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Cerebrospinal fluid reference proteins
increase accuracy and interpretability
of biomarkers for brain diseases

Linda Karlsson 1 , Jacob Vogel1,2, Ida Arvidsson 3, Kalle Åström3,
Shorena Janelidze1, Kaj Blennow 4,5, Sebastian Palmqvist 1,6, Erik Stomrud1,6,
Niklas Mattsson-Carlgren1,6 & Oskar Hansson 1,6

Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are
used extensively in translational research as well as in clinical practice for
diagnosis of neurological diseases, e.g., Alzheimer’s disease (AD). However,
CSF biomarker concentrationsmay be influenced by non-disease related inter-
individual variability. Here we use a data-driven approach to demonstrate the
existence of inter-individual variability in mean standardized CSF protein
levels. We show that these non-disease related differences cause many com-
monly reported CSF biomarkers to be highly correlated, thereby producing
misleading results if not accounted for. To adjust for this inter-individual
variability, we identified and evaluated high-performing reference proteins
which improved the diagnostic accuracy of key CSF AD biomarkers. Our
reference protein method attenuates the risk for false positive findings, and
improves the sensitivity and specificity of CSF biomarkers, with broad impli-
cations for both research and clinical practice.

Neurodegenerative disorders and dementia are common and have
increasing prevalence world-wide1. The need for precise and reliable
diagnostic techniques to identify, examine and monitor these dis-
eases is growing. One informative and cost-effective diagnostic
technique is the measurement of protein concentrations in cere-
brospinal fluid (CSF), here referred to as CSF biomarkers2,3. In Alz-
heimer’s disease (AD), which is themost commonneurodegenerative
disease, CSF biomarkers are used in clinical practice as diagnostic
tools2. Neuropathologically, AD is defined by the combined presence
of amyloid(A)-β plaques and tau-neurofibrillary tangles. CSF bio-
markers related to these pathologies include Aβ42 and soluble
phosphorylated(P)-tau4. These CSF markers can substantially
improve the diagnostic work-up of the disease, which is becoming
increasingly important due to recent development of effective dis-
ease modifying-treatments for AD5–7. However, the use of CSF

biomarkers may be complicated by inter-individual variability in
certain non-disease related physiological phenomena, such as (but
not limited to) subject-level variations in the transport rates of pro-
teins from the brain parenchyma into the CSF or variations in CSF
production/clearance rates8–10. Such inter-individual differences
could lead to non-disease related differences in CSF protein levels11,
which could impact the overall performance of CSF biomarkers12–14.
Hypothetically, adjustment for individual variability in CSF protein
levels or to selected reference proteins could optimize the perfor-
mance of already efficient CSF biomarkers, reduce false positive
findings (by attenuating biomarker associations that are driven by
the non-disease related variability), and increase the likelihood of
making new biologically and clinically relevant discoveries. Similar
approaches are commonly applied in other areas of medicine. Bio-
markers in urine are for example normalized to a reference marker
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(often creatinine) to adjust for variations in the urine concentration
when the sample is collected at a single time point15,16.

In AD research and clinical practice, CSF Aβ42 and P-tau, together
with a CSF biomarker of neuronal injury (i.e., CSF total-tau or neurofi-
lament light chain), can be used for AT(N) (amyloid, tau, neurodegen-
eration) in vivo classification of AD pathology17,18. This system makes it
possible to categorize a person as biomarker positive or negative, where
low CSF Aβ42 levels indicate Aβ plaque pathology (“A”) and high CSF
P-tau181 levels indicate tau tangle pathology (“T”)19–25. AT(N) grouping is
an effective way to differentiate individuals without AD (A-/T-) from
those with AD (A+T+). However, many studies have reported findings in
thegroupwith isolatedP-taupathology (A-T+; i.e., bothhighAβ42andP-
tau181), which is more controversial17,26–28. It is unclear if this A-T+ defi-
nition is biologically relevant or mainly a result of inter-individual dif-
ferences in CSF levels (leading to more concentrated CSF in some
individuals with higher levels of both Aβ42 and P-tau181).

Besides well-established CSF biomarkers used in clinical practice,
CSF proteins are often studied to understand underlying disease
mechanisms in humans affected by AD or other neurodegenerative
diseases. In such studies, it has been suggested that CSF levels ofmany
microglia-related proteins (like sTREM2 or TAM receptors [sAXL and
sTYRO3]) are strongly correlated with CSF P-tau181 and increased not
only in A+T+ individuals, but also in A-T+ individuals, linking these
neuroinflammatory changes more to P-tau pathology than Aβ20,21. In
addition, other CSF markers have been seen to correlate with CSF
P-tau181 levels. For example, we and others have reported that the
astrocytic biomarker YKL-40 and the Parkinson’s disease-related bio-
marker α-synuclein are strongly associated with P-tau181 in CSF, which
was interpreted as that these brain pathological changes co-vary29–31. It
is unclear whether such findings are mainly driven by non-disease
related inter-individual differences in CSF protein levels, or remain
robust when accounting for this property. Moreover, the impact of
CSF variabilitymight also be of importance in proteomic studies,when
identifying subpopulations with different CSF expression profiles32, or
in genome-wide protein quantitative trait loci (pQTL) studies, looking
at associations between genetic variants and protein levels14.

