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Pooled multicolour tagging for visualizing 
subcellular protein dynamics
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Imaging-based methods are widely used for studying the subcellular 
localization of proteins in living cells. While routine for individual 
proteins, global monitoring of protein dynamics following perturbation 
typically relies on arrayed panels of fluorescently tagged cell lines, limiting 
throughput and scalability. Here, we describe a strategy that combines 
high-throughput microscopy, computer vision and machine learning 
to detect perturbation-induced changes in multicolour tagged visual 
proteomics cell (vpCell) pools. We use genome-wide and cancer-focused 
intron-targeting sgRNA libraries to generate vpCell pools and a large, 
arrayed collection of clones each expressing two different endogenously 
tagged fluorescent proteins. Individual clones can be identified in vpCell 
pools by image analysis using the localization patterns and expression level 
of the tagged proteins as visual barcodes, enabling simultaneous live-cell 
monitoring of large sets of proteins. To demonstrate broad applicability 
and scale, we test the effects of antiproliferative compounds on a pool 
with cancer-related proteins, on which we identify widespread protein 
localization changes and new inhibitors of the nuclear import/export 
machinery. The time-resolved characterization of changes in subcellular 
localization and abundance of proteins upon perturbation in a pooled 
format highlights the power of the vpCell approach for drug discovery  
and mechanism-of-action studies.

Knowing the subcellular localizations of proteins is essential for under-
standing cellular biology1,2. Up to 50% of the human proteome resides in 
multiple compartments, membrane-less organelles or other subcellular 
structures and protein localization can be very dynamic and change 
across different cell states or in response to perturbations, thereby 
impacting protein function2.

For analysing protein localizations and dynamics, various methods  
based on mass spectrometry (MS) or imaging are available, offer-
ing different degrees of proteome coverage, achievable spatiotem-
poral resolution and sample throughput1,3. While biochemical 
fractionation4,5 or proximity labelling6,7 followed by MS analysis can 

provide proteome-wide coverage, the complex sample processing 
and input material requirements limit throughput. On the other hand, 
imaging-based methods such as immunocytochemistry or endogenous 
tagging with fluorescent proteins provide inherent single-cell resolu-
tion and can be conducted in a multiwell plate format8–17. Particularly, 
fluorescent tagging approaches are well-suited for live-cell imaging 
at multiple time points to temporally resolve dynamic localization 
changes. Recently, large scale efforts such as the Human Protein Atlas2 
or the OpenCell18 project have demonstrated how imaging-based meth-
ods can be scaled in an arrayed format for mapping the localizations 
of hundreds to thousands of proteins using either antibodies or large 
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tagged gene (Extended Data Fig. 1a). The overall tagging efficiency in 
cells transduced with the library was approximately 10–20-fold lower 
compared with positive control sgRNAs (Extended Data Fig. 1b). This 
is expected, as not every sgRNA in the library results in protein tagging 
and there is a selection for proteins, tag positions and sgRNAs with 
higher tagging efficiencies. To determine which proteins were success-
fully tagged, we performed amplicon sequencing to analyse the sgRNA 
abundance in the pool of GFP-tagged cells. In line with the notion that 
only a small fraction of sgRNAs leads to successful protein tagging, we 
observed an enrichment of approximately 5% of all sgRNAs in the library 
(Fig. 1c). We termed these top 5,113 sgRNAs targeting 4,553 introns of 
2,384 genes as high-efficiency sgRNAs (Supplementary Table 2). As a 
control, our library contained 1,000 non-targeting sgRNAs that should 
not lead to GFP tagging, and we found these to be depleted from the 
high-efficiency sgRNA pool compared with their abundance in the 
whole library (0.10% versus 1.11%; Extended Data Fig. 1c).

When testing the most abundant sgRNAs in the GFP pool indi-
vidually, we could confirm very high tagging efficiencies up to 18.7%. 
Tagging the same genes with sgRNAs that were not highly enriched 
in the cell pool was less effective, showing that there was indeed a 
selection for sgRNAs and presumably tag positions within the pro-
tein that result in higher tagging efficiencies (Fig. 1d and Extended 
Data Fig. 1d). Similar to our previous observation19, genes targeted by 
high-efficiency sgRNAs have higher average expression18, indicating 
that a certain expression level is required for detection and sorting 
of GFP-tagged cells (Fig. 1e and Supplementary Table 3). Addition-
ally, the set of high-efficiency sgRNAs contained a larger fraction of  
sgRNAs with tag sites at early introns compared with the whole library, 
indicating that tagging closer to the N terminus is more likely to be 
successful (Fig. 1f and Extended Data Fig. 2a). We further observed 
much weaker but statistically significant enrichment of tagging sites 
with lower hydrophobicity as measured by the Kyte–Doolittle scale22 
(Extended Data Fig. 2b–d), and within less-structured domains as 
indicated by AlphaFold23 confidence scores (Extended Data Fig. 2e,f). 
Finally, we could not observe a clear enrichment dependent on sgRNA 
cutting efficiency score24,25, likely because the library was designed 
by selecting sgRNAs for high cutting efficiency (Extended Data  
Fig. 2g,h).

Generating a multicolour intron-tagged cell pool
Cell pools generated with the procedure described above can be used 
for monitoring subcellular localizations and abundance of proteins 
in a pooled format by in situ sequencing of the expressed sgRNA for 
identification of responding clones and proteins19; however, a purely 
image-based recognition of clones and proteins based on the localiza-
tion patterns and intensity levels of tagged proteins is so far not pos-
sible, as proteins localizing to the same compartment cannot be easily 
discriminated. We hypothesized that tagging two different proteins 
with different colours in each cell might create enough diversity to dis-
criminate hundreds of clones by using the combination of the two locali-
zation patterns and intensity values as visual barcodes. For tagging a 
second protein in every cell, we performed a second round of intron 
tagging using an orthogonal sgRNA library targeting introns of a differ-
ent intron frame and a matching minicircle with the coding sequence of 
the red fluorescent protein mScarlet (Fig. 2a and Extended Data Fig. 3a). 
Targeting introns of a different frame in the second round ensures that 
only the target of the second transduced sgRNA can be tagged with 
mScarlet and there cannot be any tagging of an unedited allele targeted 
by the sgRNA introduced into cells in the first round of intron tagging. 
Furthermore, this strategy allows for easy identification of the two  
tagged proteins in every cell based on the two expressed sgRNAs, as 
the sgRNA originating from the frame 0 library corresponds to the 
GFP-tagged protein and the sgRNA originating from the frame 1 library 
corresponds to the mScarlet-tagged protein. To further increase the 
visual diversity of clones in the pools, we transduced double-positive 

cell line collections expressing endogenously tagged proteins. While 
these efforts resulted in invaluable resources describing subcellular 
protein localizations in steady state, screening these large, arrayed 
collections in many conditions remains challenging. Previous work 
with arrayed collections of fluorescently tagged lines in the yeast ORF 
green fluorescent protein (GFP) collection and subsets of human genes 
has been limited to individual or few selected perturbations11,12,14, with 
challenges in scalability precluding wider application to systematically 
analyse subcellular protein dynamics.

We had previously used GFP-tagged cell pools for monitoring 
hundreds of proteins in a single well, and in situ sequencing of the 
intron-tag specifying single guide RNAs (sgRNAs) enabled us to deter-
mine the identity of the tagged protein in each cell19. Building on this 
method and drastically improving its throughput by multicolour 
tagging and computational clone identification, we here develop an 
approach for studying protein localization changes in response to 
genetic or environmental perturbations. We present a platform for 
the generation of cell pools expressing different fluorescently tagged 
proteins in every cell that enable simultaneous monitoring of subcel-
lular localizations and abundance for large protein sets in live cells 
(Fig. 1a). Our strategy involves the following steps: (i) Pooled multi-
colour tagging with genome-wide or focused intron-targeting sgRNA 
libraries to generate a vpCell pool containing five complementary 
fluorescent tags on two endogenous proteins, two structural mark-
ers and a diversity channel. (ii) Using computer vision to learn clone 
identities from the localization patterns of tagged proteins in every 
cell. (iii) Assembling a custom cell pool of clones representing pro-
teins of interest to monitor. (iv) Imaging this cell pool before and after 
perturbation. (v) Image-based identification of clones and quantifica-
tion of localization changes in response to perturbations in a pooled 
format. As a proof of concept, we screen one vpCell pool covering 61 
cancer-related proteins against a compound library of 1,059 antipro-
liferative compounds and observe multiple specific drug–protein 
interactions. We identify a previously uncharacterized compound as 
an inhibitor of exportin 1 (XPO1), demonstrating how these cell pools 
can be used for monitoring protein localizations at scale. Addition-
ally, we show that vpCell pools can be used for the rapid generation of 
large, arrayed clone collections and we isolate and image clonal cell 
lines covering 1,158 endogenously tagged proteins. This collection can 
be interactively browsed in our web atlas of intron-tagged proteins at  
https://vpcells.cemm.at/.

Results
Genome-scale pooled protein tagging
For the generation of cell pools, we used a pooled intron-targeting 
strategy that we developed previously for the tagging of metabolic 
enzymes19. The strategy relies on the CRISPR/Cas9-mediated genera-
tion of double-strand breaks in the introns of genes, followed by the 
integration of a synthetic GFP-containing exon flanked by splice-donor 
and splice-acceptor sites20. The use of an sgRNA library enables the 
generation of a cell pool where every cell expresses a different tagged 
protein, with the sgRNA specifying the identity of the tagged protein. 
Here, we designed a genome-wide intron-targeting sgRNA library of  
90,657 sgRNAs targeting 73,817 introns of 14,158 genes (Supplemen-
tary Table 1). We transduced HEK293T cells with that library and after 
co-transfection with minicircle donor DNA and a Cas9-expressing 
plasmid and following NHEJ-mediated integration of a synthetic 
GFP-containing exon at the intronic target sites, we sorted GFP+ cells. 
In the resulting cell pool, every cell contains a different protein endog-
enously tagged with GFP, as specified by the intron-targeting sgRNA 
that is expressed in that cell (Fig. 1b). Using minicircle DNA17,21 instead 
of a GFP-containing plasmid as a DNA donor improved the tagging effi-
ciency twofold. Notably, it decreased the chances of integrating addi-
tional sequences such as the plasmid backbone at the target sites, which 
we had previously observed to potentially effect the expression of the 
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cells with constructs expressing blue fluorescent protein (BFP) fused 
to different localization signals as additional visual barcodes (Fig. 2b). 
Finally, cells were transduced with a membrane and a nuclear marker 
(mAmetrine-CAAX and NLS-miRFP670-miRFP670nano; Extended 
Data Fig. 3b), facilitating cell segmentation during image analysis, 
to eventually generate a visually highly diverse cell pool (Fig. 2c,d). 

By determining the sgRNA abundance in the multicolour pool, we 
estimated that approximately 2,500 different proteins were tagged 
with either GFP or mScarlet (Supplementary Table 2). We performed 
this procedure not only with HEK293T cells, but also with HAP1 cells 
and using two smaller intron-targeting sgRNA libraries targeting 287 
cancer-associated genes (Supplementary Tables 1 and 2). This confirms 
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Fig. 1 | Pooled protein tagging for the generation of vpCell pools. a, Overview 
of the visual proteomics vpCell approach. b, Schematic of the pooled intron-
tagging approach. c, Abundance of sgRNAs in the GFP-positive cell pool after 
protein tagging. d, Comparison of tagging efficiencies when targeting different 
genes with high-efficiency sgRNAs or other sgRNAs from the library. Data are 
shown as mean ± s.d.; n = 3 biologically independent experiments. e, Expression 
level of proteins targeted by high-efficiency sgRNAs and proteins targeted 

by all sgRNAs in the library. Boxes represent 25th, 50th and 75th percentiles, 
and whiskers represent 10th and 90th percentiles. P value < 10−200, two-sided 
Student’s t-test; n = 58,472 sgRNAs with available expression levels of target 
proteins, examined over one pooled protein tagging experiment. f, Relative 
position of the tag sites in the protein of high-efficiency sgRNAs and all sgRNAs 
in the library.
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the applicability of the approach to all cell models that enable robust 
transduction and genome editing efficiencies and its scalability from 
focused gene sets to the genome scale.

The vpCell clone collection of endogenously tagged proteins
Before using any of our cell pools in pooled screening applications, we 
generated a large clone collection from these cell pools and confirmed 
the correct subcellular localization of tagged proteins in the majority 
of individual clones. Clonal cell lines were isolated from pools by single 
cell dilution in 384-well plates, followed by imaging using confocal 
fluorescence microscopy and multiplexed sgRNA amplicon sequenc-
ing to identify the two tagged proteins in each clone (Fig. 3a). In total, 
we isolated 4,576 clonal cell lines to obtain a clone collection covering 
1,158 proteins, with 1,272 clones being isolated from a HEK293T cell 
pool tagged using the genome-wide libraries, 1,601 clones from the 
HAP1 genome-wide tagging effort and 1,703 clones from the HAP1 
pool with tagged genes that are associated with cancer covering 170 
proteins of the 287 that were initially targeted by that library (Fig. 3b 
and Supplementary Table 4). We manually annotated the subcellular 
protein localization of each protein present in our clone collection 
with 12 different localizations, using an established methodology2,18. 
As many proteins localize to multiple compartments, each protein 

was annotated with up to two localizations, with the most common 
combination of localizations being ‘cytoplasm/nucleoplasm’. Com-
paring our annotations with the Human Protein Atlas (HPA)2 confirms 
the correct localization of the majority of intron-tagged proteins, with 
disagreeing annotations mostly being differences within similar com-
partments (for example, nucleoplasm versus nuclear speckles; Fig. 3c 
and Supplementary Table 4). Overall, 79.4% of proteins have at least 
one localization annotation in common with the HPA, including 37.1% 
of proteins that share the same set of annotations, which are similar 
rates that were observed when comparing N- or C-terminally tagged 
proteins in the OpenCell18 collection with the HPA. For proteins and 
clones with completely discordant annotations, it is possible, as with 
every tagging event, that the subcellular localization is affected by the 
protein tag. Deciding on the ideal tag position for each protein is only 
possible by individually comparing the observed localizations with 
multiple resources or literature. Therefore, we provide images of all 
clones including information on the tag position and sgRNA sequences 
at https://vpcells.cemm.at (Fig. 3d). The high diversity of this clone col-
lection (Fig. 3e) enables image-based clustering of the different tagged 
proteins by their subcellular localization patterns (Fig. 3f and Extended 
Data Fig. 4). These data confirm that clones generated by pooled intron 
tagging can be used as reporters for subcellular protein localizations.

c

Intron-targeting
 sgRNA library

frame 1

Cas9
cut sites

Generic donor mScarlet

Splice
acceptor

Splice
donor

Double-tagged
cell pool

GFP-tagged
cell pool

1. Lentiviral transduction and blasticidin selection
2. Transfection and sorting of GFP/mScarlet+ cells

Pooled intron tagging
second round 

Add structural markers 
and visual barcodes

mAmetrine
membrane marker

BFP
visual barcodes

miRFP
nuclear marker

Multicolour
cell pool

a

d

b

NES-mTagBFP2 No barcode

mTagBFP2 ER-mTagBFP2

NLS-mTagBFP2 mito-mTagBFP2

Fig. 2 | Generation of multicolour cell pools. a, Schematic of the generation 
of multicolour cell pools by performing a second round of intron tagging 
using a sgRNA library targeting frame 1 introns and a matching DNA donor 
followed by lentiviral transduction with fluorescent markers. b, Visual barcodes. 
Fluorescence microscopy images of HAP1 cells transduced with constructs 
expressing BFP localizing to different subcellular compartments. Scale bars, 

25 µm. NLS, nuclear localization signal; NES, nuclear export signal.  
c, Stitched image from multiple FOVs of a multicolour pool, 2 days after  
seeding. Representative of n = 3 tagging experiments. Scale bar, 100 µm.  
d, Examples of clonal cell lines isolated from the multicolour pool.  
Scale bars, 25 µm.

http://www.nature.com/naturecellbiology
https://vpcells.cemm.at


Nature Cell Biology | Volume 26 | May 2024 | 745–756 749

Article https://doi.org/10.1038/s41556-024-01407-w

Computer vision for identifying clones in vpCell pools
We built a computational pipeline to directly determine clone identity 
from microscopy images without the need for sequencing-based sgRNA 
identification (Fig. 4a,b). A key prerequisite is a robust method for cell 

segmentation26,27 in images of cell pools despite potential clone-specific 
differences in the intensities of the different channels. We segmented 
whole cells based on the mAmetrine-CAAX membrane marker and 
nuclei based on the NLS-miRFP670-miRFP670nano signal, performing 
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filtering to obtain high-quality cells (Fig. 4a; for details see Methods 
and Supplementary Fig. 2). The filtering step discards the large major-
ity of mitotic cells.

To develop a computational image-based clone recognition algo-
rithm, we first assembled a new cell pool from 41 vpCell clones covering 
61 cancer-associated proteins to serve as ground truth (Fig. 4c). These 
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clone. The red line denotes the threshold of 50 cells per clone, which we consider 
as the minimum number to robustly detect perturbation-induced changes.
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clones were also imaged in an arrayed format at two time points in 
two biological replicates (Fig. 4d). We took care to randomize clone 
positions between replicate (imaging plate) to prevent possible over-
fitting to well position during model training. We trained a random 
forest classifier to discriminate the clones at the level of single cells 
based on CellProfiler features28 extracted for each cell (Supplementary 
Tables 5 and 6). To estimate the predictive performance, we trained 
and validated the model on independent subsets of the dataset. We 
found that clones can be discriminated with accuracy and macro F1 
scores over 97% (Fig. 4e shows the average over 12 train-validation 
settings; Extended Data Fig. 5a and Supplementary Table 7 show each 
train-validation setting separately).

To estimate the upper limit of the number of clones that our com-
putational approach can distinguish, we also trained a model on the 
largest possible non-redundant set of vpCell clones. We selected 1,065 
clones fulfilling the following criteria: (1) carrying a different combina-
tion of their two tagged proteins; and (2) with at least 200 high-quality 
cells available. Training and validating the model on measurements 
from separate time points, we achieved validation accuracy of over 93% 
(Extended Data Fig. 5b), suggesting that our approach could be applied 
to much larger sets of up to hundreds or even thousands of clones.

Finally, we evaluated the performance of our pipeline on the pool 
of 41 clones by training a model on the combined arrayed dataset (all 
replicates and time points) (Fig. 4d). We found very good performance 
based on (1) cells growing in colonies being assigned to the same clone 
(Fig. 4f,g and Extended Data Fig. 6); and (2) rarefaction analysis by 
manually assembled subpools containing fewer than the 41 clones in 
which omitted clones are also not found computationally (Supplemen-
tary Table 7). By imaging 100 fields of view (FOVs) per well in a 96-well 
plate with ×40 magnification, we on average cover 9,843 individual 
high-quality cells (Fig. 4h). For 39 of the clones in the cell pools, this 
results in more than 50 individual cells being imaged, a number we 
consider sufficient to detect perturbation-induced changes (Fig. 4i). 
The proportions of clones in the pool were not fully even, but we ruled 
out this was caused by widely different proliferation rates (Extended 
Data Fig. 6h). We therefore applied these conditions for detection of 
perturbation-induced localization changes.

Monitoring abundance and localization of large protein sets
To detect perturbation-induced changes on cell pools, we first imaged 
the unperturbed cell pool, then induced the perturbation and imaged 
the cell pool again after 6 h (Fig. 5a). The computational protocol 
developed before can unambiguously assign clone identity in the 
unperturbed image, but perturbation-induced localization changes 
may interfere with clone recognition following drug treatment. We 
therefore assign clone identity in the perturbed image based on the 
following assumptions: (1) considering the low migratory potential 
of the cell lines used (Fig. 5b), cells in the perturbed image can only be 
assigned to clones present within a radius of 100 µm in the unperturbed 
image; and (2) compound-induced changes will only impact one of the 
channels, enabling majority calling based on leave-one-channel-out 
computational experiments (for details, see Methods). With clone 
identities in perturbed images assigned, we can then determine changes 
by comparing CellProfiler features in perturbed cells to control cells.

