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A human-machine interface for automatic
exploration of chemical reaction networks

Miguel Steiner 1,2 & Markus Reiher 1,2

Autonomous reaction network exploration algorithms offer a systematic
approach to explore mechanisms of complex chemical processes. However,
the resulting reaction networks are so vast that an exploration of all potentially
accessible intermediates is computationally too demanding. This renders
brute-force explorations unfeasible, while explorations with completely pre-
defined intermediates or hard-wired chemical constraints, such as element-
specific coordination numbers, are not flexible enough for complex chemical
systems. Here, we introduce a STEERING WHEEL to guide an otherwise
unbiased automated exploration. The STEERINGWHEEL algorithm is intuitive,
generally applicable, and enables one to focus on specific regions of an
emerging network. It also allows for guiding automated data generation in the
context of mechanism exploration, catalyst design, and other chemical opti-
mization challenges. The algorithm is demonstrated for reaction mechanism
elucidation of transition metal catalysts. We highlight how to explore catalytic
cycles in a systematic and reproducible way. The exploration objectives are
fully adjustable, allowing one to harness the STEERING WHEEL for both
structure-specific (accurate) calculations as well as for broad high-throughput
screening of possible reaction intermediates.

An exhaustive exploration of mechanisms of chemical processes
requires the automated generation of chemical reaction networks
(CRNs)1–9. CRNs typically map chemical reactions into a graph of
compound and reaction nodes10–12. This graph can be constructed
based on automated calculations that locate transition states of reac-
tions assumed to take place, for which various strategies exist13–42.

First-principles investigations of reaction intermediates and
transition states provide valuable insights into reaction mechanisms,
as demonstrated, for instance, by numerous studies in the field of
catalysis43–57. However, no universal, efficient, and reliable theoretical
approach toward computational catalysis with generally applicable
algorithms is available so that the study of a catalytic reaction
mechanism of a single catalyst can require considerable time and
expertise. Understanding catalysis in terms of CRNs can be a starting
point for the design of cheaper, greener, and more selective
catalysts58,59, because automated procedures can analyze orders of
magnitude more structures than manual approaches, leading to a far

more complete understanding of relevant reaction steps (including
side anddecomposition reactions) and conformations. This results in a
more accurate formalization of catalytic processes and in silico pre-
dictions that cover the whole spectrum of catalyst and substrate
reactivity.

The increased number of structures leads, however, to a combi-
natorial explosion in a brute-force exploration of all possible reactive
site combinations, which prohibits the exhaustive exploration the
reactivity of even moderately sized structures5. Based on their deter-
mination of reactive sites, automated exploration programs can be
classified into two main categories. On the one hand, there are fully
automated approaches16,31,33,39,60,61 that are feasible for complex che-
mical systems only, if they rely on either a restrictive reactive site logic
and/or computationally inexpensive calculations5. These conditions
can, however, limit their applicability and accuracy for a particular
system of interest; transition metal complexes are good examples
owing to their variability in valency and generally intricate electronic

Received: 31 August 2023

Accepted: 15 April 2024

Check for updates

1ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland. 2ETH Zurich, NCCR Catalysis, Vladimir-
Prelog-Weg 2, 8093 Zurich, Switzerland. e-mail: mreiher@ethz.ch

Nature Communications |         (2024) 15:3680 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7634-7268
http://orcid.org/0000-0002-7634-7268
http://orcid.org/0000-0002-7634-7268
http://orcid.org/0000-0002-7634-7268
http://orcid.org/0000-0002-7634-7268
http://orcid.org/0000-0002-9508-1565
http://orcid.org/0000-0002-9508-1565
http://orcid.org/0000-0002-9508-1565
http://orcid.org/0000-0002-9508-1565
http://orcid.org/0000-0002-9508-1565
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47997-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47997-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47997-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47997-9&domain=pdf
mailto:mreiher@ethz.ch


structures. On the other hand, a class of approaches22,37,62,63 requires a
manual setup of reactivity trials through an algorithmic interface,
which can save time compared to individual structure and calculation
setup, although it still relies on human decision making to determine
the reactive site logic and lacks general applicability and scalability.

However, to carry out mechanism elucidations routinely, catalyst
design, and other chemical optimization challenges, acceleration
protocols are needed that do not corrupt any key feature of an
otherwise autonomous reaction mechanism exploration algorithm.
For instance, one does not want to limit mechanistic studies by pre-
selecting all reaction intermediates, which brings inherent biases and
constraints.

Here, we present a new algorithm driving our automated first-
principles exploration approach17,39,60,64 that allows for intuitive on-the-
fly interference of an operator with an otherwise autonomous
exploration, which we denote as the STEERINGWHEEL. Our algorithm
is able to cover all ground-state molecular compound and reaction
space and can explore a CRN either in a depth-first or in a breadth-first
fashion. By virtue of an integration into a graphical user interface the
steering of a running exploration is straightforward and intuitive.

In the following sections, we outline the general concept of the
STEERING WHEEL, discuss its implementation and its integration into
our graphical interface HERON65. Afterwards, we demonstrate func-
tionality and efficiency by application to several well-studied reactive
systems from transition metal catalysis.

Results and Discussion
Conceptual design and implementation of the steering wheel
Within our modular program package SCINE66, we have developed the
automated exploration softwareCHEMOTON17,39,60,64, which allows one
to explore chemical reaction space based on the first principles of
quantum mechanics in a single-ended manner without being con-
strained to specific compound or reaction types. This is achieved by
defining local sites in molecular structures that are reacted with one
another by pushing/pulling these potentially reactive sites together/
apart and then locating a transition state. Compared to traditional
(typically double-ended) transition state search algorithms, which aim
at a single reaction step, our approach launches an exhaustive search
for elementary steps which make no assumption on potential pro-
ducts. This is achieved by batch-wise writing instructions for multiple
reaction trials into a database, which are then executed by processes
on high-performance computing infrastructure or in the cloud67,68. The
results of the calculations are then written back to the database and
aggregated and sorted by Chemoton to construct the emerging reac-
tion network that can then be subjected to kinetic modeling. Kinetic
modeling can even be exploited for taming the combinatorial explo-
sion of reactive events12,69. The number of reactive sites may also be
controlled by various heuristic rules, such as first-principles heuristics
that exploit properties of the wavefunction or electron density17,70,71,
graph-based rules in combination with known reactivity72, or
electronegativity-based polarization rules, where, for example,
hydrogen is considered active when bound to oxygen60,69.

However, all these approaches to restrict the combinatorial
explosion of potentially reactive events are either not directed or not
coarse-grained to a degree that would allow for a quick tour to
potentially relevant intermediates of a reactive system. Therefore, we
propose the STEERINGWHEEL to allow for efficient interactive control
of an otherwise autonomous mechanism exploration. Its execution is
linear and the automated exploration is split into sequential explora-
tion steps based on an on-the-fly constructed steering protocol. In a
complex system, one may want to change the reactive-site determi-
nation rules based on the actual state of an exploration to assemble a
flexible steering protocol that establishes key parts of a CRN first
(before the exploration can dive deeper into the reactive propensity of
the system). The heuristic rules can be selected from several existing

rules mentioned above (one or more of which can be based on
machine learning, first principles, or graph-based rules). To enable
such a workflow, we base the STEERING WHEEL on shell-like explora-
tions. Each shell is a procedure to grow a CRN. That is, the STEERING
WHEEL sets up and runs newcalculations, waits for all of them tofinish,
and then classifies the results before further exploration steps are
initiated. Reactions are, however, not limited to a specific shell, but
later-found compounds can still react with the starting compounds.

