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Ultrasensitive textile strain sensors
redefine wearable silent speech
interfaces with high machine learning
efficiency

Check for updates

Chenyu Tang 1,6, Muzi Xu1,6, Wentian Yi 1,6, Zibo Zhang2, Edoardo Occhipinti 3, Chaoqun Dong 1,
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This work introduces a silent speech interface (SSI), proposing a few-layer graphene (FLG) strain
sensing mechanism based on thorough cracks and AI-based self-adaptation capabilities that
overcome the limitations of state-of-the-art technologies by simultaneously achieving high accuracy,
high computational efficiency, and fast decoding speed while maintaining excellent user comfort. We
demonstrate its application in a biocompatible textile-integrated ultrasensitive strain sensor
embedded into a smart choker, which conforms to the user’s throat. Thanks to the structure of ordered
through cracks in the graphene-coated textile, the proposed strain gauge achieves a gauge factor of
317 with <5% strain, corresponding to a 420% improvement over existing textile strain sensors
fabricated by printing and coating technologies reported to date. Its high sensitivity allows it to capture
subtle throat movements, simplifying signal processing and enabling the use of a computationally
efficient neural network. The resulting neural network, based on a one-dimensional convolutional
model, reduces computational load by 90% while maintaining a remarkable 95.25% accuracy in
speech decoding. The synergy in sensor design and neural network optimization offers a promising
solution for practical, wearable SSI systems, paving the way for seamless, natural silent
communication in diverse settings.

Silent speech interfaces (SSI) have emerged as a cutting-edge solution for
scenarios where verbal communication is hindered. These include envir-
onments with excessive noise that can significantly interfere with spoken
language or cases involving physiological conditions such as stroke, cerebral
palsy, Parkinson’s disease, or recovery from laryngeal surgeries1,2. By ana-
lyzing nonvocal human signals, SSI offers a method for decoding speech in
silent conditions. Among the various challenges in SSI research, developing
an effectivewearable system for real-world applications is a key objective for
researchers. To achieve this goal, it is crucial to ensure that the device is
comfortable and durable enough for practical use to encourage user

acceptance. Additionally, it is vital that the system operates with high pre-
cision and efficiency in distinguishing the speech of different users across a
variety of scenarios.

In recent years, researchers have been actively working to develop
effective SSI systems suitable for real-world wearable applications. This
involves the innovation of devices for capturing human silent speech signals
and the design of improved algorithmic models. Human speech-related
neural impulses originate in the central nervous system, travel through the
peripheral nervous system to the vocal cords, and are then articulated with
the help of facialmovements, resulting in various speech sounds3. In pursuit

1Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK. 2Department of Electronic and Electrical Engineering,
University College London, London, UK. 3UKRI Centre for Doctoral Training in AI for Healthcare, Department of Computing, Imperial College London, London, UK.
4School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT), Gumi, South Korea. 5School of Instrumentation Science and
Optoelectronic Engineering, Beihang University, Beijing, China. 6These authors contributed equally: Chenyu Tang, Muzi Xu, Wentian Yi.

e-mail: shuo_gao@buaa.edu.cn; lgo23@cam.ac.uk

npj Flexible Electronics |            (2024) 8:27 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41528-024-00315-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41528-024-00315-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41528-024-00315-1&domain=pdf
http://orcid.org/0000-0002-6368-5639
http://orcid.org/0000-0002-6368-5639
http://orcid.org/0000-0002-6368-5639
http://orcid.org/0000-0002-6368-5639
http://orcid.org/0000-0002-6368-5639
http://orcid.org/0000-0002-4044-3063
http://orcid.org/0000-0002-4044-3063
http://orcid.org/0000-0002-4044-3063
http://orcid.org/0000-0002-4044-3063
http://orcid.org/0000-0002-4044-3063
http://orcid.org/0000-0003-4691-9007
http://orcid.org/0000-0003-4691-9007
http://orcid.org/0000-0003-4691-9007
http://orcid.org/0000-0003-4691-9007
http://orcid.org/0000-0003-4691-9007
http://orcid.org/0000-0001-6433-3478
http://orcid.org/0000-0001-6433-3478
http://orcid.org/0000-0001-6433-3478
http://orcid.org/0000-0001-6433-3478
http://orcid.org/0000-0001-6433-3478
http://orcid.org/0000-0003-3096-4700
http://orcid.org/0000-0003-3096-4700
http://orcid.org/0000-0003-3096-4700
http://orcid.org/0000-0003-3096-4700
http://orcid.org/0000-0003-3096-4700
http://orcid.org/0000-0002-9067-2534
http://orcid.org/0000-0002-9067-2534
http://orcid.org/0000-0002-9067-2534
http://orcid.org/0000-0002-9067-2534
http://orcid.org/0000-0002-9067-2534
mailto:shuo_gao@buaa.edu.cn
mailto:lgo23@cam.ac.uk


of decoding this complex process, scientists have developed a range of SSI
systems. For instance, techniques such as electroencephalography (EEG)4–7

and electrocorticography (ECoG)8–10 have been employed to decode speech
from brain activity. Additionally, computer vision-based methods have
been developed to decode silent speech from lip movements11–13. However,
these methods, while innovative, often fall short in practicality for imple-
mentation in wearable devices due to their invasive nature and the com-
plexity of their setups.

In the quest to create amore user-friendly SSI, several efforts have been
made to analyze mechanical movements in the throat and face, employing
sensors such as electromyography (EMG)14–17 and strain sensors18–22. These
approaches show promise for integration into wearable devices, being
noninvasive and adaptable to prolonged use. Compared to EMG sensors,
strain sensors are preferred in SSI applications due to their higher signal
fidelity and signal-to-noise ratio (SNR). Among them, various textile
substrate-based strain sensors, including conductive elastomers, piezo-
electric materials, and magnetostrictive materials, have been widely
researched in recent years23–37. Although this shift toward physical signal
detection has theoretically enhanced wearability, it still faces its own set of
challenges, notably the delicate balance between user comfort, signal accu-
racy, and system efficiency (Supplementary Fig. 1). User comfort require-
ments often imply the use of fewer sensory channels to limit the impact on
thehumanbody, eventually leading to less detaileddata capture and reduced
accuracy in speech decoding. Tomitigate this, an increase in the complexity
of the data processing models is needed, such as increasing the system’s
sampling rate to capture more speech nuances or converting signals into
two-dimensional images to enhance data richness, but this solution raises
issues of computational load, affecting the overall system efficiency38,39. This
interdependence between the three aspects—comfort, accuracy, and effi-
ciency—is a known tradeoff limiting the development of practical, wearable
SSI systems. Bridging this gap requires innovative solutions that ensure user
comfort without compromising the accuracy and efficiency of the system, a
challenge that lies at the heart of current SSI research for effective wearable
device applications.

In this work, we address the challenges of wearable SSI with a unique
sensor design approach that prioritizes accuracy, user comfort, and com-
putational efficiency. We have developed an ultrasensitive textile-based
strain sensor and speech decoding system seamlessly integrated into a
wearable choker. This sensor is characterized by the ability to generate high
information density signals and complemented by a matched light end-to-
endneural network, balancing user comfort with high precision and system
efficiency (Fig. 1a). The distinctive sensing mechanism is based upon its
unique structure, featuring ordered thorough cracks on graphene-coated
textiles, which significantly enhances sensitivity (Fig. 1b). In silent speech
scenarios, particularly within small strain ranges, our sensor achieves a
gauge factor improvement of 420% over the best results reported in pre-
vious works within the same technology area (Fig. 1c). This increase in
sensitivity enables the capture of information-rich speech signals, allowing
for their efficient processing through our specially designedneural network,
with a record accuracy of 95.25% while reducing the network’s computa-
tional load by 90%. This approach negates the need for high-dimensional,
complex model augmentations often associated with traditional SSI algo-
rithms. Our one-dimensional convolutional neural network custom
architecture processes this dense information efficiently, reducing the
computational loadwhilemaintaininghigh accuracy. The synergy of sensor
design and neural network optimization allows the bridging of the gap
between user convenience and technical effectiveness and sets a new
standard in wearable silent speech communication technologies, forging
new avenues with groundbreaking potential for seamless, natural com-
munication across diverse settings. Furthermore, owing to the adopted
transfer-learning approach, the proposed system demonstrates a remark-
able capability to efficiently generalize the training set from a specific group
of users and words to unfamiliar users with diverse genders, geographical,
and ethnic backgrounds, aswell as tonew and potentially ambiguouswords
encountered in practical applications.