We treated the cell pool of 41 clones covering 61 cancer-associated 
proteins with 1,059 compounds that we observed in previous 

experiments to impair cell proliferation29 (Supplementary Table 8). 
For a proof of concept, we first validated the computational protocol 
using the cell pool treated with the BRD4-degrader dBET6 (ref. 30). 
We observed robust and specific loss of mScarlet signal in a clone 
tagged with CUL3–GFP BRD4–mScarlet (Fig. 5c–e and Extended Data 
Fig. 7a–e). Manual annotation of cells of this clone in the entire well con-
firmed the high predictive performance of the post-perturbation clone 
detection model with an F1 score of 0.9603 (Extended Data Fig. 7f).

We then analysed the entire set of drug–protein interactions, test-
ing whether any of 90 selected CellProfiler features were altered. We 
observed widespread compound-induced changes, which we further fil-
tered for obtaining 44 confirmed drug–protein interactions (Fig. 5f–h,  
Extended Data Fig. 8 and Supplementary Table 8). These included 
a number of known or predicted drug–protein interactions, which 
thereby further validate the approach. Among these, we observed a 
drastic reduction in the intensity of the mTOR regulator RHEB following 
treatment with mycophenolic acid and pralatrexate, consistent with 
the known sensitivity of the protein to purine metabolite deficiency31 
and its drastic depletion following mycophenolic treatment in a recent 
MS-based approach32. We also observed the specific loss of SMARCA4 
signal for two independent intron-tagged clones treated with the 
known SMARCA2/4-degrader ACBI1 (ref. 33). With the translation 
inhibitor cycloheximide we observed loss of intensity of KLF4, which 
is among the proteins with the shortest half-life in the cell pool34. In 
addition to these known and predicted drug–protein interactions, 
we also observed specific effects on subcellular localization and con-
densation of SMAD4, NPM1, DAZAP1, RAC1, XPO1, DDX3X and CUL3 
with certain compounds (Fig. 5g,h), effects that we could validate in 
cell pools and in individual tagged cells lines. Overall, these results 
demonstrate the applicability of our approach for pooled screening 
in uncovering protein–drug interactions beyond changes in protein  
abundance.

Monitoring of protein dynamics discovers exportin inhibitors
To further elucidate the mechanism of action of the discovered pro-
tein–drug interactions, we focused on the decrease in XPO1 levels in 
response to treatment with several of the uncharacterized, antiprolif-
erative compounds (Figs. 5g and 6a and Extended Data Fig. 9a). XPO1 
is responsible for the nuclear export of proteins containing a nuclear 
export signal, which also includes some tumour-suppressor genes, 
making this gene a target for cancer therapy35. There are two US Food 
and Drug Administration-approved XPO1 inhibitors selinexor and ver-
dinexor, both of which have been shown to cause XPO1 degradation in 
addition to XPO1 inhibition36,37. Notably, for screening hit Z384372236, 
we not only detected a decrease in XPO1 fluorescence intensity, but, 
because we were simultaneously monitoring multiple proteins in paral-
lel using our cell pools, we could also observe effects on other proteins 
in the pool. These included a decrease in the levels of nuclear HUWE1 
and an increase in SMAD4 and CUL3 (Fig. 6b,c). As SMAD4 is a known 
cargo of the nuclear export machinery, we reasoned that some of the 
hit compounds might indeed be XPO1 inhibitors and degraders. To 
further characterize the compound-induced abundance and localiza-
tion changes, we performed time-lapse microscopy over a period of 
7 h in live cells with intron-tagged XPO1 and SMAD4 with the hit com-
pounds tested at three concentrations, using the known XPO1 inhibitors 
selinexor, verdinexor and leptomycin B as positive controls (Fig. 6d–f 

Fig. 5 | Drug screen with pool of 41 clones. a, Schematic visualization of the 
pooled screen strategy. b, Pooled clones imaged at t = 3, 4 and 5 days after 
seeding. Representative image from a single experiment. Scale bars, 100 µm. 
c, Degradation of BRD4 with dBET6, positive control. Representative image 
from pooled screen. Arrows point to example cells with intron-tagged BRD4 in 
mScarlet channel. Model predictions (bottom) are robust to perturbation (the 
BRD4 clone cells are assigned the correct label). Scale bars, 25 µm. d, Change 
in median nuclear intensity of BRD4 in response to compounds in the pooled 

screen compared with the average of negative control dimethylsulfoxide (DMSO) 
wells. e, The effect of dBET6 treatment on CellProfiler features for each tagged 
protein in the pool, quantified by counting significantly changed variables with 
an absolute z-score above 0.5. f, Overview of the hit calling workflow. g, Heat map 
visualization of proteins and compounds of the 44 visually confirmed hits. h, Top 
visually confirmed hit protein and compound combinations before and after 
treatment. Visualization of a single colony in the pool. Scale bars, 25 µm.
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and Extended Data Fig. 9b). While the decrease in fluorescence inten-
sity in XPO1 was detectable after 2–3 h, the nuclear accumulation of 
SMAD4 in response to some, but not all, hit compounds was already 

visible after 1 h. This suggests that some hit compounds inhibit XPO1 
before degradation happens and that the degradation is a secondary 
effect that is not required for the nuclear accumulation of SMAD4.  

c

41 clones × 2 frames 
1,151 treatments (incl. 86× DMSO controls)

= 94,382 settings

Padj < 0.05
abs(z-score) > 1.5

N(treated cells) ≥ 50
N(control cells) ≥ 100

test 90 CellProfiler features per setting:
Welch’s t-test (treated versus DMSO)

Bonferroni correction
extract z-scores

8,494,380 records

2,239 filtered records

Score ≥ 5
 (score = count filtered

records per setting)

351 hit
candidates

Remove
autofluorescent compounds

99 hit
 candidates

Confirm by visual inspection
filter out non-clone-specific e�ects

44 visually
confirmed hits

f

Microplate

Image,
identify clones

in pool

Repooled selected
clones

Identify
changes

Change:
protein C
protein F

4

5
1

2
3

6

4

5
1

2
3

Perturb,
image again

(t = 6 h)

a Clone 1
Protein A (GFP)
Protein B (mScarlet)

Clone 2
Protein C (GFP)
Protein D (mScarlet)

Clone 3
Protein E (GFP)
Protein F (mScarlet)

g

SN
S-

03
2

M
ith

ra
m

yc
in

 A
Tr

ip
to

lid
e

AC
BI

1
M

yc
op

he
no

lic
 a

ci
d

Pr
al

at
re

xa
te

 2
0µ

M
Pr

al
at

re
xa

te
 7

µM
M

G
-1

32
Ro

m
id

ep
si

n
Pr

al
at

re
xa

te
17

AA
G

C
er

iv
as

ta
tin

Vi
nd

es
in

e 
su

lfa
te

Z1
18

26
39

22
M

S8
12

dB
ET

6
M

ito
xa

nt
ro

ne
6-

M
er

ca
pt

op
ur

in
e

Z3
62

57
18

12
Z3

84
37

22
36

Z6
08

35
12

86
Z8

29
33

37
88

Le
pt

om
yc

in
 B

C
yc

lo
he

xi
m

id
e

RHEB (E07)
NPM1 (B03)

SMAD4 (E01)
DAZAP1 (C07)
DDX3X (B07)

RAC1 (C02)
SMARCA4 (F04)

XPO1 (D05)
SMARCA4 (C03)

CUL3 (B02)
TP53 (E01)

SF1 (B01)
SF1 (A02)

FLNA (C07)
BRD4 (B02)
ARID2 (E07)

MAP2K4 (B06)
THRAP3 (D01)

MYH9 (B06)
EP300 (E05)
SCAF4 (C02)

DAZAP1 (F04)
THRAP3 (A04)

KLF51 (D07)
SMARCA4 (E02)

SIN3A (D07) 0

5

10

15

20 Significantly di�erent features

e

0 20 40 60 80

Protein/sgRNA index

0

5

10

15

20

25

Si
gn

ifi
ca

nt
 fe

at
ur

es
 w

ith
ab

s(
z-

sc
or

e)
 >

 0
.5

dBET6

BRD4

0 250 500 750 1,000

Compound index

−2

−1

0

1

2

N
uc

le
ar

 in
te

ns
ity

BRD4

DMSO
Screening compound

dBET6

d

mScarlet

GFP

BFP

Overlay

Model
predictions

0.1 µM dBET6, t = 6 ht = 0 h

CUL3
Z1182639224

(10 µM)

SMAD4
MG-132
(10 µM)

DAZAP1
SNS-032
(20 µM)

RAC1
MS812
(10 µM)

NPM1
Mithramycin A

(10 µM)

t = 0 h t = 6 h t = 0 h t = 6 h

RHEB
mycophenolic
acid (10 µM)

XPO1
Z384372236

(10 µM)

DDX3X
Z829333788

(10 µM)

h

b
t = 5 dt = 4 dt = 3 d

N

N N

N
N

O
N

O

O

NH

NH

OH
HO

2

2 H

http://www.nature.com/naturecellbiology


Nature Cell Biology | Volume 26 | May 2024 | 745–756 753

Article https://doi.org/10.1038/s41556-024-01407-w

For leptomycin B we did not observe any degradation of XPO1, but saw a 
strong nuclear accumulation of SMAD4. The most potent hit compound 
Z384372236 showed a compound-induced effect at a concentration 
as low as 0.5 µM. To test whether the observed effect is specific for the 
XPO1 clone that was included in the pool, or whether the degradation 
can be observed independent of tag position, we monitored XPO1 
fluorescence intensity in nine clones from our collection that are all 
tagged at different introns. In seven out of nine clones, we observed 
the degradation by Z384372236 (Extended Data Fig. 10a,b). In the two 
clones without a degradation phenotype, the fluorescence intensities 
were already very low in the unperturbed state, indicating that these 
tag positions might result in destabilized protein. Of note, degrada-
tion of XPO1 in response to Z384372236 was not only observed in the 
majority of tagged clones but also in cells expressing endogenous, 
untagged XPO1 (Extended Data Fig. 9c).

Selinexor, verdinexor and leptomycin B are covalently binding Cys-
528 in the cargo binding pocket of XPO1 (refs. 38,39). To test whether 

Z384372236 also has the same binding mode despite being structur-
ally different (Extended Data Fig. 9a), we introduced the XPO1 C528S 
mutation in HAP1 cells. We found that this mutation indeed conferred 
resistance not only to selinexor and leptomycin B, but also to the anti-
proliferative effects of Z384372236 (Fig. 6g). Furthermore, in cells 
with the XPO1 C528S mutation and intron-tagged SMAD4, there is no 
nuclear accumulation of SMAD4 as observed in cells with wild-type 
XPO1 following compound treatment (Fig. 6h). Together, these data 
suggests that the mode of action of the antiproliferative compound 
Z384372236 is inhibition of nuclear export via binding to XPO1. These 
findings confirm the power of the vpCell approach as a framework to 
simultaneously follow multiple proteins within a pathway for mecha-
nistic studies.

Discussion
Scalable pooled methods can drastically expand opportunities for sys-
tematically probing cellular mechanisms40. For monitoring subcellular 
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Fig. 6 | Z384372236 inhibits nuclear export by binding to XPO1. a, Fluorescence 
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change. b, Compound activity of Z384372236 on all proteins represented in  
the cell pool. c, Validation of drug–protein interactions in an arrayed format using 
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tagged XPO1 in response to selected hit compounds measured by 7-h time-lapse 
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protein localization using imaging-based methods, this is because test-
ing one additional compound in arrayed format requires the thawing, 
expansion, counting, seeding and profiling of hundreds to thousands 
of cell lines or the use of large antibody panels. Such efforts are, at best, 
feasible in few specialized platforms, whereas cell pools can be handled 
efficiently by individual laboratories. The vpCell technology has the 
potential to democratize subcellular localization studies, enabling 
the rapid generation, sharing and characterization of multicolour cell 
pools in different cell models.

We here show that a pooled intron-tagging strategy can be effi-
ciently scaled to generate highly diverse cell pools of endogenously 
tagged proteins. Using genome-wide sgRNA libraries we identify 
proteins and tag positions that are more favourable for tagging, 
resulting in enrichment in our cell pool. High expression levels and 
targeting an early intron are the main factors for successful tagging, 
with hydrophilic and unstructured regions giving a minor benefit. 
While in most of these successfully tagged clones protein localiza-
tion is consistent with current reference datasets, it is still possible 
that tagging impairs protein function, interactions or modifications, 
as is the case for any modification, including at the N or C termini41. 
Future developments of the overall strategy, together with pooled 
N- or C-terminal tagging strategies42 will further boost the number of 
proteins that can be tagged and increase the confidence in observed  
localizations.

Of particular importance for the scalability of pooled localization 
studies is a method for rapidly assigning the identity of tagged pro-
teins. Discriminating hundreds of proteins only based on microscopy 
images is so far not feasible, because magnifications compatible with 
rapid imaging of thousands of cells result in near-identical localiza-
tion patterns for proteins residing in the same organelle, many of 
which have similar expression levels, and heterogeneity, for example, 
caused by cell cycle effects further complicates matters. We here show 
that multicolour tagging enables automated clone identification in 
cell pools. Rather than using specific tags solely for barcoding43, we 
directly use the combination of localization patterns and intensities of 
the tagged proteins as visual barcodes. We estimate that this method 
enables discriminating thousands of clones, with the option to further 
increase this number up to proteome-scale cell pools by expanding 
the set of BFP barcodes and modulating structural channel intensities. 
Improved computational methods for feature extraction, including 
deep-learning-based protein localization profiling44–47 will further 
increase the number of clones that can be discriminated and enable 
the identification of more subtle localization changes. We believe 
that, rather than in computational detection, the limiting factor for 
multiplexing ultimately lies in ensuring a well-balanced representation 
of clones in the pool and the imaging time required to capture enough 
cells for each clone.

Any area of biology that involves the characterization of cellular 
perturbations can benefit from pooled approaches to study subcellular 
protein localization, including the deep characterization of cellular 
processes, compound mechanism-of-action studies and the discovery 
of bioactive compounds. Our study provides a proof of concept for all 
of these aspects.

First, we show that the vpCell approach can successfully identify 
bioactive compounds. For such efforts, focused vpCell pools that 
cover desired targets, their upstream and downstream regulators and 
potential off-targets might be best suited. The options of customizing 
sgRNA libraries or assembling such a cell pool from the wider vpCell 
collection enable the rapid implementation of this approach. Here, we 
assembled a cell pool of cancer drivers and used it to probe the effects 
of antiproliferative compounds. Despite the early 6-h time point used 
for profiling, we find widespread compound-induced changes to pro-
tein abundance and subcellular localization, including known effects 
of chemical probes dBET6 and ACBI1 on their target proteins as well as 
other effects of previously uncharacterized compounds.

Of the pathways targeted by these compounds, we focused on 
the nuclear export machinery. Using the approved exportin inhibi-
tor selinexor highlights the potential of time-resolved imaging of 
cell pools for mechanistic studies. We find that selinexor causes the 
rapid nuclear accumulation of both its direct target XPO1 and its cargo 
SMAD4 within 1–2 h. In contrast, XPO1 degradation only occurs at later 
time points (and not at all with leptomycin B), suggesting that it does 
not contribute to primary effects.

Finally, we show that vpCell pools can identify compound mecha-
nism of action. The success of the Cell Painting48,49 assay highlights  
the power of morphological features to discover compound mecha-
nism of action. While the rapid dye-based staining of subcellular 
structures is a key advantage of Cell Painting, the vpCell approach 
offers the opportunity to monitor tens or hundreds of individual 
proteins in each of these organelles in live cells, suggesting the two 
approaches to be highly synergistic. Here, we identify a set of com-
pounds that show similar behaviour in vpCell pools to the known 
exportin inhibitors selinexor, verdinexor and leptomycin B. One 
class of these compounds (exemplified by Z346481166, Z362571812 
and Z608351286) strongly resembles Michael acceptors, previously 
described as covalent XPO1 inhibitors50. Notably, only the most 
potent of these compounds also leads to nuclear accumulation of 
XPO1 cargo proteins, and also only at later time points when XPO1 
is already degraded and its antiproliferative effect is independent 
of the selinexor resistance mutation XPO1C528S. In contrast, a struc-
turally different compound that we identified, Z384372236, shows 
effects on both XPO1 and its cargo proteins with similar kinetics as the 
clinical compounds. These data identify the compound as a distinct 
chemotype of exportin inhibitors.

In summary, the vpCell approach that we developed enables the 
efficient monitoring of subcellular protein localization to identify the 
kinetics of perturbation-induced changes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41556-024-01407-w.

References
1. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful 

discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 
285–302 (2019).

2. Thul, P. J. et al. A subcellular map of the human proteome. 
Science 356, eaal3321 (2017).

3. Christopher, J. A. et al. Subcellular proteomics. Nat. Rev. 
Methods Primers https://doi.org/10.1038/s43586-021-00029-y 
(2021).

4. Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. Global, quantitative 
and dynamic mapping of protein subcellular localization. eLife 5, 
e16950 (2016).

5. Orre, L. M. et al. SubCellBarCode: proteome-wide mapping  
of protein localization and relocalization. Mol. Cell 73, 166–182 
(2019).

6. Dumrongprechachan, V. et al. Cell-type and subcellular 
compartment-specific APEX2 proximity labeling reveals 
activity-dependent nuclear proteome dynamics in the striatum. 
Nat. Commun. 12, 4855 (2021).

7. Go, C. D. et al. A proximity-dependent biotinylation map of a 
human cell. Nature 595, 120–124 (2021).

8. Huh, W. K. et al. Global analysis of protein localization in budding 
yeast. Nature 425, 686–691 (2003).

9. Ghaemmaghami, S. et al. Global analysis of protein expression in 
yeast. Nature 425, 737–741 (2003).

http://www.nature.com/naturecellbiology
https://doi.org/10.1038/s41556-024-01407-w
https://doi.org/10.1038/s43586-021-00029-y


Nature Cell Biology | Volume 26 | May 2024 | 745–756 755

Article https://doi.org/10.1038/s41556-024-01407-w

10. Leonetti, M. D., Sekine, S., Kamiyama, D., Weissman, J. S. & 
Huang, B. A scalable strategy for high-throughput GFP tagging 
of endogenous human proteins. Proc. Natl Acad. Sci. USA 113, 
E3501–E3508 (2016).

11. Chong, Y. T. et al. Yeast proteome dynamics from single cell 
imaging and automated analysis. Cell 161, 1413–1424 (2015).

12. Harikumar, A. et al. An endogenously tagged fluorescent fusion 
protein library in mouse embryonic stem cells. Stem Cell Rep. 9, 
1304–1314 (2017).

13. Jarvik, J. W., Adler, S. A., Telmer, C. A., Subramaniam, V. &  
Lopez, A. J. CD-tagging: a new approach to gene and protein 
discovery and analysis. Biotechniques 20, 896–904 (1996).

14. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells 
in response to a drug. Science 322, 1511–1516 (2008).

15. Kang, J. et al. Improving drug discovery with high-content 
phenotypic screens by systematic selection of reporter cell lines. 
Nat. Biotechnol. 34, 70–77 (2016).

16. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap 
strategy to detect GFP-tagged proteins expressed from their 
endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 
15050–15055 (2001).

17. Schmid-Burgk, J. L., Honing, K., Ebert, T. S. & Hornung, V. 
CRISPaint allows modular base-specific gene tagging using a 
ligase-4-dependent mechanism. Nat. Commun. 7, 12338 (2016).

18. Cho, N. H. et al. OpenCell: endogenous tagging for the 
cartography of human cellular organization. Science 375, 
eabi6983 (2022).

19. Reicher, A., Koren, A. & Kubicek, S. Pooled protein tagging, 
cellular imaging, and in situ sequencing for monitoring drug 
action in real time. Genome Res. 30, 1846–1855 (2020).

20. Serebrenik, Y. V., Sansbury, S. E., Kumar, S. S., Henao-Mejia, J. & 
Shalem, O. Efficient and flexible tagging of endogenous genes 
by homology-independent intron targeting. Genome Res. 29, 
1322–1328 (2019).

