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tauFisher predicts circadian time from a
single sample of bulk and single-cell
pseudobulk transcriptomic data

Junyan Duan 1,2,12, Michelle N. Ngo 1,2,12, Satya Swaroop Karri 3,
Lam C. Tsoi4,5,6,7, Johann E. Gudjonsson 4,7, Babak Shahbaba 1,8 ,
John Lowengrub 1,9,10 & Bogi Andersen 1,3,11

As the circadian clock regulates fundamental biological processes, disrupted
clocks are often observed in patients and diseased tissues. Determining the
circadian time of the patient or the tissue of focus is essential in circadian
medicine and research. Here we present tauFisher, a computational pipeline
that accurately predicts circadian time from a single transcriptomic sample by
finding correlations between rhythmic genes within the sample. We demon-
strate tauFisher’s performance in adding timestamps to both bulk and single-
cell transcriptomic samples collected from multiple tissue types and experi-
mental settings. Application of tauFisher at a cell-type level in a single-cell
RNAseq dataset collected from mouse dermal skin implies that greater circa-
dian phase heterogeneitymay explain thedampened rhythmof collective core
clock gene expression in dermal immune cells compared todermalfibroblasts.
Given its robustness and generalizability across assay platforms, experimental
setups, and tissue types, as well as its potential application in single-cell
RNAseq data analysis, tauFisher is a promising tool that facilitates circadian
medicine and research.

Organisms have evolved intrinsic circadian clocks that help them
anticipate and adjust to environmental changes caused by the 24-
hour rotation of the Earth1,2. The mammalian circadian clock is a
biochemical oscillator powered by transcription-translation loops
consisting of a positive arm and a negative arm1–3. In the positive arm,
BMAL1 and CLOCK promote the expression of clock-controlled
genes, including the negative arm factors PER and CRY. PER and CRY
inhibit the activating effect of BMAL1-CLOCK, leading to 24-hour
oscillations.

In mammals, the suprachiasmatic nucleus (SCN) of the hypotha-
lamus is the central pacemaker that coordinates and synchronizes
circadian rhythms in peripheral tissues through neuronal and hor-
monal signals4. Besides signals from the SCN, environmental signals
such as temperature4, feeding5,6, and direct light7 can selectively set
peripheral clocks, sometimes causing asynchrony between the central
and peripheral clocks. Epidemiological studies of shift workers and
chronically jet-lagged individuals show correlations between circadian
disruption and cardiovascular diseases8, mental health disorders9,
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metabolic diseases10–12, aswell as cancer in various organs13,14, including
skin15,16, breast17,18, and prostate19,20.

The goal of the nascent field of circadian medicine is to consider
circadian rhythm and its disruption in patient care. As the rhythm of a
patient or diseased tissue is not necessarily synchronized with the
external light-dark cycle, an important challenge in circadianmedicine
is to determine the internal circadian time of the patient or the tissue
of focus. Such information can determine the optimal time of treat-
ment and identify conditions that might benefit from restoring circa-
dian functions21,22. Current methods of circadian time determination
for a patient include the dim-light melatonin-onset assay23, as well as
circadian rhythm inference frombody temperature24, or cortisol levels
in biofluids25.

Additionally, determining the circadian time of a sample is
important for research. With the explosion of bulk and single-cell
transcriptomics datasets, there is a growing effort to integrate and
compare such datasets. As about 10% of the transcriptome has diurnal
expression patterns, analyzing such datasets without their timestamps
may lead to inconsistent observations that are dependent on the time
of sample collection. Hence, there is a need to develop a method that
can determine the circadian time of such datasets.

Several groups have developed methods to infer the circadian
time of a sample (organism, organ, or tissue) based on transcriptomic
data. CYCLOPS26,27 uses an autoencoder neural network to infer cir-
cadian phases by ordering the data collected from the entire periodic
cycle. ZeitZeiger28 identifies useful features (genes) for prediction,
scales the feature expression over time, applies sparse principal
component analysis, and predicts according to maximum likelihood
estimation. BIO_CLOCK29 uses supervised deep neural networks with
coupled sine and cosine output units. TimeSignatR30 applies within-
subject renormalization and an elastic net predictor, making it gen-
eralizable between transcriptomic data fromdifferent assay platforms.
More recently, a Bayesian variational inference approach called
Tempo31 was designed to predict the circadian phase in single-cell
transcriptomics and to quantify estimation uncertainty.

Among the methods mentioned above, CYCLOPS, ZeitZeiger,
BIO_CLOCK, and TimeSignatR can infer circadian time from bulk
transcriptomic data and are generalizable for different tissues. But,
they have limitations. CYCLOPS outputs the relative ordering, instead
of timestamps, of samples, and requires reconstruction to incorporate
every new sample as it does not require prior training data. ZeitZeiger
frequently runs into linear dependency issues, needs to be retrained
before each prediction, and is not generalizable between tran-
scriptomic platforms. BIO_CLOCKdoes not require re-training for each
prediction but is not time-efficient. TimeSignatR performswell if there
are two test samples and it achieves its best performancewhen the two
samples are 12 hours apart.

Here, we present tauFisher, a pipeline that can accurately predict
circadian time from a single transcriptomic data irrespective of the
assay platform. tauFisher improves on previous methods in several
ways: (1) it does not require the training data to be a complete time
series; (2) the within-sample normalization step allows tauFisher to
give an accurate prediction from just one sample; (3) since tauFisher
only needs a few features to make accurate predictions, training and
testing are computationally efficient; (4) tauFisher is platform agnostic
and users only need to train the predictor once and can use the same
predictor tomake predictions for external datasets of the same tissue,
regardless of the platform; and (5) tauFisher trained on bulk sequen-
cing data is able to accurately predict the circadian time of single-cell
RNA sequencing (scRNAseq) pseudobulk data, and it can be used to
investigate circadian phase heterogeneity in different cell types.

We collected a time series of scRNAseqdata frommousedermis in
this study and found that most of the rhythmic processes
are metabolism-related in dermal fibroblasts, whereas almost all
rhythmic processes are related to immune responses in dermal

immune cells. Additionally, we found that the amplitude of the col-
lective rhythm is dampened in dermal immune cells compared to
dermal fibroblasts. Incorporating tauFisher with bootstrapping
revealed that circadian phase heterogeneity contributes to the dam-
pened collective rhythm as well as fewer rhythmic genes found in
dermal immune cells.

Results
Overview of tauFisher
tauFisher is an assay platform-agnostic method that predicts circadian
time from a single transcriptomic sample. The training part of the
pipeline, which requires a time series of transcriptomic data, consists
of five main steps: (1) identifying diurnal genes with a period length of
24 hours, (2) curve fitting using functional data analysis to fill in the
missing time points and to decrease noise in the training data, (3)
within-sample normalization by calculating and scaling the difference
in expression for eachpair of predictor genes, (4) linearly transforming
the scaled differences using principal component analysis, and (5) fit-
ting a multinomial regression on the first two principal components
(Fig. 1, Methods).

For testing, a transcriptomic sample without a time label is trim-
med to include only the predictor genes identified in the training data.
After the within-sample normalization step, the test sample is pro-
jected to the principal component space, and multinomial regression
is performed to predict the time of the test sample (Fig. 1, Methods).

tauFisher achieves high accuracy when trained and tested on
bulk-level transcriptomic data
To assess the robustness and accuracy of tauFisher in predicting cir-
cadian time from a single sample of transcriptomic data, we applied
tauFisher to a diverse set of data collected from different species,
tissues, and assay platforms (Table 1).

For each benchmark dataset, we generated 100 random train and
test partitions (without replacement) of the samples. In each partition,
we used 80% of the samples for training and 20% for testing. We
compared tauFisher to the current state-of-the-art methods:
ZeitZeiger28 and TimeSignatR30.

We define a prediction within two hours of the true time to be
correct. Using other time ranges to define correctness minimally
changes the benchmark outcome (Supplementary Table 1).

