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Disentangling genetic effects on
transcriptional and post-transcriptional
gene regulation through integrating exon
and intron expression QTLs

Anneke Brümmer 1,2,3 & Sven Bergmann 1,2,4

Expression quantitative trait loci (eQTL) studies typically consider exon
expression of genes and discard intronic RNA sequencing reads despite their
information on RNA metabolism. Here, we quantify genetic effects on exon
and intron levels of genes and their ratio in lymphoblastoid cell lines, revealing
thousands of cis-QTLs of each type. While genetic effects are often shared
between cis-QTL types, 7814 (47%) are not detected as top cis-QTLs at exon
levels. We show that exon levels preferentially capture genetic effects on
transcriptional regulation, while exon-intron-ratios better detect those on co-
and post-transcriptional processes. Considering all cis-QTL types substantially
increases (by 71%) the number of colocalizing variants identified by genome-
wide association studies (GWAS). It further allows dissecting the potential
gene regulatory processes underlying GWAS associations, suggesting com-
parable contributions by transcriptional (50%) and co- and post-
transcriptional regulation (46%) to complex traits. Overall, integrating intronic
RNA sequencing reads in eQTL studies expands our understanding of genetic
effects on gene regulatory processes.

Expression quantitative trait loci (eQTLs) are genetic variants asso-
ciated with gene expression levels. While cis-eQTLs directly affect the
expression of nearby genes, trans-eQTLs indirectly modulate the
expression of distal genes by affecting nearby regulatory genes or
elements. Mapping eQTLs has emerged as a powerful tool to identify
functional genetic variants that affect gene expression and has been
applied in different cell types, tissues, human populations, during
ageing, upon infection, and between sexes1–6. eQTLs were found to
colocalise with genetic variants associated with human traits through
genome-wide association studies (GWAS), suggesting a causal role for
gene expression in mediating such traits7,8. However, the extent of
colocalization between GWAS variants and eQTLs was rather small
(~21% of GWAS variants on average per trait9). The reasons could be

that sample sizes of eQTL studies are generally smaller than those of
GWAS studies, which may not allow resolving eQTLs with weaker
effects, that eQTLsmay not have been determined in the trait-relevant
cell types, or that eQTLs may not capture the trait-relevant gene reg-
ulatory processes.

Even though eQTLs provide a strong indication for a genetic
variant implicated in the regulation of gene expression, the specific
regulatory process affected remains ambiguous. It could range from
transcription regulation, RNA splicing andprocessing to the regulation
of RNA stability. Toovercome this ambiguity, QTLs have beenmapped
for a variety of molecular phenotypes, such as DNA accessibility, DNA
methylation, histone modifications, transcription factor binding, spli-
cing ratios, polyadenylation site usage, ribosome-binding, and protein
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levels, revealing valuable insights into the genetic effects on specific
gene regulatory processes1,10–14. While some of these molecular phe-
notypes can be quantified fromRNA-Seq data, like gene expression for
eQTLs, others require data from more advanced experimental high-
throughput methods. As a consequence, such QTLs have only been
studied for a few cell types or tissues and with relatively small sample
sizes, limiting the statistical power for detecting QTLs with smaller
effects. Thus, a way to infer the gene regulatory process affected by a
genetic variant directly from gene expressionmeasurements would be
very valuable for advancing the understanding of the molecular
mechanisms of eQTLs.

Over the past decade, it has become clear that intronic RNA-Seq
reads contain valuable information about gene regulation. Gaidatzis
et al.15 showed that intron expression levels of genes are, like exon
expression levels, primarily determined by transcription, while the
ratios of exon to intron expression levels, cancelling out transcrip-
tional influences, aremore sensitive to post-transcriptional regulation.
This approach has been widely applied by others to distinguish
between transcriptional and post-transcriptional gene expression
changes16–18. Another study demonstrating the value of intronic reads
was by La Manno et al.19, who used intronic and exonic RNA-Seq reads
to estimate precursor andmature mRNA levels in single cells, allowing
them to predict the future transcriptional regimes of individual cells
from these, under the assumption that the transition fromprecursor to
mature mRNA (i.e. RNA processing) is constant. This method (termed
RNA velocity) has become a standard in single-cell RNA-Seq analyses,
and modifications of it have already been proposed20–22. Together,
analysing intronic RNA-Seq reads—which are contained in RNA-Seq
data, even frompolyA-selected RNA15—on top of exonic reads provides
a deeper understanding of gene regulatory processes.

Here, we investigate the use of intronic RNA-Seq reads to improve
theunderstandingof genetic effects on gene regulation.Wedetermine
QTLs for exon and intron expression levels of genes, as well as their
ratio, using data from 901 lymphoblastoid cell lines (LCLs) from Eur-
opean individuals. We detect thousands of genetic variants associated
with each of the three gene expression measures, including 47% that
were not detected as a top cis-QTL for exon expression levels. Con-
sidering all QTL types increases the fraction of GWAS variants colo-
calizing with QTLs (from 18% for exon-level QTLs to 26% for all three
QTL types). Furthermore, we show that integrating the information

from all QTL types improves our understanding of the impact of
genetic variants on gene regulatory processes and complex traits.

Results
Detection of QTLs for exon and intron expression levels and
their ratio
To better understand the effects of genetic variants on different gene
regulatory processes (Fig. 1A), we analysed QTLs for exon expression
levels (referred to as exQTLs), and intron expression levels (inQTLs),
and their ratio (or, equivalently, their log2-difference; referred to as ex-
inQTLs). Exon and intron expression levels for each gene were quan-
tified from RNA-Seq data obtained from lymphoblastoid cell lines
(LCLs) by the CoLaus and Geuvadis consortia2,23. Although the number
of intronic RNA-Seq reads per sample was about one order of magni-
tude lower than those of exonic reads, we verified that intronic gene
expression levels represent biologically meaningful quantities in our
data set (see SupplementaryNote 1 and Supplementary Fig. 1).We then
assessed that genetic associations with different gene expression
measures (referred to as different QTL types below)were reproducible
in two independent data sets, the CoLaus23 and European samples of
the Geuvadis data set2, despite different sequencing depths and pro-
portions of intronic RNA-Seq reads (see Supplementary Note 2 and
Supplementary Fig. 2). Tomaximise the power for detecting QTLs, we
combined the two data sets, resulting in a total of 901 samples. Using
this combined data set, we detected significant exQTLs, inQTLs, and
ex-inQTLs (FDR < 5%) for 78%, 73%, and 64% of tested genes, respec-
tively, corresponding to 8753, 7660, and 5783 genes (Fig. 1B; Supple-
mentary Data 1). We found that the fraction of QTLs located upstream
of associated genes, where transcription regulatory regions are pre-
ferentially located, was significantly larger among exQTLs (32%) than
among the other two QTL types (Fig. 1C). In contrast, the fraction of
QTLs locatedwithin the transcribed gene regions, potentially affecting
post-transcriptional regulation, was significantly larger for ex-
inQTLs (56%).