21. Shi, Y., Kopparapu, N., Ohler, L. & Dickinson, D. J. Efficient and 
rapid fluorescent protein knock-in with universal donors in mouse 
embryonic stem cells. Development 150, dev201367 (2023).

22. Kyte, J. & Doolittle, R. F. A simple method for displaying the 
hydropathic character of a protein. J. Mol. Biol. 157, 105–132 
(1982).

23. Tunyasuvunakool, K. et al. Highly accurate protein structure 
prediction for the human proteome. Nature 596, 590–596 (2021).

24. Doench, J. G. et al. Optimized sgRNA design to maximize activity 
and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 
34, 184–191 (2016).

25. Perez, A. R. et al. GuideScan software for improved single and 
paired CRISPR guide RNA design. Nat. Biotechnol. 35, 347–349 
(2017).

26. Hollandi, R. et al. nucleAIzer: a parameter-free deep learning 
framework for nucleus segmentation using image style transfer. 
Cell Syst. 10, 453–458 (2020).

27. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose:  
a generalist algorithm for cellular segmentation. Nat. Methods 18, 
100–106 (2021).

28. McQuin, C. et al. CellProfiler 3.0: next-generation image 
processing for biology. PLoS Biol. 16, e2005970 (2018).

29. Mayor-Ruiz, C. et al. Rational discovery of molecular glue 
degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 
1199–1207 (2020).

30. Winter, G. E. et al. BET bromodomain proteins function as 
master transcription elongation factors independent of CDK9 
recruitment. Mol. Cell 67, 5–18 (2017).

31. Emmanuel, N. et al. Purine nucleotide availability regulates 
mTORC1 activity through the rheb GTPase. Cell Rep. 19,  
2665–2680 (2017).

32. Mitchell, D. C. et al. A proteome-wide atlas of drug mechanism of 
action. Nat. Biotechnol. 41, 845–857 (2023).

33. Farnaby, W. et al. BAF complex vulnerabilities in cancer 
demonstrated via structure-based PROTAC design. Nat. Chem. 
Biol. 15, 672–680 (2019).

34. Gamper, A. M. et al. Regulation of KLF4 turnover reveals an 
unexpected tissue-specific role of pVHL in tumorigenesis. Mol. 
Cell 45, 233–243 (2012).

35. Azmi, A. S., Uddin, M. H. & Mohammad, R. M. The nuclear export 
protein XPO1 - from biology to targeted therapy. Nat. Rev. Clin. 
Oncol. 18, 152–169 (2021).

36. Kwanten, B. et al. E3 ubiquitin ligase ASB8 promotes 
selinexor-induced proteasomal degradation of XPO1. Biomed. 
Pharmacother. 160, 114305 (2023).

37. Zhu, Z. C., Liu, J. W., Yang, C., Zhao, M. & Xiong, Z. Q. XPO1 
inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce 
cancer cell apoptosis by perturbing rRNA processing and Mcl-1 
protein synthesis. Cell Death Dis. 10, 395 (2019).

38. Kim, J. et al. XPO1-dependent nuclear export is a druggable 
vulnerability in KRAS-mutant lung cancer. Nature 538, 114–117 
(2016).

39. Neggers, J. E. et al. Identifying drug-target selectivity of 
small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome 
editing. Chem. Biol. 22, 107–116 (2015).

40. Schwartz, M. et al. Scaling biological discovery at the interface 
of deep learning and cellular imaging. Nat. Methods 20, 956–957 
(2023).

41. Stadler, C. et al. Immunofluorescence and fluorescent-protein 
tagging show high correlation for protein localization in 
mammalian cells. Nat. Methods 10, 315–323 (2013).

42. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large  
sequences without double-strand DNA cleavage using CRISPR- 
directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

43. Kaufman, T. et al. Visual barcodes for clonal-multiplexing of live 
microscopy-based assays. Nat. Commun. 13, 2725 (2022).

44. Razdaibiedina, A. et al. PIFiA: self-supervised approach for protein 
functional annotation from single-cell imaging data. Mol. Syst. 
Biol. https://doi.org/10.1038/s44320-024-00029-6 (2024).

45. Moen, E. et al. Deep learning for cellular image analysis. Nat. 
Methods 16, 1233–1246 (2019).

46. Kobayashi, H., Cheveralls, K. C., Leonetti, M. D. & Royer, L. A. Self- 
supervised deep learning encodes high-resolution features of 
protein subcellular localization. Nat. Methods 19, 995–1003 (2022).

47. Spitzer, H., Berry, S., Donoghoe, M., Pelkmans, L. & Theis, F. J. 
Learning consistent subcellular landmarks to quantify changes in 
multiplexed protein maps. Nat. Methods 20, 1058–1069 (2023).

48. Bray, M. A. et al. Cell Painting, a high-content image-based assay 
for morphological profiling using multiplexed fluorescent dyes. 
Nat. Protoc. 11, 1757–1774 (2016).

49. Chandrasekaran, S. N. et al. JUMP Cell Painting dataset: 
morphological impact of 136,000 chemical and genetic 
perturbations. Preprint at bioRxiv https://doi.org/10.1101/ 
2023.03.23.534023 (2023).

50. Gargantilla, M. et al. Inhibition of XPO-1 mediated nuclear export 
through the michael-acceptor character of chalcones. Pharmacy 
14, 1131 (2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 

http://www.nature.com/naturecellbiology
https://doi.org/10.1038/s44320-024-00029-6
https://doi.org/10.1101/2023.03.23.534023
https://doi.org/10.1101/2023.03.23.534023


Nature Cell Biology | Volume 26 | May 2024 | 745–756 756

Article https://doi.org/10.1038/s41556-024-01407-w

if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 

use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturecellbiology
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Cell Biology

Article https://doi.org/10.1038/s41556-024-01407-w

Methods
Intron-targeting sgRNA library design
Intron-targeting sgRNA libraries were generated following a strategy 
we described previously19. In brief, the Ensembl BioMart data-mining 
tool was used to select transcripts with a Consensus Coding Sequence 
(CDS) ID of 19,035 human genes and to obtain chromosomal coordi-
nates of introns for sgRNA design. For genes with multiple transcripts 
with a Consensus CDS ID, the transcript with the longest CDS was cho-
sen. For each of the selected transcripts, the information on CDS start, 
exon frame and the exon start and end chromosomal coordinates were 
used to define intronic regions. To avoid selecting sgRNAs close to the 
exon/intron junction and disrupting splice-acceptor and splice-donor 
sites, only the intronic region that is at least 20 bp away from exon/
intron junctions was used for sgRNA design. The GuideScan tool25 was 
used to select up to 20 Cas9 sgRNAs with the highest on-target scores 
for each intron (GuideScan database v.1.0). These guides were ranked 
for each intron based on a combined on- and off-target score and anno-
tated with gene name, Ensembl transcript ID, intron number and intron 
frame to generate a database of 2,979,354 sgRNAs targeting 162,261 
introns of 16,279 genes (available for download at vpcells.cemm.at). 
For the frame 0 genome-wide intron-targeting sgRNA library, the top 
ranked sgRNA for each intron in frame 0 was included in the library. 
Additionally, for genes with only two or three targetable introns, the 
second ranked sgRNA was also included and for genes with only one 
targetable intron, the third ranked sgRNA for that intron was also 
included in the library. Approximately 0.5% of sgRNAs in the library 
target regions of overlapping genes and map to introns of two primary 
transcripts. These sgRNAs were annotated with two introns and genes 
(separated by ‘|’ in their sgRNA name) and were excluded from any 
further analysis, because they cannot be unambiguously assigned 
to a single target. The frame 0 genome-wide intron-targeting sgRNA 
library also includes 1,000 non-targeting sgRNAs for a total number 
of 90,657 sgRNAs targeting 73,817 introns of 14,158 genes. The frame 1 
genome-wide intron-targeting sgRNA library was generated using the 
same database and consists of 72,580 sgRNAs targeting 51,939 introns 
of 14,011 genes. Two smaller libraries were generated, targeting frame 
0 and frame 1 of a total of 287 genes associated with cancer biology and 
consist of 2,511 and 1,763 intron-targeting sgRNAs. The genome-wide 
libraries have been deposited with Addgene (Human Genome-wide 
Intron Tagging Library, Frame 0 and Human Genome-wide Intron 
Tagging Library, Frame 1).

Cloning of intron-targeting sgRNA libraries
Libraries were synthesized as oligonucleotide pools by Twist Bio-
sciences and cloned into the CROPseq vector using Gibson assembly. 
For frame 0 libraries, the CROPseq-Guide-Puro vector was used, and for 
frame 1 libraries, the puromycin resistance in the vector was replaced 
with a blasticidin resistance before library cloning. Oligonucleotide 
pools were PCR amplified and the vectors were digested with BsmBI 
and purified. Multiple Gibson assembly reactions were performed and 
electroporated into Endura electrocompetent cells (Lucigen), plated on 
multiple bioassay dishes and plasmid DNA was isolated using multiple 
columns of a midiprep DNA purification kit (QIAGEN Plasmid Plus Midi 
kit). Library coverage was determined by counting colonies on dilu-
tion plates and was between ×200 and ×500 for the different libraries.

Minicircle production
For the production of minicircle DNA containing a single generic 
sgRNA target site followed by a splice acceptor, a 20-amino acid 
linker sequence, the CDS of EGFP, a 20-amino acid linker sequence 
and a splice-donor site, the required DNA fragment was amplified 
from Intron-Tagging-EGFP-Donor plasmid (Addgene, #159740) and 
cloned into the pMC.BESPX-MCS1 parental minicircle production 
plasmid (System Biosciences) by EcoRV digest and Gibson assembly. 
Parental plasmid was transformed into ZYCY10P3S2T Escherichia coli 

minicircle production strain (System Biosciences MC-Easy Minicircle 
DNA Production kit) and a colony containing the correct parental 
plasmid was used for minicircle production as described by the manu-
facturer. In brief, bacteria were grown overnight in TB medium and on 
the next day, induction medium containing l-arabinose was added to 
induce att recombination and parental plasmid backbone degrada-
tion. Minicircle DNA was isolated from bacterial pellets using multiple 
columns of an endotoxin-free midiprep DNA purification kit (QIAGEN 
Plasmid Plus Midi kit) and the produced minicircle was analysed by 
restriction enzyme digest and gel electrophoresis. For generating a 
minicircle that is compatible with frame 1 introns and contains the 
CDS of mScarlet, the Intron-Tagging-EGFP-Donor plasmid (Addgene, 
#159740) was modified by adding 2 nucleobases after the splice accep-
tor and 1 nucleobase before the splice donor for in-frame splicing when 
targeting frame 1 introns. EGFP in that plasmid was replaced with the 
CDS of mScarlet-I51 before cloning the respective DNA fragment into 
the minicircle parental plasmid and minicircle production as described 
above. The parental minicircle plasmids for EGFP and mScarlet have 
been deposited with Addgene.

Cell culture
HEK293T (ATCC CRL-3216) cells were grown in Dulbecco’s modified 
Eagle’s medium (Sigma-Aldrich, D5796) supplemented with 10% fetal 
bovine serum, sodium pyruvate (final concentration of 1 mM) and 
penicillin–streptomycin. HAP1 cells (Haplogen, now Horizon Dis-
covery, C631) were grown in Iscove’s modified Dulbecco’s medium 
(Sigma-Aldrich, I6529) supplemented with 10% fetal bovine serum.

Transfection
For pooled intron-tagging experiments in HEK293T cells, 7.0 × 106 cells 
were seeded per 15-cm dish on the day before transfection. Each 15-cm dish 
was transfected with 12 µg Intron-Tagging-pX330-Cas9-Blast (Addgene, 
#159741) and 300 ng minicircle DNA using PEI. For pooled intron- 
tagging experiments in HAP1 cells, 9.0 × 106 cells were seeded per 
15-cm dish, 6 h before transfection. Each 15-cm dish was transfected 
with 8 µg Intron-Tagging-pX330-Cas9-Blast (Addgene, #159741) and 
300 ng minicircle DNA using PolyJet (SignaGen), as described by the 
manufacturer. For tagging of individual sgRNAs in an arrayed for-
mat, 5 × 105 HEK293T cells were seeded in a six-well plate on the day 
before transfection. Cells were co-transfected using PEI with 750 ng 
CROPseq-Guide-Puro for intron-targeting sgRNA expression, 750 ng 
Intron-Tagging-pX330-Cas9-mCherry and 60 ng minicircle DNA.

Pooled protein tagging
For lentivirus production, HEK293T cells were co-transfected using 
PEI with sgRNA library, sPAX2 and pMD2.G. The medium was changed 
12 h after transduction and virus-containing supernatant was col-
lected after 48 h. For genome-wide tagging experiments in HEK293T 
or HAP1, cells were transduced with virus of the frame 0 genome-wide 
intron-targeting sgRNA library in CROPseq-Guide-Puro vector at a 
coverage of >500× to ensure library representation and at a multiplic-
ity of infection of 0.1 to ensure single integration in most cells. After 
puromycin selection for 3 days, cells were expanded in puromycin-free 
medium for an additional 2 days before being transfected with 
Intron-Tagging-pX330-Cas9-Blast (Addgene, #159741) and GFP minicir-
cle. GFP-positive cells were enriched 4 days after transfection by flow 
cytometry using a Sony SH800 sorter (Sony Cell Sorter Software v.2.1.6) 
and ultra-yield sorting settings for very high throughput at the expense 
of purity to obtain a cell population with ~30% GFP-positive cells. This 
cell population was sorted again after an additional 7 days using the 
standard sorting settings to obtain a pure GFP-positive cell population. 
For comparing editing efficiencies between cells transduced with the 
library and positive and negative controls, cells were only sorted 11 days 
after transfection, without enriching for GFP-positive cells 4 days after 
transfection. For genome-wide tagging experiments in HEK293T cells, 
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a total of 1.5 × 108 cells were transfected and approximately 1.0 × 106 
GFP-positive cells were sorted.

Construction of plasmids for fluorescent marker and visual 
barcode overexpression
Expression constructs for lentiviral integration and overexpression of 
fluorescent proteins fused to different localization signals were cloned 
using Gibson assembly in a vector for mammalian expression (Addgene, 
#52962)52. A list of all cloned plasmids for fluorescent protein overex-
pression are listed in Supplementary Table 9 and have been deposited 
with Addgene. For cloning, the vector was digested with AgeI and EcoRI, 
the vector backbone was gel purified and the fluorescent proteins 
mAmetrine53, miRFP670 (ref. 54), miRFP670nano55 and mTagBFP2  
(ref. 56) were synthesized as gene fragments (Genewiz) and localization 
signals for nuclear localization57, cytoplasmic localization58, ER localiza-
tion59 and mitochondrial localization were added via PCR before using 
the fragments for Gibson assembly using HiFi DNA assembly mix (NEB) 
as described by the manufacturer. Lentivirus containing these plasmids 
were produced as described above.

Multicolour cell pool generation
For the generation of multicolour cell pools, a second round of intron 
tagging was performed by transducing a pool of GFP-positive cells 
with virus of a frame 1 genome-wide intron-targeting sgRNA library 
in the CROPseq-Guide-Blast vector. After blasticidin selection for 5 
days, cells were transfected with Intron-Tagging-pX330-Cas9-Blast 
(Addgene, #159741) and frame 1 mScarlet minicircle. GFP/mScarlet 
double-positive cells were sorted as described above. For expression 
of additional fluorescent markers, double-positive cell pools were 
transduced with lentivirus containing the expression cassettes for 
NLS-miRFP, membrane-mAmetrine and one (or none) of the five pos-
sible mTagBFP2 visual barcodes.

sgRNA abundance in cell pools
To determine the sgRNA abundance in cell pools, genomic DNA was 
isolated with the DNA blood and tissue kit (QIAGEN). The sgRNA con-
taining genomic region was amplified and Illumina adapters were 
added by PCR (see Supplementary Table 9 for primer sequences) and 
sequencing libraries were submitted for next generation sequencing 
(Amplicon-EZ, Genewiz). To quantify sgRNAs in the pools, sgRNA 
sequences were extracted from sequencing reads using Cutadapt and 
mapped to the sgRNA libraries and counted using MAGeCK.

Isolation, imaging and genotyping of clonal cell lines
For the generation of a clonal cell line collection, multicolour cell pools 
were seeded in 384-well plates at a density of 0.7 cells per well and  
expanded for 7 days. Then, 70–150 clonal cell lines per 384-well plate 
were trypsinized and cell suspensions were transferred to 96-well imag-
ing plates (PerkinElmer PhenoPlate) and corresponding cell culture 
plates. Clones on the cell culture plate were expanded for 2 days and 
frozen by trypsinizing cells and mixing with freezing medium for a 
final DMSO concentration of 10% before transferring cell suspensions 
to cryotubes in 96-well racks and storage in liquid nitrogen. Clones 
on the imaging plates were imaged after 24 h and 48 h with an Opera 
Phenix high-content confocal imaging system (PerkinElmer) using 
the ×63 water immersion objective and imaging 6–10 FOVs per well. 
To identify the tagged protein in each clonal cell line that was imaged, 
the intron-targeting sgRNA was determined by highly multiplexed 
amplicon sequencing. For that, cells on the imaging plates were lysed 
after the last imaging step and cell lysate was used for amplification of 
the sgRNA containing region by PCR. PCR was conducted in 384-well 
plates using 24 barcoded forward primers and 16 barcoded reverse 
primers using a unique primer combination for each well for process-
ing four 96-well plates together on one 384-well plate. PCR products 
from wells of a 384-well plate were pooled and submitted for paired-end 

sequencing (Amplicon-EZ, Genewiz). Sequencing reads were demul-
tiplexed and assigned to each well using Cutadapt and mapped to 
sgRNA libraries using MAGeCK to obtain sgRNA read counts for each 
well. For assigning the identity of the GFP-tagged protein in each clone, 
the detected sgRNA mapping to the frame 0 libraries was used and for 
assigning the identity of the mScarlet-tagged protein, the detected 
sgRNA mapping to the frame 1 libraries was used. Only clones where 
an unambiguous assignment was possible were included in the clone 
collection. For wells with excluded clones there was either no sgRNA 
being detectable above background in any of the two frames or multiple 
sgRNAs for the same frame were detected. The criterion for a single 
unambiguous sgRNA in each frame was a read count more than four 
times that of the second most abundant sgRNA detected in a particular 
well. Based on our analysis of previous cell pools by integration site 
mapping19, a small percentage of clones may harbour additional or 
aberrant integrations and therefore not be correctly annotated based 
on sgRNA sequencing.

Comparison of localization annotations
The comparison between subcellular localization annotations based 
on images of our clone collection and HPA was conducted as described 
previously18 for the comparison of N- or C-terminally tagged proteins 
with HPA. In brief, we manually annotated the protein localization of 
each protein present in our collection using 12 possible subcellular 
localizations (Supplementary Table 4). Proteins localizing to multiple 
compartments were annotated with up to two subcellular localizations. 
HPA localization data were downloaded from the HPA website and the 
‘main locations’ and ‘additional locations’ were used for further analy-
sis. To compare our annotations with the more diverse annotations in 
the HPA dataset, a set of consensus annotation labels were defined to 
make a comparison between the two sets of annotation labels possible. 
Exact matches were proteins with identical consensus annotations 
between the two datasets and partial matches were proteins annotated 
with two or three localizations in one dataset and only one or two of 
them matching with the other dataset.

Properties of sgRNA target proteins and tag positions
A publicly available HEK293T protein expression dataset was used 
to obtain protein expression values for sgRNA target proteins18. For 
calculating the hydrophobicity scores at the tag sites of proteins, the 
Ensembl BioMart data-mining tool was used to obtain amino acid 
sequences of exons flanking the sgRNA target introns and the Kyte–
Doolittle scale22 was used to calculate the hydrophobicity score for a 
six-amino acid window comprising three amino acids before the tag site 
and three amino acids after the tag site. For calculating the AlphaFold 
confidence score, the Ensembl BioMart data-mining tool was used to  
obtain CDS positions of exons flanking the sgRNA target sites and 
to obtain UniProt IDs of the respective transcripts. The AlphaFold 
per-residue confidence scores (pLDDT) for the respective proteins were 
extracted from mmCIF files that were obtained from the AlphaFold 
DB website23 (AlphaFold database UP000005640_9606_HUMAN_
v4) and the average of the pLDDT scores of the residue immediately 
before and after the tag site was calculated. All scores for sgRNAs in the 
genome-wide frame 0 library are included in Supplementary Table 3.