The steering protocol therefore consists of two alternating
exploration steps: Network Expansion Step and Selection Step. A
Network Expansion Step is defined as an exploration step that adds
new calculations and their results, i.e., structures, compounds, flasks,
elementary steps, and reactions, to a growingCRN.SelectionStep is
defined as an exploration step that chooses a subset of structures (or
compounds) and corresponding reactive sites from the reaction net-
work, which limits the explored chemical space and avoids a combi-
natorial explosion in the subsequent expansion. For both, Network
Expansion Step and Selection Step, we have developed imple-
mentations discussed in section 3.3 below. From these implementa-
tions, the operator can build the steering protocol in such a way that
the desired chemical space is covered, as illustrated in Fig. 1. This
steering protocol is assembled in terms of keywords – such as ’Dis-
sociation’ to initiate the search for specific dissociation reactions –by a
human operator on the fly. This protocol therefore supports easy
processing andmay easily be generated fromwritten form into spoken
language (cf.73–78).

To ensure broad applicability across chemical space, the indivi-
dual steps aredefined in a generalway, although they canbefine-tuned
for each reactive system. For example, a ‘Dissociation’ expansion step
is rather general in its definition: only dissociative reaction coordinates
within a single compound are probed, but applying the step on a
previous selection step can reduce the number of calculations set up
from millions to hundreds or dozens. This high specificity can be
achieved by combining multiple selection steps into one step, as
shown for step three in Fig. 1, or by defining additional compound
filters and reactive site filters – concepts available in CHEMOTON39:
Because CHEMOTON considers a priori every structure in a network as
reactive with each of its atoms as a potentially reactive site, a huge
number of possible reactions arises from the combinatorial explosion
of reactive atom pairings. Filters reduce the number of potential

Fig. 1 | The steering protocol (the center of the figure) is built by steps that
describe network expansion and selection in an alternating fashion. Network
Expansion Steps (left, cyan) describe actions that add new information to the
chemical reaction network (CRN); examples are “Conformer Generation” and
“Dissociation”, which probe all previously selected parts of the network for new
conformers and dissociation reactions. Selection Steps (right, orange) are cri-
teria that limit the CRN to a specific subset of compounds, structures, and reactive
sites. These criteria canbebasedon the chemical structure (‘StructuralMotif') or on
energy cutoffs (‘Energy Criterion'), e.g., only the n lowest energy conformers or
compounds accessible with a given activation energy are selected.
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reactions by eliminating certain structures or reactive-atom combi-
nations from the search space. Similar to a Selection Step, the filters
can be based on various rationales, such as graph rules or properties
derived from first principles. An example for a compound filter is the
Catalyst Filter, which allows one to define a combination of che-
mical elements as a catalyst and then carry out reaction trials that
involve only this catalyst.

The explicit protocol for starting an exploration is not fixed, but it
will evolve sequentially. The reason for this dynamic nature of the
STEERING WHEEL protocol is that it cannot be known from the start
what structures and reactions will be discovered, which then deter-
mines what next steps are to be enhanced or handledmore restrictive.
In this interactive rolling procedure, the current exploration status
must be easily understandable and the potential effect of planned
steps on the exploration must be foreseeable by an operator. To
facilitate this immediate grasp of operator interference, the STEERING
WHEEL can be executed concurrently in a Python environment and is
integrated into our graphical user interface SCINE HERON65. The
integration into HERON allows one to build exploration steps directly
in the graphical user interface and then carry out the steered
exploration in an intuitive problem-focused fashion. The graphical
user interfacedisplays howapotential nextNetworkExpansionStep
would affect the exploration by presenting the number of calculations
set up for the expansion, alongside with the constructed reactive
complexes and their reactive sites. Together with the existing average
runtime information available in HERON, the computing time for the
step can be estimated. This enables one to refine the chosen selection
step to be more inclusive or exclusive based on the targeted chemical
space and available resources. One such example of an expansion
preview alongside the protocol is shown in Fig. 2.

While such intuitive interactions with a running exploration allow
for flexible workflows, they harbor the danger of producing non-
reproducible mechanism exploration campaigns. Every set of gener-
ated calculations depends on the existing results in the network and if
only a random subset of calculations in the previous step were fin-
ished, it would render the exploration irreproducible. Therefore, we
designed our framework in such a way that it ensures reproducibility

by requiring every step of the created exploration protocol to be
completed, i.e., every calculation set up must be finished, before any
further manipulations of the network are permitted. The linear pro-
tocolmight lead one to believe that Network Expansion Steps taken
early in the exploration impose strong constraints on the remaining
exploration. However, any Expansion Step can be applied on the
whole CRN at any point in the protocol, meaning that any part of an
explored mechanism can be studied in more detail later on with
additional calculations.

The linear protocol evolution of the network is advantageous,
because it allows the exploration to be completely reproducible, given
the steering protocol is published. Naturally, this also requires the
same versions of the applied electronic structure programs and SCINE
software stack, which can be ensured by containerization that we
support out-of-the-box for Apptainer79,80. Therefore, all explorations
presented in this study are easily reproducible with the provided
container and protocols deposited on Zenodo81, where also the
resulting calculations (in total 76,000 reaction trials yielding 78,000
chemical structures) are stored in a MongoDB framework82.

In the following sections, we demonstrate how our steered auto-
mated exploration approach can be applied to study various catalytic
systems. We selected three homogeneous transition-metal catalyst,
which have been studied for several decades, and one heterogeneous
single-site catalyst, which was recently explored with a different
automated approach. A complete literature review and discussion will
be impossible to achieve in the context of this work. Instead, the main
focus of this work is on how the STEERING WHEEL can be applied to
study complex reaction mechanisms. Although we do not achieve
sufficient accuracy (because of the limited accuracy of the DFTmodels
employed) to revoke or confirm any existing mechanistic hypothesis,
each exploration includes some aspects of the mechanism where our
automated search produced new results that have not been con-
sidered before.

Propylene hydrogenation by Wilkinson catalyst
We first apply the STEERING WHEEL to the reduction of propylene by
the well-known transition metal catalyst [RhCl(PPh3)3], typically

Fig. 2 | A schematic representation of the STEERING WHEEL interface
in HERON. The tabs on the left allow one to select the electronic structure model,
build specialized filters to specialize selection steps, and add user-defined settings.
In the center, the current exploration protocol is displayed. The green background
color signals a successful execution. The right console allows one toquery the latest
Selection Step for a potential next Network Expansion Step. In this case, a
Dissociation, an abbreviation for a dissociation reaction, was selected as a
potential next expansion step, meaning that the selected subset of the reaction

network is probed for dissociation reactions. All the resulting calculations that
would be set up for this purpose are then displayed within that console. Each
potential reactive complex can be selected to be visualized as a three-dimensional
structure. Theblue transparent spheres in this structure represent the reactive sites
of the specific structure. The pull-down menus on the bottom then allow one to
add the next exploration step to the steering protocol. A screenshot of the
interface in HERON is included in the Supporting Information in Supplemen-
tary Fig. 1.
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referred to as Wilkinson’s catalyst83. The two most-widely accepted
mechanismsof this catalytic reaction are theHalpernmechanism84 and
the Brown mechanism85, which are shown in Fig. 3. Both mechanisms
involve catalyst activation by ligand dissociation, oxidative addition of
H2, olefin coordination, olefin insertion into the metal hydride bond,
and reductive elimination of the alkane.

Despite the long history of research on the mechanism of this
catalyst86–89, not all intermediates of the proposed mechanism have
been observed experimentally yet. The Halpern84 and Brown
mechanisms85 diverge at the intermediate w2, which shows the phos-
phine ligands in trans-position (w2a) in the Halpernmechanism and in
cis-position (w2b) in the Brown mechanism. They then differ in their
rate-determining step, which is the olefin insertion in the Halpern and
the product elimination in the Brown mechanism. For further details,
we refer to ref. 89 and references cited therein.