Results
Textile strain sensor based on ordered cracks
To capture abundant information for eliminating the need for laborious
multidimensional analyses, high sensitivity within small sensing strain
ranges (≤5%)40,41 is an indispensable characteristic of flexible wearable
sensors developed for detecting the throatmicromovements associatedwith
speech. It is known that speaking different words is associatedwith different
degrees of stretching or shrinking strains by the throat muscle42,43. Different
features of word decoding are hidden in the signals captured by strain
sensors intimately connected to the throatmuscle,which canbe extractedby
enhancing the sensitivity of the strain sensors. Themore sensitive the sensor
is, the more abundant number of features are embedded in the resulting
signals. Our proposed ultrasensitive textile strain sensor possesses the ability
to detect tiny deformations of throat skin and to distinguish the funda-
mental signal characteristics even among words with extremely similar
pronunciations. Due to its ultrahigh sensitivity resulting from ordered
cracks formed on the surface of the textile substrate, high-density infor-
mation can be obtained as needed for effective and accurate word
recognition.

With their unique characteristics, including conformability, breath-
ability, and durability, textiles are considered an ideal substrate for human
motion monitoring with extraordinary performance44,45. However, in the
current state of the art, the resistance change of traditional textile strain
sensors fabricated by printing/coating methods with relatively low gauge
factor within a small strain range is insufficient to capture adequate infor-
mation required for decoding different words, as shown in the inset of
Fig. 1c. In this work, we developed a structured graphene sensing layer with
ordered cracks, which dramatically improves the sensitivity of the textile
strain sensor (Fig. 2a). Such ordered cracks can be formed through a one-
step printing. By increasing the number of printing layers of the graphene
ink, graphene flakes are not only coated on the surface of a single fiber but
form a continuous layer of graphene on the top of the textile substrate. Due
to the stiffness mismatch between the top graphene layer and the textile
substrate, a series of ordered cracks are created by utilizing the textilematrix
as the template after prestretching (Fig. 2b, c).When no strain is applied on
the sensor, these ordered crack edges return to contact. As the strain
increases gradually, the distance between these ordered cracks becomes
larger, and the contact areas decrease rapidly, leading to a sharp change in
resistance, which can be reconducted into a percolation network model7,46.
Hence, the resulting textile strain sensor shows the unique ability to sense
the tiny deformation generated by throat micromovements as the large
change in contact areas introduced by ordered cracks magnifies the resis-
tance change with a small strain applied, and the gauge factor can reach 317
within 5% strain. Moreover, ordered cracks obtained with the proposed
fabrication method ensure high stability of the resistance response in
comparison with the low stability of other graphene-based strain sensors,
whereby the nonuniformity of cracks that form randomly in the graphene
layer with a certain thicknessmeans that other graphene sensors reported in
the literature are less stable and more prone to drift in their performance
over prolonged use47.

In addition to the ultrahigh sensitivity brought by the ordered cracks,
the fabricationmethod of our textile strain sensors is biocompatible, simple,
low cost, and scalable, and the property and performance can be easily
controlled by tuning theparameters of themanufacturingprocess.Owing to
its defects that are advantageous for piezoresistivity48, graphene nanopla-
telets are used in the preparation of functional ink (DI-water based) through
high-pressure homogenization (HPH), a straightforward method that
weakens the van der Waals forces between graphite layers resulting in few-
layer graphene flakes49. Figure 2d shows the aspect ratio distribution of
graphene flakes we usedwith amean value of ~45. By altering the size of the
interaction chamber of the homogenizer, the aspect ratio of nanoplatelets,
which influences the percolation threshold46, can be adjusted (Supple-
mentary Fig. 3). Screen printing is renowned for its customizable pattern,
exceptional compatibility with a flexible substrate, affordable cost and
scalable fabrication in the field of printing electronics50–52. Diverse patterns
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on the printingmesh can be transferred to our textile substrate (made from
95% bamboo fibers and 5% elastane) directly. Varying the number of
printing layers can be used to control the thickness of ordered cracks in the
graphene-coating layer.

The performance of our textile strain sensor with ordered cracks was
evaluated by monitoring the variations in its relative resistance. Within a
small sensing range, the textile strain sensor demonstrates a linear relative
resistance response with relatively low hysteresis (Fig. 2e). Figure 2f displays
the stable stretching-releasing responses under 1%, 1.5%, 2%, 3%, 4%, and
5% strain, and the relative resistance increases linearly with strain (≤5%),
showing the high reliability of the sensor within a small strain range.
Meanwhile, this textile strain sensor exhibits the ability to resist tensile
frequency interference (Fig. 2g), which would be useful for identifying the
same word spoken with different pitches. The detection limit was tested, as
shown in Fig. 2h. Based on ordered cracks, the textile strain sensor realizes
an ultralowdetection limit (0.05%),which is crucial for tiny strain detection.
Durability is crucial for real-world applications of the sensor to determine its
lifespan. Our textile strain sensor can withstand over 10,000 stretching-
releasing cycles while maintaining stable and reliable electrical functionality

(Fig. 2i). Such excellent durability is mainly attributed to the outstanding
adhesion between the graphene ink and the substrate achieved through the
careful selection of ink additives and the preprocessing of the textile sub-
strate with plasma treatment. Additionally, the remarkable stability of the
ordered cracks formed in the regions of concentrated stress along the textile
matrix, which occur under repeated stretching and releasing, contributes
significantly to the sensor’s resilience. Overall, the distinctive characteristics
of the proposed textile strain sensor with ordered thorough cracks pave the
way for its application in real-world silent speech systems.

The lightweight end-to-end neural network for robust speech
recognition
In general, various SSI systems based on EMG sensors or strain sensors
mainly encounter three types of noise in real-world applications: flicker
noise caused by sensor imperfections, sound noise from the external
environment, and physiological noise or artefacts arising from users’ body
movements, such as breathing, swallowing, or neck movements, when
wearing the device. Figure 3a shows a typical signal pattern during speech
recognition using our smart choker. Initially, when the user is not wearing

Fig. 1 | Comprehensive overview of the wearable SSI, featuring an ultrasensitive
strain sensor and a neural network for efficient speech recognition. aThe process
of speech recognition initiates with nerve impulses from the central nervous system
translating intomicromovements in the throat. Thesemovements are then captured
by an ultrasensitive strain sensor integrated into a smart choker, comprising a textile
substrate with an overlying structured graphene layer. The sensor responds by
altering its resistance, resulting in a change in the electrical signal, which is then
captured and processed by a readout module. The obtained electrical signals are fed
into a lightweight end-to-end neural network for processing and speech recognition.
The detection of throatmicromovement based on orderly-cracked graphene ensures
robust performance even in noisy environments, leveraging the high resistance of
the sensor to background interference. bThe sensingmechanism in the textile-based

strain sensor is enhanced with a structured graphene layer. This layer is created
through the screen printing of a continuous thick graphene film onto a textilematrix.
Following a stretching process, the inherently ordered weaving structure of the
textile induces the formation of ordered through cracks in the graphene layer, which
are strategically aligned with the weave. The structured graphene layer can dyna-
mically respond to throat micromovements with significant and abrupt changes in
electrical resistance. c Comparative analysis showcasing the performance metrics of
our printed textile-based graphene strain sensor against other reported strain sen-
sors fabricated by printing and coating technologies, focusing on the strain scale and
Gauge factor. The exceptional gauge factor of our sensor in the small strain range is
critical for capturing rich, information-dense signals. A–N refer to refs. 23–37.
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the choker, the signal collected by the readout module appears as a super-
position of theDCoffset, corresponding to the sensor’s initial resistance and
flicker noise. It isworthnoting that at thefifth second,we introduced 100 dB
of environmental sound noise. From the response and our subsequent
multiple tests on sound noise, it can be concluded that although our smart
choker is extremely sensitive to themicromovement of the skin at the throat,
it is 100% unresponsive to environmental sound noise. After the choker is
worn, the DC offset changes, which is determined by the varying tightness
with which the user wears the choker. After wearing, the noise in the signal
appears as a superposition offlicker noise andphysiological noise. Insteadof
using filters, we implemented noise injection data augmentation to enhance
the system’s noise immunity. Although previous methods, such as additive
Gaussian noise injections have significantly improvedmodel robustness, we

devised a simple “random noise window” technique to better assist the
model in learning real-world noise characteristics (Fig. 3c)53. Initially, users
wear the choker silently, engaging in normal activities such as breathing and
turning their heads. The signals collected during this time by the readout
module represent a noise background without speech. We then randomly
select multiple noise windows of the same length as speech samples and
overlay the noise from these windows onto the speech samples to create
augmented speech samples. This approach, compared to traditionalfiltering
methods, greatly enhances energy efficiency. Such efficiency is vital for
wearable systems in real-world applications, as it facilitates extended
wearability without compromising performance.

Previous works on SSI often involve the conversion of one-
dimensional (1D) time series signals into two-dimensional (2D) images

Fig. 2 | Characterization of the device. a Cross-sectional SEM image of the textile
strain sensor with ordered cracks, showing the top graphene layer and the bottom
textile layer, scale bar: 500 µm. b Top view SEM image of the ordered cracks formed
on the top of the textile substrate, scale bar: 500 µm. c SEM image of the surface
through-crack structure, scale bar: 100 µm. d Aspect ratio distribution of graphene
flakes fabricated by the high-pressure homogenizer. The inset shows an AFM image
of graphene flakes, scale bar: 4 µm. e Hysteresis of the relative resistance change

during a stretching-releasing cycle. f Relative resistance responses with 1.0%, 1.5%,
2.0%, 3.0%, 4.0%, and 5.0% cyclic strains. g Relative resistance responses with dif-
ferent stretching-releasing rates under 1.5% cyclic strain. h Detection limit stability
test of the textile strain sensor under 0.05% and 0.1% cyclic strains. iDurability test of
the textile strain sensor with ordered cracks by multicyclic stretching and releasing
with a strain of 1.5% over 10,000 cycles.
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Fig. 3 | System and model architecture. a The signal characteristics of an entire
silent speech phase are presented. At the 5th second, a sound noise of 100 dB is
introduced. Starting at the 12th second, a choker is worn, and signals of two words
are collected. Three segments are extracted to visualize the spectrogram, illustrating
intensity variations across different frequencies over time. b Flowchart of the entire

system, comprising the smart choker, readout module, and the PC for model pro-
cessing. c Flowchart depicting the random noise injection method used for data
augmentation. d Pipeline of the lightweight end-to-end neural network employing
one-dimensional convolutional layers. eComparison ofmodel efficiency (measured
in FLOPS), accuracy, and channel usage with relevant works; a–f refer to16,18,19,38,39,56.

https://doi.org/10.1038/s41528-024-00315-1 Article

npj Flexible Electronics |            (2024) 8:27 5



using feature extractionmethods, such as FourierTransform, before feeding
them into 2D neural networks for analysis38,39. This approach is primarily
driven by two objectives. In cases where the sensing device comprises a
multi-channel array, two-dimensional algorithms can extract spatial reso-
lution information between channels. For single-channel devices with lower
sensitivity and insufficient signal information density, two-dimensional
methods are employed to enhance feature extraction, ensuring accurate
speech decoding. However, the use of 2D algorithms significantly increases
the computational complexity of the system. This increase makes them less
suitable for deployment in edge systems, such as wearable smart devices,
which demand high computational and energy efficiency. When input
signals lack spatial complexity but possess high information density,
employing 1D methods can preserve high system computational efficiency
while also maintaining high analysis accuracy. Considering the high
information density from our device’s exceptional sensitivity, we crafted an
end-to-end lightweight one-dimensional neural network for processing and
classifying SSI signals. As shown in Fig. 3d, our model unites a series of
convolutional layers with fully connected layers, and each component is
finely tuned to the subtleties of the SSI data. At the heart of our network are
residual blocks, featuring pairs of one-dimensional convolutional layers
with a kernel size of 3. This design ensures critical temporal feature capture
while optimizing computational efficiency. Each convolutional layer
incorporates batch normalization and ReLU activation to bolster stability
and learning efficacy. The initial convolution layer, equipped with 64 size-7
filters, followed by batch normalization and ReLU activation, plays a pivotal
role in initial feature extraction from input signals.Adropout layerwith a0.2
rate is integrated to mitigate overfitting and maintain robustness across
diverse scenarios. Efficient data downsampling is achieved viamax-pooling,
aligning with our model’s focus on handling consistent 3-second, 1500-
point signal samples at 500 Hz, which is critical for precise, real-time SSI
applications. Concluding the network architecture are the fully connected
layers, leading to a classification layer adept at distinguishing specific speech
words, reflecting the tailored design of our system for SSI-based commu-
nication.Adetailednetwork structure canbe found inSupplementary Fig. 9.

