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Boreal–Arctic wetland methane emissions 
modulated by warming and vegetation 
activity

Kunxiaojia Yuan    1,7, Fa Li    2,7, Gavin McNicol    3, Min Chen    2, Alison Hoyt    4, 
Sara Knox5,6, William J. Riley    1, Robert Jackson    4 & Qing Zhu    1 

Wetland methane (CH4) emissions over the Boreal–Arctic region are 
vulnerable to climate change and linked to climate feedbacks, yet 
understanding of their long-term dynamics remains uncertain. Here, we 
upscaled and analysed two decades (2002–2021) of Boreal–Arctic wetland 
CH4 emissions, representing an unprecedented compilation of eddy 
covariance and chamber observations. We found a robust increasing trend 
of CH4 emissions (+8.9%) with strong inter-annual variability. The majority 
of emission increases occurred in early summer ( June and July) and were 
mainly driven by warming (52.3%) and ecosystem productivity (40.7%). 
Moreover, a 2 °C temperature anomaly in 2016 led to the highest recorded 
annual CH4 emissions (22.3 Tg CH4 yr−1) over this region, driven primarily by 
high emissions over Western Siberian lowlands. However, current-generation 
models from the Global Carbon Project failed to capture the emission 
magnitude and trend, and may bias the estimates in future wetland CH4 
emission driven by amplified Boreal–Arctic warming and greening.

Methane (CH4) contributes approximately 20–30% of global 
emission-related radiative forcing1,2, and is the second largest source 
of current anthropogenic warming, with a global warming potential 
28–34 times larger than that of CO2 over a 100-year time horizon1,3. 
Wetlands are the largest and most uncertain natural source of global 
CH4 emissions4–6 and wetland CH4 emissions are closely linked to 
temperature7–9. In a substantial portion of the Boreal–Arctic (that is, 
including northern boreal and tundra ecoregions and also areas north 
of 50° characterized by rock and ice10,11), recently observed warming 
has been occurring three to four times faster than the global aver-
age12, and has fuelled concerns given the positive feedbacks between 
CH4 emissions and warming9,13,14. However, the regional response of 
Boreal–Arctic wetland CH4 emissions to long-term environmental 
change remains unknown.

Warming15 and increasing substrate availability for soil microbes 
due to an observed increase in vegetation productivity16 should 
increase CH4 production17,18, all else being equal. However, warming 
enhances aerobic19 and anaerobic CH4 oxidation20, and variations in 
inundation areas21,22 could offset increased CH4 production. In the 
Boreal–Arctic region, both positive and negative trends have been 
reported with top-down (TD; that is, atmospheric transport inver-
sion) and bottom-up (BU; that is, using terrestrial ecosystem mod-
els) approaches17,18,23 due to several sources of uncertainty, including 
parameterization of biogeochemical processes17,18, representation of 
atmospheric transport and photochemical sinks6,24,25, wetland inunda-
tion dynamics6,21 and limited ground observations6,26,27.

The magnitude of Boreal–Arctic regional wetland CH4 emissions 
also remains highly uncertain6,24,28–31, with previous estimates ranging 
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drivers and using the largest dataset of the Boreal–Arctic CH4 compiled 
to date, which combines both EC tower and chamber data (Methods). 
The CH4 emission dataset has 139 and 168 site years of EC and chamber 
measurements, respectively, sampled in both hotspot and non-hotspot 
regions (Fig. 1a). We generated an upscaled data product of Boreal–Arc-
tic wetland CH4 emissions during 2002–2021 using a physically inter-
pretable and causality-guided machine learning model7. Specifically, 
the causal relationships between CH4 emission and its drivers inferred 
from observations (Methods) were used to guide model training, 
achieving higher accuracy than commonly used machine learning 
methods7. Using the upscaled dataset, we investigated the predomi-
nant drivers that regulate the long-term trend and variability of CH4 
emissions. We also benchmarked the performance of BU (n = 13) and 
TD (n = 21) models that participated in the most recent Global Carbon 
Project – CH4 budget6,24.