Staub et al.90 have recently explored the hydrogenation of
ethylene by a simplified model of the catalyst with PH3 ligands in an
automated fashion based on the Artificial Force Induced Reaction
(AFIR) approach34. Their most favored mechanism included an initial
olefin insertion reaction prior to ligand dissociation and subsequent
dihydrogen association. This finding is in disagreement with experi-
mental findings91 and can most likely be attributed to the simplifi-
cation of the triphenyl phosphine ligand as PH3 ligands, which has led
to inconclusive theoretical results in the past92 and was shown to be
relevant for the evaluation of different accessible isomers and the
energetically most favorable path93. We therefore included the full
triphenylphosphine ligands in our exploration. Since this increased
the computational cost, we limited the explored chemical space
strictly to the two literature mechanisms. The steering protocol,
which guided the exploration by CHEMOTON and which has been
deposited on Zenodo81, reads [File_Input_Selection, Simple_
Optimization, Central_Metal_Selection, Dissociation,
All_Compounds_Selection, Association, All_Compounds_
Selection, Association, Products_Selection, Rearrange-
ment, Products_Selection, Rearrangement, Products_Se-
lection, Dissociation]. By omitting the Selection Steps and
the initial structure optimization, the list of Network Expansion
Steps reads [Dissociation, Association, Association,
Rearrangement, Rearrangement, Dissociation]. The clear
connection of our algorithmic interface and the literature mechan-
ism is already apparent based on the strong alignment of the reaction
types and the schemes in Fig. 3. The only difference between the
mechanism in Fig. 3 and our steering protocol is the split of the
product elimination into a Rearrangement and Dissociation,

because the formed propane was still weakly bound to the catalyst.
This weak coordination is due to the semi-classical dispersion cor-
rections, which favor non-covalent bonding in isolated species where
no explicit solvent molecules stabilize the dissociated products. Even
though our protocol was strictly based on the standard literature
mechanism without any focus on finding diverging reaction inter-
mediates, our selection steps and automated reaction search meth-
ods were able to find numerous isomers of the intermediates of the
Halpern and Brown mechanisms during the exploration, some of
which are displayed in Fig. 4. If specific isomers of intermediates are
of interest or expected ones are still missing in the network, they can
be searched for in a targeted manner, possibly with more accurate
electronic structure methods should the electronic structure model
be considered insufficient to localize them.

Already the first intermediate, the activated catalyst after ligand
dissociation, features two possible isomers; that is, planar T-shaped
conformations with either a phosphine ligand or the chlorine ligand in
trans position to the vacant site. These isomers are known to inter-
convert via a trigonal planar structure85. Moreover, we found formany
intermediates in our reaction network that the expected vacant site is
partially occupied by a weakly bound hydrogen atom of one of the
phenyl groups, stabilising the conformation. This agnostic interaction
originates from the attractive semi-classical dispersion correction in
our electronic structure description. Its relevance is difficult to assess
in the present structural model due to the lack of other potential
bonding partners, such as solventmolecules. The agostic bond ismost
pronounced in the intermediates w2 resulting from dihydrogen asso-
ciation, which we found as a single concerted reaction step of hydro-
gen association with simultaneous breaking of the dihydrogen bond.
For intermediates w2, all possible variations of the five-fold coordi-
nated complex were shown to be accessible in NMR experiments of
Brown et al.85. This observation increases the complexity of mechan-
isms significantly due to the numerous possible combinations of
reactive intermediates. However, with our approach, we were able to
find all possible isomers and variants in the ligand sphere (w2c - w2h)
at once.

The agostic bond between one hydrogen atom of a phenyl group
and the rhodium central ion distorts the ligand sphere from a five-fold
geometry to an octahedral complex, which ismost likely caused by the
the semi-classical dispersion corrections in GFN2-xTB on which we
relied for this exploration. We have carried out structure refinements
by optimizing some minimum structures with more reliable density
functional theory (DFT) methods. This converted the octahedral
complex to a five-fold coordination structure as expected. The agostic
interaction remained intact only in intermediates w1c and w1d due to
the strong under-coordination at the rhodium ion. However, the weak
hydrogen-rhodium bond did not hinder the exploration progress to
find the catalytic cycle with the GFN2-xTB method. The bonding of
propylene leading to intermediates w3a–w3d was possible and
replaced the rhodium-hydrogen bond.

Also for intermediate w3 we found cis- and trans-isomers. The
only two possible intermediate configurations that were not found in
our exploration were the two cis-phosphine conformers with either H
or Cl in trans position to the η2-bound propylene. This can be attrib-
uted to steric hindrance, because it requires the three largest ligands
(i.e., the two phosphine ligands and the olefin) to be all in cis-
orientation to one another, which is unlikely to be energetically
favorable.Wemanually constructedone such isomer andoptimized its
structure to investigate whether it would be stable for the electronic
structure model employed in the exploration. Upon structure opti-
mization, the propylene ligand is moved further away from the
ruthenium ion, featuring an elongated and weak bond between the
terminal propylene carbon atom and the rhodium central ion (Mayer
bond order94 of 0.22 and bond length of 2.6Å). Both the Mayer bond
order and length exceed the detection thresholds for a stable bond in
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our framework, which is why the automated reaction trials have not
considered this to be a successful association reaction. Given that a full
association of the propylene molecule is thermodynamically dis-
favored, as shown by the optimization, and that this potential reaction
competeswith association reactions leading to the other, energetically
favored stereoisomers, we deem this unsuccessful reaction trial as
correct and have not carried out further reaction explorations starting
at this stereoisomer.

For the last reaction intermediate, the bound alkyl complex prior
to reductive elimination, our steered exploration discovered not only
the proposed terminally bound alkyl group w4a89, but also inter-
mediates with a 2-propyl ligand, for which we also found the trans-
(w4c) and cis-phosphine (w4d) isomers. Furthermore, CHEMOTON
located the isomersw4e tow4h, which again incorporated the weakly
coordinating hydrogen atom. This hydrogen atom can either originate
from phenyl or alkyl groups.

As a side remark, we note that the focus in the aforementioned
work of Staub et al.90 on theWilkinson catalyst was on the training of a
neural network potential based on the explored structures in the
reaction network. This is a promising route for automated exploration
algorithms, which depend on fast electronic structure methods. We
chose the density functional tight-binding model GFN2-xTB, which,
however,may suffer from inaccuracies in energies and sometimes also
structures. The former can be easily corrected by DFT single-point
calculations, whereas the latter are difficult to correct as theymay lead
to wrong intermediate and transition state structures and even to a

wrong topology of the emerging CRN. By contrast, system-specific
neural network potentials are almost as fast to evaluate as classical
force fields, but achieve the accuracy of the reference data (typically
DFT)95–104. However, to achieve this accuracy, a huge number of
reference data point (i.e., DFT single points) is required, which intro-
duces a significant overhead before an exploration can start. More-
over, visiting new structures during the exploration may show the
limitations of a parametrized neural network potential as its accuracy
may deteriorate for them. These issues may be tackled by generalized
neural network potentials105–109, but one needs to be prepared for no
generalist simple model achieving sufficient overall accuracy close to
that of DFT. For this reason, we proposed a different scheme, called
life-long machine learning potentials that can adjust in an exploration
in a system-focused fashion110.

Ziegler–Natta propylene polymerization
Multiple polymerization reaction steps are a challenge for automated
explorations due to the required number of exploration steps required
to reach long-chained polymers. Therefore, as a second example, we
present STEERINGWHEEL results for the polymerization of propylene
catalyzed by a Ziegler–Natta zirconium catalyst. The catalytic poly-
merization reaction is shown in Fig. 5. After activation of the stable
catalyst to an active, cationic form111, possibly facilitated by a co-cata-
lyst, not shown in the figure and also not included in the reaction
network, the polymerization is a two-step process. The to-be-inserted
olefinmonomerbinds to a vacant coordination site of the catalystbyη2
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coordination, while the existing polymer chain is covalently bound to
the zirconium in intermediate z1. The monomer is then inserted in a
single step at the zirconium site, which generates a vacant site in
intermediate z2. This vacant site is only weakly coordinated by an
agostic C-H bond from the β position in the polymer chain. However,
this site is still available for coordination of the next monomer and
does not block the polymerization. Formore details, we refer to ref. 112
and references cited therein. The agostic bond increases the prob-
ability of the most common polymerization termination reaction for
Ziegler–Natta-type catalysts112, also shown in Fig. 5. The catalyst is
inactivated by β-hydride transfer, in which compound z3 is formed,
and concerted release of the polymer chain with a terminal carbon
double bond.

Since the termination reaction can occur in each polymerization
cycle, the resulting polymerization products are of varying length. The
lengths distribution can be narrowed by designing a catalyst such that
the termination reaction is unfavored andonly inducedby the addition
of a termination reagent. An automated reaction exploration can aid
such catalyst design challenges as it allows one to identify rather easily
all possible reaction products and study varying catalyst degradation
reactions atmultiple stages of the polymerization. Besidesmodulating
the termination process, Ziegler–Natta-type catalysts allow for an
elaborate ligand design to improve the stereoselectivity of the pro-
pylene insertion and, hence, to control the tacticity of the produced
polymer113–115, apart from general activity improvements based on the
co-catalyst or solvent116–120.

However, we focus on the distribution of the polymerization
products and the termination reaction. We explored the polymeriza-
tion with a short steering protocol with two addition reactions of the
propylene monomer to the activated catalyst [Zr(Cp)2CH3]

+. The

Network Expansion Steps of our steering protocol read [Asso-
ciation, Rearrangement, Association, Conformer_Creation,
Rearrangement, Rearrangement, Dissociation]. The catalytic
polymerization cycle in Fig. 5 mapped well to a simple Association,
Rearrangement protocol. However, we split up the second poly-
merization cycle with an intermittent conformer creation step, as we
noticed during the exploration that the sampling of different con-
formers is required in later stages of the polymerization due to the
increased number of degrees of freedom in the polymer chain. We
then sampled the termination reaction with these Network Expan-
sion Steps: Rearrangement and Dissociation. The additional
Dissociation step was required, because the formed product was
still weakly coordinated to the catalyst, again due to the attractive
semi-classical dispersion correction in GFN2-xTB and the lack of
explicit solvent molecules that could replace the product by coordi-
nating to the zirconium central ion.

We analyzed the reaction network explored in terms of the pro-
ducts obtained and extracted the three-dimensional structure of all
compounds thatdonot contain zirconium.Then,we inferred the Lewis
structure of each compound with XYZ2MOL121,122 and RDKIT123; the
result is shown in Fig. 6. After the addition reaction of propylene to
[Zr(Cp)2CH3]

+ and termination by β-hydride elimination, the expected
main products are 2-methyl-propene (single addition reaction) and
2,4-methyl-pentene (two addition reactions of propylene). Both were
found in the reaction network and the shortest paths for their creation
determined by SCINE PATHFINDER12 were identical to the paths
established in the literature124–126. Additionally, 18 hydrocarbon side
products were found by CHEMOTON, which are shown in Fig. 6
together with the reactant propylene and the two expected products.
However, their occurrence and distribution can only be considered a
qualitative result, because we did not refine the GFN2-xTB reaction
network with a more reliable electronic structure model such as DFT.
However, the broad variety of the explored compound space high-
lights the capabilities of our STEERING WHEEL approach to broadly
cover reaction space adjacent to that of the catalytic cycle while
keeping the exploration direction aligned with the elucidation of the
catalytic mechanism in question.

Monsanto process for carbonylation of methanol
As a third example presenting a challenge for automated reaction
mechanism exploration, we selected a process that involves two
intertwined catalytic cycles, the production of acetic acid from
methanol and carbon monoxide catalyzed by a rhodium catalyst,
typically referred to as Monsanto process. The carbonylation takes
place via multiple activated iodide species that are formed in solution
from hydrogen iodide and are regenerated by hydrolysis of the acid

Fig. 6 | Lewis structures of all hydrocarbons found in the reaction network
starting from propylene and the zirconocene catalyst [Zr(Cp)2CH3]

+ with
only two allowed addition reactions of a propylene molecule with an

alkyl-bearing Zr-catalyst. The molecular charge q and spin multiplicity Ms of the
compounds are given below each structure (Ms = 1 for singlet states, Ms = 2 for
doublet states).
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a Ziegler–Natta catalyst and a possible degradation reaction via β-hydride
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without additional functional groups (hence, no enantiomeric excess in the poly-
merization product can be expected).
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iodide, which simultaneously forms the desired product. Following
previous work127–129, the intertwined catalytic cycles are depicted in
Fig. 7. The reactionmechanism involvesmultiple insertion reactions at
the transition metal complex and multiple substitution reactions
without the presence of the catalyst.

The variety of compounds involved in other (non-Rh-catalyzed)
reactions imposes a challenge for existing reactionfiltersof automated
approaches, as outlined in section 2.1. The reason for this challenge is
that a set of graph-based rules that define which compounds are
reactive commonly activate either the organometallic (outer cycle) or
solution-phase (inner cycle) reactions. A set of rules that enables the
reaction exploration for both types of reactions during the whole
exploration process is, however, prone to cause a combinatorial
explosiondue to the large chemical space spannedby such a super-set.
In combination with the many subsequent reaction steps, this prohi-
bits an exploration of the full catalytic cycle with unsupervised auto-
mated, i.e., fully autonomous, explorations. However, the reaction
mechanism is also difficult to elucidate with semi-supervised
explorations that rely on the specification of individual inter-
mediates, due tomultiple possible routes, stereoisomers, and bonding
patterns. Because, one is interested only in the overlap of the two
reaction spaces to explore the Monsanto process, our steered
approach that can switch the focus of the exploration on the fly can
tackle such mechanisms. By virtue of our STEERING WHEEL the
required number of exploration steps and exploration flexibility is
achieved easily and the intertwined catalytic cycleswere found starting
from methanol, hydrogen iodide (HI), carbon monoxide (CO), and
[RhI2(CO)2]

– (m1) only.
The Network Expansion Steps required for the exploration of

the Monsanto process were [Association, Association, Rear-
rangement, Rearrangement, Association, Rearrangement,
Association], which again closely resembles the literature
mechanism127–129 shown in Fig. 7 with the only difference in the asso-
ciation reaction of methyl iodide to the catalyst m1 forming inter-
mediatem2. This reaction was formulated as a single elementary step
in Fig. 7, but required two steps in the steering protocol described by
an Association and Rearrangement.

After exploration of the reaction network with the semi-empirical
electronic structuremodel GFN2-xTB, we refined the reaction network
by carrying out DFT single-point calculations for all minimum struc-
tures and transition states (see section 3.1 for details on the compu-
tational methodology). Such a refinement is an efficient approach to
improve on the accuracy of the activation and reaction energies in a
CRN. Applying DFT as the next more accurate electronic structure
approach is the first step of a series of available refinement approaches
of increasing accuracy in SCINE CHEMOTON (such a sequence of
increasingly accurate, but also more costly and hence fewer ab initio
calculations can be exploited in Bayesian approaches for systematic
uncertainty quantification130,131).

Based on the DFT activation energies and the chosen starting
compounds, we searched the network for the energetically lowest
paths from methanol to acetic acid with SCINE PATHFINDER12. This
search yielded the expected catalytic path, schematically shown in
Fig. 8 (A), but also a stoichiometric reaction of methanol to acetic acid
that consumes the catalyst by forming compoundm9 shown in Fig. 8
(B). The two identified paths diverge at intermediate m5 with the
association reaction of a second methanol molecule in path B instead
of CO in path A. The second methanol molecule hydroxylates the
catalyst, undergoes carbonylation, and forms acetic acid by a con-
certed elimination of the methyl and acid groups, which appears to be
a path not discussed in the literature so far. Because the resulting
rhodium speciesm9 is lacking only a CO ligand to be transformed into
compoundm5, we searched the CRN for a path fromm9 tom5, which
would close the cycle and, hence, also classify path B as catalytic. This
connection was not present in the CRN after the exploration with the
steering protocol described above. However, after adding another
Association Network Expansion Step to the protocol, which
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Fig. 7 | Catalytic cycle of the Monsanto process for the carbonylation of
methanol to acetic acid.The reactants arehydrogen iodide (HI), carbonmonoxide
(CO), and methanol (H3C-OH) in aqueous solution. The catalyst is the speciesm1
and the product is acetic acid.

Fig. 8 | Two competing reaction paths found in the steered exploration of the
Monsanto process and identified by SCINE PATHFINDER. Path (A) shows a cat-
alytic path similar to the literature path in which the catalyst is fully recovered. Path
(B) diverges at intermediate m5 with the addition of a second methanol molecule
instead of CO. The path still leads to acetic acid, but the catalyst requires an
addition reaction of CO to recover an intermediate of the catalytic cycle. Electronic
energies are based on PBE0-D3BJ/def2-TZVP single-point calculations onGFN2-xTB
optimized stationary points and are given in kJ mol−1. Both electronic structure
methods include an implicit description of water as the solvent. Transition states
are marked as red lines and barrier-less reactions are represented by gray dotted
lines. The two path diagrams (A, B) were directly exported from HERON and then
manually augmented with Lewis structures. Source data are provided as a Source
Data file.
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reacted CO with four-fold coordinated rhodium complexes that con-
tain only a single CO ligand, we could find the missing reaction. This
path is therefore an excellent example to demonstrate on how CHE-
MOTON can uncover new reaction mechanisms, enhanced by the
intuitive reaction network analysis with PATHFINDER in HERON.
Additionally, the software allows one to export a graph similar to the
one depicted in Fig. 8. Fig. 8 was generated by pressing a button in the
graphical user interface, which generates the level diagram, and sec-
ondmanually augmenting the exported SVGplot with Lewis structures
and arrows. Full automatism for figure generation has not been pos-
sible, because no software exists that can generate Lewis structures of
organometallic complexes reliably. However, the latter is straightfor-
ward to achieve by hand within our framework, because HERON
directly provides interactive three-dimensional views of all com-
pounds along the path.

However, the energetically lowest mechanism in our reaction
network found by SCINE PATHFINDER shown in Fig. 8 (A) differs from
the literaturemechanismdepicted in Fig. 7 in the sequenceof carbonyl
insertion and CO addition. In fact, the path shown in Fig. 8 is also not
the only catalytic path we found in our exploration. All explored cat-
alytic paths differed at the reaction step of methyl iodide addition to
the planar quadratic catalyst m1, which we summarize in Fig. 9. The
literature path involves rhodium insertion into themethyl iodide bond
to formtheoctahedral complexm2, thenmethylmigration to formthe
acetyl ligand in intermediate m3, and subsequent CO addition to
regenerate the octahedral complex m4127–129. This path was present in
our reaction network and we could find multiple stereoisomers of the
reaction intermediates, which differ in their ligand sphere with the
methyl group binding either trans to a CO m2a or iodide ligand m2.

In addition, we found a pericyclic reaction, in which the methyl-
iodide bond was broken and the methyl group was bound to an
existing CO ligand instead of to the rhodium center, directly forming
intermediate m3a, which is a stereoisomer of the compound m3,
shown in Fig. 7.

The energy differences between all catalytic paths found were
small and well within the uncertainty of our electronic structure
description, hence further studies are necessary to discriminate the
two paths. Furthermore, the activation energy of the reaction of
methanol with HI was higher than expected, because this reaction is
catalyzed by water132 and we did not include explicit solventmolecules
in our reaction exploration.

Moreover, we note that a path hypothesized in the literature133–135,
where the methyl iodide oxidative addition to rhodium is a two-step
process with an initial SN2-like nucleophilic attack by the rhodium
complex onmethyl iodidewith iodide acting as a leaving group andonly
associating to the rhodium center in a second elementary step, could
not be found by CHEMOTON in our initial exploration. Since Feliz et al.
observed a strong effect of the electronic structure model and solvent
description on the initial transition state135, we suspected that this ele-
mentary step is highly unfavored in the tight binding method that we
relied on for the initial structure exploration. A manual study of the
elementary step also failed to locate a transition state for the nucleo-
philic attack. We could confirm that this failure is due to the approx-
imate electronic structure model employed and that it is not a failure of
our exploration strategy by launching another CRN exploration with the
identical steering protocol but replacing the tight-binding electronic
structure model with a pure DFT model (PBE-D3/def2-SVP). Further-
more, we adjusted the Selection Step before the third Expansion
Step to bemore restrictive, so that it considered fewer reaction trials, in
order to cope with the increased computational cost per calculation.
Although the algorithm carried out fewer reaction trials, it was able to
locate a transition state for the nucleophilic attack of the rhodium
complex onmethyl iodide in the DFT-based exploration.We then added
an additional Association step that reacted an iodide ion with five-
fold coordinated rhodium complexes as this was not considered in the
initial GFN2-xTB-based exploration. This step completed the SN2
mechanism. The CRN of the initial steps of the Monsanto process with
DFT-based reaction trials was stored in a separate database on Zenodo81.
Hence, we could show that an existing exploration protocol can be
adapted directly to another electronic structure model while allowing
one to adjust the scale of the exploration depending on the costs of the
electronic structure model employed.

Silica-supported single-site catalyst
As the last challenge for the STEERING WHEEL, we selected a gallium
single-site silica-supported catalyst for olefin polymerization136. The
diverse bonding patterns in the catalytic reaction mechanism, the
flexible environment of the silica support, and different possible
reaction paths for various gaseous hydrocarbons that can re-adsorb to
the solid-state catalyst are a challenge for automated approaches.
Because of their size, periodic systems lead to calculations with high
computational costs, which can prohibit extensive explorations of
complex systems5,9. Therefore, established automated approaches in
heterogeneous catalysis leverage existing literature data, group addi-
tivity, and linear scaling relations. Approaches by Goldsmith, Green,
Nørskov, Reuter, Ulissi, and West have been demonstrated to be suc-
cessful for pyrolysis137–143, electrochemistry144–147, and small molecule
activation148,149.

They delivered novel catalyst candidates and kineticmodels close
to experiment by incorporation of existing data61,150,151. High-
throughput calculations have leveraged algorithms that can generate
any miller index surface152 and determine adsorbate positions153–157.
However, the study of novel chemistry with these approaches requires
either prior large scale data generation158,159 or an extension of the
incorporated reaction rules by expert developers160.

In contrast to such data-driven approaches, there exist strategies
to carry out brute-force enumerations of all species based on single-
ended reaction trials without biasing the calculations to known
mechanisms or energies as presented by Maeda161–164 and
Zimmerman165,166. However, such first-principles-based approaches
require limitations in the structural model, such as exploring a single
potential energy surface, constraining the nuclei of the metal surface,
or restricting the studied reactions to small molecules dissociating on
low-Miller-index surfaces, such as a (111) surface.

To study catalytic reactions without being constrained by existing
data, exploration strategies canmake a compromise between these two
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Fig. 9 | Competing catalytic paths starting fromthe catalyst andmethyl iodide.
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the H3C-I bond and form the H3C-CO bond to arrive at intermediate m3a. Other
paths proceed via two separate transition states and differ in the ligand sphere of
the reaction intermediates m2 and m2a. PBE0-D3BJ/def2-TZVP single-point elec-
tronic energies were obtained for GFN2-xTB optimized stationary points (both
electronic structure models with implicit water solvent, see computational meth-
odology). Energies of transition state structures aremarked by red horizontal lines.
All energies are given in kJ mol−1. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47997-9

Nature Communications |         (2024) 15:3680 8



extrema. On the one hand, the Liu group studied highly complex
systems167–170 by decreasing the computational costs with a machine
learning potential that is tailored to the specific system based on pre-
ceding first-principles-based molecular dynamics simulations. On the
other hand, the Savoie group171 decreased the computational costs by
studying a cluster model after validating it with periodic calculations,
and predicting the products of each exploration shell with graph-based
rules, subsequently leveraging double-ended transition state searches
with constrained surface atoms, and a barrier limit to grow the CRN in a
deep instead of broadmanner. Hence, they showed that it is possible to
study a deep CRN featuring highly complex heterogeneous species
based on first-principles by restricting the search space.

Here, we show that we can reproduce and enhance their results
further without any constrained atoms and solely with single-ended
exploration methods by guiding the automated exploration with the
STEERING WHEEL according to their mechanism hypothesis. We

started our exploration with the identical cluster model of ref. 172. A
gallium-ethyl species, labeled H1 in Fig. 10, was probed for ethylene
association reactions, producing speciesH2 and soon. The labels up to
H17 are identical to previous work171, all higher numbers are newly
found gallium species by our protocol. The exploration required an
increased number of exploration steps compared to the other CRNs
due to high number of consecutive elementary steps of the mechan-
ism. In total, our steering protocol consisted of 19 Network Expan-
sion Steps.

In addition to the known reaction pathways yielding 1-butene,
ethane, cis-butene, isobutylene, propylene, and polymerization (up to
C5- and C6-species), our protocol could locate pathways to 1,3-buta-
diene, trans-butene, and alternative pathways to the known products.
In view of the new path to trans-butene, we can dismiss the
speculated171 enantioselective preference in 2-butene production as
the two reaction pathways are energetically identical within the

Fig. 10 |Competing catalyticpaths anddegradationreactions starting fromthe
gallium-ethyl species H1 and ethene. The three different colors represent pre-
viously explored reactions171 (orange), reactions newly discovered by our protocol
(blue), and the two starting compounds (red). The literature-known reactions (in
orange) were also found by our exploration. The bond between 'Ga' and the dot

represents the multiple bonds between the gallium ion and oxygen nuclei of the
silica surface. Each reaction arrow is labeledwith the electronic activation energy of
the reaction in kJ mol−1. Barrierless reactions, both endo- and exothermic, are
labeled with '0.0'. The activation energies are based on B3LYP-D3BJ/6-311G** single-
point calculations on GFN2-xTB optimized stationary points.
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uncertainty of our electronic structure model. Furthermore, the path
to 1,3-butadiene agrees with other mechanistic studies173.

Although our exploration exploited knowledge of the reaction
mechanisms by Savoie171, we stress that our approach of steered
automated explorations can also be applied in the case of vague or
even conflicting ideas about a reaction mechanism. Our approach
works in these cases as well, because pathways close in reaction space
are sampled together with intended ones, and the exploration strategy
can be adapted to the failure of finding certain species or pathways.
The latter occurred in this study. Ref. 171 presented the shift of the
methyl group in the reaction from H7 to H8 as a shift of the methyl
group in β-position to the gallium ion. We first failed to find reaction
paths to speciesH8. Then, we studied the three-dimensional structure
and were certain that species H8 is accessible mainly by a shift of the
methyl group in γ-position to the gallium ion. Therefore, we included
this additional option into our steering protocol and could drive the
exploration successfully to H8 and beyond.

In terms of computational resources and extensiveness of the
explored chemical space, we note that our exploration required
slightly more computational time (1272 compared to roughly 900171

days in serial computing time, cf. section 1 in the Supporting Infor-
mation for the definition). However, we did not constrain any nuclei
and could therefore explore more degradation reactions featuring
interactions with the silica support, and also found new reaction paths
by mapping out more of the chemical reaction space. The exact scale
of CRNs produced with different automated approaches is difficult to
compare, however, because the different approaches have varying
definitions of elementary steps and structures, and different de-
duplication algorithms, i.e., algorithms that identify two indepen-
dently found structures to be identical.

Our CRN of the gallium single-site catalysis encompasses 1795
compounds and 1948 flasks that aggregate a total of 37,053 structures,
which were connected by 14,118 elementary steps that were aggre-
gated into 4,533 reactions (for a definition of these terms, see section 1
in the Supporting Information and ref. 4). The aggregation of struc-
tures into compounds or flasks (that is, a collection of non-covalently
bound molecules) is based on identical molecular charge, spin multi-
plicity, and molecular graph as determined by MOLASSEMBLER174,175.
Ref. 171 does not specify the total size of the CRN. The supporting
information176 contains in total 134 transition states,meaning that even
if all of them belong to unique reactions, i.e., no two transition states
connect the same set of compounds, our CRN is about ten-fold in size
in terms of unique reactions (4533).

However, we also note that comparisons between automated
reaction network explorations, even if applied to the same chemical
system, are generally difficult and still an open challenge in this field177,
due to numerous options in many programs, varying reaction
exploration strategies, different storage of the reaction network, and
the challenge to compare highly complex data structures that repre-
sent chemical reaction networks.

Since we did not constrain the silica support during our explora-
tion, we witnessed our de-duplication algorithm, which is based on a
molecular graph isomorphism174, struggle in some cases in this reac-
tion network because it could not distinguish two compounds that
differ by slight variations in the silica support. However, this is not a
drawback of the algorithm, but a consequence of the actual feature of
the surface, presenting a variable support for the reaction to
take place.

Conclusions
We have developed a general framework, the STEERING WHEEL, for
intuitively guiding automated reaction mechanism exploration cam-
paigns, while ensuring the creation of reproducible and transferable
workflows. The design of our algorithm allows for straightforward
monitoring of the exploration progress as well as for inquiring

subsequent Network Expansion Steps, which allows one to target
wanted regions of chemical reaction space without the need to specify
individual intermediate compounds or even structures. This improves
the feedback on exploration decisions and facilitates the planning of
subsequent exploration steps.

While the framework allows for efficient explorations based on
human input, each exploration step and therefore the complete net-
work can be pushed towards exhaustive exploration (i.e., considering
any pair of atoms of any nodes of the reaction network as reactive) at
any point in the workflow. This allows one to study catalytic mechan-
isms routinely in a rather complete fashion with minimal human work
or domain knowledge in the setup of electronic structure calculations
and automated explorations. We emphasize, however, that our fra-
mework is not limited to catalytic mechanisms, but can be applied to
explore chemical reactivity in general.

We have applied the STEERING WHEEL to three well-known
homogeneous transition metal catalysts and one heterogeneous
single-site catalyst. For theWilkinson catalyst, our exploration covered
both literature mechanisms as well as additional potentially relevant
reaction intermediates. The effect of the triphenyl phosphine ligands
upon the optimized reaction intermediates and transition states due to
their strong steric effect suggests that their explicit inclusion in the
structuralmodel of theoretical studies of thismechanism is important.