In Fig. 3e, ourmodel demonstrates high accuracy in classifying the top
20 frequently used English words with outstanding time and energy effi-
ciency compared to state-of-the-art systems, characterized by low inference
floating-point operations per second (FLOPS). This efficiency highlights
our network’s ability to harness single-channel, high-density data from our
sensitive SSI device while minimizing computational demand. Such a
streamlined approach promises extended wearability and practicality for
daily use, establishing a new benchmark for energy-efficient silent speech
recognition, to the best of our knowledge.

Performance in real-world silent speech scenarios
To validate the efficacy of our SSI system in real-world application sce-
narios, we collected three datasets (based on an English vocabulary) from
three participants (see relevant details in Supplementary Table 2) across
three of the most common speech communication settings. In Dataset 1,
we gathered the ten most frequently used verbs and ten nouns in spoken
English, using this collection as a baseline experiment to verify the sys-
tem’s capability to recognize words commonly used in everyday life54. For
Dataset 2, we compiled a set of ten easily confusable word pairs that differ
by only one phonetic element—vowels, consonants, or stress—such as
“book” and “look”, “sheep” and “ship”, and the verb and noun pro-
nunciations of “record”. In Dataset 3, we collected five lengthy words at
varying reading speeds to test the system’s ability to correctly decode the
same word across different speech rates. The details of the vocabulary for
the three datasets can be found in Supplementary Table 3, and Fig. 4d
provides a visualization of the signals for the word “Cambridge” at three
different reading speeds.

In each of the three datasets, we collected 100 samples for every
example, with 80 designated for the training set and 20 for the testing set.
In Dataset 1, our model achieved a classification accuracy of 95.25% for
the 20 high-frequency words (see the corresponding confusionmatrix in

Fig. 4a); in Dataset 2, we reached a classification accuracy of 93% for the
10 confusable words (see corresponding confusion matrix in Fig. 4b);
and in Dataset 3, our model achieved a classification accuracy of 96% for
the five long words read at different speeds (see the corresponding
confusion matrix in Fig. 4d, and see the reading time length distribution
in Supplementary Fig. 12). To highlight the strengths of our network
structure, we conducted a model evaluation on Dataset 1 (the baseline
dataset), comparing our network with state-of-the-art benchmark
backbones (all in 1D mode, results shown in Supplementary Fig. 10).
Our network demonstrated advantages in both accuracy and time and
energy efficiency, meeting the needs of wearable technology in practical
scenarios. Additionally, to investigatewhether our lightweight network’s
simpler architecture could limit performance on larger datasets with
more samples per class, we compared the accuracy achieved by models
trained with varying numbers of samples (see Supplementary Fig. 11).
The results indicated that model accuracy continued to increase with
more training samples, without reaching a saturation point, suggesting
that the model’s performance could be further optimized with the
introduction of more data.

To assess whether our model exhibits bias in classification—such as
focusing on noise or other irrelevant signal regions—we employed
Relevance-Class Activation Mapping (R-CAM) to visualize the signal
areas that themodel concentrates on during classification (Fig. 4c)55. The
visualization reveals that the model consistently directs its attention to
the key micromovements associated with the words, indicating a tar-
geted and effective recognition process. Moreover, as demonstrated by
several word examples in the figure, the DC offsets of the samples vary.
This variation arises from our data collection strategy, which embraced
the diversity of choker tightness and accounted for slight differences in
placement with each wear. This diversity underscores the robustness of
our system to the subtle variations in wear positioning and tightness that
different users may exhibit in real-world scenarios, ensuring reliability
across repeated uses.

