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Transcriptomic imputation of genetic risk
variants uncovers novel whole-blood
biomarkers of Parkinson’s disease
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Gabriel Chew1,2,6, Aaron Shengting Mai 2,3,6, John F. Ouyang1, Yueyue Qi1,2, Yinxia Chao1,2,4,
Qing Wang 5, Enrico Petretto1 & Eng-King Tan 1,2,4

Blood-based gene expression signatures could potentially be used as biomarkers for PD. However, it
is unclearwhether genetically-regulated transcriptomic signatures canprovide novel gene candidates
for use as PD biomarkers. We leveraged on the Genotype-Tissue Expression (GTEx) database to
impute whole-blood transcriptomic expression using summary statistics of three large-scale PD
GWAS. A random forest classifier was used with the consensus whole-blood imputed gene signature
(IGS) to discriminate between cases and controls. Outcomemeasures included Area under the Curve
(AUC) of ReceiverOperatingCharacteristic (ROC)Curve.Wedemonstrated that the IGS (n = 37 genes)
is conserved across PD GWAS studies and brain tissues. IGS discriminated between cases and
controls in an independent whole-blood RNA-sequencing study (1176 PD, 254 prodromal, and 860
healthy controls) with mean AUC and accuracy of 64.8% and 69.4% for PD cohort, and 78.8% and
74% for prodromal cohort.PATL2was the top-performing imputed gene in bothPDandprodromalPD
cohorts, whose classifier performance varied with biological sex (higher performance for males and
females in the PD and prodromal PD, respectively). Single-cell RNA-sequencing studies (scRNA-seq)
of healthy humans and PD patients found PATL2 to be enriched in terminal effector CD8+ and
cytotoxic CD4+ cells, whose proportions are both increased in PD patients. We demonstrated the
utility of GWAS transcriptomic imputation in identifying novel whole-blood transcriptomic signatures
which could be leveraged upon for PD biomarker derivation. We identified PATL2 as a potential
biomarker in both clinical and prodromic PD.

Parkinson’s disease (PD) is a prevalent neurodegenerative disease typified
by tremors, limb rigidity, akinesia/bradykinesia, and postural instability1.
Althoughmuchprogress has beenmade inunderstandingPDpathogenesis,
PD diagnosis is still primarily based on clinical expert opinion2. This not
only delays detection of early PD, but also prevents objective monitoring of
patient’s response to treatment. Therefore, PD biomarkers provide a
quantifiablemeasure of PD likelihood and/or severitywhichmight be useful
for diagnosis, patient stratification, and risk assessment. Primarily, PD
biomarker research has been focused on identification from patients’ blood
and cerebrospinal fluid which offer a minimally invasive method of disease
detection and surveillance3. In particular, proteins such as α-synuclein,

β-amyloid, andneurofilament light chain,which accumulate inpathological
brains, have been earmarked as potential diagnostic biomarkers3.

However, despite the strong role of genetics inmodulating the risk and
phenotypicmanifestation of PD4, the identification of PDbiomarkers based
on genetic risks is lacking. In particular, genome-wide association studies
(GWAS), which have uncovered several potential risk variants in various
pathological contexts ranging fromPDmotor subtypes5 to geneticmodifiers
of PD6, offer a wealth of information for PD biomarker identification.
Nonetheless, it is unclear whether these GWAS-identified variants are
causal or merely an epiphenomenon in relation to PD pathogenesis. To
address this fundamental concern, computational tools have been
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developed to integrate GWAS data with transcriptomic information (e.g.,
expression quantitative trait loci7 (eQTLs)). Specifically, GWAS tran-
scriptomic imputation utilizes population-level genotype expression data-
bases such as the Genotype-Tissue Expression (GTEx) to identify causal
genes from individual GWAS8. For example, S-PrediXcan constructs a
predictive model based on GTEx genotype-expression information before
predicting the association of gene and risk variant from GWAS summary
statistics9. The imputed tissue-specific transcriptomic expression signature
is signed with directionality corresponding to the study design and is
effectively equivalent to a transcriptomic expression profile. This expression
profile has been applied in various in silico analyses ranging from drug
repurposing10 to identification of novel causal genes11.

In this study, we derived awhole-blood based transcriptomic signature
from PD risk variants using transcriptomic imputation via S-PrediXcan9.
The GWAS being studied include i) a large-scale meta-analysis of 17 PD
GWAS consisting of 37,688 cases, 18,618 proxy-cases, and 1.4 million
controls12, ii) male-specific meta-analysis consisting of 13,020 cases, 7,936
proxy-cases, and 89,660 controls13, and iii) female-specific meta-analysis
consisting 7947 cases, 5473 proxy-cases, and 90,662 controls13. Selection of
these GWAS was based on their large sample size (n > 100,000) and con-
sideration of multiple individual GWAS and study populations. We sub-
sequently validated the utility of the imputed signature as PD biomarkers in
silico by quantifying its performance in classifying cases and healthy con-
trols inmale and female-specific PD and prodromal PD cohorts. Single-cell
RNA-sequencing (scRNA-seq) studies ofwhole-blood fromPDandhealthy
individuals were further utilized for uncovering cell type specificities
underlying the imputed signature.