For the Ziegler–Natta metallocene catalyst, our exploration cov-
ered the literature reaction path to the expected polymerization pro-
duct including the correct termination reaction. Additionally, we
found other homo- and heterolytic termination reactions that allowed
us to cover the reaction space in such a way to find 18 other hydro-
carbon polymerization (by-)products after only two addition reactions
of propylene with the catalyst.

We note that no quantitative evaluation is possible from our
Wilkinson and Ziegler–Natta reaction networks as this would require a
refinement of the networks with more accurate electronic structure
methods (such as DFT). We have, however, carried out a DFT refine-
ment of the reaction and activation energies of the reaction network
containing the most compounds in this study, namely the exploration
of the Monsanto process. In this network, we could find the inter-
twined catalytic cycles spanning six subsequent reactions from the
reactant to the product as well as an unreported mechanism that
produces acetic acid in an additional catalytic cycle initialized by a
second association reaction of methanol with a pentavalent rhodium
species. Additionally, we found multiple alternative paths for the
reactionwith the highest activation energy in the catalyticmechanism,
the oxidative addition of methyl iodide to the catalyst.

The two findings, the catalyst degrading mechanism and the
alternative paths in the catalytic cycle, highlight howan automated and
systematic, yet guidable, algorithm allows one to study complex
reaction mechanisms in great detail. However, we also note that the
exploration of the Monsanto process overestimated at least one acti-
vation energy due to missing explicit solvent molecules in the
exploration, which therefore lacked catalytic solvent effects, and
missed one previously reported reaction path for the addition reaction
of methyl iodide due to the selection of the fast GFN2-xTB model of
limited accuracy for initial structure explorations, which we confirmed
with a second, but limited automated exploration of the mechanism
with DFT-based reaction trials. Hence, it can be advantageous to apply
our STEERING WHEEL algorithm to restrict reaction network explora-
tions in such a way to reduce the required number of calculations such
that initial DFT structure explorations are feasible and introduce sys-
tematic solvation correction protocols, which are currently under
development in our group.

For the single-site gallium silicate catalyst, we could push the
boundaries of accessible deep reaction mechanisms by exploring a
mechanism spanning twelve subsequent elementary steps. We could
recover the known reaction network completely and found additional
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reactionpaths resulting in other (by-)products and alternative paths to
already known products. We achieved this with single-ended
exploration methods without explicit assumption of the products
and without constrained nuclei. This demonstrates that our approach
is general and applicable to a broad range of systems. It quickly maps
out the relevant chemical reaction space and systematically improves
on existing data and hypotheses.

The modular infrastructure of SCINE in general, SCINE CHEMO-
TON in particular, and of our STEERING WHEEL algorithm form a sui-
table basis for further extensions of individual parts of automated
workflows, such as more advanced Network Expansion Steps (e.g.,
reaction trials featuring multiple electronic structure models31, sys-
tematic network refinement with more accurate electronic structure
methods68 or with automated microsolvation approaches178–181, or
more exhaustive conformer generation174,182–184). Moreover, inclusion
of Selection Steps that do not rely on human input, such as general
heuristics derived from first principles71, results from existing
explorations72, machine learning185, path information12, or kinetic
simulations69,186–192 is straightforward and will further enhance the
capabilities of the STEERING WHEEL, which has been implemented
into our graphical user interface SCINE HERON, which is available free
of charge and open source.

Methods
Computational methodology
All data management, quantum chemical calculations, and structure
manipulationswere conductedwithin our general software framework
SCINE66, which is available open source and free of charge. The
STEERING WHEEL was implemented in our graphical user interface
SCINE HERON65, with SCINE CHEMOTON39,64 as the underlying engine
to drive the mechanistic explorations. All reaction trials were carried
out with the Newton Trajectory 2 (NT2) algorithm39,193,194, the reac-
tive sites were determined by the selection steps made and filters
chosen, which are stored within the provided protocol files deposited
on Zenodo81. All reaction trials were carried out with the SCINE CHE-
MOTON default settings (also provided in the protocol files) and all
calculations were carried out with a SCINE PUFFIN67 Apptainer con-
tainer. The molecular graphs required for sorting all chemical struc-
tures into compounds and flasks were constructed by SCINE
MOLASSEMBLER174,175, which also enabled the generation of con-
formers of the Ziegler–Natta zirconium catalyst based on distance
geometry.

All electronic structure calculations were carried out by external
programs,whichcanbe controlledby the SCINE interface195 that allows
to freely select and substitute the underlying electronic-structure
model, including hybrid models196. All explorations were initially car-
ried out with GFN2-xTB197 as implemented in xtb 6.5.1198 supported by
our interface199. Further refinement of the Monsanto network was
carried out with the (pure) generalized-gradient-approximation
Perdew–Burke–Ernzerhof200,201 (PBE) exchange-correlation functional
with 25 % exact exchange (PBE0)202. These PBE0 calculations were
carried out with TURBOMOLE 7.4.1203 with the def2-TZVP basis set204.
The refinement of reaction and activation energies in the CRN of the
gallium single-site catalyst was carried out with Becke-
3–Lee–Yang–Parr (B3LYP) exchange-correlation functional205–208 and
the 6-311G** basis set209,210 in order to compare to the network pub-
lished in ref. 171. The exploration of the first steps of the Monsanto
network with DFT validates the reactionmechanism obtained with the
more approximate electronic structure model. It was carried out with
the PBE functional and the def2-SVP basis set204 with ORCA 5.0.3211. All
DFT calculations included the D3 dispersion correction212 with
Becke–Johnson damping213 and density-fitting resolution of the iden-
tity through an auxiliary basis set214.

The exploration of the Monsanto process was considered with an
implicit solvation description applying thedielectric constant ofwater.

As solvation models we applied (i) the Conductor-like screening
model215 for the PBE0/def2-TZVP single-point calculations, (ii) the
Gaussian charge scheme216,217 for the exploration with PBE/def2-SVP,
and (iii) the generalized Born solvation area model218–221 for the GFN2-
xTB tight-binding calculations. All calculations and their results were
stored in our MongoDB-based database format82 on Zenodo81.

Methodological developments
We have improved the NT2 algorithm regarding the transition state
guess. Previously, the highest local maximum along a search trajectory
had been selected as transition state guess, which could cause pro-
blems for atoms that get too close at one end of the search trajectory
as those configurations do not represent transition states, but some
arbitrary high-energy structures. We improved the selection based on
the observed bond order changes during the trajectory. If the desired
bond order change has occurred during the trajectory, the last local
energymaximumbefore the event will be selected as a transition state
guess. If the desired bond order change occurs, but our algorithm has
not observed any local energy maximum up to this point, as deter-
mined by a screening window after smoothing the curve with a
Savitzky–Golay filter222, the first local maximum after the event will be
selected. If the bond order change is not observed during the trajec-
tory, e.g., due to a failing calculation before the required bond order
threshold could be reached, the highest local energy maximum
structure will be selected as a transition state guess.

Moreover,we improved theNT2 stopcriteria and forces for haptic
bond formations, which are crucial formany transitionmetal catalyzed
reactions, due to possible ηn coordination modi. The NT2 algorithm is
based on the construction of a reaction coordinate based on pairs of
nuclei, which in general allows it to probe more complex reaction
coordinates than fragment-based approaches suchasNT139 andAFIR34.
However, the combination of pairs of single nuclei may lead to pro-
blematic force additions for highly complex reaction coordinates
involving a haptic bond formation and another association reaction or
multiple dissociation reactions involving the same reactive site multi-
ple times. One such example is a SN2-like reaction with one substituent
forming a haptic bond. We have improved on the NT2 algorithm in
such a way that the involvement of haptic bond formation or breaking
is detectedbasedon calculatedbondorders,which allows the software
to deduce whether pairs of nuclei belong to the samemolecule or not.
Based on this information, the applied forces on the reacting nuclei are
scaled such that the intended η bond formation or breaking is possible
without eliminating other concerted reaction coordinates.