Multidecadal temporal dynamics of wetland CH4 
emissions
The upscaled Boreal–Arctic wetland CH4 emission dataset revealed that 
the mean annual emissions were 20.3 ± 0.9 (mean ± 1 s.d.) Tg CH4 yr−1 
from 2002 to 2021, where ~53% of the total was contributed by the two 
hotspot areas (Fig. 1a, regions highlighted in the red boxes). Specifically, 
the largest hotspot was the WSL, which emitted 6.6 ± 0.5 Tg CH4 yr−1, 
~57% larger than the second hotspot, the HBL (4.2 ± 0.3 Tg CH4 yr−1). 
The upscaled CH4 emissions were validated against randomly excluded 
site observations (Methods), and the Pearson correlation coeffi-
cient (R), mean absolute error and normalized mean absolute error 
between estimated and measured CH4 emissions were 0.89 ± 0.02, 
20.81 ± 1.88 nmol CH4 m−2 s−1 and 3.65 ± 0.50% (Supplementary Fig. 2), 
respectively. Detailed information for the observation sites is found 
in Supplementary Tables 1 and 2.

Furthermore, a significant increasing trend (P < 0.05) of the 
Boreal–Arctic CH4 emissions was detected from 2002 to 2021 (Fig. 1b, 
blue line). The trend revealed an ~8.9% increase in CH4 emissions since 
2002. The WSL and non-hotspot regions contributed ~56% and ~38% of 
the increasing trend, respectively, while no significant trend was found 
in the HBL (Supplementary Fig. 3). The CH4 emission enhancement 
during the boreal summer ( June–August) contributed the most (~76%) 
to the annual-scale increasing trend (Supplementary Fig. 4), with ~62% 
of the increase occurring during early boreal summer ( June and July). 
Previous observational work at a Siberian tundra site also documented 

from about 9 to 53 Tg CH4 yr−1 (refs. 6,28,32–39). Although current TD 
models generally agreed on higher emissions relative to BU models dur-
ing 2008–20176, the uncertainty ranges within both BU and TD models 
exceeded the magnitude of CH4 emissions they estimated. Notably, the 
uncertainty of the Boreal–Arctic wetland CH4 emissions is twice as large 
as the global atmospheric CH4 changes due to a sink–source imbalance 
of ~20 Tg CH4 yr−1 (ref. 25), limiting reliable conclusions on natural and 
anthropogenic fluxes for the global CH4 budget6,24,25.

Narrowing these substantial uncertainties in estimates of regional 
wetland CH4 emissions requires better understanding and model repre-
sentations of the relationships between wetland CH4 emissions and envi-
ronmental drivers. Previous meta-analyses have revealed a dependence 
of CH4 emissions on temperature from methanogen cultures to ecosys-
tem scales9. Existing observations have also demonstrated confounding 
effects on CH4 emissions from other factors, including hydrologic and 
vegetation conditions7,8,40,41, microbial dynamics and composition42,43 
and substrate availability44. Additionally, the relationships between 
CH4 emissions and environmental drivers show substantial hysteresis, 
hypothesized to result from time lags between primary productivity and 
its conversion to methanogenesis substrates45 and interactions between 
fermentation, acetate availability and acetoclastic methanogen biomass 
and activity46. These effects could largely modulate the timing and 
magnitude of CH4 emissions7,8,13,45,47 and affect model estimates7,13,28, yet 
they have not been explicitly considered when exploring the responses 
of the Boreal–Arctic wetlands to climate change.