Genetic effects are frequently shared between QTL types
Since for many genes we found several QTL types (6904 out of 10804
genes with any QTLs), we further investigated the sharing of genetic
effects between QTL types. We considered QTL effects as shared if the
positions of the topQTLs, i.e. themost significantly associated variants
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Fig. 1 | Identification of cis-QTLs for exon and intron expression levels and
their ratio. A Schematic representation of the steps of gene expression regulation,
from DNA over pre-RNA to mature RNA. Genetic variants that could potentially
affect different steps are shown in red, and RNA-Seq reads mapping to exons and
introns are indicated. B Number and percentage of genes with cis-QTLs (filled
bars) of tested genes (full bars) for different QTL types. C Location of top cis-QTLs

relative to their associated genes for different QTL types. The fractions of
QTLs upstream of and within genes are each significantly different between
QTL types (upstream: p = 1e−9, 1e−52, and 1e−21; within: p = 1e−6, 1e−34, and
1e−14 for comparisons between exQTLs and inQTLs, exQTLs and ex-inQTLs,
or inQTLs with ex-inQTLs, respectively, calculated using two-sided Fisher
exact test).
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for a given gene and for each type, were identical or if both were
assigned to the first conditional cis-QTL signals for both types and had
consistent effect directions (see Methods). This approach revealed
substantial sharing (for 5046 genes, including 2248 genes with shared
QTL types with identical top QTL variants; Supplementary Data 2).
Most sharing occurred between inQTLs and ex-inQTLs (referred to as
in&ex-inQTLs), observed for 2648 genes, corresponding to 52% of
genes with both such QTLs, followed by exQTLs and inQTLs
(ex&inQTLs), observed for 2267 genes, corresponding to 39% of genes
with both such QTLs (Fig. 2A). Shared exQTLs and ex-inQTLs (ex&ex-
inQTLs)were slightly rarer, observed for 1424 genes, corresponding to
28% of genes with such QTLs. 551 genes presented QTL signals shared
between all three QTL types (ex&in&ex-inQTLs; 12% of genes with the
threeQTL types). The direction of the QTL effects wasmostly identical
for shared ex&inQTLs, supporting a predominant effect on transcrip-
tional regulation for these (SupplementaryFig. 3A).Overall, combining
shared QTL signals, we identified 16,599 cis-QTL signals, of which 47%
derived from inQTLs or ex-inQTLs andwere not detected as top exQTL
signals (Fig. 2A). These relative amounts of sharing between cis-QTL
types were similar when using linkage disequilibrium (LD) or coloca-
lization analysis24 to evaluate sharing between QTL types (Supple-
mentary Fig. 3B).

In our study, effects shared between QTL types beyond top
QTLs—that is, between conditionally independent QTLs detectable
after regressing out any stronger masking QTL signals—were rela-
tively rare. Indeed, the majority of genes (76%, 69%, and 65% for
exQTLs, inQTLs, and ex-inQTLs, respectively) presented only one
(the top) QTL signal (Supplementary Fig. 3C; Supplementary
Data 4). Nevertheless, we found a small but significant bias towards
top ex-inQTL signals being more frequently shared with secondary
exQTL and inQTL signals (5.4% and 8.8%, respectively) than the
opposite (top exQTL or top inQTL signals shared with secondary
ex-inQTL signals: 3.5% and 6.7%; p < 0.05, Fisher’s exact test; Sup-
plementary Fig. 3D). This may indicate that post-transcriptional
effects on exon levels (detected by top ex-inQTLs) can bemasked by
other, stronger regulatory processes acting on exon levels, but these
cases are rare.

Interestingly,we alsodetected shared effects between top cis-QTL
signals of the same type but for different genes (Supplementary
Data 2). Sharing of top exQTLs (14.8% of all genes with exQTLs) and
inQTLs (12.6% of genes with inQTLs) was significantly more frequent
than between ex-inQTLs (7.4% of genes with ex-inQTLs; p < 1e−22,
Fisher’s exact test). This agrees with a prevalent transcriptional
co-regulation of neighbouring genes, as already reported25, while
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Fig. 2 | Sharing between top cis-QTL signals, and location within specific
genomic regions, overlap with other molecular QTLs, and with genes with
certain binding sites. A Venn diagram showing the sharing between different
types of cis-QTLs. In total, 16,599 independent top cis-QTL signals for 10,804 genes
were detected. B Enrichment within annotated genomic regions (represented as a
blue-red heatmap) for different types of cis-QTLs and shared cis-QTLs relative to
cis-QTLs not contained inor sharedwith that group of cis-QTLs. Asterisks indicate a

significant enrichment (*, p <0.05, **, p <0.001, ***, p <0.00001, two-sided Fisher’s
exact test). The overall overlap for all cis-QTLs with different genomic regions is
indicated in grayscale. cCRE: candidate cis-regulatory element, UTR: untranslated
region, CDS: coding sequence. C Similar as B, but for enrichment in overlap with
specific molecular QTLs identified for LCLs. D Similar as B, but for enrichment
within genes harbouring certain binding sites determined in LCLs, considering top
cis-QTLs located within genes.
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post-transcriptional regulation (detected by exon–intron ratios)
appears more gene-specific.

Different QTLs types and shared QTLs are enriched within
genomic regions linked to distinct gene regulatory processes
To understand in more detail which gene regulatory processes are
affected by different QTL types and shared QTLs, we analysed their
location within specific genomic regions and sites.

As a first indication of their regulatory function, we examined the
QTL locationwithin annotatedgenomic regions (Fig. 2B). Compared to
other QTL types, exQTLs were enriched in transcription regulatory
DNA elements, i.e. candidate cis-regulatory elements (cCREs) for B
lymphocytes, and in 5’ untranslated regions (UTRs) of the associated
genes. In contrast, ex-inQTLs were depleted in these regions and were
enriched in 3’UTRs, coding sequences (CDSs) and intronic regions.
inQTLs were enriched in intronic regions but depleted in exonic
regions. Shared ex&inQTLs showed enrichment in cCREs and 5’ UTRs,
but not in 3’UTRs. Shared ex&ex-inQTLs were generally enriched in
transcribed gene regions, particularly in 3’UTRs. Shared in&ex-inQTLs
were depleted in cCREs and 5’ UTRs and enriched in introns and 3’
UTRs. QTLs shared between all three types were enriched in introns
and 3’ UTRs.

