chem. Soc. 143, 7219–7236 (2021).

    Article  Google Scholar 

  47. Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 8, 15978 (2017).

    Article  Google Scholar 

  48. Tarnas, J. D. et al. Characteristics, origins, and biosignature preservation potential of carbonate-bearing rocks within and outside of Jezero crater. J. Geophys. Res. Planets 126, e2021JE006898 (2021).

    Article  Google Scholar 

  49. Launay, J. & Fontes, J.-C. Les sources thermales de Prony (Nouvelle-Calédonie) et leurs précipités chimiques. Exemple de formation de brucite primaire. Géol. de la France 1, 83–100 (1985).

    Google Scholar 

Download references

Acknowledgements

We thank L. Rodriguez for very helpful comments on this manuscript. L.M.B.’s work was carried out at the NASA Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. L.M.B. and R.E.P. were supported by NASA Habitable Worlds, grant no. 80NSSC20K0228 and NASA PSTAR, grant no. 80NSSC18K1651. L.M.B. was also supported by the NASA-NSF Ideas Lab for the Origins of Life. R.E.P. also received support from the Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany. R.E.P. thanks the HydroProny research group for valuable collaboration and insights related to Prony.

Author information

Authors and Affiliations

Authors

Contributions

R.E.P. conducted field work at hydrothermal sites. L.M.B. and R.E.P wrote the paper.

Corresponding author

Correspondence to Laura M. Barge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Primary handling editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barge, L.M., Price, R.E. Diverse geochemical conditions for prebiotic chemistry in shallow-sea alkaline hydrothermal vents. Nat. Geosci. 15, 976–981 (2022). https://doi.org/10.1038/s41561-022-01067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01067-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing