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High-throughput materials research is strongly required to accelerate the development of safe and
high energy-density lithium-ion battery (LIB) applicable to electric vehicle and energy storage system.
The artificial intelligence, including machine learning with neural networks such as Boltzmann neural
networks and convolutional neural networks (CNN), is a powerful tool to explore next-generation
electrode materials and functional additives. In this paper, we develop a prediction model that
classifies the major composition (e.g., 333, 523, 622, and 811) and different states (e.g., pristine, pre-
cycled, and100 timescycled) of various Li(Ni, Co,Mn)O2 (NCM) cathodes viaCNN trainedon scanning
electron microscopy (SEM) images. Based on those results, our trained CNN model shows a high
accuracy of 99.6% where the number of test set is 3840. In addition, the model can be applied to the
case of untrained SEM data of NCM cathodes with functional electrolyte additives.

Lithium-ion battery (LIB) system consists of anode, cathode, electrolyte,
separator to name few. The interaction between each component is very
complicated, which hinders the full understanding of all the interactions
needed for developing high performance LIBs1. Furthermore, there are a lot
of factors affecting the overall capacity and cyclability even in the single
component2.

For instance, the nano- to micron scale structure, and composi-
tion affect the specific capacity and rate capability of the whole cell3,4.
As such, various analysis and visualization tools are utilized to analyze
the complicated interactions between each component such as pri-
mary/secondary particles of cathode materials, functional binders,
and solid-electrolyte interphase (SEI) layer5–7. To characterize SEI
layer, various inspection tools such as scanning electron microscopy
(SEM), TEM, AFM, X-ray photoemission spectroscopy, Fourier
transform infrared spectroscopy, and electrochemical impedance
spectroscopy (EIS) are used to measure its physical and chemical
properties8–11.

Among those methods, SEM is one of the popular, easy, and intuitive
techniques to characterize the morphology of active materials and particle
distribution to capture different states of the electrodes. However, the
analysis of acquired images is strongly dependent on the domain experts’
knowledge and experience12,13. In these regards, interpretable analysis tools
using artificial intelligence and machine learning approaches are being
developed because they are free from human subjectivity, have data-driven
results, and are able to analyze big data at the same time14–20.

As machine learning can accelerate the process of human-dependent
labor-intensive analysis21–26, we propose to applymachine learning with class
annotation only, to extract composition and state of the specific NCM
cathodebasedon theSEMimages.WeacquiredvariousSEMimagesofLi(Ni,
Co, Mn)O2 (NCM) electrode in different states and compositions and used
them as the input of the machine learning model. The reason we chose
different nickel content of NCM electrode with or without functional addi-
tives is because it is themostlyusedcathodematerials in electrical vehicles and
energy storage system.
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Here, we develop a prediction model of various NCM cathode states
such as compositions (Ni = 0.3, 0.5, 0.6, and 0.8 while all summation of Ni,
Co, and Mn is 1) and conditions (pristine, formation (less aged) and 100
cycleswith 1C-rate (aged)), and apply themodel tovariousNCMelectrodes
with functional additives without any further learning to check the
extendibility of our model. For qualitative analysis, we compare the survey
accuracy of 14 domain experts with the accuracy of our model.

Results
When working with collaborators from battery industry, we found that the
domain experts could frequently distinguish each component by merely
looking at themorphology of particles in SEM images. This could be due to
the fact that SEM brightness is correlated with the specific elements such as
electron density, and the morphology of a particle in SEM images is mostly
determined by the composition of such elements. Furthermore, they could
also point out whether the image contains a pristine or a cycled particle
based on the fact that pulverization leads to smaller-sized particles as a
function of charge and discharge cycles. For those reasons, SEM offers
intuitive informationabout the chemical compositionand the cycled state in
an easily accessible way within a few minutes.

As such, we wondered if we can systematically characterize the com-
position and state of the active materials by using computer vision-based
machine learning algorithm. In order to correlate visual representation
informationwith the compositionandcycle states of LIB cathode electrodes,
we utilized a computationally efficient CNN model named EfficientNet,
which was designed for classification applications using dimension scaling
technique in 201727.

We conductedSEMimagingof variousNCMcathodematerials,which
include four different Ni contents (Ni = 0.3, 0.5, 0.6, 0.8 at NCM cathode)
and three cycled states (pristine, formation, and cycled for 100 times). The
SEM images were acquired under 500 times magnification to identify each
NCM electrode state. The total number of images is 1637 before augmen-
tation process. Before training, we first augmented all the images, resulting
in 2400, 600, and 600 images for the training, validation, and test sets,
respectively.

To have sufficient number of training and validation images for our
CNNmodel, we systematically augmented the data by cropping the images.
The original SEM imageswere subdivided into several sizes and evaluated to
maximize the prediction accuracy efficiently because of limited computa-
tional resources.

Specifically, the observed SEM images were cropped into designated
sizes of sub-images (training and validation images) with randomized x and
y coordinates to comprise the entire NCM particles (2nd particle mainly).
The size and number of sub-images are one of the hyper-parameters needed
to be optimized, of which details can be found in “Optimization of CNNs”.
The best dataset has 4800 images, which consists of 80% training and 20%
validation sets randomly selected from generated sub-image set.

After composing the dataset, we have trained CNNs under Ryzen 7
3800XT 8-core processor, 64 GB RAM, and NVIDIA GeForce RTX 3080
with 10 GB VRAM system. Elapsed training time takes ~2 h and inference
time for 360 images is less than 5min. Typical hyper-parameters such as
learning rates, size of training batch, and color normalization were opti-
mized via the Asynchronous Successive Halving Algorithm (ASHA) pro-
vided by Ray Tune package28.

With the help of ASHA, a bandit algorithm searches29 the next options
to train the model for finding the highest accuracy within 20 epochs.
Afterwards, the trainedmodel estimates the composition in terms ofNi, Co,
and Mn contents and their cycle state from given SEM images.

For comparison, we conducted a domain expert survey using a Google
Document format (https://forms.gle/9dBd3GG8FCnNHQPK8). As SEM
images of cathodematerials were used for many studies, domain expert has
morphological and electrochemical understandings to determine the
composition and state. Determining accuracies of CNN and human
researchers has been described in the following section. Overall workflow is
summarized in Fig. 1.

Performance of CNN
The best network classified the NCM images correctly with an accuracy of
99.6% among 2430 test images from 12 categories, which include the
composition of NCM samples and cycling states.

Figure 2 illustrates representative SEM images with the size of
300 × 300 pixels and guided gradient class activation map (grad-CAM)
overlays30 on SEM images. The images in each row have the same NCM
composition and that of each column shares the same cycling state. NCM
cathode consists of primary particles (diameter of hundreds of nanometers)
and secondary agglomerates (diameter of tens of micrometers) after pro-
cessing and cycling steps of which morphology is composition dependent.

For a few cycles of charge and discharge, chemical reactions between
the cathode and electrolyte generally generate SEI that facilitates smooth ion
movement in and out of cathode during lithiation and delithiation
processes.

The existence and growth of the SEI layer affects the lifetime of battery,
which necessitates the understanding of the SEI layer. However, the thick-
ness of the cathode-electrolyte interphase (CEI) that is a SEI layer at cathode
side is typically less than 100 nm, which can be challenging to capture and
analyze by using SEM images quantitatively. Especially, for high nickel
NCM, the CEI property is more critical to cathode performance31,32.
Another factor influencing the performance of LIBs is the volumetric
expansion and contraction of electrode materials during lithium-ion dif-
fusion, which occurs inevitably with the ionic current flow back and forth.
This leads to structural changes and electrochemical instability which cause
degradation in overall capacity of battery cells32.

Nevertheless, the SEM can capture the microstructural changes near
cathode particles, which is difficult to spot and describe in detail for the
human researchers, and these descriptors can be correlated to their states
with the help of CNNs.

In order to understand the decision-making process of CNNs, we
generated grad-CAMimages, as shown inFig. 2a. The grad-CAMtechnique
pulled the fitted gradients out to understand the importance of each layer,
visualizing featuremaps to thedesignated target classes30. Thus, the red areas
of grad-CAM images in the form of heatmap were positively connected to
the predictions from the trained model while the blue areas negatively. In
addition, we evaluated the prediction in the test using confusionmatrix and
the classification report that contains precision, recall, and F1-score, as
shown in the Supplementary Fig. 1 and Supplementary Table 1 below,
respectively.Aswe can see in the confusionmatrix above, themajority of the
image classes were correctly classified. However, several of NCM333 for-
mation and NCM811 cycled images were incorrectly classified, leading to a
low recall below 0.90 (0.72), and low precision below 0.90 (0.81), respec-
tively, as shown in the Supplementary Table 1 above. Other classes have
precision and recall above 0.90, which is good. Overall, the total accuracy
determined by the F-1 score is high (96% or 0.96).

Although the same magnification has been used for capturing all the
NCM cathode materials, there are brightness and image quality variations
due to the complex interaction between the cathode materials and electron
beam. The intensity of SEM images typically varies depending on the
conductivity of samplesnear the surface.Thegrayscale levels canbe adjusted
by controlling the accelerating voltage of electron beam and the aperture
ratio of lens.

Nevertheless, acquiring similar level of brightness and contrast across
different images is very tedious and difficult. As such, normalizing the
brightness and contrast levels inside the augmentation process might be
needed. However, our attempts to normalize the images did not result in
better performance.

Based on Supplementary Fig. 2, each histogram in different
composition and state of NCM cathode materials shows different
slopes and distributions. Furthermore, Supplementary Fig. 2 and
Supplementary Fig. 3 show that training and validation images show
similarity of slope and distribution with insignificant average and
standard deviation, which is also captured in Supplementary Table 2.
These results mean that normalization of each image may reduce
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information dimension, which is detrimental for at least estimating
the composition and states of NCM cathode materials.

Indeed, using the original images resulted inmuch better performance,
which is counter-intuitive. Specifically,whenweusednormalizationprocess
to test the best model, the model classified the state of images with very low
accuracy of 20% with the same test dataset. Thus, we speculate that color
distributions of SEM images are carrying some of state information, which
was removed during normalization processes. The distributions of training
and test image datasets as shown in Supplementary Figs. 2, 3 and Supple-
mentary Table 2 have characteristic shapes, but it is hard to distinguish the
states of cathodematerials based on this pixel counts. Furthermore, because
of large contrast levels, normalization throughout the dataset causes
grayscale clipping effect that is information loss from exceeding threshold
value (0–255) likewise washed out in photography.

In order to understand how our CNN predicts the composition and
stateaccuratelywithoutnormalizationprocess,we examined the grad-CAM
overlay images, in which most of high reaction points were located in the
boundary of particles and gap betweenparticles. Ifmost of the high reaction
points were located in the center of the particles or disconnected points on
the particles, wewould speculate the importance of the size andmorphology
of the particles to predict each composition and state. Therefore, the reason
ourmodel showshigh accuracywas because it captures the shape and length
of boundaries betweenparticles in addition to the contrast level of the image
to predict the composition and state.

Although some cases including NCM523 formation and
NCM523 cycled contain some impurities or by-products than other
cases, the model bypasses such anomalies and captures the interfaces
between secondary particles. In addition, in most cases showing well-
defined secondary particle shapes, the grad-CAM overlay images
indicate strong intensity along particle boundaries such as NCM622
pristine and NCM622 formation cases. In the case of Ni-rich com-
position (NCM811), the size of secondary particles is smaller than
other compositions33,34, and red area of grad-CAM overlay covers pits
generated from small secondary particles.

We also analyzed misclassified cases, of which number was 10 among
2430 test images. one of misclassified case predicted NCM523 pristine state
fromNCM622pristine image. To see the decisionprocess inmore detail, we
plotted the probabilities of all class as shown in Fig. 2b. We found that the
model picked NCM523 with probability of 66.2%, which was larger than
NCM622 with probability of 33.8%. It should be noted that other compo-
sition was not even considered, showing strong capability of distinguishing
samples with large difference in composition.

When we compare the SEM images in true cases of NCM523 and
NCM622 in Fig. 2a, it is difficult to define characteristic features to deter-
mine what belongs to NCM622 class or NCM523. Likewise, grad-CAM
images of two most prominent classes show similar spatial distribution of
red and blue areas, which might have contributed to the error in the
prediction.

Distinguishing themorphologies of cathodematerials with naked eyes
is difficult even for domain experts. We gathered the responses from 14
domain experts matching the visual representation to their different states
(composition and cycling state) of 19 SEM images, which is plotted in
Fig. 2c. The highest score from the survey was 13 out of 19 given images,
which is 68.4%, and the average number of the correctmatchwas 5.71 out of
19, which is 30.0%.

Qualitatively, domain expert assumed the size of particles in the pre-
sented image was related to the composition in terms of Ni content and the
roughness of the boundary between particles implied cycling states. Someof
the experts complained that the by-products from cycling steps were
accumulated on the particles, which might degrade the quality of SEM
images rendering poor judgment. Based on our survey, we claim that it is
challenging to match the morphologies to compositions and cycling states
without any provided information using an intuitive way.

Optimization of CNNs
By using ASHA and bandit algorithms, hyper-parameters were optimized
through grid search on parameter space. The learning rate, image aug-
mentationmethods including random rotation and flipping, and batch size
were tested for training accuracy under 20 epochs in each candidate. The
image augmentation methods including flipping and rotation were
removed after optimizationprocess, andusingpretrainedweight canhelpfit
the model on SEM images of electrode materials.

Although the ImageNet dataset, which is dataset used for pretraining
process, does not share the same features as those of electrodematerials, the
CNNs trained on the ImageNet dataset settle down faster than CNNs with
randomweights, which is also the case in other fields35–37. The learning rate
was selected to be 3.5 × 10−4 from 0.0001 to 0.1 on uniform log scale grid
search and batch size to be 10 images. Along with provided handy tool for
typical hyper-parameters including learning rate, batch size, and grayscale
normalization, we trained CNNs with various image sizes and number of
training images to have most accurate network model.

Figures 3a, b, e, f plot the resulting accuracies of training and validation
sessions during optimization process. Initially, the EfficientNet model was
designed for the size of 224 × 224 pixels, which is known for size of Ima-
geNet datasets38. Therefore, the image augmentation processwas conducted
close to 224 × 224 pixels ranging from 100 × 100 pixels to 400 × 400 pixels.

After cropping, the total number of pixels in the images was resized to
224 × 224 pixels as the input dimension is fixed at 224 × 224 pixels. How-
ever, the length andwidth of the imageswere invariant to keep the same size
measured from the SEM images. So, each image carries different number of
particles and structural contexts on training and validation sessions causing
local optimum of 300 × 300 pixels as depicted in Fig. 3c.

In Fig. 3d, the selected SEM images with different cropped sizes are
shown.The average electrodeparticle size of the full dataset is ~12 μm, so the
number of particles in the image varies from few tens to few hundreds.

From the low prediction accuracy in small-sized images, we speculate
that the prepared image dataset does not carry sufficient information to
correctly classify the given test sets. On the other hand, if the size is too large,
the model tends to lose the detailed features, which may be related to the

Fig. 1 | Schematic diagram of workflow. The workflow starts with data acquisition,
proceeds through data augmentation, model training, and ends with prediction. The
prediction accuracy surpasses that of domain experts.
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composition and the cycled state. As such, the test accuracy shows a bell-
shaped curve as a function of the image size as shown in Fig. 3c.

We also investigated the optimum number of training and validation
images, whichwas varied by subdividing the original SEM images. This was
to find the best network with smallest datasets and shortest elapsed time for
fitting. If randomly cropped area is not covered sufficiently, it is difficult to
transfer the context ofNCM latent features for predicting their composition
and cycling states.

As the number of images in each class increases, the epochs reaching
optimal points in validation process increases as depicted in Fig. 3f. The
CNNs were optimized for training image datasets mostly within 10 epochs

because they contain pretrained weights in structured manner for classifi-
cation applications.

Another factor inoptimizationprocess is the elapsed time forfitting the
neural networkmodel. Although the performance increases with increasing
the number of images, the iteration time also increases for each epoch with
the size of training datasets. The elapsed time for a single epoch using
training dataset increases linearly from ~20 s to ~190 s when the number of
images increases from 50 to 500 based on Fig. 3e. In case of validation
dataset, the saturated accuracy increases from~90% to ~98% as the number
of images increases from 50 to 500 based on Fig. 3f. Furthermore, the
minimum number of epochs to reach the saturated accuracy is 2 for 400

Fig. 2 | Comparative analysis between CNNmodel
and domain experts. a Example images of true cases
and their grad-CAM overlays from the best trained
network. b Probability of each class for false case and
grad-CAM overlays of top-most highest classes.
cResults of predicting composition and cycling state
of SEM images from domain experts.
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images, as shown inFig. 3f. Thus,we conclude that increasing the number of
images above 400 for a single set does not enhance the performance of the
model significantly. As such, we used 400 images with 300 × 300 pixels for
training network that predicts the composition and cycling states of NCM
cathodes.

Finally, we investigated the impact of the SEM magnification level on
the model. We tested our model, trained on the images with different
magnification of 100×, 500×, and 5000× in Supplementary Fig. 4. As we can
see fromSupplementary Table 3, themagnifications level does not affect the
accuracy significantly. Therefore, we found that the accuracy does not
improve with increasing magnification to our surprise. Based on these
results, we claim that higher magnification does not allow for training with
smaller data sets.

In addition, accelerating voltage is clearly affecting the brightness and
contrast of the SEM images as shown in Supplementary Fig. 5, so we used
this parameter to see if it affects the accuracy of ourmodel. To save time and
cost, we used pristine samples with different nickel content, namely
NCM333, NCM622, and NCM811. However, as we can see from Supple-
mentary Table 4, the accelerating voltage does not significantly affect the
accuracy of model. Therefore, we think that normalization throughout the
dataset caused grayscale clipping effect, which led to information loss from
exceeding threshold value (0–255) as in the case of washed-out in photo-
graphy rather than losing information from the brightness and contrast of
SEM images.

To strengthen the impact of our work, we trained the same machine
learning algorithm with NCM images obtained using optical microscopy
(OM) with magnifications of 5×, 10×, 20×, 50×, and 100×. Optical micro-
scopes would be significantly cheaper to implement in manufacturing and
the demonstration that an ML model can be used to elevate a simple
instrument would be significant. To avoid large investments in time and
cost, we just used the pristine NCM samples: pristine NCM333(16 images),
pristine NCM622 (11 images), and pristine NCM811 (10 images). Before
training, we first augmented all the images, resulting in 2400, 600, and 600
images for the training, validation, and test sets, respectively. After that, we
performed training and validation, and the resulting trained model per-
formances are shown in Supplementary Fig. 6. The loss function curves for
training and validation are decreased, and their corresponding accuracies
are increased after training for 40 epochs, indicating that the model is
suitable for classifying theNCMimages obtained using theOM, as shown in
Supplementary Fig. 6a, b. The test’s confusion matrix shows that most
images could be classified correctly. Only eight pristine NCM811 images
and four pristine NCM333 images were misclassified into eight pristine
NCM622 images and four pristine NCM811 images, respectively, as shown
in Supplementary Fig. 6c. The classification report in the test set shows high
precision and recall, and the total accuracy is 98% (0.98), as shown in
Supplementary Table 5. Therefore, our machine learning algorithm
adapting OM images was confirmed with high accuracy of electrodes
estimation.

Fig. 3 | Optimization of CNNmodel. a, b Training
and validation accuracy varying the size of images.
c test accuracy varying training image size and
224 × 224 pixel case is selected because the model is
aiming for the ImageNet dataset, which has
224 × 224 sized images. d examples of cropped
training images with scale bar length of 20 µm, and
e, f training and validation accuracies as a function
of epochs for different number of training images.
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We investigated the preprocessing effect of histogram equalization
techniques, CLAHE for preventing clipping effect in the SEM images.
Supplementary Fig. 7 shows the comparison of the SEM image samples
without the CLAHE equalization technique (left) and with the CLAHE
equalization technique (right). Based on the results, the application of
CLAHE to the SEM images has improved the visual quality by enhancing
the contrast and bringing out details that were less visible in the original
images. To verify loss and accuracy effects by CLAHE equalization, Sup-
plementary Fig. 8 shows a loss function where the validation loss is much
higher and more volatile than the training loss, indicating a degree of
overfitting as the model learns the training data well but fails to generalize
these learnings to unseen data. Supplementary Fig. 9 presents the accuracy
over epochs, with training accuracy reaching near-perfect levels, while
validation accuracy fluctuates significantly, reinforcing the suggestion of
overfitting. Supplementary Fig. 10 is a confusionmatrix of the test set, which
shows high true positive rates for most classes. The overall high accuracy,
however, is contradicted by the lower values in some classes. Some classes,
such as 523_formation and 523, have a large number ofmisclassifications as
shown in the confusion matrix. From this observation, we speculate that
even though the CLAHE can improve the visual quality of the SEM images
by enhancing the contrast, it actually degrades the normalized SEM images
becausewhentheywereusedas the input into themodel, theperformanceof
the loss function, accuracy, and confusionmatrix aremuchworse than those
without the CLAHE and normalization process.

Predicting state of cathode with functional additive using
untrained CNN networks
It is well known that the functional additive enhances LIB performance by
e.g., generating electrochemically and mechanically robust interface
between electrode and electrolyte39. For example, some additives such as
vinylene carbonate (VC) and 1,3-propane sultone (PS) significantly
enhance the capacity retention, by generating stable interfaces in both
cathode and anode40–46.

In order to check the extended applicability of our trainedCNN to other
types of NCM cathode, we applied our best-trained models to NCM333,

NCM622, and NCM 811 electrode materials with additives which were not
included in our training dataset. Figure 4a illustrates the compositional and
state accuracies of each category. The accuracy of overall prediction in
composition and cycling statewas 34.17%,which limits the direct application
of our model to NCM cathodes with additives. However, the overall com-
positional accuracy was 96.0% implying that SEM images of electrode
materials with or without additives share common features and the trained
CNN captures the characteristic descriptors to predict their compositions.

Especially in the case of NCM 622 after formation, the trained CNN
predicted the composition and cycling state with 91.0% accuracy. Based on
this high accuracy, we assume that NCM622 samples with and without
additives are sharing common visual representation while undergoing
formation cycle.

The examples of SEM images and grad-CAM overlays from cathodes
with or without additives are shown in Fig. 4b. As discussed in the previous
section, it is almost impossible even for domain experts to specify the latent
common features that are correlated with cycling states.

The existenceof functional additives in electrodematerialsmight either
reduce the rate of degradation, which may be the cause of underestimating
the number of cycles like judging cycled state to be formation or induce
jittering in the boundary area that misleads the cycling state predictions
from 100 cycles to formation cycle. Through grad-CAM overlays, the best
CNN still pays attention to the boundary and gap between particles in
additive cases as trained dataset. Thismeans themodel behaves like domain
experts catching dominantly the interface topographies to predict
properties.

Discussion
We correlated the surface morphologies of NCM cathode materials cap-
tured by SEM images with the compositions and electrochemical states
using an EfficientNet-based CNN model. Our model showed 99.6% accu-
racy of both composition and cycled state classification, which is much
higher than 30% accuracy of domain experts.

We speculate that the most important features for understanding the
relationship between physical structure and compositions are coming from

Fig. 4 | Application of CNN model to electrode
materials with additives. a Prediction accuracies on
SEM images of electrode materials with additives
under various conditions. b Examples and grad-
CAM overlays of electrodes containing 2 wt%
vinylene carbonate (VC)+ 1 wt% 1,3-propane sul-
tone (PS) additives.

NCM333 with addi�ve 
a�er 100 cyclesa�er forma�on

NCM622 with addi�ve 
a�er 100 cyclesa�er forma�on

NCM811 with addi�ve 
a�er 100 cyclesa�er forma�on

SEM
Images

Grad-CAM
Images

95 93 92
98 100 98

9

39

98

11
1

60

7

39

91

9
1

58

NCM
33

3 w
ith

 ad
di�ve

a�
er 

form
a�

on

NCM
33

3 w
ith

 ad
ditiv

e

a�
er 

10
0 cy

cle
s

NCM
62

2 w
ith

 ad
di�ve

a�
er 

form
ati

on

NCM
62

2 w
ith

 ad
di�ve

a�
er 

10
0 c

yc
les

NCM
81

1 w
ith

 ad
di�ve

a�
er 

form
a�

on

NCM
81

1 w
ith

 ad
di�ve

a�
er 

10
0 c

yc
les

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

 Composi�on Accuracy
 State Accuracy
 Total Accuracy

a)

b)

https://doi.org/10.1038/s41524-024-01279-6 Article

npj Computational Materials |           (2024) 10:88 6



interfacial area of primary and secondary particles based on the analysis of
the guided grad-CAM images.

The size of training images was determined by the number of particles
in the SEM images and the structure of pre-defined model architecture. In
order to confirmwider applicabilityof ourmodel toother cathodematerials,
we classified untrained SEM images obtained from samples with functional
additive (base electrolyte+ 2 wt% VC+ 1 wt% PS additives), resulting in
96.0%of accuracy for predicting the composition but 34.17%of accuracy for
predicting the cycling state.

As such, we think that our current model has a limitation to recognize
the state of an untrained electrode. If the NCM particle with the same
composition is developed by a different company, we should include them
in the training set to enhance the accuracy.

Methods
Preparation of samples
The NCM (NCM333 (LiNi1/3Co1/3Mn1/3O2), 523 (LiNi0.5Co0.2Mn0.3O2),
622 (LiNi0.6Co0.2Mn0.2O2), and 811 (LiNi0.8Co0.1Mn0.1O2), L&F Co. Ltd.,
Korea) were used as cathode active material and lithium metal foil (Honjo
Metal Co., Japan) was used as an anode active material. The NCM cathode
was fabricated by coating a slurry, mixture of NCM (94 wt%), carbon black
(Super P, Timcal, 3 wt%) as a conducting agent, poly(vinylidene fluoride)
(PVdF, Aldrich, 3 wt%) as a polymer binder in N-methyl-2-pyrrolidone
(Aldrich) as a solvent, onto Al foil (10 μm thick) as a current collector,
drying in a vacuum at 100 °C for 24 h, and pressing with a line pressure of
1000 kgf. The active mass loading of the cathode film was
18.3–20.5 mg cm−1. The coin-type cell (2032) for electrochemical perfor-
mance tests was fabricated by sequentially superimposing the NCM cath-
ode, the polyethylene separator, and Li foil anode, and injecting 400 μm of
the liquid electrolyte sample. Each NCM electrochemical cell was prepared
to observe variation of NCM performance (total 3 samples). The liquid

electrolyte used was a commercial liquid electrolyte (Enchem Co., Ltd.,
Korea) of 1M LiPF6/ethylene carbonate (EC): ethyl methyl carbonate
(EMC) (3:7 v/v) battery grade. In addition, the functional additives were
2 wt% VC and 1 wt% PS.