Assembly of a cell pool for pooled screening applications
To generate a cell pool in which every clone can be identified by com-
puter vision, 41 HAP1 clones were selected from the clone collection and 
thawed individually, before being mixed together in equal proportions 
using a Sony SH800 cell sorter. The cell pool was expanded for 4 days 
and frozen in multiple aliquots of 1 × 106 cells per cryotube that were 
thawed again for screening applications. Clones were also seeded in 
separate wells of a 96-well imaging plate to generate training data for 
building a computational model that can identify clones based on 
localization patterns and intensities in all channels. Each clone was 
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seeded in two wells that were imaged 24 h and 48 h after seeding with 
an Opera Phenix high-content confocal imaging system (PerkinElmer) 
using a ×40 water immersion objective.

Compound library
A total of 1,059 screening compounds were provided by the Molecular 
Discovery Platform at CeMM. A total of 439 compounds in that library 
were approved drugs or well-annotated chemical probes and 620 com-
pounds were antiproliferative, drug-like screening compounds with an 
unknown mechanism of action. Commercially available compounds 
were used without further purification. For compound Z384372236 we 
have evidence that an oxidation product acts as the active XPO1 inhibi-
tor. Compounds dissolved in DMSO were provided in 12 compound 
plates at a final screening concentration of 10 µM for the majority of 
compounds (Supplementary Table 8).

Pooled screening conditions
For screening of the multicolour cell pool of 41 HAP1 clones, cells 
were seeded in 12 96-well imaging plates (PerkinElmer PhenoPlate) at 
a concentration of 2,500 cells per well. At 56 h after seeding, 100 FOVs 
(approximately one-third of the entire well area; each FOV has a resolu-
tion of 1,080 × 1,080 pixels) were imaged per well with an Opera Phe-
nix high-content confocal imaging system (PerkinElmer) using a ×40  
water immersion objective. For the treatment of cells with compounds, 
medium was added to compound plates for pre-diluting compound 
stocks, before transferring pre-diluted compounds to imaging plates 
for a final compound concentration of 10 µM and 0.1% DMSO for the 
majority of compounds. At 6 h after treatment, the same FOVs in 
compound-treated wells were imaged again as described above.

Calculation of the expected number of cells per well in pooled 
screen
The well diameter of a PerkinElmer PhenoPlate 96-well plate is 6.4 mm, 
corresponding to a well area of 32.17 mm2. The size of a single FOV at 
×40 magnification is 0.1027 mm2 (1 pixel = 0.2967 µm). Therefore, 100 
FOVs cover approximately 0.32 of the area of the entire well. Imaging 
after 56 h and using an estimated doubling time of HAP1 cells of 14 h, 
an entire well and 100 FOVs should contain 40,000 and 12,800 cells, 
respectively.

Computational processing
Imaging datasets were analysed using Python v.3.9.15 at the CeMM 
high-performance computing cluster, using Slurm Workload Manager 
v.21.08.8. The code and detailed descriptions of the conda environ-
ments with package versions are deposited at https://github.com/
reinisj/intron_tagging. Before analysis, flatfield correction was per-
formed on the generated imaging data using Harmony software v.6 
(PerkinElmer)60.

Segmentation of cells and nuclei, 1:1 mapping and filtering to 
high-quality cells
Cell masks were generated based on the mAmetrine-labelled membrane 
channel with the ‘cyto’ model of cellpose27 v.0.6.1, setting the diameter 
to 80 pixels. Segmentation of nuclei was performed with nucleAIzer26 
(nucleaizer-backend 0.2.1) on the miRFP670-labelled nuclear channel 
employing the mask_rcnn_general model61 with default_image_size 
parameter set to 2,048 and a diameter of 60. Using custom scripts in 
Python, masks of cells and nuclei were combined by 1:1 mapping, and 
additional filtering was performed to obtain high-quality cells. Nuclei 
larger than 750 pixels were assigned to cells larger than 1,500 pixels, 
if their overlap was at least 0.66 of the total area of the nucleus. Only 
cells with a single assigned nucleus were considered further. To remove 
artefacts and most apoptotic cells, cells were filtered based on their 
N:C ratio (defined as the area of the nucleus divided by the entire cell), 
using the minimal threshold of 0.20 and maximal threshold of 0.65. 

For each cell, the number of immediate neighbours was determined by 
expanding its cell mask by 5 pixels and detecting the overlapping cells. 
To remove additional apoptotic cells, stricter filtering criteria were 
performed for mapped cells without any neighbours and nucleus and 
cell area below 2,000 and 5,000, respectively. Descriptors of solidity 
and eccentricity were calculated for the cell and nuclei objects using the 
measure.regionprops module of scikit-image62, v.0.19.1. Mapped cells 
with cell solidity above 0.95 and the sum of cell and nuclear eccentric-
ity above 1.4 were discarded. Finally, mapped cells with nuclei within 
2 pixels of the FOV edge were removed. For the remaining high-quality 
cells, three object masks were saved: (1) entire cell, (2) nucleus and  
(3) cytoplasm, defined by subtracting the nucleus from the entire cell.

Feature extraction, random forest models
For each of the three objects associated with a high-quality cell, 501 
descriptor variables (Supplementary Table 5) were extracted with Cell-
Profiler v.4.2.1 (ref. 28), using all five fluorescent channels as input for 
each FOV. A random forest model was trained on 1,455 intensity-based 
features, not including 48 features describing area and shape. The 
scikit-learn library63 (v.1.1.3) implementation of random forest was 
used, with default hyperparameters. The dataset used for training 
consisted of four measurements (each clone seeded in two plates 
with a different layout, imaged at two time points). This corresponds 
to 12 combinations where the train and validation sets are different 
(Fig. 3d,e). The final model was trained on the entire dataset compris-
ing all four measurements.

Dimensionality reduction of CellProfiler features
Using the vpCells atlas dataset (3,469,778 cells), we first reduced the 
set of 274 CellProfiler features per single channel to 90 non-redundant 
variables by calculating Pearson’s correlation between all pairs and 
iteratively discarding features with correlation above 0.9 to others 
(Supplementary Table 5). Second, a two-dimensional representation 
was obtained by running the UMAP algorithm64 on all cells, using the 
Python implementation v.0.1.1 (ref. 65) with default hyperparameters. 
Finally, we calculated the mean UMAP dimensions for each protein 
across all its cells.

Detection of clones in pool before and after perturbation
For each of the two time points imaged in the pooled screen (pre- 
treatment and t = 6 h post-treatment), a slightly different strategy was 
applied. For the pre-treatment measurement, a single random forest 
model trained on unperturbed clones using the full range of 1,455 fea-
tures was employed. For the post-treatment measurement, where the 
phenotype of clones is poised to change, an ensemble of models was 
used. The first component was to use the predictions from the earlier 
time point to restrict the set of possible clone labels to those present 
within a radius of 350 pixels (104 µm) of the target cell (Extended Data 
Fig. 6f,g). For each target cell and clone class, a clone weight (w) score 
was calculated, aggregating the number and distances of cells of the 
given predicted clone class within the neighbourhood of the cell:

wc,l =
nc,l

∑
i=0

( 1
0.1di

)
2

where c is the target cell, l is the clone class (label), di is the distance of a 
cell of the class in the previous time point within the considered radius. 
The second component were four random forest models trained on 
unperturbed clones but using different subsets of channels: (1 and 2) 
all channels but GFP/mScarlet, 1,134 features; (3) BFP and structural 
channels, 828 features; and (4) BFP barcodes only, 261 features (Sup-
plementary Table 5). The final score for each target cell was calculated 
as follows:

sc,l = wc,l∑
rf
prf
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where sc,l is the final score, w is the spatial clone weight and prf is 
the output probability of a channel subset-trained random forest  
model.

Detection of hits in pooled screen
Hit calling was performed using the selected subset of 90 CellProfiler 
features. We defined a hit calling setting as the unique combination 
of compound treatment, sgRNA and clone. For each hit calling set-
ting, perturbed cells were compared against unperturbed cells of the 
same clone and sgRNA (merged dataset DMSO controls wells from all 
plates) across all 90 features using two-sided Welch’s unequal variances 
t-test implemented in the scipy library66 v.1.9.3. Adjusted P values were 
obtained by Bonferroni multiple testing correction. As a measure of 
effect size, z-scores were calculated. For each setting, an ‘aggregating 
score’ was calculated by counting the number of features with adjusted 
P value below 0.05, absolute value of z-score above 1.5 and at least 50 
treated and 100 control cells available. Settings with aggregating score 
of 5 or higher were considered hit candidates and inspected manually, 
as long as they did not involve an autofluorescent compound (n = 30) 
(Supplementary Table 8).

Processing of images for visual inspection using quantile 
normalization and CLAHE
For visual inspection and the vpCells database, flat-field-corrected 
16-bit TIFF images were quantile normalized and saved as eight-bit 
JPEG images. The quantile normalization was applied separately to each 
image and channel and consisted of two steps. First, intensity values 
for lower (minq = 0.05) and upper (maxq = 0.9975) quantile thresh-
olds were calculated. Pixel values above the upper or below the lower 
threshold were set to the threshold. Second, the adjusted image was 
linearly rescaled to [0,1] range. For stitched images containing multiple 
FOVs, contrast limited adaptive histogram equalization67 was applied 
before quantile normalization, using the opencv library in Python 
v.4.7.0. For extraction of CellProfiler features, the flatfield-corrected 
16-bit TIFF files were used directly without any of the steps described 
in this paragraph.