Results
Transcriptomic Imputation of PD GWAS summary statistics
uncovers shared and sex-specific PD risk signatures in
whole blood
Using GTEx (v7), we first applied S-PrediXcan on the largest PD meta-
analysis (Nalls et al.) which aggregated data from both female and male
study subjects. Using whole-blood as the tissue of reference, 21 significant
risk genes were identified (adjusted p value < 0.05, Supplementary Data 1)
including LRRC37A, LRRC37A2, and DCAKD, which are located near the
microtubule-associated protein tau (MAPT) region in which haplotypes
associate with the modulation of risk of PD and phenotypic manifestations
(Fig. 1a)14,15. The risk gene with the strongest signal, NUPL2, was previously
identified from a weighted gene coexpression network analysis (WGCNA)
of GTEx data and was implicated by an analysis combining genetic and
epigenetic level of information16. Novel genes and their associated functions
were also identified. For example, TTC19, which is essential for the for-
mation of complexes in mitochondrial electron transport chain, is cleaved
by the protease PARL which in turn is associated with mitochondrial dys-
function in PD17,18. Unsurprisingly, a majority of the identified genes were
previously implicated in separate transcriptome-wide association studies
(TWAS) (RNF4019 and VKORC119) and GWAS meta-analyses (BST120,
DGK121, IDUA21, and HSD3B722).

Epidemiological studies have also shown that males are 1.5–2 times
more likely to develop PD compared to females23. Therefore, we hypothe-
sized that transcriptomic imputation of sex-specific GWAS would not only
expand the identification of risk genes, but also highlight sex-specific risk
genes which would otherwise be masked by the aggregated analysis of both
sexes. Therefore, we further employed S-PrediXcan in 2 sex-specific GWAS
meta-analyses13 and yielded 25 and 14 significant risk genes (adjusted p
value < 0.05, Supplementary Data 2) for the male and female studies
respectively (Fig. 1b, c).We focused on the significant risk genes and assessed
i) male/female-specific risk genes and ii) risk genes undetected in the
aggregated analysis (Supplementary Fig. 1a, b). We noted four female-
specific risk genes—RNF40, PATL2, MFSD7, and FDFT1—with the latter
three being undetected in the aggregated GWAS. FDFT1 is involved in the
cholesterol biosynthesis pathway24, while MFSD7 belongs to the solute car-
rier family25 whose member MFSD2A was found to be an important

transporter of omega-3 fatty acid26, suggesting the role of lipidmetabolism in
PDpathogenesis. Therewere 15male-specific risk genes with 13 of themnot
previously detected in the aggregated analysis. Importantly, the most upre-
gulated male-specific risk gene, PLEKHM1, is a key regulator of
autophagosome-lysosome fusion27, implicating protein accumulation as a
hallmark of neurodegenerative diseases. Conversely, the most down-
regulatedmale-specific risk geneTEF is associatedwith the human circadian
rhythm and has been associated with increased PD progression28, perhaps
reflecting REM sleep disturbancewhich is common in PD29. Unsurprisingly,
the ten genes significant in both the male and female-specific analyses were
all detected in the aggregated analysis (Supplementary Fig. 1A, B), reflecting
shared common risk variants across different study populations and biolo-
gical sex. Of note, the MAPT region-associated genes LRRC37A and
LRRC37A2were themost significant risk genes in both the female andmale
imputed signatures. Overall, transcriptomic imputation of two additional,
sex-specific GWASmeta-analyses identified novel risk genes with respect to
the aggregated analyses and revealed sex-specific differences in the imputed
signatures.Combining the significant imputed riskgenes fromall 3PDmeta-
analyses allowed derivation of a consensuswhole-blood-based imputed gene
signature (IGS) consisting of 37 genes (Supplementary Table 1).

Conservationofwhole-blood IGSacrossGWASandbrain tissues
Given the differences in demographics, sample sizes, patient variation, clinical
and/or pathological criteria utilized between the GWAS, we sought to ascer-
tain whether the IGS (n= 37 genes) is conserved across the 3 GWAS. Com-
paring the consensus IGSz-scores of themale and femaleGWAS,weobserved
a strong correlation indicating conservation of the IGS in both the male-
specific and female-specific GWAS (Fig. 2a, Spearman correlation, R2 = 0.66,
pvalue = 1.1 × 10−7). This is unsurprising given that bothGWASwerederived
from the same study methodology which had previously found high genetic
regulation (Rg = 0.877) between the female and male GWAS13. Out of the 29
imputed genes present in the female and male GWAS, 28 (96.5%) showed
concordant directionality of effect. Comparing the sex-specific GWAS to the
aggregated GWAS12, the IGS is similarly strongly conserved in both of the
comparisons with male GWAS (Fig. 2b, Spearman correlation, R2 = 0.7,
p value = 3.7 × 10−8) and female GWAS (Fig. 2c, Spearman correlation,
R2 = 0.82, p value < 2.2 × 10−16). Concordance of directionality between the
aggregatedGWASand themale-specific/female specificGWASare 100%and
95.8% (23/24 genes) respectively. The sole discordant gene in all pairwise
comparisons, RSRC2, was found to be downregulated in murine 6-OHDA-
denervated striatum 1–6 h after L-DOPA administration30, potentially
reflecting differences in L-DOPA responses in males and females31.

Various studies have observed dynamic transcriptomic and cell type
proportion changes during PD pathogenesis32–36, which could potentially
form the basis for transcriptomic biomarkers in PD. However, whole-
blood transcriptomic changes might not necessarily reflect the tran-
scriptomic changes in the brain given differences in PD pathogenesis,
tissue composition, peripheral and central inflammatory mechanisms37,
and immune responses to a-synuclein38. Therefore, we investigated the
extent towhich thewhole-blood based IGS is conserved in the brain tissue
imputed signatures. To accomplish this, we implemented S-PrediXcan on
the summary statistics of all three GWAS (Nalls et al., Blauwendraat et al.
(male), and Blauwendraat et al. (female)) using all the central nervous
system (CNS) tissues in the GTEx (v7) database as references (adjusted p
value < 0.05). These references included subcortical tissue (e.g., Amygdala
and Substantia Nigra.), cortical tissue (e.g., Frontal Cortex (BA9) and
Cortex), and cerebellum tissue. For the aggregated GWAS, 6 out of 21
genes (28.6%) were significantly enriched only in whole-blood. These
genes included BST1, IDUA, ARL17B, BCKDK, DCAKD, and KLHL7
(Supplementary Fig. 2A). For the remaining 15 genes, only 2 (DGKQ and
HSD3B7)were discordant in terms of directionality. For themale-specific
GWAS, 10 out of 25 genes (40%) were significantly enriched only in
whole-blood, including IDUA, BCKDK, TEF, RSRC2, MAPK8IP1,
PRSS53, CCAR2, ACBD4, BST1, and XRCC6 (Supplementary Fig. 2B). 3
out of the shared 15 genes (DGKQ, HSD3B7, and PLEKHM1) were
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discordant in terms of directionality. For the female-specific GWAS, 7 out
of 14 genes (50%) were specific to whole-blood, including PRSS53,
ARL17B, BCKDK, IDUA, FDFT1, MFSD7, and PATL2 (Supplementary
Fig. 2C), while three out of the remaining seven genes (DGKQ, HSD3B7,

and PATL2) were discordant in terms of directionality. Importantly, all
three imputed signatures significantly overlapped with CNS-imputed
signatures (hypergeometric test, p value < 10−10) (Supplementary Fig. 3A),
suggesting that the whole-blood imputed signatures are present in CNS
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Fig. 1 | Transcriptomic Imputation of PD GWAS Summary Statistics Uncovers
Shared and Sex-specific PD Risk Signatures in Whole Blood. aManhattan plot of
imputed transcriptomic expression profile using Genotype-Tissue Expression (GTEx)
whole-blood tissue as reference for Blauwendraat et al. (Female) GWAS (7947 cases,
5473 proxy-cases, and 90,662 controls). Significant genes are highlighted in red (upre-
gulated inPD)andblue (downregulated), within-tissue Benjamini-Hochberg adjusted p
value < 0.05 (dotted red line). bManhattan plot of imputed transcriptomic expression
profile using Genotype-Tissue Expression (GTEx) whole-blood tissue as reference for

Blauwendraat et al. (Male)GWAS(13,020 cases, 7936proxy-cases, and89,660 controls).
Significant genes are highlighted in red (upregulated in PD) and blue (downregulated),
within-tissue Benjamini-Hochberg adjusted p value < 0.05 (dotted red line).
cManhattan plot of imputed transcriptomic expression profile using Genotype-Tissue
Expression (GTEx)whole-blood tissue as reference forNalls et al. (Male)GWAS(37,688
cases, 18,618 proxy-cases, and 1.4 million controls). Significant genes are highlighted in
red (upregulated in PD) and blue (downregulated), within-tissue Benjamini-Hochberg
adjusted p value < 0.05 (dotted red line).
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tissues. Overall, we observed a substantial conservation of whole-blood
IGSes in both the three GWAS and CNS tissue.

In silico validation of whole-blood IGS as biomarkers using a
random forest classifier
Given that the whole-blood IGS represents a consensus of genetically
regulated transcriptomic signaturebasedonPDrisk variant information,we
sought to quantify its utility as PD blood biomarkers. To achieve this, we
leveraged on a recently published whole-blood, bulk RNA-sequencing
meta-analysis consisting of 1716 PD (1119 male and 597 female), 254
prodromal (198 male and 56 female), and 869 (550 male and 319 female)
healthy controls. Individuals classified with prodromal PD were char-
acterized by the presence of REM sleep behavior disorder, hyposmia,
positive dopamine transporter (DAT) SPECT scans, and evidence of genetic

risk and positive family history39. Using a random forest classifier (See
Methods), we evaluated the performance of the GWAS-specific and con-
sensus whole-blood IGS by quantifying the accuracy, area under the curve
for the receiver operating curve (AUC-ROC), and area under the curve for
the precision-recall curve (AUC-PR) (SupplementaryTable 2). As a positive
control, we also evaluated the performance of an equivalent set of differ-
entially expressed genes (DEGs) in PD and prodromal PD (Fig. 3a, b).
Firstly, the whole-blood IGSes discriminated cases from controls better for
prodromal PD than for PDwith average AUC-ROC of 79.6% and 73.7% in
males and females respectively in prodromal PD compared to corre-
spondingAUC-ROCof 62.8%and69.4% inPD. Importantly, the consensus
IGS did not significantly overlap with DEGs in both PD (hypergeometric
test, p value = 0.997) and prodromal PD (hypergeometric test, p value =
0.339) cohorts. Therefore, the better performance in prodromal PD is not
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Fig. 2 | Conservation of whole-blood IGS across GWAS and brain tissues. Scatter
plots of z-scores for consensus imputed gene signature (IGS) (n = 37 genes) for (a)
Blauwendraat et al. (Female) (y-axis) and Nalls et al. (x-axis), Spearman correlation,
R2 = 0.82, p < 2.2 × 10−16. b Blauwendraat et al. (Male) (y-axis) and Nalls et al. (x-
axis), Spearman correlation, R2 = 0.7, p = 3.7 × 10−8. c Blauwendraat et al. (Female)

(y-axis) and Blauwendraat et al. (Male) (axis), Spearman correlation, R2 = 0.66,
p < 1.1 × 10−7. Genes are annotated in color to indicate gene set membership -
Blauwendraat et al. (Female) (red), Blauwendraat et al. (Male) (blue), Nalls et al.
(green), present in both gene signatures in respective pairwise comparison (orange).
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related to a greater proportion of the consensus IGS (n = 35) being differ-
entially expressed in prodromal PD (57.1%, 20/35) than in PD (20%, 7/35).
This, coupledwith the observation that log fold changes frombulkRNA-seq
dataset and imputed z-scores from IGS did not show significant association
in both PD (Supplementary Fig. 4A, Spearman correlation, R2 = 0.017, p
value = 0.46) andprodromalPDcohorts (Supplementary Fig. 4B, Spearman
correlation, R2 = 0.092, p value = 0.082), suggests that the consensus IGS is
not conserved in the bulk RNA-seq datasets. Altogether, these observations
could be due to the derivation of the imputed gene from reference tran-
scriptomic dataset (GTEx) and SNP-level information which is in turn
based on large samples of healthy populations, while the DEG is derived
from actual quantification of mRNA levels in pathological and healthy
whole-blood samples. Secondly, for the PD cohort, the IGSes (female-spe-
cific,male-specific, aggregated (Nalls et al), and consensus) have differential
performance in females and males with higher performance in the former
compared to the latter. This observation was reversed in the prodromal
cohort albeit to a smaller extent. Interestingly, the DEGs (PD and Pro-
dromal) did not exhibit this differential performance in males and females.
Thirdly, aside from the female PD cohort, the sex-specific whole-blood
IGSes (male, n = 25 genes; female, n = 14 genes) performed better within
cohorts of their corresponding biological sex, reflecting the sex-specific
differences inPD/prodromal PDpathogenesis. Supporting this observation,
the aggregated IGS (Nalls et al., n = 21 genes) performed marginally worse
than the sex-specific IGSes except in the female PD cohort. Fourthly, the
consensus IGS (n = 37 genes) outperformed all other IGSes except in the
female prodromal PD cohort. The consensus IGS also performed similarly
to an equivalent set of DEGs with higher accuracy and AUC for the female
PDandmale Prodromal cohorts. Overall, we demonstrated that risk variant
information (GWAS summary statistics) can be leveraged upon to infer
blood-based biomarkers through transcriptomic imputation, with a priori
IGS performing equivalently to a posteriori DEGs. In addition, we also

validated the specificity of the female-specific andmale-specific IGSes in an
independent whole-blood PD/prodromal PD transcriptomic dataset.

PATL2 is the top classifier imputed gene in both PD and Pro-
dromal PD Cohorts
In order to ascertain which gene in the consensus IGS has the highest
performance as a solitary biomarker, we employed the same random forest
classifier protocol for each imputed gene in males and females for both PD
and prodromal cohorts (Fig. 4a, b). Similar to the observations made in the
previous analysis, AUC-ROC were higher in prodromal cohorts relative to
PD cohorts with 21.4% (15/70—number of genes with lower tail of AUC-
ROC greater than 50%/total number of genes; 12 unique genes) and 7% (5/
70, 5 unique genes) of the IGS outperforming random assignment (defined
as lower tail of AUC(ROC) higher than 50%) in the prodromal and PD
cohorts respectively (Fig. 4c, see Methods). Importantly, there is no corre-
spondence between AUC-ROC and whether the gene is differentially
expressed (Fig. 4a, b). Comparing these 2 sets of imputed genes, ARL17B
andPATL2were consistently topperformers in bothPDandprodromalPD
cohorts (Fig. 4c). ARL17B, which was identified in the imputation of all 3
GWAS (Supplementary Fig. 1A), is involved in protein trafficking whose
level of methylation was found to correlate with SNPs associated with the
Parkinson-plus syndrome, progressive supranuclear palsy (PSP)40. Impor-
tantly, PATL2 has the highest AUC-ROC in both PD and prodromal
cohorts. In detail, PATL2 has amean AUC-ROC of 52 and 56% for females
and males in the PD cohort, and 69 and 59% in females and males in the
prodromal cohort. Therefore, the classifier performance of PATL2 is
dependent on the biological sex with higher performance for males and
females in the PD and prodromal PD cohorts respectively, suggesting dif-
ferential effect of PATL2 in both sexes for PD and prodromal PD patho-
genesis. Supporting this observation, PATL2 was also only identified in the
imputation of female-specific PD GWAS (Fig. 1c). To further disentangle
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Fig. 3 | In Silico validation of Whole-Blood IGS as biomarkers using a random
forest classifier. Area-under-the-Curve (AUC) of receiver operating curve (ROC)
for six gene sets including i) top differentially expressed genes (DEGs) for PD vs
Control (n = 35), ii) top DEGs for prodromal vs Control (n = 35), iii) consensus
imputed gene signature (IGS) (n = 35), iv) Blauwendraat et al. (male) IGS (n = 24), v)
Blauwendraat et al. (female) IGS (n = 12), vi) Nalls et al. (n = 20) for (a) PD cohorts

in both males (550/550 cases/controls) and females (319/319 cases/controls), (b)
prodromal cohorts in bothmales (198/198 cases/controls) and females (56/56 cases/
controls). 95% confidence intervals were derived from 2000 stratified bootstrap
replicates. Error bars reflect the 95% confidence intervals of the corresponding
estimate.
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Fig. 4 | PATL2 is the top classifier imputed gene in both PD and Prodromal PD
cohorts. Single-gene area-under-the-curve (AUC) of receiver operating curve
(ROC) and status as differential expressed gene (with corresponding log fold
changes) for consensus IGS (n = 35) for (a) PD cohorts in bothmales (550/550 cases/
controls) and females (319/319 cases/controls), (b) prodromal cohorts in bothmales

(198/198 cases/controls) and females (56/56 cases/controls) 95% confidence inter-
vals were derived from 2000 stratified bootstrap replicates. c Venn diagram of sig-
nificant imputed risk genes (defined as single-gene AUC(ROC) > 50% in eithermale
or female) in PD and prodromal cohorts. Error bars reflect the 95% confidence
intervals of the corresponding estimate.
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the cell type specificities of the consensus IGS, we leveraged on a scRNA-seq
study of 7551 blood cells isolated from healthy human subjects (Supple-
mentary Fig. 5A)41. Importantly, PATL2 is significantly enriched in
T-lymphocytes and B-Lymphocytes (Supplementary Fig. 5A). Further
analysis of a T-lymphocyte-specific scRNA-seq study of blood isolated from
eight PD patients and six healthy controls revealed that PATL2 is sig-
nificantly enriched in terminal effector CD8+ and cytotoxic CD4+T-
lymphocytes (Supplementary Fig. 5B) whose populations were both found
to be significantly expanded in PD42. These findings demonstrate that
imputed risk genes could be potential single-gene biomarkers with PATL2
observed as the top performing classifier gene with specific enrichment in
pathological T-lymphocyte subsets in PD.

Discussion
In this study, we obtained novel PD transcriptomic signatures by employing
transcriptomic imputation of three PD GWAS summary statistics (one
large-scale, aggregated meta-analysis, one female-specific, and one male-
specific). In doing so, we disentangled sex-specific risk genes and derived a
consensus imputed gene signature (IGS) in whole blood. Although the
integration of GWAS information with gene expression data has already
been employed in the identification of causal PD risk genes, these studies
predominantly focused on the CNS16,19,43. Notably, Yang et al. identified 44
and 29 PD risk genes in dorsolateral prefrontal cortex (DLPFC) and
monocytes via a TWAS by leveraging on DLPFC bulk transcriptomic
dataset from the CommonMind Consortium (CMC)44 and 3 independent
bulk transcriptomic datasets of peripheral-blood monocytes43. In another
TWAS, Yao et al. constructed models based on CNS transcriptomic
expression, epigenetic annotations, and 4 PD GWAS summary statistics
totaling 33,674 cases and 449,056 controls19. Similar to our study, Yao et al.
observed LRRC37A2 as a key gene driving GWAS signal at its loci. Lastly,
Kia et al. integrated PDGWAS with both expression data and methylation
data to identify PD disease genes including NUPL2, which demonstrated
the strongest signal in our imputed signature of the aggregated GWAS
(Nalls et al.)16. Comparing our consensus whole-blood IGS (n = 37) with
signatures generated from these independent transcriptomic association
studies, only 13 out of 37 genes were shared, possibly reflecting the differ-
ences in genetically regulated gene expression between CNS tissue and
whole blood. These differences in causal genes identified could also stem
from the fact that both Yao et al. and Kia et al. utilized additional layers of
-omic information (i.e., epigenetics) in their integration workflow as well as
different PD GWAS interrogated, methodologies, and reference datasets
utilized, reflecting the genetic heterogeneity across study populations/
demographics in PD.

Regardless, our study focused on whole-blood instead of the CNS
because of the greater accessibility of whole-blood as disease biomarkers45,46.
Significantly, our study also demonstrates a proof-of-concept approach in
validating the utility of genetically regulated gene expression as PD bio-
markers. This validation was performed in the largest whole-blood RNA-
seq dataset of PD/prodromal PD to our knowledge47. In particular, we
showed that the imputed IGSes have differential discriminating perfor-
mance for i) PD vs prodromal cohorts and ii) male vs female cohorts, while
performing equivalently to a posteriori set of DEGs (PD/prodromal vs
controls) derived from the same whole-blood RNA-seq dataset. The higher
classifier performance in prodromal cohorts relative to PD cohorts was
unexpected given that the three GWASes were based on PD as the clinical
trait of study12,13. A possible explanation could lie in the differences in
neutrophil/lymphocyte ratio between PD and prodromal patients. Craig
et al. recently showed that, while the whole-blood neutrophil/lymphocyte
ratio is increased in both PD and prodromal patients relative to healthy
subjects, the rate of change of neutrophil marker expression increases in
prodromal patients but remains unchanged in PD47. With respect to the
IGSes’ differential performance in male and female cohorts, we observed
higher classifier performance for females in the PD cohort and for males in
the prodromal cohort, which might reflect the role of biological sex in PD
pathogenesis. Expectedly, theDEGs (whichhad accounted for biological sex

as a covariate) didnot show this differential performancebetweenmales and
females, supporting the IGSes’ sex-specific performance. Lastly, other fac-
tors such as differences in population size (PD cohort » prodromal cohort)
and demographics could also play a role in explaining these observations.