For eleven out of the twelve benchmarking datasets, tauFisher
achieved higher accuracy when using predictor genes found by
JTK_Cycle32 instead of Lomb-Scargle33. For six out of the ten tran-
scriptomic datasets collected from mice, tauFisher achieved equal or
higher 2-hour accuracy using one test sample than TimeSignatR using
two test samples that are 12 hours apart. tauFisher achieved lower but
comparable accuracy (difference < 10%) when compared to Time-
SignatR in two of the remaining four mouse datasets. For the two
human blood datasets, TimeSignatR, using two test samples, out-
performed ZeitZeiger and tauFisher, highlighting the importance and
effectiveness of using two test samples to address human variability in
circadianphasepredictions (Fig. 2, Supplementary Table 2). ZeitZeiger
could not predict the time for several iterations due to linearly
dependent basis vectors. Interestingly, whether ZeitZeiger ran into
linear dependency issues appeared to depend on the assay methods,
as it ran successfully for most of the microarray data but failed to
predict the time for all 100 iterations in the bulk RNAseq datasets
collected frommouse kidney, liver, brainstem, and cerebellum (Fig. 2,
Supplementary Table 2).

tauFisher accurately predicts the circadian time for cross-
platform bulk transcriptomic data
Since tauFisher gives accurate circadian time prediction for bulk
transcriptomic data collected from various platforms, we examined its
performance when trained and tested on datasets generated from
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different platforms.We used rhythmic genes identified by JTK_Cycle in
the tauFisher pipeline since they gavemore accurate predictions in the
within-platform benchmark.

We trained tauFisher on GSE3862234, a microarray dataset col-
lected from mouse dorsal skin every four hours for 48 hours under a
regular 12:12 light-dark cycle (zeitgeber time [ZT] 2, 6, 10,…). The test
dataset is from GSE838556, a bulk RNAseq dataset collected every four
hours for 28 hours under a 12:12 light-dark cycle (ZT0, 4, 8, …) from
mouse dorsal skin in a time-restricted feeding study. Since the time of

feeding influences tissue’s circadian clock6,22, we only selected the ad
libidum control condition for this testing so that the time labels best
represent the internal time.

Eighteen genes were selected to be predictor features. Though
the training and test datasets are not on the same scale and were
collected at different timepoints, their overall rhythmic patterns agree
with each other (Fig. 3a, Supplementary Fig. 1a). For six of the eight
tests, tauFisher predicted a circadian time that is within the 2-hour
range from the actual time label, giving anaccuracy of 0.75 and aRMSE
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Fig. 1 | The tauFisher pipeline involvesmultiple steps. Key steps of the tauFisher pipeline include the identification of rhythmic genes using MetaCycle, functional data
analysis, within-sample normalization, linear transformation, and multinomial regression.
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of 4.704 (Fig. 3b). This example demonstrates tauFisher’s ability to
predict circadian time across bulk transcriptomics platforms.

After validating tauFisher’s performance on cross-platform, bulk-
level, transcriptomic datasets collected from healthy/control mouse
skin, we also tested it in disturbed systems. In the test groups of the
time-restricted feeding study, food was only available to mice from
ZT5 to ZT9 or ZT0 to ZT4, whereas mice usually feed during early
nights (ZT12-ZT16)6. Skin collected from these two time-restricted
feeding schedules showed disturbed circadian patterns with greatly
attenuated amplitude and altered peaking times that are not directly
correlated with the feeding times6. As the system is disturbed, the
sample collection timeno longer represents the internal circadian time
of the tissue as it does in healthy tissue (training data). Consistent with
the biological observations, tauFisher trained on control skin micro-
array data predicted time labels that are away from the test sample
collection time, reflecting a disturbed system and the predictions are
not coupled with time-restricted feeding schedules (Supplementary
Fig. 2a). tauFisher’s prediction when trained on control/healthy sam-
ples, however, canonly tell whether the test system is disturbed or not,
and does not provide a measurement of how much the system is
disturbed.

We also trained the tested tauFisher within the disturbed systems.
Within each of the two time-restricted feeding schedules, we per-
formed leave-one-out cross-validation by reserving each sample for
testing and using the remaining samples for training. tauFisher pro-
duced high accuracy (feeding ZT5-ZT9: accuracy = 0.875; feeding ZT0-
ZT4: accuracy = 1) and low RMSE (feeding ZT5-ZT9: RMSE = 2.236;
feeding ZT0-ZT4: RMSE = 1.061) for both disturbed systems (Supple-
mentary Fig. 2b). The fact that tauFisher trained on samples collected
from a disturbed system can add time labels to samples from the same
disturbed system suggests that robust correlations between diurnal
genes still exist in the disturbed system, and such relationships are
different from the ones in the control/healthy individuals.

tauFisher trained on bulk RNAseq data and microarray data
accurately predicts the circadian time of scRNAseq samples
tauFisher’s ability to predict circadian time is not limited to cross-
platform bulk-level transcriptomic datasets. It can add circadian
timestamps to scRNAseq samples as well. In particular, tauFisher only
needs to be trained on a time series of bulk-level transcriptomic data,
which is more abundant and cheaper to collect than a scRNAseq data
time series.

Since most published scRNAseq datasets do not have time labels,
the selection of datasets for testing was limited. Here we tested

tauFisher on scRNAseq data collected from the mouse SCN35 and
mouse dermal skin (collected in this study).

GSE11729535 includes twelve single-cell SCN samples collected
from circadian time (CT) 14 to 58 every four hours (CT14, 18, 22, …)
under constant darkness, and one light-stimulated SCN sample. Since
light immediately induces differential expression of rhythmic genes35,
only the samples from the control experiment were used for the
benchmark. For each of the twelve samples, a pseudobulk dataset was
generated for testing (Methods). For training, we chose GSE15707736, a
time series of bulk RNAseq data collected from the mouse SCN every
four hours under a regular 12:12 light-dark cycle starting at ZT0. Since
each time point in the training dataset contains three replicates,
instead of averaging them, we concatenated the replicates so that the
input training data spans 72 hours.

Twenty genes from the training data passed the feature selection
criteria. These genes display robust rhythms in both the training data
and the test pseudobulk data (Fig. 3c, Supplementary Fig. 1b). The raw
input test data appeared to be noisier as it was not normalized by the
total number of reads in each sample. tauFisher does not require the
data to be preprocessed before input into the pipeline, as within-
sample normalization is an intermediary step.

In ten out of the twelve tests, tauFisher predicted a time that is
within 2-hour of the labeled time, resulting in a high accuracy of 0.833
and a low RMSE of 1.936 (Fig. 3d, Supplementary Fig. 3a). Although
neither TimeSignatRnor ZeitZeiger claims tobe able to add time labels
to scRNAseq data, we still tested their performance. tauFisher out-
performed TimeSignatR and ZeitZeiger in both accuracy and RMSE
(Fig. 3d, e).

To ensure that tauFisher’s performance on scRNAseq data is
consistent in peripheral clocks, we performed scRNAseq on adultwild-
type C57BL/6J mouse dorsal dermis every four hours for 72 hours
under 12:12 light-dark cycle. The pseudobulk matrices for the 18 sam-
ples were computed directly from the unprocessed data. We trained
tauFisher onGSE3862234, a time series of skinmicroarraydata. Because
two of the rhythmic genes, A630005I04Rik and Ivl, are not present in
the pseudobulk data, only 16 features were selected in the tauFisher
pipeline in this test (Fig. 3f, Supplementary Fig. 1c).

Although the input test data, the unnormalized pseudobulk
data, appear to be noisy, tauFisher successfully predicts circadian
times for the 18 samples thanks to the within-sample normal-
ization step in the tauFisher pipeline. In 14 out of the 18 tests,
tauFisher predicted circadian time within 2 hours of the labeled
time, giving a high accuracy of 0.778 and a low RMSE of 2.198
(Fig. 3g, Supplementary Fig. 3b).