Electrochemical performance and characteristics
Galvanostatic charge-discharge cycling testing of the NCM/Li coin cell was
carried out using a cycler (Toscat 3000, Toyo Systems, Japan) in the voltage
range of 3.0–4.3 V using a formation protocol and the consecutively spe-
cified charge-discharge program. The formation protocol was charge-
discharge cycling at 0.1 C (14mA g−1 at NCM333, 15mA g−1 at NCM523,
17mA g−1 at NCM622, and 20mA g−1 at NCM811) for the first cycle on
constant-current and 0.2C for the 3 formation cycles on constant-current/
constant-voltage (0.02C)mode. The cycle tests were performedwith 1 C for
100 cycles. Supplementary Fig. 11 shows the measured specific discharge
capacity as a function of cycle numbers for different NCM composition.
Each test was conducted for three times to calculate the standard deviation
of the specific capacity.

The NCM/Li coin cell was disassembled after cycling and the surface
part of the cathode sheet was extracted to investigate the morphology var-
iation of electrode-electrolyte interphase and particle cracks. Before
obtaining the SEM images, we washed the electrode with DMC (Dimethyl
carbonate) after disassembling the cell. We dried it in the vacuum oven at
room temperature for 12 h and took SEM images. All processes including
washing andobserving the electrodewere conducted inside adry room(dew
point <−50 oC).

We acquired scanning electron microscopy (SEM, SEC SNE-4500M
Plus) images of NCM cathodes at different states (pristine, formation and
cycled) from 100 positions, which were used in training and test datasets.
We controlled the contrast and brightness by aperture ratio of lens
(manually) with constant accelerating voltage of 20 kV.

Fig. 5 | Schematic diagram of CNN model archi-
tecture. a Overall network architecture which is
based on the MNasNet framework. b Details of
MBConv1 block consists of 6 layers. c Details of
MBConv6 block containing 9 layers.

https://doi.org/10.1038/s41524-024-01279-6 Article

npj Computational Materials |           (2024) 10:88 7



Image augmentation methods
It is difficult to acquire SEM images covering all of sample surface carrying
the structural context of electrodematerials. Firstly, we collected test images
(10%of the full dataset) fromeach class before splitting thedataset. Then,we
cropped the test images to check the performance of the trained network.
Afterwards, 20% of the full dataset except the test dataset were selected for
validation process.

Random coordinates of rectangle, which are not overlapping with the
informatic area of SEM images, were generated to divide large SEM images.
The number of generated random coordinates can be altered for the opti-
mization process.

The designated number of images is the sumof training and validation
images, so 80% of generated images from the predefined training set goes
into the training dataset and the remaining 20% goes into validation dataset.
In order to avoid clipping problems, that is black-out or white-out of fea-
tures when we normalize the images having large grayscale range, we didn’t
apply color normalization, which is typically processed in classification
applications. Also, other image augmentation methods including random
rotation and flipping were tested.

EfficientNet architecture
We utilized state-of-the-art image classification network structure called
EfficientNetwhichhas beendeveloped in201927. Themain structure follows
previously opened to public namedMNasNet, which is illustrated in Fig. 5a.
Details of each MBConv blocks were explained as Fig. 5b, c, which has
tunable convolutional layers. One of the important considerations of
machine learning application is the efficiency. During training and actual
functioning environments, the designed architectures should respond fast
and accurate. In order to accomplish this goal, the developers brought
“compound scaling” method that is controlling the dimensions inside of
architectures under constraint resources. Typical CNNs having large
dimensions show high accuracy, but take a lot of computational resources.
The depth, width, and resolution of the models were parameterized com-
paring the profits using following equations:

depth ¼ αϕ;width ¼ βϕ; resolution ¼ γϕ ð1Þ

subject to α ∙ β2 ∙ γ2 ≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1. Under this constraint, number of
calculations is proportional to 2ϕ, and parameter ϕ controls the dimensions
that is directly related to the number of weights. In this study, we used the
modelnamed “EfficientNet-b7”having66millionparameters and requiring
37 billion FLOPs.

Data availability
The authors declare that the data supporting the findings of this study are
available within the article and its supplementary information files or from
the corresponding authors on reasonable request.

Code availability
Code is available at https://github.com/MIIMSEKAIST/CNN_for_NCM-
composition-and-state-prediction.
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