Extending the utility of IGS as potential PD whole-blood biomarkers,
we uncovered PATL2 as the top risk gene in terms of classifier performance
and found its enrichment in pathological T lymphocyte subsets (cytotoxic
CD4+ and terminal effector CD8+ subsets) which are both expanded in PD
pathogenesis. Specifically, Wang et al. found that terminal effector CD8+

T-lymphocytes originated from central memory CD8+ T-lymphocytes and
are enriched for cell adhesion, while cytotoxic CD4+ T-lymphocytes
represent an infiltrating subset in PD pathogenesis42. Regarding the role of
T-lymphocytes in PD pathogenesis, their infiltration has been speculated to
initiate cytotoxic attack and neuronal death, preceding the process of
a-synuclein aggregation48. Other studies, however, have suggested that
a-synuclein acts as an antigenic epitome that drives CD8+ and CD4+T-
lymphocyte responses, thereby causing dopaminergic neurodegeneration49.
Currently, there is no consensus to the sequence of events, but
T-lymphocyte infiltration appears to at least occur concurrently with
a-synuclein accumulation and neuronal death in PD48,49. However, despite
being enriched in the expanded T-lymphocyte population as seen in PD,
PATL2 expression and its enrichment in infiltrating T-lymphocytes remain
unaffected by treatment status. Overall, our results suggest PATL2 as a
potential peripheral whole-blood biomarker and contributor to PD
pathogenesis by potentially regulating T-lymphocyte infiltration.

Leveraging on the recent Human Protein Atlas, we observed specific
PATL2 enrichment in immune cells of lymphoid lineage includingNatural-
Killer (NK) cells, T-lymphocytes, B-lymphocytes, dendritic cells, and
plasma cells (https://www.proteinatlas.org/)50. This might be important
given that various independent studies, including Wang et al., have found
significant changes in proportions of different immune cellular sub-
populations including NK cells51, gamma delta T-lymphocytes51, and folli-
cular T-lymphocytes52 in PD pathogenesis. This raises the intriguing role of
peripheral inflammation as a key player in PD pathogenesis. Indeed, a key
mechanism of the interplay between peripheral and central pathological
processes lies in how peripheral inflammation polarizes microglia into a
pro-inflammatory phenotype in neurodegenerative diseases such as PD53,
Lewy Body Dementia54, and Alzheimer’s Disease55. With respect to T-
lymphocytes, CD4+ T-lymphocytes have been shown to modulate neu-
roinflammation in a mouse model of PD56, while a-synuclein can also
induce T-lymphocyte response in PD57.

Our study found the classifier performance of PATL2 to be notably
better in prodromal PD as compared with PD. Additionally, PATL2 per-
formed better for females in the prodromal cohort, whereas the converse is
true for the PD cohort. This finding may point towards a sex-specific
involvement of the PATL2 gene in PD pathogenesis, such as in PD patients
with versus without a prodromal phase. The datasets we used also found
PATL2 expression to be downregulated only in females with PD (Supple-
mentary Fig. 2), which stands in contrast with prior literature that
demonstrated an age-related upregulation of PATL2 expression in human
lymphocytes58. Thus, the downregulation of PATL2may be involved in the
underlying pathogenetic process of both PD and prodromal PD, especially
in female patients. Further supporting this point is the finding of PATL2’s
specific role in oocyte maturation with PATL2 deficiency contributing to
oocyte meiotic deficiency (OMD)59,60. Given that prodromal PD is hall-
marked by nonmotor symptoms, and that many of the nonmotor symp-
toms (e.g., olfactory dysfunction, constipation, and depression) in the
prodromal PD diagnostic criteria were more prevalent in women than
men61,62, we additionally hypothesize that PATL2 is also involved in the
mechanisms underlying the development of nonmotor symptoms. The
difference in the classifier performance of PATL2 may therefore be a result
of the different demographics and clinical presentations of PD versus
prodromal PD.

PATL2, however, remains a poorly studied gene especially within the
neurodegenerative diseases. Various meta-analyses on human
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transcriptome studying aging, Alzheimer’s disease, as well as other neuro-
degenerative conditions (e.g., Huntington’s disease, progressive supra-
nuclear palsy, amyotrophic lateral sclerosis), have not found a significant
association between PATL2 expression levels and disease risk63–65. The role
of PATL2 in immune cells remains unclear, other than being upregulated in
lymphocytes with increasing age. Further studies are needed to determine if
PATL2 has any involvement with other neurodegenerative conditions,
especially those that involve synucleinopathies. Moreover, the role of
PATL2 in immune cells, especially T-lymphocytes, needs to be elucidated.
The findings of our study suggest the potential role of neuroinflammation
mediated by peripheral T-lymphocytes, but this should be confirmed by
additional transcriptomic and even multi-omics studies, as well as cell
cultures and animal models.