Furthermore, Boreal–Arctic wetland CH4 emissions exhibit strong 
spatial heterogeneity7,41,48 and temporal variability17,27,48, highlighting 
the need for widespread flux observations to constrain models27. 
Existing eddy covariance (EC) measurements within the FLUXNET-CH4 
network26,27 (Fig. 1a, red circles) over the Boreal–Arctic have been 
distributed over non-hotspot wetlands since 2006 (Supplementary 
Fig. 1a), while chamber observations (Fig. 1a, yellow circles) are avail-
able beyond EC-observed years and in wetland hotspots, that is, the 
Western Siberian lowlands (WSL) and Hudson Bay lowlands (HBL). 
Combining EC and chamber measurements thus provides expanded 
spatial and temporal coverage of observational constraints, albeit 
with challenges in reconciling the two kinds of datum with different 
spatial and temporal scales27.

Here, we quantified the decadal responses of wetland CH4 emis-
sions to environmental changes in the Boreal–Arctic region by consid-
ering the lagged dependence of CH4 emissions on abiotic and biotic 
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Fig. 1 | Significant increasing trend of wetland CH4 emissions in the Boreal–
Arctic during 2002–2021. a, Spatial distribution of the long-term averaged 
wetland CH4 emissions in the Boreal–Arctic upscaled by combining chamber 
and EC datasets. Red dashed boxes indicate two wetland hotpots: WSL (52–74° N, 
60–94.5° E) and HBL (50–60° N, 75–96° W). Boreal–Arctic basemap data from 
ref. 72. b, Annual Boreal–Arctic wetland CH4 emissions and Wetland Area and 

Dynamics for Methane Modeling (WAD2M) wetland area dataset between 2002 
and 2021. Dashed lines indicate the linear regression results for wetland CH4 
emissions (P = 0.017, two-sided t-test) and wetland area (P = 0.064). The blue 
shaded area indicates the s.d. in estimated wetland CH4 variability due to model 
parameter uncertainty.
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a long-term increasing trend of CH4 emissions due to warming-induced 
early onset of snowmelt and vegetation growth49. We show here robust 
evidence of an increasing trend in the Boreal–Arctic region’s early 
summer CH4 emissions.

Another line of evidence for the long-term increasing trend of 
the Boreal–Arctic wetland CH4 emissions is the widespread increases 
in high-latitude atmospheric CH4 concentrations observed from the 
National Oceanic and Atmospheric Administration (NOAA) Global 
Greenhouse Gas Reference Network50. All high-latitude stations (18 
in total, Supplementary Fig. 1b) exhibited positive trends in observed 
atmospheric CH4, and the trends of all but one station were statistically 
significant (P < 0.05) (Supplementary Table 3). Wetlands could be the 
dominant source of high-latitude CH4 emissions compared with other 
sources6, particularly in the boreal summer months51. The increases 
in atmospheric CH4 concentrations therefore probably reflect the 
increases in CH4 emissions from wetlands.

Drivers of wetland CH4 emission variability and 
trend
Since no long-term increasing changes in wetland area were found over 
the Boreal–Arctic region21 during the past two decades (Fig. 1b, yellow 
line), our results suggested that the increasing trend of regional wetland 
CH4 emissions was induced primarily by changes in CH4 emission inten-
sity rather than expansion of total wetland area. After accounting for 
confounding effects from other abiotic and biotic factors (Methods), 

temperature was identified as the predominant control on wetland 
CH4 emission variability over the Boreal–Arctic (Fig. 2b). Specifically, 
temperature dominated the variability in most grid cells (42.4%), fol-
lowed by gross primary productivity (GPP) (24.3%), while water-related 
factors (soil water content, and precipitation) dominated the other 
18.3% of grid cells. Consistent patterns of the predominant drivers 
were also found in the two wetland hotspots, and the grid cells with 
wetland CH4 flux observations. About 37.7%, 59.7% and 61.3% of grid 
cells were dominated by temperature in the WSL, HBL and the full 
observation-covered area, respectively (Fig. 2a and Supplementary 
Fig. 5). Temperature is closely linked to wetland CH4 production and 
emissions, while GPP could be a proxy for substrate availability and 
plant-mediated CH4 transport7,8,47. The dominance of temperature 
and GPP effects is consistent with previous studies7,8,41,47, implying a 
potential sensitivity of wetland CH4 emissions to warming and vegeta-
tion activities52.

For potential drivers of the Boreal–Arctic wetland CH4 emission 
trend, we used a statistical model (Methods)53,54 to partition the con-
tributions from various factors including temperature, vegetation 
activities and water conditions. We found that in the Boreal–Arctic  
(Fig. 2b) temperature explained 52.3% of the increasing CH4 emis-
sion trend, followed by GPP (40.7%). In the Boreal–Arctic, significant 
increases in temperature12 and GPP52,55 have been detected using 
satellite-based products. While warming can increase both wetland CH4 
production and oxidation in observations19,20 and model simulations56, 
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our analysis here revealed net positive effects of temperature on CH4 
emissions. Meanwhile, warming has also increased vegetation pro-
ductivity in the Boreal–Arctic52, which could promote plant-mediated 
CH4 transport via aerenchyma tissue and increase organic substrate 
supply for microbes. The increase of substrate availability could fuel 
methanogens57–59, leading to an increase in wetland CH4 emissions49.

Given the dominant control of temperature on wetland CH4 emis-
sions, high CH4 emissions can be triggered by abnormally high tem-
peratures over high-emission wetlands. Anomalously high (2005, 
2016 and 2020) and low (2004, 2009 and 2014) CH4 emission years  
(Fig. 2b) had higher and lower annual-mean temperatures, respectively, 
particularly in the two CH4 hotspot regions (Supplementary Figs. 6  
and 7). The highest-emission year occurred in 2016 (Fig. 2c,d), which 
was the warmest year in the high latitudes since 195012. The anomalously 
high temperature in 2016 was suggested to be caused by the major El 
Niño event during 2015–201660,61. This strong El Niño event changed 
large-scale divergence and convergence patterns and upper-level 
moisture transport62, leading to subsequent changes in adiabatic 
warming over the Arctic surface61,63. The resultant high temperature 
happened to overlap with wetland hotspots (Fig. 2d) and induced a 
sharp increase (~15.5% higher emissions relative to 2002) in wetland 
CH4 emissions, particularly over the WSL (Fig. 2c). All sites except one 
(covering 2016 and its adjacent years) agreed with anomalously high 
wetland CH4 emissions in 2016 when the temperature was anomalously 
high (Supplementary Table 4). These results highlight the role of major 
El Niño–Southern Oscillation events in driving wetland CH4 emission 
variability64–66, and demonstrate a critical ecological teleconnection 
from the sea surface temperature of the tropical Pacific to the Boreal–
Arctic wetland CH4 emissions.

Implications for modelling wetland CH4 emissions
Most of the current generation of BU and TD models in the Global Car-
bon Project CH4 budget6 did not capture the observed magnitude and 
trend of wetland CH4 emissions in the Boreal–Arctic (Fig. 3a,b). For 
emission magnitude, 19 out of 21 TD models overestimated and 9 out of 

13 BU models underestimated the Boreal–Arctic wetland CH4 emissions 
when compared with our upscaled dataset (Fig. 3b, Supplementary 
Fig. 8 and Supplementary Table 5). The rest (4 of 13) of the BU models 
overestimated the Boreal–Arctic wetland CH4 emissions by 18% to 139%, 
with the ensemble median of all BU models (16.66 Tg CH4 yr−1) lower 
than that of the observationally constrained upscaled dataset (Fig. 3a). 
For the long-term trend, the majority (10 of 13) of BU models did not 
show the significantly increasing trend, while the other BU models with 
increasing trends differed by up to sixfold in trend magnitude relative 
to the upscaled trend. More (12 of 21) TD models exhibited significant 
increasing trends, but the trend magnitude differed by a factor ranging 
from 2 to 16 (Supplementary Table 5).