To evaluate the system performance on new users and unknown
words, we utilized our baseline model trained on Dataset 1 as a pretrained
model and transferred it to three new users of different genders, geo-
graphical, and ethnic origins (detailed information about the new users can
be found in Supplementary Table 2) and ten new words (Fig. 5a). For the
new users, we collected the same five words previously gathered from the
original three participants. For the new words, we selected the ten con-
fusable words from Dataset 2 as novel entries for the baseline model. We
observed that ourmodel could effectively recognize the newuser andwords
with minimal fine-tuning: with only 15 to 20 samples per class, the model
achieved an 80% accuracy rate for both new words and users, which is a
43% and 53% improvement, respectively, compared to training directly on
new data without a pretrainedmodel. With fine-tuning on just 30 samples
per class, the model reached 90% accuracy for both new users and words
(Fig. 5b). Figure 5c, d visualize the model’s generalization performance on
new users and words using t-SNE, showing a significant improvement in
the model’s classification capabilities after leveraging the learning experi-
ence of the baseline pretrained model. Notably, in Fig. 5d, the model’s
ability to discriminate between confusable words, such as “book” and
“look”, is enhanced, indicating the model’s feature extraction and gen-
eralization capabilities.

Discussion
We introduce an ultrasensitive textile strain sensor technology, inte-
grated into a wearable choker, which has the potential to redefine the
field of SSI, enabling real-world applications. The sensing mechanism is
based on ordered thorough cracks that form onto graphene-coated
textiles, in regions of concentrated stress induced by the textile manu-
facturing process through weaving, upon an initial prestretching. The
thickness of the sensing layer and depth of thorough cracks are opti-
mized and controlled via the set of materials and printing process
parameters, which allows the achievement of ultrahigh sensitivity and
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Fig. 4 | Silent speech recognition results. a Confusion matrix showing the classi-
fication results for the 10 most frequently used verbs and 10 most frequently used
nouns, indicating the model’s capability in everyday use. bConfusion matrix for the
classification of 10 words that are easily confused in terms of vowels, consonants, or
stress patterns, demonstrating the model’s ability to discern subtle differences.

c Relevance-Class Activation Mapping (R-CAM) is utilized to highlight the signal
areas the model focuses on during word classification. d Confusion matrix for the
classification of 5 long words read at varying speeds, showcasing the model’s
robustness to different reading speeds. eVisualization of the longword “Cambridge”
read at three different speeds.
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durability, simplifying the decoding of speech signals. Coupled with a
tailored, energy-efficient neural network architecture, this system
demonstrates high accuracy and reduced computational load, meeting
the needs of wearable technology in practical scenarios. As a result, the
proposed system enables decoding a wide range of words, swiftly adapts
to new users and vocabularies, and demonstrates robustness against
various noises and physical wear variations.

Methods
Materials
TIMREX KS 25 Graphite (synthetic graphite with a particle size of 25μm)
waspurchased fromIMERYS.The sodiumdeoxycholate (SDC) (≥97%) and
sodium carboxymethyl cellulose (CMC-Na: an averagemolecular weight of
700,000), as the surfactant and the binder for ink preparation, were both
obtained from SIGMA-ALDRICH. Deionized water was provided by

Fig. 5 | Generalization ability. a Flowchart depicting the model’s generalization
process. b Evaluation results of themodel’s generalization capabilities: comparison of
accuracies when trained from scratch and fine-tuned using a baseline model with
samples from new users and new words in varying quantities. c T-distributed

stochastic neighbor embedding (t-SNE) visualizations comparing models trained
from scratch with new user data (right) to those fine-tuned using a baseline model
(left). d T-SNE visualizations showing the difference in models trained from scratch
with newword data (right) compared to thosefine-tuned using a baselinemodel (left).
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PURELAB Flex Pure Water System. The textile substrate (95% bamboo
fibers and 5% elastane) was purchased from Jelly Fabrics Ltd.

Preparation of graphene ink
The functional graphene ink for the sensor fabrication is prepared byHPH,
a liquid phase exfoliation (LPE)method to fabricate graphene, and the steps
are illustrated as follows. First, as the surfactant, SDC is dissolved in deio-
nized (DI) water (5 g/l) to prevent aggregation of fillers by electrostatic
repulsion. Second, TIMREX KS 25 graphite flakes were added to the SDC
solution (100 g/l) and mixed by dissolver at 500 rpm for 30min. Then, the
mixtures are exfoliated by a HPH (PSI-40) using a dual-slot deagglomera-
tion chamber (D200D: 200 µm). It is processed at a pressure of 700 bar and
70 exfoliation cycles. Finally, CMC-Na as a binder was added to the gra-
phene dispersion (10 g/l) to stabilize the flakes and control the viscosity of
the printing ink, and the prepared ink was stirred for 3 h at room
temperature to fully dissolve CMC-Na.