Table 1 | Datasets from different species, tissues, and assay platforms were used to benchmark tauFisher’s ability to predict
circadian time

Data Year GEO Species Tissue Platform Sampling
Frequency

Time Course
Duration

Zhang R et al.56 2014 GSE54650 Mus musculus Kidney Affymetrix Mouse Gene 1.0 ST Array 2h 48h

Zhang R et al.56 2014 GSE54650 Mus musculus Liver Affymetrix Mouse Gene 1.0 ST Array 2h 48h

Zhang R et al.56 2014 GSE54650 Mus musculus Brainstem Affymetrix Mouse Gene 1.0 ST Array 2h 48h

Zhang R et al.56 2014 GSE54650 Mus musculus Cerebellum Affymetrix Mouse Gene 1.0 ST Array 2h 48h

Zhang R et al.56 2014 GSE54651 Mus musculus Kidney Illumina HiSeq 2000 6h 48h

Zhang R et al.56 2014 GSE54651 Mus musculus Liver Illumina HiSeq 2000 6h 48h

Zhang R et al.56 2014 GSE54651 Mus musculus Brainstem Illumina HiSeq 2000 6h 48h

Zhang R et al.56 2014 GSE54651 Mus musculus Cerebellum Illumina HiSeq 2000 6h 48h

Arnardottir ES et al.64 2014 GSE56931 Homo sapiens Blood Custom Affymetrix Microarray 4h 72h

Braun R et al.30 2018 GSE113883 Homo sapiens Blood Illumina NextSeq 500 2h 28h

Geyfman M et al.34 2012 GSE38622 Mus musculus Skin Affymetrix Mouse Gene 1.0 ST Array 4h 48h

Tognini P et al.36 2020 GSE157077 Mus musculus SCN Illumina HiSeq 4000 4h 24h
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to the largest and smallest value within 1.5 times the inter-quartile range,

respectively. NAs are excluded from the plot. RMSE: root mean square error. *: p-
value ≤ 0.05, **: p-value ≤ 0.01, ***: p-value ≤ 0.001, ****: p-value ≤ 0.0001. P-values
are determined using the Wilcoxon rank-sum test and adjusted using Bonferroni
correction. For each dataset, n = 100 randomly generated training-testing parti-
tions. Source data and exact p-values are provided as a Source Data file.
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In sum, we have demonstrated that tauFisher trained on bulk-
level transcriptomic data, either bulk RNAseq or microarray data,
can accurately predict the circadian time for scRNAseq data,
making it particularly useful for expanding the current scRNAseq
database for circadian studies by adding time labels to existing
scRNAseq data.

Collective circadian rhythms are dampened in dermal immune
cells compared to dermal fibroblasts
Due to the frequency of sequencing dropouts of clock genes in
scRNAseq data, investigating the circadian clock within each cell is not
yet achievable. To overcome this limitation, previous studies have used
pseudobulk approaches to investigate the clock in scRNAseq data35.
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To validate the pseudobulk approach for studying the circadian
clock in mouse dermis, we normalized the pseudobulk scRNAseq data
and compared it with the published microarray data GSE38622 from
mousewhole skin34.Overlayof the expressionof nine core clock genes,
Arntl, Dbp, Per1, Per2, Per3, Nr1d1, Nr1d2, Cry1 and Cry2, reveals perfect
consistency between the microarray data and the scRNAseq pseudo-
bulk data (Fig. 4a), indicating that circadian clock gene expression in
the dermis is captured in the pseudobulk data generated from
scRNAseq data.

To study the circadian clock at a cell-type level in the skin, we
integrated all samples and performed scRNAseq analysis to identify

cell types. In total, 16,866 cells passed the quality control, with around
950 cells per sample and around 2800 cells per ZT. Four major cell
types, fibroblasts (N = 12,649), immune cells (N = 3353),muscle cells (N
= 722) and endothelial cells (N = 142) were identified using canonical
marker genes (Fig. 4b). Due to low cell counts for muscle and endo-
thelial cells (N < 20) in some samples, we could not generate a reliable
time series of pseudobulk data for these two cell types. Thus, we focus
on the circadian clock in dermal fibroblasts and immune cells in
this study.

In general, at the single cell level, the expression rangesof the core
clock genes are similar in the two cell types, and the measurements of

Fig. 3 | tauFisher accurately predicts circadian time when the training and test
data are from different assay methods. tauFisher trained on mouse skin micro-
array data can predict circadian time for skin bulk RNAseq data. a Overlay of the
predictor gene expression inGSE38622 (training) andGSE83855 (test).b Prediction
outcomes from tauFisher. tauFisher trained on mouse SCN bulk RNAseq data can
predict circadian time of pseudobulk data generated from mouse SCN scRNAseq
data. c Overlay of the predictor gene expression in GSE157077 (training) and
GSE117295 (test). d Prediction outcomes from tauFisher. e Prediction outcomes

from TimeSignatR and ZeitZeiger when trained on mouse SCN bulk RNAseq and
tested on mouse SCN scRNAseq pseudobulk. tauFisher trained on mouse skin
microarray data can predict circadian time of pseudobulk data generated from
dermis scRNAseq data. f Overlay of the predictor gene expression in GSE38622
(training) and GSE223109 (test). g Prediction outcomes from tauFisher.
b, d, e, g The dashed lines mark where predictions equal truth. RMSE: root mean
square error. Source data are provided as a Source Data file.
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Fig. 4 | The circadian clock is present in mouse dermal fibroblasts and
immune cells. a The normalized pseudobulk expression of the core clock genes
generated from scRNAseq data (pink, n = 3 biologically independent samples per
circadian time point) is consistent with their expression in the published micro-
array data (blue, n = 2 biologically independent samples per circadian time point,
except that n = 3 at ZT2). Data are presented as mean values +/− SD. b Four major
cell types, fibroblasts (red), immune cells (blue), muscle cells (green), and endo-
thelial cells (yellow) were identified using canonical marker genes. Feature plots of

the representative marker genes are shown (orange: high expression; grey: low
expression); Col1a1 for fibroblasts, Acta1 for muscle cells, Fabp4 for endothelial
cells,Cd52andCd74 for immune cells. cAt thepseudobulk-level, expressionpattern
of the core clock genes is similar in fibroblasts (red) and immune cells (blue), while
the amplitudes of the oscillations are dampened in immune cells for most of the
core clock genes. n = 3 biologically independent samples per circadian time point.
Data are presented as mean values +/− SD. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-48041-6

Nature Communications |         (2024) 15:3840 7



the clock genes infibroblasts aremore variable (Supplementary Fig. 4).
To compare the core clock in fibroblasts and immune cells, we com-
puted and normalized the pseudobulk data for each of the two cell
types in each sample. Both fibroblasts and immune cells possess
robust circadian clock at the pseudobulk level. While the overall
rhythms in the two cell types are consistent with each other, with core
clock gene expressions peaking and troughing around the same time,
the amplitudes of the oscillations are reduced in the immune cells
compared to fibroblasts, indicating a dampened collective clock in
immune cells (Fig. 4c). Whether this observation indicates less syn-
chronous clocks in immune cells than in fibroblasts, or weaker clock
function in each individual immune cell, is not known.

Dermal fibroblasts and immune cells harbor different rhythmic
pathways and processes
To study diurnal genes and pathways in dermal fibroblasts and
immune cells, we used JTK_Cycle to identify rhythmic genes from the
normalized pseudobulk data. We identified 1946 and 432 rhythmic
genes in fibroblasts (Supplementary Data 1) and immune cells (Sup-
plementary Data 2), respectively (Fig. 5a). The fewer rhythmic genes in
immune cells is not caused by the lower cell count of immune cells, as
randomly down-sampling the fibroblasts to the number of immune
cells produced similar results.Only 79 geneswere rhythmic in both cell
types, with most of them related to the core clock network and
metabolism.

Gene Ontology analysis revealed that rhythmic processes in
fibroblasts and immune cells are different. Shared terms reflect basic
cell integrity maintenance and function, including nucleocytoplasmic
transport, regulations of cellular amide metabolic process, regulation
of protein stability, and rhythmic process (Fig. 5b). For fibroblasts,
additional metabolism processes and migration are significantly enri-
ched in the rhythmic genes (Fig. 5b, red). For immune cells, the
rhythmic genes enrich immune responses including defense response
to virus, regulation of T-helper 2 cell differentiation, and response to
interferon-beta (Fig. 5b, blue).

We selected some of the rhythmic genes in fibroblasts (Fig. 5c)
and immune cells (Fig. 5d) and compared their expression patterns in
the two cell types. For fibroblasts, we highlight genes related to glu-
cose metabolism (Pkm), glycosylation (Gal3st4, Plpp3), oxidative
phosphorylation (Ndufs8), collagen regulations (Loxl2, Tgfb1), amino
acid metabolism (Ivd), sterol synthesis (Scp2, Por), and cell adhesion
and migration (Elmo2, Antxr1), suggesting circadian regulation of the
above processes at a molecular level (Fig. 5c, Supplementary Data 1).
Interestingly, while some genes are only significantly rhythmic in
fibroblasts because they are not expressed in immune cells (e.g. Loxl2),
some are expressed at similar or higher levels in immune cells, but are
not significantly rhythmic in the latter (e.g. Ndufs8, Scp2), indicating
cell-type specific circadian regulations.

In the immune cells, genes related to inflammatory and immune
response (Cdk19, Cd84), post-translational modification (Sumo1),
extracellular matrix regulation (Mmp9), transcription regulation
(Med16), electrochemical gradient maintenance (Atp1b1), and inter-
cellular communication (Stxbp6) are rhythmic (Fig. 5d, Supplementary
Data 2). We note that Sumo1 is rhythmic in both fibroblasts and
immune cells, but the expression peaks 4 hours later in immune cells
than in fibroblasts.

Interestingly, the expression of Il18r1 is significantly rhythmicwith
high amplitude in fibroblasts (p-value = 2.21 × 10−7), but not in immune
cells (p-value = 0.7104) (Fig. 5c). The level of IL18, the ligand that binds
to IL18R1, was found to be rhythmic inmouse peripheral blood37. Here,
Il18, is significantly rhythmic in neither fibroblasts (p-value = 0.3097)
nor immune cells (p-value = 0.0925) (Fig. 5d). But, it is possible that the
insignificance of the p-value for immune cells is caused by noise
introduced by summing the expression of all types of immune cells
while it is mostly expressed in the myeloid cells.

To further explore the rhythmic pathways in dermal fibroblasts
and immune cells, we divided the list of rhythmic genes into four
groups based on their peaking time (Methods): day (ZT3 - ZT9),
evening (ZT9 - ZT15), night (ZT15 - ZT21), and morning (ZT21 - ZT3 of
the next day). The rhythmic genes are roughly evenly split: in fibro-
blasts, 426 peak during the day, 554 peak in the evening, 545 peak at
night, and 421 peaks in the morning (Supplementary Data 1); in
immune cells, 129 peaks during the day, 111 peaks in the evening, 87
peak at night, and 105 peaks in the morning (Supplementary Data 2).
We then performed Gene Ontology analysis on the quarter-day
rhythmic gene lists to identify the biological processes that are
upregulated at different times of the day. We highlight some of the
terms related to metabolism, signaling, cell proliferation and apop-
tosis, gene regulation, matrix regulation, and immune regula-
tion (Fig. 5e).

During evening and night, when mice wake up, start feeding, and
become active, processes such as the generation of precursor meta-
bolites and energy, cellular respiration, and mitochondrial respiratory
chain complex I assembly are upregulated in fibroblasts (Fig. 5e, Sup-
plementary Data 3). Meanwhile, glycolytic processes are upregulated
in fibroblasts, which is consistent with the finding that glycolysis is
preferred at night in epidermal stem cells38. Additionally, similar to
epidermal stem cells, more dermal fibroblastsmay be in the S-phase of
the cell cycle during the evening and night, as the DNA biosynthetic
process is enriched during this time. Various signaling pathways are
also enriched during this time, including the prostaglandin metabolic
process and regulation of the apoptotic signaling pathway. Gene-
regulatory mechanisms such as histone modification and mRNA spli-
cing are upregulated during the evening and night in fibroblasts.
Fibroblast migration peaks at night, which is consistent with previous
findings that mouse wounds heal fastest during the active phase39.
Immune regulation is also circadian regulated in fibroblasts, as terms
including regulation of inflammatory response are enriched during
this time. Compared to dermal fibroblasts during the evening and
night, fewer terms related to metabolism, signaling, and gene regula-
tion are enriched in dermal immune cells (Fig. 5e, Supplementary
Data 4). But, almost all immune regulation terms such as defense
response to the virus and interferon-beta production are upregulated
in dermal immune cells during the evening and night, potentially
contributing to shorter healing duration for wounds occurring during
mice’s active phase as well39. Additionally, such findings in mice imply
that circadian regulation of immune response may be related to the
more severe symptoms of inflammatory skin diseases, such as psor-
iasis, in the evening and at night22,40.

In the morning and during the day, mice sleep and have lower
food intake. Consistently, rhythmic genes peaking during this time in
fibroblasts enrich for lipid catabolic process, glucose metabolic pro-
cess, lipid storage, and response to starvation. Interestingly, extra-
cellular matrix organization and cell-matrix adhesion peak during the
day, possibly preparing for fibroblast migration, which peaks in the
evening (Fig. 5e, Supplementary Data 3). For immune cells, rhythmic
genes peaking during the morning and day generate fewer terms than
the ones peaking during the evening and night, especially in the
immune regulation category (Fig. 5e, Supplementary Data 4). Inter-
estingly, rhythmic genes in the mouse dermal fibroblasts significantly
enriched for genes linked to SNPs associated with systemic sclerosis41,
an inflammatory disease with increased collagen production by
fibroblasts. Rhythmic genes in mouse dermal immune cells sig-
nificantly enrich for SNPs associated with not only systemic sclerosis,
but also vitiligo42, a disease characterized by immune-mediated
depigmentation of the skin (Fig. 5f).

In sum, we found that more genes are collectively rhythmic in
fibroblasts than in immune cells, while only a few rhythmic genes are
shared. Additionally, more metabolism processes are diurnally
regulated in fibroblasts, with respiration peaking during the evening
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and night, and response to starvation and lipid storage peaking
during the morning and day. On the other hand, immune regulation
is almost exclusively upregulated by rhythmic genes that peak during
the evening and night in immune cells. Importantly, rhythmic genes
found in both fibroblasts and immune cells significantly enrich
Genomewide Association Studies (GWAS) SNPs associated with
human skin immune-mediated conditions, pointing to a potential

link between the skin circadian clock and autoimmune diseases of
the skin.

tauFisher determines that circadian phases are more hetero-
geneous in dermal immune cells than in fibroblasts
Analysis of the pseudobulk data from dermal fibroblasts and immune
cells reveals dampened amplitudes of the core clock genes (Fig. 4c) in
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the immune cells and finds fewer rhythmic genes in immune cells than
in fibroblasts (Fig. 5a). This observation could mean that each indivi-
dual immune cell harbors weaker circadian clock, and/or the immune
cells have more heterogeneous phases, so collectively they display a
dampened clock. Note that variations of mean expression in single
cells (vertical shifts of expression curves) do not cause dampened
amplitudes at the pseudobulk level (Supplementary Fig. 5c, d), so this
scenario is not considered in the following analysis.

To investigate the cause behind the dampened clock in dermal
immune cells, we executed a bootstrapping approach that incorpo-
rates tauFisher for its ability to predict circadian time for tran-
scriptomic data at different scales (Fig. 6a). Since the heterogeneity of
a set of heterogeneous clocks should be captured at any given time
point, we performed the analysis within each time point. The workflow
involves the following steps: (1) trimming the scRNAseq data so that
the expression matrix only includes the predictor genes identified in
the trainingdata and the cells labeled tobe the interested cell types; (2)
randomly sampling the same number of cells for each cell type to
remove potential bias caused by different cell numbers, and summing
the transcript counts in the pulled cells for each gene to create a
pseudobulk dataset; (3) repeating the random sampling process (step
2) with replacement many times to create pseudobulk replicates for
each cell type; and (4) predicting circadian time labels for the pseu-
dobulk replicates using tauFisher. The idea is that if the cells harbor
synchronous clocks, the pseudobulk replicates calculated from dif-
ferent rounds of sampling will be similar. In this case, the distribution
of predicted time labels will bemore concentrated. On the other hand,
if the cells harbor heterogeneous clocks, the pseudobulk replicates
calculated from the cells in different rounds of sampling will differ
depending onwhich cells are pulled. The distributionof the prediction
outcome in this case will be wider. Since the prediction outcomes are
circular data, we then perform Rao’s Tests for Homogeneity and
Wallraff Test of Angular Distances to compare the mean and the dis-
persion around the mean.

To ensure that the pipeline works as expected, we generated
simulated single-cell circadian gene expression datasets to represent a
group of synchronized but dampened clocks (Supplementary Fig. 5a),
and a groupof out-of-phase but robust clocks (Supplementary Fig. 5b).
As expected, the prediction outcome for the out-of-phase clocks has a
significantly greater dispersion around the mean, indicating a more
heterogeneous mixture of phases (Supplementary Fig. 5e, f).

We then applied the pipeline to the collected scRNA-seq data,
focusing on the fibroblasts and immune cells. At each time point, we
randomly selected n cells for each cell type, with n equal to 20% of the
cell count of the cell type with the smaller population (immune cells in
this dataset). Then, we used the exact sameprocedure to generate 500
pseudobulk replicates for the two cell types at each time point. tau-
Fisher then predicts the circadian time for each pseudobulk replicate,
yielding 500 predicted timestamps for each of the two cell types. We
compared the distribution of the 500 predicted time labels of the two
cell types at each time point.

In general, the prediction means are centered at different times
for fibroblasts and immune cells (Fig. 6b), but around the predicted
time for the whole-sample pseudobulk data (Fig. 3g). Whether one cell

type’s circadian clock is ahead of the other is inconclusive (Fig. 6c).
Additionally, the distributions of the prediction outcome for immune
cells are mostly multimodal and not as centered as the prediction
distribution for fibroblasts (Fig. 6b). Indeed, the standard deviation of
the prediction distribution is significantly greater for immune cells for
five out of the six ZTs (Fig. 6c). This means that the bootstrapping
pulled from a more heterogeneous population when sampling the
immune cells, and thus implying that the clock phases are more het-
erogeneous in immune cells than in fibroblasts.

In sum, we were able to use tauFisher to obtain insights into the
circadian heterogeneity for different cell types by predicting the circa-
dian time for random samples from each of the cell types. We hypo-
thesize that the circadian clock is more heterogeneous in dermal
immune cells than in dermal fibroblasts, and such heterogeneity may be
the reason behind the dampened core clock and fewer rhythmic genes
we found in immune cells based on collective, cell-type level, gene
expression data. Such a result is not unexpected, as the fibroblasts
(Supplementary Fig. 6a, b) may be more homogeneous in their biolo-
gical function than the immune cells, which contain dendritic cells as
well as different types of macrophages and lymphocytes (Supplemen-
tary Fig. 6d, e) that serve different immune functions. Unfortunately, we
didnot capture enough cells for each specificfibroblast and immune cell
type in the scRNAseq experiment to generate reliable pseudobulk data
that is required for further circadian analysis (Supplementary Fig. 6c, f).

Discussion
In this study, we developed tauFisher, a computational pipeline that
accurately predicts circadian time froma single transcriptomic dataset
and is applicable to within-platform and cross-platform training-test-
ing scenarios. Particularly, tauFisher trained on bulk transcriptomic
data accurately adds circadian timestamps for scRNAseq samples. This
method allows investigators to place circadian timestamps on tran-
scriptomic datasets and facilitates the determination of circadian time
in the context of circadian medicine.

Most transcriptomic datasets in public genomics repositories lack
circadian time labels, which complicates integration with or compar-
ison to other datasets. Adding time labels for existing transcriptomic
datasets is important, as the clock modulates the expression of many
protein-coding genes; it is necessary to know whether a significant
gene is truly differentially regulated by a condition or the expression
appears to bedifferent because the sampleswere collected atdifferent
times. Also, computationally adding circadian timestamps to existing
transcriptomic datasets collected from various platforms, including
from scRNAseq, opens up new possibilities for circadian research and
allows investigators to take full advantage of the shared resource in an
efficient and inexpensive way.

Circadian time determination is also a key step in the imple-
mentation of circadian medicine. To maximize effectiveness while
minimizing side effects of treatments, it is necessary to take into
consideration the patient’s and relevant tissue’s actual circadian time.
For example, on-pumpcardiac surgeries in the afternoon are less likely
to cause perioperative myocardial injury than when conducted in the
morning43, and cancer radiation therapy in the morning causes less
skin damage than in the afternoon44.

Fig. 5 | Different rhythmic processes are present in mouse dermal fibroblasts
and immune cells. a JTK_Cycle identified 1946 rhythmic genes in dermal fibro-
blasts (red) and 432 rhythmic genes in dermal immune cells (blue). Only 79
rhythmic genes are shared by the two cell types. b Gene Ontology analysis per-
formed on rhythmic genes in fibroblasts (red) and immune cells (blue) reveals
divergent biological processes being diurnally regulated in the two cell types. The
dot size represents the enrichment score. The vertical dashed line marks adjusted
p-value = 0.05. P values are determined using a hypergeometric test and adjusted
using the Benjamini-Hochberg procedure. Expression of some of the rhythmic
genes found in fibroblasts (c), and immune cells (d). n = 3 biologically independent

samples per circadian time point. Data are presented as mean values +/− SD. e A
heatmap showing p-values for some of the biological processes enriched by
rhythmic genes peaking during each quarter-day time range. Color represents p-
value. Blue: insignificant; yellow to red: significant with red representing a lower p-
value. P-values are determined using hypergeometric test. x-axis represents time,
with white being day and black being night. f Rhythmic genes in mouse dermal
fibroblast and immune cells significantly enrich for genes within 200 kb of the
GWAS signals of immune-mediated skin conditions. Blue: insignificant; yellow to
orange: significant with orange representing lower FDR; FDR false discovery rate.
Source data are provided as a Source Data file.
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There have been several predictors of circadian time based on
transcriptomic data28–30, but to ensure the wide applicability of this
approach, anassay platform-agnosticmethod requiring lownumber of
test samples is desired. tauFisher is preferable as it can accurately
determine circadian time from a single sample of transcriptomic data
collected from various assay methods including scRNAseq.

Once trained, tauFisher requires a single transcriptomic sample to
predict the circadian time. We examined tauFisher’s ability to predict
circadian timewhen the training and test data are from the same study,
and we benchmarked it against state-of-the-art methods ZeitZeiger28

and TimeSignatR30. tauFisher using one test sample achieved similar
accuracy and RMSE for most of the datasets when compared to
TimeSignatRwhich required two test samples thatwere 12 hours apart.
ZeitZeiger failed to run for several of the datasets due to linear

dependency issues, and its success was dependent on the assay plat-
form (Fig. 2, Supplementary Table 2). When it did run, ZeitZeiger
achieved similar accuracy and RMSE as tauFisher, possibly because
both predictors build on principal component analysis, suggesting
that the molecular clock is well captured and represented by ortho-
gonal linear combinations of predictor genes.