Next, we analysed the overlap with specific molecular QTLs
identified previously for LCLs (Fig. 2C; see Methods). We found strong
preferential overlaps for exQTLs and shared ex&inQTLs with QTLs for
transcription factor (TF) binding, histone modifications and DNA
accessibility. In contrast, ex-inQTLs and shared in&ex-inQTLs were
depleted for overlaps with such QTLs and instead preferentially
overlapped with QTLs for splicing and 3’ polyadenylation. Shared
ex&ex-inQTLs and ex&in&ex-inQTLs also overlapped with splicing
QTLs and additionally with histone and chromatin QTLs, suggesting a
role of these shared QTLs in one or several of these processes.

Finally, we investigated the enrichment of groups of QTLs within
measured TF-binding sites and experimentally identified target genes
of post-transcriptionally regulatory RNA-binding proteins (RBPs),
AGO2, PABPC1 and ELAVL1, in LCLs, and predicted target genes of
microRNAs (miRNAs) highly expressed in LCLs (Fig. 2D). exQTLs and
shared ex&inQTLs showed strongest enrichment for TF-binding sites,
while ex-inQTLs and shared in&ex-inQTLs were depleted in these
regions. Instead, ex-inQTL and shared in&ex-inQTLs were enriched
within genes with RBP- and miRNA-binding sites.

In summary, the enrichment analysis of QTL groups within spe-
cific genomic regions indicates that QTLs for exon expression levels
are enriched for transcriptional effects, while ex-inQTLs rather repre-
sent effects on post-transcriptional processes. Shared QTLs seem to
further dissect the diverse effects of QTL types on gene regulatory
processes.

TFs have stronger trans-effects on exon levels, while RBPs and
miRNAs have stronger trans-effects on intron levels or exon-
intron ratios
Our enrichment analysis focussed on top cis-QTLs, which have a high
probability of being causal butmaynot always bedue to stronggenetic
correlation between neighbouring genetic variants leading to similarly
significant (sometimes indistinguishable) associations with the gene
expression measurements. To further investigate how the effects of
different gene regulatory processes are captured by the three QTL
types in our study, we investigated trans-effects—on genes located on
different chromosomes or at distances larger than 5 million base pairs
—of regulatory factors (Fig. 3A). As regulatory factors we considered
724 TFs and 698 RBPs with any type of cis-QTL association in our data
set, and 47 miRNAs with cis-QTLs previously identified in LCLs from
European individuals2. We identified trans-QTLs of all types (trans-
exQTL, trans-inQTL, and trans-ex-inQTL) for cis-QTLs of these reg-
ulatory factors, and detected 464 unique trans-QTL associations

between a regulatory factor and a potential target gene (219 for TFs,
193 for RBPs and 52 formiRNAs; Supplementary Data 5).While TFs had
larger proportions of trans-associations with exon and intron levels
(33% and 39%, respectively) than with their ratio (28%; Fig. 3B), RBPs
and miRNAs had higher proportions of trans-associations with intron
levels (50% and 43%, respectively) and exon-intron-ratios (30% and
37%, respectively) than with exon levels (20% each). Trans-exQTL
associations were significantly more frequent for TFs than for RBPs,
while trans-inQTL associations were significantly more frequent for
RBPs than for TFs. Notably, the proportions of different types of trans-
QTL associations for TFs and RBPs were similar when considering only
cis-QTLs of any one type (Supplementary Fig. 4A), indicating that all
types of cis-QTLs of regulatory factors enable similar functional trans-
effects.

As sequence similarity between the cis-region around a QTL and
the trans-gene can lead to read misalignments and to false positive
trans-associations, we confirmed that our observations (based on
uniquely mapping RNA-Seq reads) hold when considering only RNA-
Seq reads overlapping genomic regions annotatedwith unique 36-mer
mappability (see Methods; Supplementary Fig. 4B). While the
observed differences in the proportions of trans-QTL association types
between regulatory factors remained significant (p <0.05, Fisher’s
exact test) when requiring a moderate read overlap, the differences
did not pass the significance threshold with a stringent read selection,
likely due to the strongly reduced number of RNA-Seq reads leading to
less accurate gene expression quantification and fewer trans-
associations.

Comparing the strengths of significant correlations between
genotype and gene expression measurements across trans-QTL types,
we found that cis-QTLs of TFs had generally stronger correlations
with exon and intron levels of trans-genes than with the exon–intron
ratio. In contrast, miRNAs had stronger correlations with exon–intron-
ratios of trans-genes than with exon levels. RBPs had similarly strong
correlations with all gene expression measurements of trans-
genes (Fig. 3C).

Examples for trans-QTL associations with cis-regulated RBPs are
between LSM11 (involved in histone mRNA 3’-end processing) and
exon or intron levels of three histone genes, between SF3A2 (a subunit
of the splicing factor complex) and intron levels of HS2ST1, and
between TENT5A (implicated in mRNA stabilisation) and exon-intron
ratios of UBAC2 (Fig. 3D and Supplementary Fig. 4C). Notably, genetic
trans-associations were mostly not detectable as significant correla-
tions between the gene expression measurements of cis- and trans-
regulated genes. The miRNAs with most trans-associations were miR-
550a,miR-3667 andmiR-4513 (7 associations each), which had 9 trans-
associations with exon-intron-ratios and intron levels each, and 3 with
exon levels of associated genes. Of these 5, 4, and 0 genes had pre-
dicted miRNA target sites in their 3’ UTR, respectively26.

In summary, the trans-association analysis confirms that effects
on post-transcriptional regulatory processes are better detectable at
exon–intron-ratios, while transcriptional regulation is better detect-
able throughexon levels. Intron levels appeared sensitive to both types
of regulation.

inQTLs and ex-inQTLs substantially increase the colocalization
with GWAS variants
Having developed a good understanding of the regulatory processes
affected by different QTL types and shared QTLs, we next investigated
if combining the information from the three QTL types might aid the
understanding of the functional impact of GWAS variants.

We first identified QTLs that colocalized with GWAS variants. We
used the regulatory trait concordance (RTC) method8, which tests for
co-localisation between variants within the same genomic region sur-
rounded by recombination hotspots (see Methods). Of the tested top
cis-QTLs, the percentage that colocalized with GWAS variants was
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similar for different QTL types (31–33%), supporting their similar
functional relevance for human traits (Fig. 4A). Adding inQTLs and ex-
inQTLs increased the number of GWAS variants colocalizingwithQTLs
from 3247 for exQTLs (18.4% of tested GWAS variants) to 5552 (26.3%
of tested GWAS variants) for all QTL types (Fig. 4B). Thus, the number
of colocalizing GWAS variants increased by 71% when considering all
QTL types. As an alternative to the RTC method, we defined co-
localisation based on strong LD (r2 > 0.8), allowing us to evaluate
almost all variants. This confirmed similar fractions of co-localising
QTLs for different QTL types (20–23% of tested top cis-QTLs; Sup-
plementary Fig. 5A), and a substantial increase in the number of co-
localisingGWASvariants, by 55%,when considering allQTL types (6657
or 12.5% of tested GWAS variants) instead of only exQTLs (4288 or 8.1%
of tested GWAS variants; Supplementary Fig. 5B).