The lack of increasing trends in most of the current-generation 
process-based biogeochemical models suggests probable underesti-
mation of future warming-induced increases in wetland CH4 emissions. 
Future Boreal–Arctic warming could further increase the intensity of 
wetland CH4 emissions and stimulate a large increase in wetland extent 
due to permafrost thaw14 and greater precipitation67. The underesti-
mated increasing trend indicates that the BU model underestimated 
intensity in wetland emissions rather than wetland extent since all 
models prescribed the same wetland extent data21 with no significant 
temporal changes in wetland area (Fig. 1b). The underestimated inten-
sity of CH4 emissions therefore could be multiplied by future expanded 
wetland area, leading to amplified underestimation of wetland CH4 
emissions and their positive feedbacks with warming. The upscaling 
models showed good performance and confirmed the increasing 
wetland CH4 emission trend in the Boreal–Arctic during 2002–2021, 
even considering the uncertainties from which site observations 
were used and validation schemes (Supplementary Fig. 9), wetland 
extent (Supplementary Fig. 10a) and input variables (Supplementary  
Fig. 10b). The increasing wetland CH4 emissions in the high latitudes 
indicate the growingly important role of biogenic CH4 emissions in 
rising atmospheric CH4

68–70. Underrating the upward trend of wetland 
CH4 emissions, therefore, suggests underestimated biogenic contribu-
tions to observed increases in atmospheric CH4 and radiative forcing25.

W
et

la
nd

 m
et

ha
ne

 e
m

is
si

on
s 

(T
g 

C
H

4 
yr

–1
)

Year
2002 2007 2012 2017 2021

Tr
en

d 
of

 m
et

ha
ne

 e
m

is
si

on
s 

(T
g 

C
H

4 
yr

–2
)

Mean annual methane emissions (Tg CH4 yr–1)

a b

10 15 20 25 30 35 40 45 50

–0.5

0

0.5

1.0

1.5

10

20

30

40

50

60

70

80
TD ensemble median

BU ensemble median
BU 25th–75th percentile
BU range
This study

TD 25th–75th percentile
TD range

This study
VISIT
TRIPLEX
TEM-MDM
SDGVM
ORCHIDEE
LPX-Bern
LPJ-wsl
LPJ-MPI
JULES
ELM
DLEM
CLASSIC
CH4MOD
TM5-CAMS_SURF
TM5-CAMS_GOSAT
TM5-4DVAR_SURF2
TM5-4DVAR_SURF1
TM5-4DVAR_GOSAT2
TM5-4DVAR_GOSAT1
NTF-4DVAR_NIES_SURF

LMDzPYVAR_SURF2
LMDzPYVAR_SURF1

GELCA_SURF
CTE_SURF
CTE_GOSAT

LMDzPYVAR_GOSAT6
LMDzPYVAR_GOSAT5
LMDzPYVAR_GOSAT4
LMDzPYVAR_GOSAT3
LMDzPYVAR_GOSAT2
LMDzPYVAR_GOSAT1

NTF-4DVAR_NIES_GOSAT
NICAM_SURF
MIROCv4_SURF

Fig. 3 | BU and TD models exhibited substantial uncertainties in the 
magnitude and trend of wetland CH4 emissions over the Boreal–Arctic 
region. a, The multimodel ensemble median (50th percentile) of wetland CH4 
emissions estimated by TD (blue line) and BU (orange line) models, compared 
with the upscaled wetland CH4 emissions (red line). The darker shaded areas 
represent 25th to 75th percentiles and the lighter shaded areas represent the 
ranges of wetland CH4 emissions. b, The mean annual magnitudes and trends of 

wetland CH4 emissions estimated by TD and BU models, compared with those 
of the upscaled wetland CH4 emissions (red circle). For TD models, dark-blue 
markers indicate that the trends are significant, that is, P < 0.05, and light-blue 
markers indicate that the trends are not significant, that is, P > 0.05. For BU 
models, orange markers indicate that the trends are significant, and yellow 
markers indicate that the trends are not significant. The P values can be seen in 
Supplementary Table 5, obtained from a two-sided t-test.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | March 2024 | 282–288 286