One of the most powerful features of tauFisher is its ability to
accurately predict the circadian time when trained and tested on data-
sets collected from different assay platforms under different experi-
mental settings. tauFisher achieves high accuracy and low RMSE in not
only bulk-to-bulk cross-platform predictions but also bulk-to-scRNAseq
predictions. While it is usually assumed that bulk RNAseq data are
consistent with pseudobulk data calculated from scRNAseq data, it is
necessary to verify this assumption in circadian studies. The

Fig. 6 | tauFisher incorporated with bootstrapping suggests that the circadian
phases in dermal immune cells are more heterogeneous than in dermal
fibroblasts. a A general overview of the pipeline that incorporates tauFisher with
bootstrapping. b Radar plots showing the distribution of the prediction outcome
for 500 pseudobulk replicates from dermal fibroblasts (red) and immune cells

(blue). c Bar plots showing the differences between the prediction mean (left) and
standard deviation (right) at each ZT (immune cells - fibroblasts). ****p-value ≤

0.0001. P-values are determined using Rao’s Tests for Homogeneity and the
Wallraff Test of Angular Distances. Source data and exactp-values are provided as a
Source Data file.
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experimental settings for bulk and single-cell RNA extraction are dif-
ferent in terms of digestion duration and temperature, a factor that can
alter the clock4. In this paper, we verify the consistency of circadian
patterns in the two types of data by overlaying the expression of core
clock genes (Fig. 4a); tauFisher’s successful bulk-to-pseudobulk predic-
tions (Fig. 3d, g) reassure such consistency. tauFisher outperformed
ZeitZeiger and the two-sample TimeSignatR method, and the robust-
ness in performance despite drastically different assay methods and
experimental setups suggests that tauFisher captures and extracts the
underlying biological correlations in gene expressions while minimizing
the effects of the noise and variability introduced by subjects and
technology.

Two key steps in tauFisher help achieve this: functional data ana-
lysis for training data and within-sample normalization for both training
and test data. Functional data analysis for the training data enables
tauFisher to remove minor noise, smooth the time expression curves,
and generate the expression data between the sampled time points. The
within-sample normalization step for both training and test data calcu-
lates the difference between each pair of predictor genes at a given time
point so that the featurematrix is expandedwhile somebaseline noise is
removed. The differences between the genes are then re-scaled to be
between 0 and 1 so that the data become unit-less. Doing so in parallel
on the training and test datasets brings them individually to the same
scale, instead of batch-correcting the train to the scale of the test or the
opposite. This allows the testing of independent datasets without re-
training.We note that this within-sample normalization is different from
the within-subject normalization in TimeSignatR30, which is based on
mean expression calculated frommultiple samples collected frommore
than one-time point over the circadian cycle.

Despite its unique circadian time prediction ability, tauFisher can
be improved in several ways. While tauFisher performswell in terms of
both accuracy and RMSE in almost all mouse benchmark datasets, its
performance on human blood samples is subpar. Such performance
canbe attributed to greater humanvariability in expressionpatterns of
the clock caused by hormones, stress, living style, and diet. A recently
proposed pipeline called TimeMachine attempted to infer the circa-
dian phase from a single human blood sample and reported 2-hour
accuracy of 40 ~ 55%45. On the other hand, TimeSignatR using two
human blood samples 12 hours apart achieved ~ 73% 2-hour accuracy
(Fig. 2), emphasizing the necessity to address individual variability
when predicting circadian phases for human samples and the effec-
tiveness of the two-sample within-subject normalization step. One
assumption of tauFisher’s within-sample normalization step is that the
differences between predictor genes are solely dependent on circa-
dian time, and this step only removes uniform elevation or depression
in expression values of clock genes. To further improve tauFisher’s
flexibility and performance on human data, it is worthwhile to incor-
porate a within-sample data centering step to address the differences
caused by individual variability, while making sure that only one test
sample is needed to make a prediction. Additionally, using tauFisher
trained on healthy/control data to predict a time for data collected
from a circadian-disturbed system only maps the disturbed test onto
the timescale of the healthy samples. If one prefers to project test data
onto the timescale of the diseased samples, a time series of tran-
scriptomic data from diseased individuals is required. However, the
circadian pattern is dampened in many diseases including cancer46–51,
making the expressiondata similar over timeand thusmoredifficult to
distinguish the time points. Although tauFisher showed promise in
feeding-disturbed systems in skin and simulated dampened systems
(Supplementary Figs. 2b and 5a, e), it would be valuable to further
validate tauFisher on such datasets as they become available in future
studies. Additionally, since uncertainty quantification may be parti-
cularly important when testing in disturbed systems, tauFisher can be
improved to output confidence scores. Finally, while tauFisher accu-
rately adds timestamps to unlabeled scRNAseq data and can predict

circadian time for pseudobulk data generated from a group of cells in
scRNAseq data, it cannot overcome the high sequencing dropout rate
in scRNAseq and thus cannot predict circadian time at a single cell
level. Future work could focus on incorporating an imputation step
into tauFisher to infer expression values of predictor genes. This step
may not sacrifice computation and time efficiency greatly, as tauFisher
only needs around 15 genes to make predictions.

In addition to testing tauFisher on published datasets, we also
collected a time series of scRNAseq from mouse dermis. Consistent
with previous findings22,52, the circadian rhythm is robustly present in
the dermis and the oscillatory patterns of the core clock genes agree
with published data34. Comparing the rhythmic genes in fibroblasts
and immune cells, we found that only a few rhythmic genes are shared
by the two cell types and many pathways and processes are rhythmi-
cally regulated in a cell type-specific manner. Shared diurnally regu-
lated terms include basic cellular functions and the rhythmic genes in
fibroblasts have greater enrichment for metabolism-related terms,
whereas the rhythmic genes in immune cells have greater enrichment
for immune responses.

Combining tauFisher with other methods can guide the applica-
tion of circadian medicine by providing additional insights and
explanations of clinically observed circadian dysfunction. Dampened
clock gene expression has been observed in psoriasis-affected skin53,54,
as well as in various types of cancer46–51. There is also evidence that
restoring dampened circadian oscillations in diseased tissues can be
effective in reducing cancer cell proliferation and tumor growth49,51.

There are two possible behind-the-scene causes of dampened
circadian rhythms at a bulk level: first, the circadian rhythm is dam-
pened in every cell, but the cells are synchronous to each other
(Supplementary Fig. 5a); second, the clock is normally functioning in
every cell, but the cells are out of phase relative to each other (Sup-
plementary Fig. 5b). Understanding which of the two scenarios is
responsible for a dampened bulk-level clock gene expression is parti-
cularly important because in one case, it would be optimal to stimulate
the clock to restore the circadian clock in the diseased tissue, while in
the other case, synchronizing the clock is more suitable.

Here, we observed that the collective circadian rhythm in dermal
immune cells is dampened compared to fibroblasts. We incorporated
tauFisher with bootstrapping to investigate the cause behind the
dampened collective circadian rhythm in dermal immune cells. tau-
Fisher’s prediction outcome suggests that the circadian phases in
dermal immune cells are more heterogeneous than those in dermal
fibroblasts, and this heterogeneity may contribute to the dampened
rhythm in immune cells at a collective level. Due to technological
constraints, our claim on differences in phase heterogeneity between
dermal fibroblasts and immune cells relies on the computational
analysis of themouse skin scRNAseq and the simulated single-cell data.

The advantages tauFisher brings go beyond accurately adding
timestamps when incorporated with other methods. For example,
combining tauFisher with a batch-effect correction method may
facilitate a cleaner integration and help minimize the effect of the
circadian clock in transcriptomic data analysis. This approach harbors
great potential asmany efforts are going into integratingdatasets from
different studies to create metadatabases such as in the Human
Cell Atlas.

In summary, tauFisher’s consistent and robust performance in
accurately predicting circadian time from a single transcriptomic data
makes it a useful addition to the toolbox of circadian medicine and
research.

Methods
tauFisher
tauFisher is a platform-agnostic method that predicts circadian time
from a single transcriptomic sample. The method consists of three
main steps: (1) identifying a subset of diurnal genes with a period
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length of 24 hours, (2) calculating and scaling the difference in
expression for each pair of predictor genes, and (3) linearly trans-
forming the scaled differences using principal component analysis and
fitting a multinomial logistic regression on the first two principal
components.