For 78 GWAS traits with at least 25 colocalizing variants based on
RTC, colocalization increased to 27.5% of tested GWAS variants, on
average per trait, (Fig. 4C and Supplementary Fig. 6A) from 16.3% for
colocalization with exQTLs only. Among GWAS traits with a large
amount of colocalization were skin-related (tan response) and lung
function (FEV1) traits, while traits with a low colocalization included
cholesterol, apolipoprotein, alkaline phosphatase, and liver protein
traits. GWAS traits with a relatively large colocalization with exQTLs
included testosterone, blood cell traits (eosinophil count and cor-
puscular haemoglobin), cognitive and neurological traits (cognitive
and maths ability, intelligence, multiple sclerosis), and body fat, while
GWAS traits with relatively large colocalization with inQTLs or
ex-inQTLs (and low colocalization with exQTLs) included lung- and
heart-related traits (FEV1 and PR interval) and glycated haemoglobin.
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detected trans-QTL associations of different types for transcription factors (TF),
RNA-binding proteins (RBP), and miRNAs. The numbers of trans-QTL associations
are indicated at the bottom of each bar. P values are calculated using a two-sided
Fisher’s exact test. C Boxplots of absolute correlation coefficients (comparable to
effect sizes) for the significant trans-QTL associations of different types from B.
Boxes indicate the interquartile range of the data (second and third quartile) with a
line at the median. Whiskers extend to the farthest data point lying within 1.5× the

interquartile range from thebox. P values are calculatedusing a two-sidedRanksum
test.D Examples for cis-regulated RBPs, SF3A2 and TENT5A, associated in trans with
HS2ST1 and UBAC2, respectively. Shown are scatter plots of the RBP’s normalised
exon levels (x-axis) and the normalised exon levels (left panels), intron levels
(middle panels) and their ratio (right panels) of the trans-associated genes (y-axis).
Further information on the QTL variant and the correlation coefficients and nom-
inal p values of the trans-associations, determined by QTLtools39, are indicated on
the right. Pearson correlation coefficients between the expression levels/ratios of
the RBPs and their trans-associated genes are indicated with p values inside each
panel. Circles of different colours represent individuals with different genotypes,
and coloured diamonds indicate the median values for individuals with that
genotype.
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Many GWAS variants (2201 or 39.6%) colocalized with several QTL
types (Supplementary Fig. 6A), potentially providing valuable infor-
mation on the type of gene regulatory process contributing to a
complex trait.

Overall, including inQTLs and ex-inQTLs increased the number of
colocalizations with GWAS traits substantially.

Dissecting the gene regulatory processes underlying GWAS
associations
Next, we examined if the quantified cis-effects on exon and intron
levels and exon–intron ratios of QTLs colocalizing with GWAS variants
might help elucidate the gene regulatory mechanisms underlying
GWAS associations.We focussed on 3223 top cis-QTLs that colocalized
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with GWAS variants and for which all three types of cis-effects on the
target gene’s expression measures were quantified, including at least
one significant cis-QTL association. After normalising absolute cis-
effects between QTL types and across variants, we performed hier-
archical clustering with these “relative” cis-effects and obtained six
clusters with distinct patterns of cis-effects (Fig. 4D). Most variants
were in cluster 6, strongly affecting exon levels (37.2%), followed by
cluster 3 (27.7%), affecting intron levels and exon-intron ratios, cluster
5 (12.8%), affecting exon and intron levels but not their ratios, and
cluster 1 (12.2%), affecting exon levels and exon-intron ratios. Some
GWAS traits colocalized with QTLs that were enriched for QTLs from a
certain cluster, e.g. lymphocyte and neutrophil count traits for QTLs in
cluster 2 (affecting exon–intron ratios) or haemoglobin level and
metabolic biomarker traits for QTLs in cluster 6 (affecting exon levels;
Supplementary Fig. 6B).

The results presented before suggest that variants in clusters 5
and6 likely affect transcriptional processes, while variants in clusters 1,
2 and 3, with comparably strong effects on exon–intron-ratios, likely
affect splicing and other post-transcriptional processes. To examine
this hypothesis, we analysed the locations of the QTLs in each cluster
and the structural properties of their associated genes. Indeed, var-
iants in cluster 6 were enriched in promoter-like elements and gen-
erally upstream of genes (Fig. 4E). Variants in cluster 5 tended to be
upstream and at the beginnings of genes andwere depleted in 3’UTRs.
In contrast, variants in clusters 1–3 were depleted in promoters or
upstream of genes, but were, in general, enriched within the tran-
scribed gene regions. Finally, we examined the structural properties of
the genes regulated by cis-QTLs indifferent clusters. Variants in cluster
1 were associated with genes with significantly more exons per anno-
tated transcript, potentially indicating a more complex RNA proces-
sing for these genes, compared to genes associated with QTLs
belonging to other clusters. Genes regulated by variants in cluster 2
had significantly longer 3’UTRs, potentially indicating that these genes
are under more extensive post-transcriptional regulation. Thus, the
analysis of QTL location and associated genes’ structural properties
supports the hypothesis that variants in clusters 5 and 6 likely affect
transcriptional processes, while variants in clusters 1 to 3 likely affect
splicing and post-transcriptional processes.

Altogether, combining the information from different QTL types
improves the understanding of the regulatory processes underlying
GWAS associations.