Fabrication of a textile strain sensor with ordered cracks
The textile graphene-based strain sensor with ordered cracks was fabricated
by screen printing to form a functional graphene sensing film on a textile
substrate which provides mechanical support andmaintains flexibility. The
manufacturing process was performed as follows. First, the textile substrate
was treated by UV ozone (UV ozone cleaner UVC-1014, NanoBioAnaly-
tics) for 30min at room temperature to improve the hydrophilicity of the
substrate and the adhesion between the graphene ink and textile. Then,
the prepared graphene ink at a concentration of 100 g/l was printed onto the
textile substrate fixed on the holder of the screen printer with the help of a
squeegee forcing the ink through the screen (mesh count 90 T: 230 mesh/
inch) with rectangular patterns. To control the formation of ordered thor-
ough cracks, the printingprocesswas repeated 7 times, each timewith a 2ml
drop of graphene ink deposited on the screen and printed on the substrate,
until the formation of a continuous graphene layer on the top surface of the
textile substrate. In between every printing step, the filmwas let dry at room
temperature, assisted with N2 blow for 1min. After 7 times printing, the
printed sensor was annealed in the oven at 80 degrees for 5min. Then the
substrate was pre-stretched by applying a 5% strain to form ordered thor-
ough cracks in the regions of higher stress. The repeatability results are
shown in Supplementary Fig. 14 and Supplementary Fig. 15.

Characterization of the structure and performance of the sensor
The lateral size, thickness and aspect ratio of grapheneflakeswere assessed
by Bruker Icon AFM (Supplementary Fig. 3). One hundred flakes were
measured from 3 AFM scans, each with scan area ~20 μm× 20 μm. SEM
images were obtained using a Magellan 400 to characterize the mor-
phology of the textile strain sensor with ordered cracks. Supplementary
Fig. 4 shows the SEM results of the fabrication process. A tensile testing
machine (Deben Microtest 200 N Tensile Stage, INSTRON universal
testing system) anddigital sourcemeter (Keithley 2400 SourceMeterUnit)
were used tomeasure the electromechanical properties of the textile strain
sensor with ordered cracks. The resistance responses upon repetitive and
consecutive strains were recorded to evaluate the sensing performance of
the sensor.

Experimental setup of data acquisition
Our strain sensor is printedonto a choker, with copper tape tightly affixed to
both ends of the sensor at a 1-centimeter distance, and a potentiostat
(EmStat4S, PalmSens) is utilized as the readoutmodule for data acquisition.
The readoutmodule inputs a voltage of 1 V and outputs the current passing
through the strain sensor. We selected a sampling frequency of 500 Hz for
the signal,with eachword sample lasting 3 seconds. SupplementaryMovie 1
offers a demonstration of the data collection process. Our data collection
protocol was designed to reflect real-world usage scenarios where precise
positioning and tightness of the choker might vary with each wear.
Therefore, during our extensive data collection across various participants,
we did not enforce strict calibration of the choker’s position nor of its

tightness; participants were instructed to wear the choker comfortably
around the neck, roughly positioning it at a medium height. The inherent
variability in choker positioning and tightness among different users and
experiments means that the collected dataset is representative of a range of
different real-life conditions. Despite these variations, our system demon-
strated high recognition accuracy, underscoring its robustness to different
wearing conditions.

Software environment
The processing of the data and the training of the network were conducted
in an environmentbasedonPython3.8.13,Miniconda3, andPyTorch2.0.1,
with training acceleration provided by Apple’s Metal Performance Shaders
(MPS). During the noise injection phase, each original sample was aug-
mented with real-world noise from four different random noise windows,
creating fournew samples. Theoptimal hyperparameters formodel training
can be found in Supplementary Table 4.

Ethics approval and human research participants
The study involving human participants was approved by the Research
Ethics Committee of the Department of Engineering at the University of
Cambridge and conducted on healthy volunteers following the guidelines
approved for this study. All participants were provided with a Participant
Information Sheet and asked to complete and sign a Participant Consent
Form prior to their participation in the study.

Data availability
The data supporting this study are available at https://doi.org/10.17863/
CAM.104307.

Code availability
The code used in this study is available at https://github.com/tcy21414/
Ultrasensitive-Silent-Speech.git.
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