Western blot
Cell pellets were resuspended lysed for 30 min at 4 °C in RIPA buffer 
containing 1× Complete, EDTA-free protease inhibitor cocktail 
(Sigma-Aldrich) and 1× Phosphatase inhibitor (Thermo Scientific). 
After centrifugation for 10 min at 4 °C and 18,000g, the supernatant 
was collected and protein content was measured using a bovine serum 
albumin assay (Sigma). Equal amounts of protein were mixed with 4× 
Laemmli Sample buffer (1.0 M Tris, pH 6.8, 40% glycerol, 8% SDS, 0.2% 
bromophenol blue and 20% β-mercaptoethanol) and incubated for 
10 min at 95 °C. Samples were loaded on an acrylamide gel together with 
a protein ladder (precision plus protein dual colour standards, Bio-Rad 
1610394). After gel electrophoresis, proteins were transferred to an 
Immobilion-FL PVDF Membrane (Millipore Sigma). After blocking in 
TBST + 5% nonfat dry milk, the membrane was cut and incubated over-
night at 4 °C with the respective primary antibodies (XPO1 antibody, 
Novus Biologicals, NB100-79802, 1:2,000 dilution; β-actin antibody, 
Abcam, ab8224, 1:1,000 dilution) in 2% milk in TBST. The next day, 
membranes were washed three times with TBST and then incubated 
for 1 h at room temperature with respective secondary antibodies 
in 2% milk in TBST. After washing three times with TBST, membranes 
were developed using Clarity Max western ECL substrate (Bio-Rad) and 
imaged on a Bio-Rad ChemiDoc MP.

Statistics and reproducibility
The pooled drug screen was performed in a single experiment. Valida-
tion experiments in arrayed format were carried out with replicates 
and their numbers are indicated in the corresponding figures or their 
legends. Statistical tests were performed with GraphPad Prism v.9.0 

unless described otherwise. Data distribution was assumed to be nor-
mal but this was not formally tested. No statistical methods were used 
to predetermine sample sizes but our sample sizes are similar to those 
reported in previous publications10,18. No data were excluded from the 
analyses. The experiments were not randomized. Data collection and 
analysis were not performed blind to the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within  
the paper, its supplementary information and the online resource 
https://vpcells.cemm.at/. All other data supporting the findings of 
this study are available from the corresponding author on reasonable 
request. Source data are provided with this paper.

Code availability
The code for computational processing is deposited at Zenodo at 
https://doi.org/10.5281/zenodo.10598625 (ref. 68).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Pooled protein tagging. a, A minicircle containing the 
coding sequence of GFP is linearized at a single cut site before getting integrated 
at target sites. A GFP donor plasmid containing a plasmid backbone has two 
cut sites and undesired integrations of only the plasmid backbone or single cut 
plasmids are possible, resulting in lower tagging efficiencies or effecting target 
protein expression. Flow cytometry 2 d after transfection with intron tagging 
plasmids targeting MTHFD1 at intron 26 and using either a GFP minicircle or a 
GFP donor plasmid as a DNA donor. b, Flow cytometry of HEK293T cells that 
were transfected with intron tagging plasmids after being transduced with a 
genome-wide intron targeting sgRNA library, compared to HEK293T cells that 

were transfected with intron tagging plasmids and a plasmid expressing a sgRNA 
targeting intron 26 of MTHFD1, compared to HEK293T cells transfected with 
intron tagging plasmids, without any intron-targeting sgRNA present, compared 
to HEK293T that were not transfected after being transduced with a genome-
wide intron targeting sgRNA library. c, Percentage of non-targeting sgRNAs in the 
set of high-efficiency sgRNAs and in the full library. d, Fluorescence microcopy 
and flow cytometry of HEK293T cells after intron tagging using selected intron 
targeting sgRNAs. Representative example of 1 out of 3 biologically independent 
experiments with similar results. Scale bars: 25 µm.
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Extended Data Fig. 2 | Contribution of sgRNA, tag site and protein features 
on successful tagging. a, Percentage of high-efficiency sgRNAs and all sgRNAs 
in the library targeting different introns. b, Hydrophobicity score at tag sites 
of high-efficiency sgRNAs and all sgRNAs in the library. Boxes represent 25th, 
50th, and 75th percentiles, and whiskers represent 10th and 90th percentiles. 
P value: 1.59 ×10-46, two-sided Student’s t test. n = 87,428 sgRNAs with available 
hydrophobicity scores for target sites, examined over 1 pooled protein tagging 
experiment c, Percentage of high-efficiency sgRNAs and all sgRNAs in the 
library with different hydrophobicity scores. d, Amino acid composition at 
tag sites of high-efficiency sgRNAs and all sgRNAs in the library. e, AlphaFold 
confidence score of high-efficiency sgRNAs and all sgRNAs in the library. Boxes 
represent 25th, 50th, and 75th percentiles, and whiskers represent 10th and 90th 

percentiles. P value: 6.63 ×10-21, two-sided Student’s t test. n = 78,653 sgRNAs 
with available Alphafold confidence scores of target sites, examined over 1 
pooled protein tagging experiment f, Percentage of high-efficiency sgRNAs 
and all sgRNAs in the library with different AlphaFold scores at the target sites. 
g, GuideScan sgRNA cutting efficiency score of high-efficiency sgRNAs and 
all sgRNAs in the library. Boxes represent 25th, 50th, and 75th percentiles, and 
whiskers represent 10th and 90th percentiles. P value: 2.82 ×10-10, two-sided 
Student’s t test. n = 88,700 sgRNAs with available sgRNA cutting efficiency 
scores, examined over 1 pooled protein tagging experiment h, Percentage of 
high-efficiency sgRNAs and all sgRNAs in the library with different cutting 
efficiency scores.
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Extended Data Fig. 3 | Generating a multicolour intron-tagged cell pool.  
a, Flow cytometry after the second round of intron tagging of HEK293T cells that 
were transfected with frame1 intron tagging plasmids after being transduced 
with a frame 1 genome-wide intron targeting sgRNA library, compared to 
HEK293T cells that were transfected with frame 1 intron tagging plasmids and 
a plasmid expressing a sgRNA targeting intron 3 of MTHFD2, compared to 

HEK293T cells transfected with frame 1 intron tagging plasmids, without any 
frame 1 intron-targeting sgRNA present, compared to HEK293T that were not 
transfected after being transduced with a frame 1 genome-wide intron targeting 
sgRNA library. b, Fluorescence microscopy images of HAP1 cells transduced with 
miRFP670-miRFP670nano localizing to the nucleus and mAmetrine localizing to 
the cell membrane. Scale bars: 25 µm.
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Extended Data Fig. 4 | UMAP representation of the 15 most common annotated localizations in vpCells. a, Each panel highlights one annotation class. Each dot 
represents a protein in a particular clone, averaged across all its cells.
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Extended Data Fig. 5 | Training and validation of random forest models for classification of vpCell clones, arrayed format. a, Set of 41 clones, confusion matrices, 
normalized by true labels (rows) for each of the 12 train-validation settings. b, Selection for the largest non-redundant vpCell clones; three train-validation settings and 
the validation accuracy scores.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Colony growth example, proportion of 41 clones in the 
pool. a, A stitched image of a half (50 FOVs) of the imaged part of a representative 
well. Scale bar: 250 µm. b, Detected cells (dots) and predicted clones (colours) 
for the same 50 FOVs. Scale bar: 250 µm. c-e, Colony growth over a span of 
2 days. The same 9 FOVs imaged at 3 time points (3, 4, 5 days after seeding). 
Representative images from a single experiment. Scale bars: 100 µm. f, Model 
predictions for the first time point. g, Clone neighbourhood within a radius of 

100 µm of a given position. Scale bar: 100 µm. When predicting the clone label for 
a later time point (that is, T = 4D in this example) for a cell positioned at the red 
cross, only the clones present within the circle (in colour) would be considered.  
h, Mean proportion of each of the 41 clones in the pool after 3/4/5 days of 
expansion after thawing, seeding in imaging plates, and additional 56 hours of 
expansion. Error bars represent standard deviation, n = number of wells.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Quantification of predictive performance of model for 
post-perturbation detection of clone with BRD4 protein after degradation 
by dBET6 treatment. a, Detected cells in the entire well before treatment with 
dBET6. Cells coloured in red are predicted by the model to be the BRD4-mScarlet 
carrying clone B02. Field of view (FOV) numbers are in bold. Highlighted FOV 8 
is shown in panel (c). Scale bar: 200 µm. b, The same well after treatment with 
dBET6. Cells coloured in red are predicted B02 by the post-perturbation model. 

Highlighted FOVs 8 and 89 are shown in (d) and (e). c, FOV 8 with predicted clone 
labels, before treatment. Colour overlay of GFP (green), mScarlet (red) and BFP 
(blue). Scale bar: 25 µm. d-e, FOVs 8 and 89 with predicted clone labels, after 
treatment. Green arrows point to B02 cells correctly identified even after  
degradation of BRD4. Red arrows denote false positive or false negative 
predictions for B02. f, Counts of correctly and incorrectly classified cells of B02 
clone in the entire well.
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Extended Data Fig. 8 | Hit candidates and confirmed hits from pooled 
screen. a, Visual confirmation status for the 99 hit candidates after discarding 
autofluorescent compounds. b, Heatmap indicating significantly changed 

features for the hit proteins. Only the confirmed hits are shown. c, Heatmap 
indicating significantly changed features for the hit compounds. Only 
compounds from the confirmed hits are shown.
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Extended Data Fig. 9 | Inhibition of nuclear export by XPO1-binding 
compounds. a, Chemical structures of hit compounds highlighted in Fig. 5a 
and known XPO1 inhibitors. b, 7 h time-lapse microscopy of XPO1 and SMAD4 
in response to selected hit compounds tested at different concentrations. The 

same values for Leptomycin B (0.1 µM) and the DMSO controls and are shown 
in multiple plots of the same clones that were tested. c, Western Blot of XPO1 
in HAP1 cells with tagged XPO1 at intron 15 treated for 16 h with the indicated 
compounds; n = 1 experiment.
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Extended Data Fig. 10 | Degradation of XPO1 in clones tagged at different introns. a, XPO1 tagged at different introns. The settings for brightness and contrast  
are different for images of each clone. Scale bars: 25 µm. b, 6 h time-lapse microscopy of different clonal cell lines with XPO1 tagged at different introns in response  
to selected hit compounds.
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