Examples for genetic effects on post-transcriptional and tran-
scriptional gene regulation with relevance for complex traits
An example for a cis-QTL likely affecting co- or post-transcriptional
gene regulation and colocalizing with a GWAS trait is, from cluster 1,
rs2711977 (Fig. 5A), which is associated with exon levels and exon-
intron-ratios of TMEM156, a transmembrane protein, and colocalizes
with GWAS variants for monocyte count. TMEM156 expression is also
affected by an inQTL, which is not sharedwith the twoother QTL types
and did not colocalize with variants of this GWAS trait. While the

colocalizing top cis-QTL is upstream of the gene, another QTL
(rs2254075), sharing the exQTL and ex-inQTL signals with the top cis-
QTL, is located in the second exon, a 150 nucleotide long exon that is
contained only in non-coding transcript annotations of TMEM156.
Only individuals homozygous for the alternative allele express this
exon, and they also exhibit lower expression of all other exons of that
gene compared to individuals homozygous for the reference allele. It is
possible that inclusion of this exon, which contains stop codons in all
reading frames, triggers nonsense-mediated decay of that transcript,
leading to its reduced overall expression. Alternatively, the two QTLs
(upstream and in the second exon) together lead to simultaneous
changes in splicing of that exon and the overall transcription rate.
Another example is rs2278670, a cis-QTL from cluster 2 (Fig. 5B). It is
associated with the exon-intron-ratio of SMAD3, a transcription factor
functioning in the transforming growth factor-beta (TGF-β) signalling
pathway, and colocalizeswithGWASvariants for the lung function trait
FVC. The top cis-QTLs for exon and intron levels do not colocalize with
the GWAS trait variants. The top cis-ex-inQTL is located in the last
exon, which contains the ~5000 nucleotides long 3’UTR. Although the
top cis-ex-inQTL is not directly located within a predicted miRNA
binding site, it is still possible that this QTL, or seven other cis-ex-
inQTLs sharing the QTL effect and also located in the 3’UTR, interfere
with miRNA targeting in their vicinity, or with binding of other post-
transcriptional regulatory factors to the 3’UTR. An example for a cis-
QTL from cluster 3 is rs60252802 (Fig. 5C). This cis-QTL is associated
with intron level and exon-intron-ratio of SDF4, a calcium-binding
protein involved in regulating calcium-dependent cellular activities27.
It is located in the first intron of SDF4 and colocalizes with GWAS
variants for systemic lupus erythematosus, an autoimmune disease
affectingmultipleorgans. Inspecting theRNA-Seq readdistributions of
homozygous individuals with reference and alternative genotypes
indicates that this cis-QTL appears to increase the probability for mis-
splicing, through introducing an alternative 5’ splice site, leading to an
extension of the first exon (which is part of the 5’ UTR) by almost 400
nucleotides.

Examples for cis-QTLs likely modulating transcriptional gene
regulation and mediating a complex trait is rs1156242 form cluster 4
(Fig. 5D), associated with intron levels of FAR2, encoding a fatty acid
reductase enzyme, and colocalizing with a GWAS variant for
interleukin-27 levels. It is located in an intron of a downstreamgene on
the opposite strand, ERGIC2, whose exon and intron levels are both
also affected by this cis-QTL, indicating a likely co-transcriptional
regulation of these neighbouring genes. Other examples are rs914615
and rs370545 from cluster 5 (Fig. 5E), associated with exon and intron
levels, respectively, of GBAP1, a pseudogene potentially regulating the
expression of its related coding gene beta-glucosylceramidase 1
through sponging of miRNAs28, and colocalizing with GWAS variants
for mean corpuscular haemoglobin concentration, and rs72844546
from cluster 6 (Fig. 5F), associated with exon levels of SUMO2, a small
ubiquitin-like protein modifier, and colocalizing with GWAS variants
for sex hormonebinding globulin levels. Both of these top cis-QTLs are

Fig. 4 | Colocalization between GWAS variants and top cis-QTLs of
different types. A Number of top cis-QTLs colocalizing with GWAS variants (filled
bars) of tested QTLs (full bars) for different QTL types.BNumber of GWAS variants
colocalizing with top cis-QTLs (filled bars) of tested GWAS variants (full bars) for
colocalizationwith exQTL and all QTL types. P valuewas calculated using two-sided
Fisher’s exact test. C Percentage of colocalizing GWAS variants (x-axis) and log2
ratio ofGWASvariants colocalizingwith exQTL to those colocalizingwith inQTLsor
ex-inQTLs (y-axis), for 78 GWAS traits with at least 25 colocalizations. GWAS traits
with extreme values are labelled, and the number of colocalizing GWAS variants is
indicated in parenthesis. Black lines indicate the mean ± standard deviation for
each axis. D Clustering of normalised cis-QTL effects for 3237 QTLs colocalizing
with GWAS trait variants and with measured effects for all types of QTL-
associations. Six distinct clusters are labelled. E Enrichment of QTLs upstream,

within or downstream of associated genes (left panel) and enrichment within
annotated genomic regions (right panel) for cis-QTLs of each cluster compared to
cis-QTLs of other clusters. Intron-edges include 100bps at intron starts and ends. *,
p <0.05, **, p <0.01, ***, p <0.0001, calculated using two-sided Fisher’s exact test.
FAveragenumber of exons per annotated transcript (left panel) and average 3’UTR
length (right panel) of genes associated with top cis-QTLs in different clusters
(indicated by colour code from D). Boxes indicate the interquartile range of the
data (second and third quartile) with a line at the median. Whiskers extend to the
farthest data point lying within 1.5× the interquartile range from the box. *,
p =0.011, **, p =0.0014, calculated using two-sided Ranksum test compared to
geneswith cis-QTLs in other clusters. Thenumber of genes included in eachbox are
n = 290, 174, 671, 87, 297 and 962.
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located in introns of downstream genes on the same strand, JPT1 and
THBS3, respectively. A difference between these two examples is that
intron levels remain unaffected for SUMO2 (cluster 6), while they are
similarly affected as exon levels for GBAP1 (cluster 5). This could
indicate that splicing is not rate-limiting for mature RNA levels for
cluster 6, while the splicing rate limits the transcriptional regulation of
mature RNA levels for cis-QTLs in cluster 5.

Further examples for QTLs from each cluster are shown in Sup-
plementary Fig. 7.

Discussion
In this study we showed that combining traditional eQTL analysis
based on exon levels with the analysis of QTLs for intron levels and
exon–intron-ratios increases the number of genetic variants
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associating with gene expression measurements and expands the
understanding of their effects on gene expression regulatory
processes.

We found that themost significant exQTLs (which are identical to
the traditionally analysed eQTLs) often affect transcriptional gene
regulation, which, being a pivotal step in gene regulation, has
accordingly large effects on gene expression. Smaller gene expression
changes by non-transcriptional processes are less detectable by tra-
ditional eQTLs. To more comprehensively study the impact of genetic
variants on gene expression, the analysis of conditionally independent
eQTLs has been proposed1,29, which are detected after stepwise
regressing out from the exon expression levels stronger, masking
eQTL effects. Conditional eQTLs are expected to have the ability to
capture multiple independent genetic effects on gene expression,
potentially including subtle effects on gene expression. Our analysis
showed that conditional exQTLs do not generally correspond to the
gene regulatory effects detected by inQTLs or ex-inQTLs (Supple-
mentary Fig. 3), and thus cannot replace them. This indicates that
taking into account intronic RNA-Seq reads provides information on
gene expression regulation that is not accessible based on exonic
reads only.