Another notable improvement to CHEMOTON’s reaction
exploration capabilities is the addition to carry out a fast screening of
potential dissociation energies, which allows the software to skip the
more expensive NT2-based algorithm. For this, the to-be-dissociated
structure can be split into multiple molecules determined by CHE-
MOTON’s reactive-site logic. The two or more separate molecules can
then be optimized separately to obtain the products of the dissocia-
tion and reaction energy. The optimizations are carried out for mul-
tiple possible charge combinations, to consider that the bond(s) can
be cut in a homo- or heterolytic fashion, as well as for different spin
multiplicities to account for different spin distributions in the frag-
ments. For the combination that yields the lowest dissociation energy,
the software then probes the optimized fragments for a barrierless
reaction by placing the fragments alongside the cut bonds with the
distance elongated to the sum of van der Waals radii of the reactive
sites. If the optimization of this super-system then yields the initially
dissociated structure, a barrierless elementary step is added to the
CRN. Hence, barrierless reactions are found with minimal computa-
tional cost. Such barrierless reactions can be crucial for catalyst acti-
vation (see e.g., the activation of Wilkinson’s catalyst).

In the explorations reported in thiswork, all dissociation reactions
with a reaction energy below 200 kJ/mol were additionally sampled
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with our conventional NT2-based algorithm afterwards to verify the
results from the faster algorithm.

Implementation details of exploration steps and exploration
workflows
The steered explorations are carried out by the Steering_Wheel
Python data structure, which receives an exploration protocol as a list
of exploration steps that are either a Selection Step or Network
Expansion Step. The management of technical details such as indi-
vidually forked processes, database information forwarding, and
database querying are handled by this data structure. The imple-
mentation in HERON provides further abstractions and the operator
can generally operate the steered exploration by selecting options
from the existing implementations which are sufficiently general so
that all explorations presented in this work can be carried out in the
graphical user interface.

We have developed a number of STEERING WHEEL exploration
steps that we expect to be well-suited for most molecular chemistry
including homogeneous transition-metal and single-site catalysis. The
implemented Network Expansion Steps allow one to generate
conformers with SCINE MOLASSEMBLER174,175 and to extend the CRN
by steps that are encoded in basic chemical language; for example,
Association for the association reaction of two molecules, Dis-
sociation for the dissociation of a bond in a single molecule, and
Rearrangement for rearrangements within a molecule by intramole-
cular reaction. A complete list of the implemented Network Expan-
sion Steps is given in Supplementary Table 2 in the Supporting
Information. Generally, the various Expansion Steps can be chosen
such that either bi- or unimolecular reactions are sampled. This guides
the CRN in the general direction of either aggregating reactants or
progressing the reactivity of already activated compounds. Additional
settings include the number of sampled reaction coordinates, e.g., a
straightforward ligand association reaction can be sampled with a
single reaction coordinate, while complex rearrangements of haptic
bonds can involve multiple associative and dissociative coordinates.

The specificity of the Expansion Steps is achieved by the pre-
ceding Selection Step. The currently implemented Selection
Steps allow one to continue with the products found based on dif-
ferent structural or energy criteria and are listed in Supplementary
Table 3 in the Supporting Information. Relevant conformers can be
selected based on their relative energies and/or based on maximum
structural diversity in order to cover the phase space of reactants as
much as possible enabled by clustering structures (e.g., according to
their root mean square deviation).

Reactive sites of compounds and structures can be limited by
various heuristic rules. To this set of rules, we have added a reactive
site filter to carry out reaction trials only in the vicinity of a chemical
element. For easyusability, this new filterwas combinedwith a suitable
compound filter in a Selection Step, the Central_Metal_Selec-
tion, that allows one to focus reaction trials strongly on a central ion
and its vicinity, a concept that is particularly relevant for transition
metal chemistry with the central ion orchestrating the chemical
transformations. This and other Selection Steps may also be spe-
cialized up to the point of choosing a single pair of atoms within two
specific structures as the sole reactive sites in the whole CRN with the
integration of the existing filtering logic from CHEMOTON, as dis-
cussed in section 2.1, which has been enhanced with a general frame-
work tobuild sets of reaction ruleswithinHERON65 as shown inFigure 1
in the Supporting Information. This enables one to apply different
Selection Steps in a very flexible way. If a system can be described
well by a general set of reaction rules, e.g., as is often the case in
organic chemistry, the filters can be set for multiple steps in the
exploration and the general reactivity is guided based on the available
resources. However, if highly diverse chemical reactivity shall be
explored within one CRN, such as in the Monsanto process that

involves both hydrolysis and condensation reactions of small mole-
cules and reactions with an organometallic catalyst, frequent changes
of the applied reaction rules can efficiently shift the focus of the
steered exploration.

In the unlikely case that none of the current implementations is
sufficient to explore a particular system, further additions to our fra-
mework are straightforward. A new aggregate filter can be generated
by defining a single method that takes either one or two aggregates
and specifies if these are to be considered as reactive or not. Within
that method the two aggregates can also be queried for more detailed
information such as their molecular graph, charge, and more. A new
reactive site filter is defined by methods that take potential reaction
coordinates of a given molecular structure and returns a list of valid
reaction coordinates.

Additionally, new Network Expansion and Selection Steps
can be implemented. The linear steering protocol is expected to
consist of alternating Network Expansion and Selection Steps.
Therefore, each exploration stepmust be able to process the output of
the step before andproduce anoutput that can serve as an input to the
next one. These input and outputs are encoded in specific data
structures in CHEMOTON. A Selection Step produces a result that
specifies to-be-applied filters and / or specific individual structures. A
Network Expansion Step produces a list of all compounds, flasks,
structures, and reactions that it has modified. A new Selection Step
is implemented by defining a method that takes the result of a Net-
work Expansion and constructs the list of valid structures. A new
Network Expansion defines the specific jobs it must execute, the
different CHEMOTONgears itmust execute, and lastly, how to execute
them and then collect the results by a database query.

We would like to stress that most applications will not require
such development work, but can directly apply the existing explora-
tion framework by selecting from the existing implementations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The reactionnetworkdata generated in this studyhavebeendeposited
in the Zenodo database under accession code 1061168681. The net-
works are stored in our MongoDB framework alongside with the
exploration protocols, a description on how to load the data and
reproduce it with our software, and the Apptainer container of SCINE
PUFFIN67 that carried out all calculations. The additional DFT-based
exploration of the first steps in theMonsanto process is also deposited
as a separate database in the same repository. The Supplementary
Information includes metadata of the reaction networks, such as
number of compounds and required computing time, and a summary
of all implementations of Network Expansion Steps, Selection
Steps, and filters. Source data are provided with this paper for
Figs. 8 and 9 and the tables in the Supporting Information. Source data
are provided with this paper.

Code availability
The underlying SCINE software stack as well as the new graphical user
interface are freely available and open-source66. The STEERINGWHEEL
software framework within SCINE CHEMOTON has already been
released in version 3.1. The explorations of Wilkinson’s catalyst,
Ziegler–Natta catalyst, and the Monsanto process were carried out
with this version. The exploration of the gallium single-site catalyst
requires the generation of reaction trials of non-covalently bound
reactive complexes, which are added to SCINE CHEMOTON in version
3.2. A description on how to install a pre-release version of these fea-
tures and the graphical user interface is given alongside the data
archive on Zenodo81. In addition to the publicly available release, we
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note that HERON and CHEMOTON have been included into the
AutoRXN workflow68 on Microsoft Azure and Azure Quantum
Elements223,224.
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