In summary, these observations point to peripheral whole-blood T-
lymphocytes as key actors of PDpathogenesis whose activity, markers, and/
or proportions could be utilized as PD biomarkers. Indeed, a previous
transcriptomicmeta-analysis of PD andmajor depressive disorder (MDD),
which is often found in patients with prodromal PD and 3–6 years before
development of PD motor symptoms66, also highlighted PATL2 as a
potential whole blood biomarker67. However, it should be noted that MDD
is not uncommon in the general population and its symptoms alone may
not be specific enough to suspect prodromal PD. Unlike previous studies,
our study shows that common risk variants (contained within GWAS
summary statistics) can be used to predict transcriptomic expression pro-
files for the derivation of whole blood biomarkers of PD. This approach is
orthogonal to transcriptomic derivation of blood-based biomarkers34,67. In
addition, the imputed signatures reflect aggregated genetic contributions
from common risk variants in PD from three large-scale GWAS meta-
analyses, and we further validated the signatures in independent tran-
scriptomic datasets across different study populations and disease stages
(prodromal and PD).

Nonetheless, there are important limitations to our approach. First, we
observed that the imputed signature is not conserved in the validation
transcriptomic dataset, which could be attributed to the fact that the tran-
scriptomic imputation step relied on healthy tissue as reference tran-
scriptome dataset (i.e., GTEx). Therefore, given that this reference dataset is
used to calculate gene variance and covariance9, imputed z-scoresmight not
accurately reflect the direction of effect in disease. Second, the GWAS
summary statistics utilized were based mostly on western populations,
which limits its applicability in eastern populations given their different
genetic risk profiles68. Third, imputed signatures reflect amixture of cellular
types, which might limit direct comparison of the imputed signature with
transcriptomicprofiles derived frombulk-tissueRNA-seq if theproportions
of cell types are not comparable. This is especially so with studies showing
that bulk transcriptomic differences are largely driven by cell type propor-
tion changes69. Fourth, although the IGSes performedwell in discriminating
cases and controls, the consensus signature (n = 37 genes) did not sig-
nificantly outperform a posteriori DEGs. Fifth, our approach for utilizing
imputed whole-blood signatures as biomarkers might not be applicable in
cases where peripheral blood either does not harbor measurable patholo-
gical processes or does not reflect tissue pathogenesis in a clinical relevant
manner70. Sixth, there are limitations inherent to the GWAS methodology,
such as missing heritability (though no current methods can determine all
genetic determinants of complex traits). Seventh, our findings are derived
from large GWAS involving only subjects of European ancestry and may
hence have limited generalizability to other populations, such as Asian and
African populations. Lastly, this paper did not compare the classifier per-
formance of PATL2 in PD versus other neurodegenerative conditions,
whichwould provide useful insight into the specificity of PATL2 as a genetic
biomarker. This would be an important area for future investigation.

In conclusion, our study demonstrates the derivation of PD whole-
blood biomarkers by utilizing genetic risk variant information. We identi-
fied PATL2 as a novel genetically regulated risk gene enriched in patholo-
gical T-lymphocyte subsets that could be a transcriptomic PD biomarker.
Future work could focus on GWAS transcriptomic imputation based on

diseased tissue instead of healthy tissues, incorporation of scRNA-seq in
deconvoluting bulk signatures, and consideration of more heterogeneous
PD GWASes including Asian and African populations.

Methods
Transcriptome imputation of genome-wide association
studies (GWAS)
Summary statistics were downloaded for aggregated meta-analysis (Nalls
et al.), female-specificmeta-analysis (Blauwendraat et al.), andmale-specific
meta-analysis (Blauwendraat et al.) from https://pdgenetics.org/resources
which is managed by the International Parkinson’s Disease Genomics
Consortium (IPDGC). For all GWAS, ANNOVAR was employed to
annotate the variants with the appropriate SNP identifier using reference
dataset of hg19 build anddbSNPversion 147. Transcriptomic imputation of
the summary statistics was performed using S-PrediXcan11(https://github.
com/hakyimlab/MetaXcan). Briefly, S-PrediXcan utilizes GWAS summary
statistics to infer gene-level statistics by utilizing variances and covariances
calculated from the reference dataset (in our case, the 1000G reference).
S-PrediXcan leverages on pre-calculated weights derived from training
dataset. Specifically, we utilized pre-calculated weights and variances with
respect to the GTEx v7 ExpressionModel9,71,72. We applied S-PrediXcan for
all 48 tissues of reference using covariances and transcriptome prediction
model databases from the GTEx v7 pre-calculated references based on
European populations (https://predictdb.org/post/2017/11/29/gtex-v7-
expression-models/). Next, in order to account for multiple testing, we
performedwithin-tissuep-value adjustment using theBenjamini-Hochberg
methodwhichwas similarly employed in a transcriptomic imputation study
of post-traumatic stress disorder11. biomaRt (v2.46.3) (accessed on 4th Jan
2022) was used to identify protein-coding genes and non-protein-coding
genes were filtered out for downstream analysis. For plotting of Manhattan
plots of whole-blood imputed transcriptome, code was adapted from
(https://danielroelfs.com/blog/how-i-create-manhattan-plots-using-
ggplot/). Significant genes were defined using threshold of adjusted p value
lesser than 0.05. Only autosomes were considered. For visualization pur-
poses, non-significant data were downsampled.