Previously, the colocalization of GWAS variants with eQTLs was
found tobe limited (around21%per trait for eQTLs from54 tissues)9. In
our data set, the colocalization of tested GWAS variants with tradi-
tional eQTLs fromLCLswasonaverage 16.3%per trait (for traitswith 25
ormorecolocalizing variants). Adding inQTLs andex-inQTLs increased
the colocalization to 27.5% of tested GWAS variants per trait, thus by
69%. Integrative analysis of the effects of all QTL types suggested that
50% of colocalizing QTLs likely function in transcription regulation
(QTLs in clusters 5 and 6 of Fig. 4D), while a similarly large fraction of
QTLs (46.2%) had strong effects on exon-intron ratios (clusters 1, 2 and
3), indicating a likely function in post-transcriptional regulation. Thus,
the contributions of transcriptional and post-transcriptional processes
to complex traits appear to be similar, indicating that both types of
regulation are equally functionally relevant, despite smaller effects by
post-transcriptional regulation on exon levels. Indeed, QTLswith small
effects on exon expression levels of genes can have important func-
tional consequences, such as through promoting exon skipping or
inclusion, or alternative splice site usage (Fig. 5 and Supplementary
Fig. 7)30.

In agreement with previous results on fold changes in exon and
intron expression levels between conditions, and the difference
between these changes15, we found that the most complementary
effects were between those of exQTLs and ex-inQTLs, as indicated by
their enrichment in either transcription regulatory sites or regionswith
post-transcriptional regulatory sites (e.g. 3’ UTRs or genes with target
sites of RBPs andmiRNAs), respectively. ex-inQTLs were also enriched
for splicing QTLs, but only 18.8% of ex-inQTLs were in strong LD with
splicing QTLs, suggesting that splicing is a considerable but not the
primary gene regulatory process captured by ex-inQTLs. Compared to
exQTLs and ex-inQTLs, inQTLs did not show strong preferences for
either of these regulatory regions, and trans-effects on intron levels

weredetectable from transcription andpost-transcriptional regulatory
factors. To advance the understanding of potential functional roles of
some introns, analysing QTLs for levels of single introns might be
informative.

The sharing of top cis-QTLs indicated a sizable number of QTLs
with shared effects on all three gene expression measures (Fig. 2).
These QTLs had enriched overlaps with multiple specific molecular
QTLs, in particular those modulating transcription regulatory pro-
cesses and those affecting RNA processing, potentially indicating co-
regulated effects on transcription and RNA splicing or polyadenyla-
tion, which has been described before31.

Our approach to incorporate intronic reads identified thousands
of genetic variants with effects on gene regulation. Further methodo-
logical improvements may be possible to enhance the sensitivity of
detecting QTLs, such as explicitly modelling the unequal effects of
polyA-selection of the sequenced RNA on exon and intron levels, or
refining the gene regulatory processes affected by taking into account
theQTL effect directions. To allowother researchers to useand further
investigate the QTLs identified in this study with LCLs from 901 indi-
viduals of European descent, we provide them as Supplementary Data.

We have used data from LCLs in our study, and although LCLs
have been widely used to study genetic effects on gene regulation in
the past2,11–13,32, their gene expression regulation may not be repre-
sentative of the gene expression regulation happening in other cell-
types or cells in tissues. To address the question whether our findings
generalise beyond LCLs, we repeated our analysis on a small fibroblast
data set (78 samples from Delaneau et al. 32) and obtained comparable
results as for LCLs (Supplementary Fig. 8). In particular, the locations
relative to their associated genes for different cis-QTL types were
similar to LCLs, and a sizable fraction of 42% of top cis-QTLs was not
sharedwith top cis-exQTLs.Also, forfibroblasts, theproportions of cis-
QTLs colocalizing with GWAS variants were similar for different QTL
types, indicating their similar functional relevance, and the number of
colocalizing GWAS variants increased considerably, by 38%, when
considering all three QTL types instead of only exQTLs. This suggests
that inQTLs and ex-inQTLs will enable the discovery of additional
genetic effects on gene regulation more in general.

We propose the presented approach to be routinely integrated
into eQTL analyses, as it is easy to implement, uses existing RNA-Seq
data, and enables an expanded view of genetic effects on gene
regulation.

Methods
Quantification of gene expression in the CoLaus and Geuvadis
data sets
The CoLaus data set23 was available in-house, while the Geuvadis data
set2 was downloaded from ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/experiments/E-GEUV-3/).

We aligned paired-end unstranded RNA-Seq reads from both data
sets to the human genome (build GRCh38) using STAR 2.733 with
transcript annotations fromGENCODE34 (version 34 downloaded from
www.gencodegenes.org). We counted separately RNA-Seq reads that

Fig. 5 | Examples for cis-QTLs from different clusters colocalizing with GWAS
variants. In each subfigure, the top three panels show the -log10 nominal p-values
(<0.01), in a region of 500 kb around the top cis-QTL (x-axis), for cis-QTL associa-
tions with exon levels (dark blue), intron levels (blue) and exon–intron-ratios
(orange), and the fourth panel shows the −log10 p-values for the GWAS trait
associations (red) in the same region. The rsIDof the top cis-QTL(s) are indicated (in
black, if colocalized with the GWAS trait variants, or in grey if not). The p value of
the RTC (regulatory trait concordance) colocalization analysis is indicated inside
each cis-QTLpanel, in case colocalizationwas testable, i.e. QTLs andGWAS variants
are within the same genomic region between recombination hotspots. The bottom
panel shows examples for RNA-Seq read distributions at the associated gene from
two homozygous individuals, one with reference (Ref/Ref; blue) and one with