Preprocessing the expression matrix. The first step in tauFisher is to
average transcript measurements by genes such that the resulting
matrix consists of unique genes. The subsequent training data consist
of a gene expression matrix X 2 RN ×P with N unique genes and P
samples, and a vector τ 2 RP of the corresponding time for each
sample.

Identification of periodic genes. tauFisher specifies either the Lomb-
Scargle33 or JTK_Cycle32 method in the meta2d function from the R
package MetaCycle55 to determine the periodic genes. It then selects
the top ten statistically significant genes with a 24-hour period length.
Using different numbers of diurnal genes does affect the prediction
outcome. Although choosing the top ten does not guarantee the best
performance, it is a safe and reasonable choice across different data-
sets (Supplementary Fig. 3c). These diurnal genes are then combined
with the core clock genes that also have a period length of 24 hours to
create the set of predictor genes M. The core clock genes for con-
sideration in tauFisher are Bmal1, Dbp, Nr1d1, Nr1d2, Per1, Per2, Per3,
Cry1, and Cry2.

Data transfromation. Subsetting the averaged expression matrix X on
the set of predictor genes M yields averaged gene expression matrix
X 0 2 RM ×P with M periodic genes and P samples with known time (τ).
The matrix X 0 is then log-transformed element-wise: X 0 = log2ðX 0 + 1Þ.

Functional data analysis. Since experiments have different sampling
intervals throughout a circadian cycle, tauFisher uses functional data
analysis to represent the discrete time points as continuous functions.
This allows tauFisher to evaluate and predict the circadian time of the
new samples at any time point and reduces the noise from the training
samples.

Briefly, each gene m has a log-transformed measurement at dis-
crete time points t1,…,tP∈ τ that may or may not be equally spaced.
These discrete values are converted to a function Zm with values Zm(t)
for any time t using a Fourier basis expansion:

ZmðtÞ≈
XK

k = 1
cmkϕkðtÞ ð1Þ

whereϕk(t) is the k-th basis function for k = 1,…,K, and∀ t∈ τ. cmk is the
corresponding coefficient. The Fourier basis is defined by ϕ0(t) = 1,
ϕ2r�1ðtÞ= sinðrωtÞ, and ϕ2rðtÞ= cosðrωtÞ with the parameter ω deter-
mining the period 2π/ω. Since the log-transformed data matrix X 0 is
non-negative, a positive constraint is imposed such that the positive
smoothing function is defined as the exponential of an unconstrained
function: YmðtÞ= eZmðtÞ. The smoothing function also contains a
roughness penalty to prevent overfitting. In practice, tauFisher sets
the number of basis functions to K = 5, as it produces curves that are
the most sinusoidal. Users can specify a different number of basis
functions.

Although functional data analysis represents the discrete time
points as continuous functions for each gene, tauFisher predicts cir-
cadian time at a user-defined time interval. By default, the time inter-
vals are set to be one hour. The fitted functions Ym(t) are evaluated at
the user-defined time interval to create the smoothed expression
matrix Y 2 RM ×T , where T is the number of evaluated time points, and
τF 2 RT is the new set of time points. If the time course of the samples
spans less than 24 hours, then the fitted curves are evaluated hourly
from [0, 23] such that T = 24 to ensure all 24 hours are evaluated. If the
time course duration of the samples spans greater than 24 hours, then

fitted curves are evaluated from ½minðτÞ,maxðτÞ� such
that T = maxðτÞ �minðτÞ+ 1.

Calculating and scaling the differences between each pair
of genes. For each timepoint, tauFisher generates all possible pairings
of the selected predictor genes. It then calculates the differences
between the two genes’ functional data analysis-smoothed expression
(stored in matrix Y). The resulting matrix retains differences between
Gene A and Gene B (Gene A - Gene B) as well as between Gene B and
Gene A (Gene B - Gene A). Then within each time point, the differences
calculated from the gene pairs are scaled to be between 0 and 1 using
the rescale function in R package scales. This way, 0 represents the
minimum difference value and 1 represents the maximum. The for-
mula is (value - min)/(max-min). As examples, we provided the
resultingmatrices for the training data (SupplementaryData 5) and the
test data (Supplementary Data 6) when tauFisher was trained on
GSE38622 and tested on GSE83855.

The multinomial regression model. The differences matrix is pro-
jected onto a lower dimensional space via principal component ana-
lysis, and the first two principal components becomecovariates xi1 and
xi2 for observation i in the multinomial regressor:

log
PðτFi = tjxi1, xi2Þ
PðτFi =0jxi1, xi2Þ

� �
=βt0 +βt1xi1 + βt2xi2 ð2Þ

All time points t1,…,tT∈ τF are converted to be [0, 23], since time0
is equal to time 24. Time zero, τF = 0, is set as the reference level in the
model. The fittedmultinomial regressionmodel is then used to predict
the circadian time of the new samples. We note that since time can be
ordinal (accounting for the order) or continuous between [0, 24), we
also tried other models such as an ordinal regression. However, these
models were not as robust as the multinomial regression model and
failed to run on the entire set of time points.

Calculating prediction error
To evaluate the performance of tauFisher, we need to calculate how
close the predicted time is to the true time. Since the outcome is cyclic
and ranges from [0, 23], we applied the following conversion to cal-
culate the true difference D from the difference d between the pre-
dicted time and true time:

D=

d � 24, if d > 12

d +24, if d < � 12

d, if � 12 ≤ d ≤ 12

8
><

>:
ð3Þ

scRNAseq circadian gene expression simulations
In Results, we demonstrated that tauFisher can be used to investigate
circadian phase heterogeneity using simulated scRNAseq circadian
gene expression data. We simulated three groups of data to represent
three scenarios: (1) a group of synchronized but dampened clock
genes, (2) a group of normal (robust) but asynchronous clock genes,
and (3) a group of synchronized clock genes with normal amplitudes
but variations in mean expression. For the three groups, the expres-
sions of 9 representative diurnal genes over a time course of 24 hours
are simulated using the following sine function:

y=A sin
2π
B

ðx +CÞ
� �

+D ð4Þ

where A is the amplitude, C is the phase shift, D is the vertical shift, the
period is 2π/B, and x is a sequence of integers from0 to 23.We set B to
be 24, such that the period is 2π/24, and D to be a value big enough to
ensure positive gene expression values. We used D = 25.

Article https://doi.org/10.1038/s41467-024-48041-6

Nature Communications |         (2024) 15:3840 13



We used JTK_Cycle32 to identify periodic genes, and its output
contains inferred amplitudes and phase shifts for each gene. As inputs
for our simulated datasets, we select the inferred amplitude and phase
shift values for core clock genes Bmal1, Dbp, Nr1d1, Nr1d2, Per1, Per2,
Per3, Cry1, and Cry2 fromRef. 36. Then, for each dataset in Group 1, we
simulate the expression of gene i as follows:

yi = ðAi ×RiÞ sin
2π
B

ðx +CiÞ
� �

+D ð5Þ

where Ri is one draw from a Beta(1, 2) distribution and all other para-
meters are as previously stated. Similarly, for each dataset in Group 2,
we simulate the expression of gene i as follows:

yi =Ai sin
2π
B

ðx +Ci +RiÞ
� �

+D ð6Þ

where Ri is one draw from a Normal(0, 6) distribution and all other
parameters are as previously stated. For each dataset in Group 3, we
simulate the expression of gene i as follows:

yi =Ai sin
2π
B

ðx +CiÞ
� �

+D+Ri ð7Þ

where Ri is one draw from a Normal(0, 1) distribution and all other
parameters are as previously stated. We generated 100 datasets for
each group, which can be thought of as the simulated expression of 9
genes for 100 single cells over 24 hours. According to the simulations,
only Group 1 and Group 2 scenarios can lead to dampened amplitudes
at the pseudobulk level. Group 3 scenario is not considered as a pos-
sible cause of the dampened pseudobulk expression (Supplementary
Fig. 5c, d).