Article https://doi.org/10.1038/s41558-024-01933-3

Our data-driven, long-term and spatially explicit wetland CH4 
emission dataset opens up new opportunities to better understand 
the dynamics of the Boreal–Arctic wetland CH4 emissions and could 
facilitate the improvement of BU and TD models. The upscaled dataset 
is well constrained by widespread observations, particularly during 
the summer season (Supplementary Tables 1 and 2) when the major 
increasing trend of wetland CH4 emissions was reported. The data-
set also explicitly considers the frequently acknowledged but under-
represented hysteresis characteristics in wetland CH4 emissions7,8,13. We 
demonstrated the dominant controls of temperature and GPP on the 
CH4 emission trend and variability, suggesting the priority of refining 
CH4 emission temperature sensitivity and plant-modulated CH4 emis-
sion processes in BU models. For example, the temperature depend-
ence of CH4 emissions has been empirically represented and poorly 
parameterized in biogeochemical models13. Plant-mediated microbial 
substrate availability is strongly linked to CH4 emissions57, yet has rarely 
been mechanistically represented in models13. Current biogeochemi-
cal models have little consensus on model structure or complexity in 
representing wetland CH4 emissions71. Confidence in model predictions 
is limited by knowledge gaps and ability to validate models across 
time and space. This new benchmark dataset could aid validation and 
parameterizations of the highly uncertain biogeochemical processes 
related to CH4 emissions. Additionally, the upscaled dataset provides 
better prior information for TD transport inversion models, thereby 
allowing for more reliable separation of natural and anthropogenic CH4 
emission effects on atmospheric CH4 concentrations.
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Methods
Wetland datasets
We used the WAD2M dataset21 derived from active and passive micro-
wave remote sensing as the prescribed wetland extent. When compared 
with the optical-sensor-based products, the microwave-sensor-based 
WAD2M product can identify water conditions below vegetation cano-
pies; the product also mitigated the risks of double counting wetland 
and water bodies in the Boreal–Arctic region by fusing multisource 
wetland extent datasets21. A promising capability of the WAD2M dataset 
is its ability to capture the inter-annual variations of wetland extent21. 
In addition to inundation dynamics, clear differences in the magnitude 
and processes of wetland CH4 emissions have been reported across 
different wetland types7,8,41,47. Therefore, wetland types extracted from 
the Boreal–Arctic Wetland and Lake Dataset (BAWLD)11 were used to 
separately model wetland CH4 emissions across bogs, fens, marshes 
and tundra. The BAWLD dataset also avoided the double-counting 
problem11. All wetland grid cells in the BAWLD dataset that provided 
the wetland type information were considered for upscaling, and the 
wetland type percentage provided by the BAWLD dataset was used 
for partitioning the wetland extent of the corresponding grid cells in 
the WAD2M dataset for each wetland type (Supplementary Section 1).

In addition, we also used other wetland datasets, including static 
wetlands from the Global Lakes and Wetlands Database74, and tempo-
rally dynamic model-derived wetlands75 calibrated by observations 
from Global Inundation Extent from Multi-Satellites76 and Regularly 
Flooded Wetland77. We discussed the temporal changes of wetland CH4 
emissions in the Boreal–Arctic during 2002–2021 related to the uncer-
tain wetland extent. More details of the three wetland datasets used 
and the sensitivity experiments are given in Supplementary Section 3.

Input datasets
Temperature-, plant- and water-related variables that have been 
shown to be important for explaining wetland CH4 dynamics were 
used as input drivers for upscaling7,8,41,47. Specifically, the input vari-
ables include soil temperature (TS), air temperature (TA), GPP, air 
pressure (PA), precipitation (P), wind speed (WS), snow cover (SC) and 
soil water content (SWC). GPP was obtained from the GOSIF dataset78, 
which was derived on the basis of solar-induced chlorophyll fluores-
cence (SIF) observed with the Orbiting Carbon Observatory-2 and its 
linear relationship with GPP79,80. Other variables were obtained from 
the land component of the fifth generation of European Reanalysis 
(ERA5-Land) datasets73 because of the high accuracy and physical 
consistency among different variables73,81,82. All variables were uni-
fied to the same temporal (7 d) and spatial (0.5°) resolution, and the 
final upscaled dataset had the same spatiotemporal resolution as the 
inputting variables.