alternative (Alt/Alt; red) genotype, for the top cis-QTL variant. The positions of the
top cis-QTL as well as QTLs sharing the cis-QTL signal are indicated with thick or
thin lines, respectively. A A cis-QTL from cluster 1, associated with TMEM156 and
colocalizing with a GWAS variant for monocyte count. B A cis-QTL from cluster 2,
associatedwith SMAD3 and colocalizing with a GWAS variant for FVC, a trait related
to lung function. C A cis-QTL from cluster 3, associated with SDF4 and colocalizing
with a GWAS variant for systemic lupus erythematosus.D A cis-QTL from cluster 4,
associatedwith FAR2 and colocalizingwith a GWAS variant for interleukin-27 levels.
E A cis-QTL from cluster 5, associated with GBAP1 and colocalizing with a GWAS
variant for mean corpuscular haemoglobin concentration. F A cis-QTL from cluster
6, associated with SUMO2 and colocalizing with a GWAS variant for sex hormone
binding globulin levels.
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mappeduniquely to annotated exons and introns of genesusinghtseq-
count35. We considered as intronic all genic regions that were not
annotated as exons in any of the gene’s annotated transcripts. We
shrank intron annotations additionally by 10 nucleotides at exon-
intron boundaries to account for inaccuracies in splice site annota-
tions, as done by Gaidatzis et al. 15. As the RNA-Seq data were
unstranded, we further created custom gene annotation files which
contained only exonic or intronic parts of genes that did not overlap
with any other annotated gene using bedtools36. Our exon and intron
gene annotation files aswell as the code to generate them are available
as Supplementary Data 7. We counted as exonic the reads fully con-
tained within the custom exon annotations (-m intersection-strict) to
enrich for reads frommature RNAs.We considered as intronic all reads
that overlapped our custom intron annotations (-m union), reasoning
that any overlap with an intron indicates its presence. For QTL asso-
ciations, we only tested genes with a median number of >10 mapped
reads across individuals, whether for exonic reads (in case of exQTLs),
intronic reads (in case of inQTLs) or for both (in case of ex-inQTLs).We
quantified gene expression as RPKM (reads per kilobase per million
reads) separately for exonic and intronic reads, using gene lengths
calculated from the respective modified gene annotation files. We
added to the RPKM levels a pseudo count of 0.1 and log2-transformed
them. We calculated exon–intron ratios as the difference between the
log2 exon and log2 intron RPKM levels.

Mapping of cis-QTLs
We restricted our analysis to single nucleotide variants (SNVs) with a
minor allele frequency >1% and aminor allele count >10. SNV positions
were lifted from hg19 over to hg38 using picard-tools LiftoverVcf
(https://broadinstitute.github.io/picard/).We restricted our analysis to
European individuals or those with European origin, and excluded
89 samples from the Geuvadis data set that were from African indivi-
duals (fromYoruba inNigeria; labelledYRI). For the combineddata set,
we merged genotypes from the CoLaus and Geuvadis data sets using
vcf-merge37.

We used the genotypes’ first three principal components (PCs) as
covariates and the gene expression’s PCs to account for technical and
other co-variabilities in the RNA-Seq data, as suggested before38,39. We
optimised the number of PCs used as covariates by maximising the
number of genes with significant (FDR < 5%) cis-QTLs, i.e., the first 70
PCs for exQTLs, the first 50 PCs for inQTLs, and the first 40 PCs for ex-
inQTLs. Using that many PCs outperformed using age, sex, or the
fraction of intronic reads explicitly as covariates. Notably, the number
of PCs that was optimal was the same for all data sets (CoLaus, Geu-
vadis without YRI, and the combined data set of both). For each gene,
we tested all variants locatedwithin onemillion nucleotides (upstream
and downstream) of annotated gene starts.

We mapped cis-QTL with QTLtools 1.339 to obtain (1) the top cis-
QTL association for each gene after empirically adjusting p values
using 1000permutations, (2) all nominally significant associations, and
(3) conditional cis-QTL associations after stepwise regressing out
stronger, masking cis-QTL signals from the gene expression
measurements.

Sharing of cis-QTLs
We defined two cis-QTL effects as shared when the top cis-QTL posi-
tions were identical or when both top QTLs were within the first con-
ditionalQTL signalof theotherwith consistent effect directions (either
concordant or discordant effect directions for both QTL association
types). Thefirst conditionalQTL signal is composed of genetic variants
that have similar, but less significant, effects on gene expression
measures as the top cis-QTL (Supplementary Data 3). We used
QTLtools39 to identify the genetic variants belonging to first condi-
tional cis-QTL signals and to identify independent conditional QTL
signals that may be masked by stronger cis-QTL effects. These are

detected after stepwise regressing out the effects from stronger QTL
signals from the gene expression measurements. We used the same
definition of sharing to investigate sharing between conditional cis-
QTL signals of ranks 1–5 (identified after stepwise regressing out up to
four stronger cis-QTLs signals), between top cis-QTLs of the same type
but for different genes (to investigate co-regulation of neighbouring
genes), and between top cis-QTLs of the same type and for the same
gene, but identified in different data sets (to investigate the reprodu-
cibility of top cis-QTL signals in the CoLaus andGeuvadis (without YRI)
data sets).

We also quantified sharing between cis-QTL types based on three
other approaches: (1) linkage disequilibrium (LD), requiring r2 > 0.8
betweenQTL variants (using vcftools37 to calculate LDbetween genetic
variants); (2) colocalization analysis using coloc24, considering variants
assigned to the first conditional QTL signals of each type and requiring
the posterior probability for colocalized association (PP4) > 0.8; (3)
Storey’s pi1 statistics, i.e. q values40 of the nominal p values of cis-QTL
association of one type for variants identified as top cis-QTLs for
another cis-QTL type, and requiring q value < 0.05 for both directions
of sharing between the two QTL types.

Overlap with annotated genomic regions, specific molecular
QTLs and genes with regulatory sites
Genomic regions of exons, introns, coding regions, 5’ UTRs, and 3’
UTRs were taken from GENCODE gene annotations (version 34)34. We
downloaded from ENCODE41 annotations of candidate cis-regulatory
elements (cCRE) identified through patterns of chromatin modifica-
tions andDNA binding factors and retained only cCREs identified for B
lymphocyte cell lines. We considered the following specific molecular
QTLs previously identified in LCLs: TF-binding QTLs10, histone mod-
ification and DNase hypersensitivity QTLs11, splicing QTLs1, 3’ poly-
adenylation QTLs13, and protein level QTLs12. QTL positions were lifted
over to hg38 using the liftOver tool and liftOver chains from UCSC.
We considered the following regulatory sites experimentally deter-
mined in LCLs: TF binding clusters identified using ChIP-Seq (track:
TF Clusters downloaded from UCSC Table Browser: https://genome.
ucsc.edu/cgi-bin/hgTables), AGO2 binding sites identified using iCLIP-
Seq42, PABPC1 and ELAVL1 bound RNAs identified using RIP-Seq
(downloaded from https://www.ncbi.nlm.nih.gov/geo/; accession
codes: GSM944519 and GSM944520), plus predicted miRNA target
sites from TargetScan43 for highly expressed miRNAs in LCLs accord-
ing to miRNA quantifications from ENCODE.

To compare the overlap of QTLs with the above-described geno-
mic sites between groups of QTLs (for different QTL types and shared
QTLs) we calculated for each group the enrichment as the ratio
between the proportion of QTLs of that group overlapping a genomic
site and the proportion of QTLs that overlap among QTLs not in that
group (and not shared with them). The enrichment within genomic
regions for QTLs in each cluster is calculated as above by comparing
withQTLs in other clusters. For the overlapwith different gene regions
(Figs. 2B and 4F), only overlaps of QTLs with the associated gene’s
regions were considered.