Preprocessing bulk transcriptomic dataset for in silico validation
In silico validation was performed on a bulk transcriptomic RNA-seq
dataset consisting of 1716 PD (1119 male and 597 female), 254 pro-
dromal (198 male and 56 female), and 869 (550 male and 319 female)
healthy controls from the Parkinson’s Progressive Marker Initiative
(PPMI) cohort via LONI IDA (https://ida.loni.usc.edu/)47. Prodromal
PD cohort is defined as participants that have rapid eye movement
(REM) behavior or hyposmia and a DaTscan that shows evidence of
dopaminergic deficits47. Each of the 4 bulk transcriptomic dataset (PD
vs Control (Male), PD vs Control (Female), Prodromal vs Control
(Male), and Prodromal vs Control (Female)) was processed as follows,
1) filtering of lowly expressed genes i.e genes without at least a count of
25 in at least 25% of samples with the exception for “PD vs Control
(Female)” in which the threshold was set at 20%. 2) Normalization was
performed using variance stabilization transformation via DESeq2
(v1.30.1) after considering “Plate” as a potential confounding factor.
Prodromal and PD differentially expressed genes (DEGs) were
obtained from respective gene lists47.

In silico validation of whole-blood consensus imputed gene
signature (IGS)
For each run of the in silico validation pipeline, the number of samples was
downsampled in order to balance the number of cases and controls. This
was performed randomly using ovun.sample() via ROSE(v0.0.4) with seed
set at 42. Random forest classifier was employed using randomForest()
(v4.6.14) with the number of trees set at 500 and “mtry” (i.e number of
variables randomly considered at each split) set as square-root of the
number of samples. Performance metrics (“Accuracy”, “AUC (Precision-
Recall)”, “AUC (ROC)”) were calculated using performance() via
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ROCR(v1.0.11). Confidence interval for “AUC(ROC)”was quantified using
roc() via pROC (v1.18.0) which computes the 95% confidence interval with
2000 stratified bootstrap replicates. For in silico validation of individual
imputed genes, we utilized the same pipeline illustrated above with the
exception that “mtry” was set at 1.

Single-cell RNA-sequencing (scRNA-seq) analysis
For scRNA-seq analysis of healthy human whole-blood, we downloaded
scRNA-seq data of 7643 cells which comprised of 32 different cell types and
derived from 21 healthy human samples from Gene Expression Omnibus
(GEO) (GSE149938)41. Seurat (v4.1.0)was used to process the data using the
log normalizationmethod with scale factor of 10,000. Highly variable genes
were derived using FindVariableFeatures() which was set at 5000.
RunPCA() and RunUMAP() were employed using 50 dimensions. Cell
types were annotated based on the author’s classification including hema-
topoietic stem cells (HSPCs), B lymphocytes, Natural Killer (NK) cells, T
lymphocytes, monocytes, and neutrophils. Cell type markers were calcu-
latedusingFindAllMarkers()with bothminimumlog fold change threshold
and minimum percentage of cells set at 0.

For scRNA-seq analysis of human T-lymphocytes in healthy indivi-
duals and PD patients, we downloaded data from https://zenodo.org/
record/3993994#.YgNwVe5Bw1I, which sequenced T-cell enriched blood
samples from 8 PD patients and 13 patients42. For our analysis, we only
considered sampleswith available annotation for biological sexnamely 8PD
patients (P1, P2, P3, P4, P5, P6, P7, and P8) and 6 healthy controls (N1, N2,
N3, N4, N5 and N6). Seurat was used to process the data with the same
pipeline employed as highlighted above. Cell type markers were derived
using FindAllMarkers() with bothminimum log fold change threshold and
minimum percentage of cells set at 0.25.

Power calculation
Our power calculation employed the unbalanced one-way analysis of
variance (ANOVA) method, which is also the method employed by the
GTEx consortium73. We adopted the same parameters as the GTEx
project since we are similarly examining tissue eQTLs. The expression
data was modeled as a lognormal distribution with a log standard
deviation of 0.13 within each genotype (i.e., wildtype homozygotes,
heterozygotes, mutation homozygotes). The between-genotype differ-
ence is set at 0.13, which is a log expression change that is equivalent to
the standard deviation within each genotype. We adopted the power
calculation formula as suggested by O’Brien and Muller in 199374, which
involved the unbalanced one-way ANOVA method to test if a SNP is
associated with a gene expression level across the three possible geno-
types. To perform the power analysis, we utilized the powerEQTL
package in R developed by ref. 75 As such, to achieve a power of 80%, a
minimum of 2189 participants is needed.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data analyzed are found in already published studies, and no new ori-
ginal data is generated or analyzed in this study. The datasets used for
transcriptomic imputation (namely the meta-analysis by Nalls et al. as well
as the male- and female-specific datasets by Blauwendraat et al.) can be
accessed at and downloaded directly from the following resource: https://
pdgenetics.org/resources.

Code availability
The code and functions used to perform all statistical analyses in this paper
will be available upon request. Additionally, the links leading to the doc-
umentation for the key functions employed are provided in the Methods
section.
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