Additionally, we also used other sources of input datasets to assess 
the sensitivity of the temporal changes of wetland CH4 emissions in the 
Boreal–Arctic during 2002–2021 to uncertainties in the input datasets. 
These additional datasets included University of East Anglia Climatic 
Research Unit Japanese Reanalysis83, Global Land Data Assimilation 
System84, Modern-Era Retrospective Analysis for Research and Appli-
cations v.2 85 and Penman–Monteith–Leuning GPP86 datasets. More 
details of the datasets used and the sensitivity experiments are given 
in Supplementary Section 4.

Wetland CH4 emission observations
Substantial spatial heterogeneity of wetland CH4 emissions has been 
highlighted in the literature7,41,48, and therefore sparse observations 
may impede reliable upscaling. To overcome this issue of spatial het-
erogeneity, we first compiled a comprehensive CH4 dataset that broadly 
covered the Boreal–Arctic region, by combining the FLUXNET-CH4 
dataset27, the BAWLD-CH4 dataset28 and the chamber dataset in ref. 48. 
We selected all chamber sites that explicitly included the wetland types 
considered here and start and end months of the observations28,48. 

We used quality-assured observed wetland CH4 emissions at EC sites 
instead of gap-filled data. In total, this study included 139 and 168 
site years of EC and chamber measurements, respectively. Detailed 
information (including site identifier, wetland type, location, temporal 
coverage, digital object identifier and references) on the sites is listed 
in Supplementary Tables 1 and 2. The compiled and upscaled dataset 
will be made available upon reasonable request.

Causality-guided machine learning (Causal-ML) upscaling
A Causal-ML model7 with good physical interpretability and accuracy 
was used for upscaling the wetland CH4 emissions. The model first 
identified the causal relationships between each driver and CH4 emis-
sion by excluding the confounding effects from other drivers through 
a PCMCI method7,87–90 (PC refers to the model inventors, P. Spirtes and 
C. Glymour91, and MCI is the acronym for momentary conditional 
independence90). The PCMCI method has been frequently used in Earth 
science88,90,92–95, and is particularly suitable for inferring multivariate 
controlled and time-lagged causal relationships90,93–95, such as those 
between wetland CH4 emission and its drivers7,8,47 (see Supplementary 
Section 2 for more details of the causality inference). Then, the identi-
fied causal structures along with the model biases between observa-
tions and model simulations were used to guide model training. This 
modelling strategy helps reduce model biases and improve model 
physics7. Another benefit of this Causal-ML model is the representa-
tion of time-lagged controls, which has been shown to be important 
for understating and modelling wetland CH4 dynamics7,13. Here, we 
considered the substantial intra-seasonal hysteresis found within wet-
land CH4 emissions13, and differentiated the wetland-type-dependent 
CH4 emission processes by building Causal-ML models for each wet-
land type. We randomly sampled 10% of site observations that the 
Causal-ML model had never seen as the testing dataset, and used the 
remaining 80% and 10% of the dataset to train and validate the model7, 
respectively. Through each experiment including data sampling and 
model training, we derived a Causal-ML model, and we repeated 
the experiments and upscaled the wetland CH4 emission dataset 20 
times. The ensemble mean of the 20 upscaled datasets was used to 
analyse the wetland CH4 dynamics, and the s.d. was considered as the 
upscaling uncertainty related to trained model parameters caused by 
random data sampling. In addition, we also used the leave-one-out 
and temporal-cross-validation schemes for model evaluation and 
upscaling. For the leave-one-out scheme, we iteratively removed data 
from each site, retrained the model and then evaluated model perfor-
mance7. For the temporal-cross-validation scheme, we used 20% and 
80% of temporally continuous data for each site as the testing and 
training datasets, respectively. With the well trained models from the 
two additional validation schemes, we upscaled the wetland CH4 emis-
sions during 2002–2021. For high-frequency (that is, weekly, daily and 
hourly) measurements, the errors between modelled and observed 
wetland CH4 emissions at the weekly scale were used in the objective 
function to direct the model training; for low-frequency (for example, 
some chamber observations only provided seasonal or annual-mean) 
measurements, the mean values of modelled and measured wetland 
CH4 emissions during the observation period were compared and used 
in the objective function. Details of the model parameter settings, 
model training and validation are given in our previous work7.