Trans-QTL associations for cis-QTLs of TFs, RBPs, and miRNAs
We determined nominal trans-associations using QTLtools39 for cis-
QTLs of transcription factors (TFs), RNA-binding proteins (RBPs) and
miRNAs. We took TFs from44 and RBPs from45. We tested all cis-QTLs
within the first conditional QTL signal of each regulatory factor for
trans-associations with exon levels (trans-exQTLs), intron levels (trans-
inQTLs), and exon–intron-ratios (trans-ex-inQTLs) of genes located on
different chromosomes or at distances of more than five million
nucleotides from the cis-QTL. Cis-QTLs for miRNA expression levels
obtained in LCLs (Geuvadis data set without African, YRI, samples)
were taken from2. To account for multiple tests, we applied a nominal
Bonferroni threshold46.We considered a trans-association significant if
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the nominal p-value was smaller than 0.05/((number of tested TFs and
RBPs, or miRNAs) × (number of PCs explaining 95% of the variance in
gene expression between individuals)). The number of PCs was 593 for
exon levels, 707 for intron levels, and 733 for exon–intron ratios. In
order to compare the proportions of different trans-QTL associations
across different regulatory factors, we only considered trans-
associations of genes for which all three trans-QTL types were testa-
ble. We discarded trans-associations for genes that had a pseudogene
or were a pseudogene of a coding gene located within one million
nucleotides of the tested QTLs. Although we did not count RNA-Seq
reads aligning to more than one genomic position, sequence simila-
rities between the pseudogene and the gene in the cis-window around
the QTL could still lead to mis-aligned reads.

We further evaluated a potential bias in the trans-QTL detection
caused by mis-aligned reads, due to sequence similarity between the
cis-region and the trans-gene, by considering only RNA-Seq read pairs
that overlapped regions annotated with 36-mer mappability = 1
(downloaded from https://www.encodeproject.org/references/
ENCSR821KQV/). First, we required an overlap of at least half of one
of the two reads resulting in 81% of exonic and 86% of intronic reads to
be considered, and second, we required a complete overlap of at least
one of the two readswith a uniquemappability region, resulting in 61%
of exonic and 78% of intronic to be considered. Trans-QTL identifica-
tion was done as described above, considering genes with a median
number of >10 exonic and intronic reads across samples.

Colocalization of cis-QTLs with GWAS variants
We downloaded GWAS associations from different studies from the
GWAS catalogue (https://www.ebi.ac.uk/gwas/; version 1.0)47. We
considered GWAS variants with an association p-value < 1e−8, from
studies carried out with European individuals or replicated with Eur-
opean individuals. This resulted in 53,438 unique GWAS variants, of
which 49,711 variants were also genotyped in the CoLaus/Geuvadis
data set. We performed the colocalization analysis between GWAS
variants and top cis-QTLs using the regulatory trait concordance (RTC)
method8 implemented in QTLtools 1.339, with 160 times sampling from
simulated data. A colocalization was significant if the p-value of the
RTC score was below 0.05.

As an alternative approach to the RTC method, we quantified
colocalization between cis-QTLs and GWAS variants based on strong
LD (r2 > 0.8), considering all genotyped variants within 5 million base
pairs from each other.

Clustering of colocalizing cis-QTLs based on relative effects
To make QTL effects comparable between QTL types and across
variants, we first normalised the absolute effect sizes of each variant
to its maximum among the three types of cis-effects. Then, we
z-scored the normalised absolute effect sizes across all variants
separately for each of the three types of QTL effects. Hierarchical
clustering of relative effect sizes was performed with scipy.clus-
ter.hierarchy.linkage in Python3.648 using the Euclidean distance
metrics and the weighted method for calculating distances between
clusters.

Analysis of fibroblast data from Delaneau et al. 32

The fibroblast data was available through the Gencord data access
committee and downloaded at the European Genome-Phenome
Archive (www.ebi.ac.uk/ega; Study ID EGAS00001003485). Geno-
types were filtered for biallelic single-nucleotide variants with minor
allele frequency >1% among the 78 samples. RNA-Seq read counting
from downloaded bamfiles, and gene expression quantification for
fibroblasts was done exactly as for LCLs. Cis-QTL mapping was done
with QTLtools using as covariates the first genotype principal com-
ponent, 15 gene expression principal components for exQTLs and
inQTLs, and 10 gene expression ratio principal components for

ex-inQTLs. Sharing between cis-QTL signals of different types and
colocalization between cis-QTLs andGWAS variants was defined based
on LD (r2 > 0.8), considering variants within 5 million base pairs of
each other.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All exQTLs, inQTLs and ex-inQTLs (associated with exon and intron
expression levels of genes and their ratio, respectively) identified in
this study are available as Supplementary Data. Genotypes and RNA-
Seq data of the Geuvadis data set are publicly available at ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-3/). The
CoLaus data set is under controlled access and available for
researchers through a data transfer agreement (contact: sven.berg-
mann@unil.ch). The fibroblast data is available through the Gencord
data access committee at the European Genome-Phenome Archive
(www.ebi.ac.uk/ega; Study ID EGAS00001003485). Gene annotations
(genome build GRCh38) were downloaded from GENCODE (version
34, www.gencodegenes.org). Annotations of candidate cis-regulatory
elements (cCRE) were downloaded from ENCODE. Specific molecular
QTLs previously identified in LCLs were taken from the supplemental
information of the respective publication for TF-binding QTLs10, his-
tonemodification andDNase hypersensitivity QTLs11, splicing QTLs1, 3’
polyadenylation QTLs13, and protein level QTLs12. liftOver chains (from
hg19 to hg38) were downloaded from UCSC. Experimentally deter-
mined regulatory sites in LCLs were TF binding clusters (track: TF
Clusters downloaded from UCSC Table Browser: https://genome.ucsc.
edu/cgi-bin/hgTables), AGO2 binding sites42, PABPC1 and ELAVL1
bound RNAs (downloaded from https://www.ncbi.nlm.nih.gov/geo/;
accession codes: GSM944519 and GSM944520). Predicted miRNA
target sites were downloaded fromTargetScan43 (www.targetscan.org/
vert_80/). miRNA expression levels in LCLs were downloaded from
ENCODE. A list of TFs was taken from44 and of RBPs from45. Cis-QTLs
for miRNA expression levels were taken from2. 36-mer mappability
regions were downloaded from https://www.encodeproject.org/
references/ENCSR821KQV/. GWAS associations from different studies
were downloaded from the GWAS catalogue (https://www.ebi.ac.uk/
gwas/; version 1.0)47.
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