We randomly select 6 time points without replacement over the
course of the 24 hours to investigate circadian phase heterogeneity in
the simulated data. At each time point, we randomly select 20% of the
simulated single cells without replacement and sum their expression
to obtain a pseudobulk dataset. We repeat this procedure 500 times
for each of Group 1 and Group 2, generating 500 pseudobulk datasets
per group. Then we used tauFisher to predict circadian time labels for
the resulting pseudobulk datasets.

scRNAseq experiments
Mouse strains and husbandry. The experiment is approved by the
InstitutionalAnimalCare andUseCommittee (IACUC) at theUniversity
of California, Irvine under AUP-22-003. Wild-type male C57BL/6 mice
were housed under a 12:12 light-dark cycle for two weeks prior to and
during the time of the experiment. To collect telogen skin, mice were
about 54 days old by the time of sample collection.

Sample collection and sequencing. Immediately after sacrificing a
mousewith CO2, hair ondorsal skinwas removedwith anelectric razor
and Nair Hair Removal cream. After the dorsal skin was isolated from
the body, fat and remaining blood vessels were scrapped away with a
scalpel blade. A circular piece of skinwas obtainedwith a 12mmbiopsy
punch, andminced into tiny pieces. Theminced skinwas thendigested
with 2mL of a solution consisting of 0.27% Collagenase IV (Sigma,
C5138), 10mM HEPES (Fisher Scientific, BP310-100), 1mM Sodium
Pyruvate (Fisher Scientific, BP356-100), and 5U/mL DNase I (Thermo
Scientific, EN0521) at 37 °C for 1.5 hours. The suspension was then
filtered with 70 μm and 40 μm cell strainers to obtain single cells.
SYTOXblue viability dye (1:1000; Invitrogen, S34857) was added to the
cell suspension and live cells were sorted out using FACS at the UCI
Stem Cell Research Center.

Samples were collected every four hours for three days to gen-
erate in total of 18 samples, providing three biological replicates per

circadian time point. The Chromium Single Cell 3’ v3 (10x Genomics)
libraries were prepared and sequenced by the University of California
Irvine Genomic High Throughput Facility with Illumina NovaSeq6000.

Statistics and reproducibility. No statistical method was used to
predetermine the sample size. We chose to collect three biological
replicates per circadian time point because previous circadian gene
expression experiments showed that n = 3 allowed robust detection of
circadian genes6,34,35,56. A random mouse was selected to sacrifice for
each sample collection. No dataset was excluded from the analyses.
During the collection and analysis of the scRNAseq data collected from
mouse dermal skin, the investigators were not blinded to the time
labels.

Datasets and analysis
Preprocessing for benchmark. For GSE56931, we filtered out the time
points related to the 38-hour continuous wakefulness and subsequent
recovery sleep from the dataset provided in the TimeSignatR30 package,
to only include the 24-hour normal baseline time points. For GSE38622,
the expressionmatrix was normalized as described34. For GSE157077, we
used the transcriptomes of themicewhowere fed normal chow through
an entire circadian cycle (24 hours). We concatenated the three repli-
cates of 24 hours to create one set of samples over 72 hours. For
GSE54650, the raw CEL files for the kidney and liver were imported
using the function read.celfiles in R package oligo. Each raw data
matrix was then normalized with Robust Multiarray Average (RMA)
using the function rma. To map the GPL6246 platform ID_REF to
Ensembl transcript IDs, we used the transcript cluster ID and gene
assignments listed in the table provided at https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GPL6246. For each transcript cluster ID, we
removed all gene assignments unless they were Ensembl transcript IDs
or started with Gm. If a transcript cluster ID was mapped to more than
one gene, then we replicated that row by the number of genes (e.g.,
transcript reference ID 10344614 is assigned to three Ensembl transcript
IDs so that row in the normalized dataset was replicated three times).
The expression for each transcript cluster ID was then divided by
the number of genes assigned (e.g., since transcript reference
ID 10344614 has three gene assignments, the values for all three rows in
the normalized dataset were divided by three). Transcript cluster IDs
that were not assigned to any genes were removed from the normalized
dataset. To convert the Ensembl transcript IDs to gene names, we
use the R package biomaRt57,58. If biomaRt did not find a gene name,
then we kept the original Ensembl transcript ID. For GSE54651, we
converted the Ensembl gene IDs to gene names using the R package
biomaRt57,58. If biomaRt did not find a gene name, then we kept the
original Ensembl gene ID. For each time point in GSE117295 and
GSE223109 (collected in this study), we summed the counts of each
gene in all the cells without any pre-processing to create a pseudobulk
dataset. In the case where the same gene occurs multiple times in the
data, we took the mean of those entries. The resulting pseudobulk data
at each time point is a single row vector in which each entry represents
the expression value of a unique gene. The light-stimulated group is not
considered in this paper.

scRNAseq data analysis for dermal skin. We used CellRanger version
3.1.0 with MM10 reference to process the raw sequencing output. The
downstream analysis was done in Seurat V3 according to the vignette.

Cells with 850-7800 features and less than 13% of mitochondrial
genes were kept. The SCTransform function was performed on each
sample and 3250 integration features were selected using SelectInte-
grationFeatures for each sample. Principal component analysis was
then done on the integrated dataset and the Louvain algorithm was
used to generate the clusters. Cluster identities were then determined
in combination of marker genes found in the current clustering out-
come and feature plots of canonical marker genes.
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Pseudobulk data analysis for dermal skin. Pseudobulk data was cal-
culated by summing the number of reads for eachgene fromall cells in
a group. Normalized pseudobulk was calculated as transcript counts
divided by total number of reads times 10,000. meta2d from the
MetaCycle package was used on the pseudobulk data generated from
the scRNAseq data collected from dermal skin to identify rhythmic
genes. Genes with JTK_pvalue < 0.05 were determined to be sig-
nificantly rhythmic. We used the meta2d_phase column to split the
rhythmic genes into four groups based on their peaking time.

Gene Ontology analysis was performed using clusterProfiler in R
with p-value < 0.05 as the significance cutoff.

Enrichment for GWAS SNPs
For rhythmic genes with JTK_pvalue < 0.01 in the dermal fibroblasts or
immune cells, we used the hypergeometric test to assess their
enrichment among genes that are within 200kb of the GWAS signals of
different skin immune-mediated conditions41,42,59–63. We used the
transcripts expressed in the cells as the background gene list in the
enrichment analysis. Significance cutoffs are false discovery rate≤0.05
and observed-to-expected ratio≥2.

Statistics for circular data
The circular R packagewas used to perform statistical calculations and
tests, including calculation of themean and standard deviation, as well
as the Rao’s Tests for Homogeneity and the Wallraff Test of Angular
Distances, for the circadian time prediction output in the Results
section.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All published datasets used in this paper can be accessed through their
respective GEO accession codes. The time series of microarray data
collected from mouse kidney, liver, brainstem and cerebellum are
available under GSE5465056. The time series of bulk RNAseq data col-
lected from mouse kidney, liver, brainstem and cerebellum are avail-
able under GSE5465156. The time series of microarray data collected
from mouse skin are available under GSE3862234. The time series of
bulk RNAseq data from mouse SCN are available under GSE15707736.
The time series of scRNAseq data frommouse SCN are available under
GSE11729535. The bulk RNAseq data collected from mouse skin in
control and time-restricted feeding conditions are available under
GSE838556. Although the datasets in64 and30 are both accessible
through their GEO accession codes GSE56931 and GSE113883 respec-
tively, this paper used the versions provided in the TimeSignatR
package30: https://github.com/braunr/TimeSignatR. The time series of
scRNAseq data from mouse dermal skin collected in this study are
available in the GEO database under GSE223109. Source data are
provided with this paper.

Code availability
tauFisher is available as an R package at https://github.com/micnngo/
tauFisher65. The two methods we compared tauFisher against are also
available as R packages: TimeSignatR at https://github.com/braunr/
TimeSignatRand ZeitZeiger at https://github.com/hugheylab/
zeitzeiger.
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