Identifying dominant controls on wetland CH4 variability
To separate dominant controls on the inter-annual variations of 
wetland CH4 emissions, we used a simple method of partial correla-
tion92. We conducted analyses between CH4 emission intensity and 
all input variables at the annual scale for each grid cell. Before the 
partial correlation analysis, the annual anomaly of each variable 
was derived by subtracting the long-term (2002–2021) annual mean 
and removing the inter-annual trend92. For each grid cell, the driver 
with the highest magnitude (absolute value) of partial correlation 
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coefficient was determined as the dominant driver. Finally, we clas-
sified all the drivers into four groups, including temperature (TS 
and TA), GPP, water-related factors (P and SWC) and others (WS, PA 
and SC). We acknowledge that the dependence of wetland CH4 emis-
sions on environmental predictors could vary across spatiotemporal 
scales8,49,96. Here we mainly focused on the dynamics of wetland CH4 
emissions at the inter-annual scale. At this scale, we found strong 
relationships between CH4 emissions and environmental variables 
related to temperature, water and vegetation, consistent with previ-
ous studies27,49. We also acknowledge that these environmental vari-
able dependences could vary over space, and become weaker when 
the dominant factors are beyond those considered in this study96. 
Due to spatial heterogeneity, we reported the dominant controls 
on the basis of the summary statistics of all wetland grid cells in the 
studied region with the CH4 dynamics significantly explained by the 
considered environmental factors.

Quantifying dominant controls on wetland CH4 emission 
trend
Following previous studies97,98, a statistical linear regression model 
was used to quantify the controls from different drivers on the trend of 
wetland CH4 emissions. In particular, we first built a linear model driven 
by all temporally changing input factors denoted Modelall, to quantify 
the responses of wetland CH4 emissions to environmental changes for 
each wetland grid cell. Then we iteratively held one group of factors, 
including temperature, GPP and water-related factors, constant at the 
corresponding initial level while allowing the other factors to change 
over time. For example, we used ModelT to represent the model results 
that held temperature constant at 2002 values and allowed all the other 
factors to change over time. Similarly, we used ModelGPP and Modelwater 
to represent the model results that kept GPP and water-related vari-
ables constant, respectively, while other factors varied over time. The 
differences ∆CH4(T), ∆CH4(GPP) and ∆CH4(Water) (equations (1)–(3)) 
were regarded as the impacts of changes in temperature, GPP and 
water-related variables on wetland CH4 emission changes, respectively. 
The trend differences were regarded as the contributions from each 
group of factors to the increasing trend in wetland CH4 emissions97,98. 
The model parameters (that is, the slope and intercept) for each grid 
cell were obtained by minimizing the sum of ordinary least squares of 
the errors53,54,99.

ΔCH4(T ) = Modelall −ModelT = βT ΔT (1)

ΔCH4(GPP) = Modelall −ModelGPP = βGPP ΔGPP (2)

ΔCH4(Water) = Modelall −Modelwater = βwater ΔWater. (3)

Data availability
Data are available from the following sites: WAD2M, https://zenodo.
org/records/3998454; BAWLD, https://doi.org/10.18739/A2C824F9X 
(ref. 72); GOSIF, https://globalecology.unh.edu/data/GOSIF-GPP.
html; ERA5-Land, https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5.

Code availability
The code used in this study is available at ref. 100.
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