One striking example that highlights the potential of using a
normalization protein in the context of AD CSF biomarkers exists. CSF
Aβ42 shows improved concordance with amyloid positron emission
tomography (PET, a well-established neuroimaging method to make
aggregatedbrain amyloid inADvisible)whennormalized forCSFAβ40
levels, where the latter is not affected by the disease process33,34. Aβ40
is closely linked to Aβ42 since both peptides come from the same
proteolytic pathway35, but Aβ40 may also partly represent an indivi-
dual’s non-disease related CSF protein level and could potentially
improve performance of other biomarkers as well. This idea has been
tested for CSF P-tau181, where the results suggested that the diag-
nostic accuracy improved when adjusting for inter-individual differ-
ences in CSF Aβ40 levels13. In order to examine Aβ40’s generalizability
as a reference protein, it needs to be further evaluated. In addition to
Aβ40, other efficient CSF reference proteins may exist that can
improve the clinical performance of key CSF biomarkers.

Consequently, our overarching aim was to establish the concept
of non-disease related inter-individual differences in CSF protein
levels, and to search for optimal reference protein candidates that
could be used to account for this variability in a robust way. This in
order to more accurately detect disease-associated changes in key
biomarkers. We analyzed 2944 CSF proteins (including CSF Aβ40)
from 830 participants in a data-driven manner. We hypothesized that
adjusting for certain reference proteins could improve the diagnostic
accuracy of AD CSF biomarkers, and we evaluated this across a range
of outcome measures, biomarkers, and AD cohorts. We also hypo-
thesized that several previously reported CSF biomarker findings
would be altered or attenuated when biomarkers were normalized to
reference proteins. Specifically, we studiedwhether several strong and

recognized correlations of CSF protein concentrations remained
robust when normalizing to the identified reference proteins, both in
relation to each other and to genetic variants.

Results
The study included 830 participants from the Swedish BioFINDER-2
(BF2) cohort and 904 participants from Swedish BioFINDER-1 (BF1)
cohort, all with complete OLINK CSF protein and CSF Aβ40 con-
centration measures (2,944 in BF2 and 369 in BF1). The included par-
ticipants hadeither normal cognition (NC, n = 263 inBF2 andn = 464 in
BF1), subjective cognitive decline (SCD, n = 111 in BF2 and n = 172
in BF1), mild cognitive impairment (MCI, n = 193 in BF2 and n = 195 in
BF1), dementia (n = 216 in BF2 and n = 73 in BF1) or another neurode-
generative disease (n = 47, only in BF2). BF2 was randomly split into a
training set (80%, n=658) and test set (20%, n = 172). Throughout this
work, the training dataset of BF2was used for all exploratorywork. The
BF2 test dataset was used to evaluate findings, and BF1 was used for
external validation. To find and assess appropriate reference proteins,
their performance was evaluated in three logistic regression models.
The first model predicted tau-PET (a well-established neuroimaging
method to demonstrate fibrillary tau deposition in AD) positivity with
CSF P-tau181 (P-tau181→TauPET). The second predicted Aβ-PET (a well-
established neuroimaging method to demonstrate fibrillary amyloid
deposition in AD) positivity with CSF Aβ42 (Aβ42→AβPET). The third
predicted future conversion to AD dementia with CSF P-tau181 (P-
tau181→ADDconv). The first two models were used to search for sui-
table reference proteins while the third was used for validation of
reference proteins. A flowchart and details of the complete reference
search/evaluation pipeline, together with all data splitting details and
demographics, are presented in Fig. 1 and Tab. 1. The main results
focus on these analyses, with extended results in Supplementary
Information.

Many CSF proteins vary in concordance with the mean stan-
dardized CSF protein level
A mean standardized CSF protein level was calculated for each parti-
cipant, representing howmany standard deviations the concentration
of CSF proteins in that participant deviated from the populationmean
(details in Methods: Statistical analyses, Eq. 1). We sorted the 2944
standardized CSF protein concentrations according to their associa-
tions with the mean standardized CSF protein level (Supplementary
Fig. 1) and visualized the results in Fig. 2. Figure 2a indicates that,within
a random subsample of individuals, there are several participants that
systematicallyhavehighor lowvalues across several hundredproteins.
This phenomenon is evident across the full training dataset of 658
participants (Fig. 2b), where nearly half of all proteins measured
appear to show highly consistent individual variation. The individual
variability remained when stratifying on age and cognitive status
(Supplementary Figs. 2, 3). When removing proteins of low detect-
ability, this pattern becomes even clearer (Supplementary Fig. 4),
emphasizing that most proteins that are highly expressed in CSF (and
therefore likely to be nominated in CSF biomarker studies) vary in
concordance with the mean standardized CSF protein level. The AD
CSFbiomarkers P-tau181 (β = 0.34, P < 1e-20) andAβ42 (β =0.24, P < 1e-
10) were associated with the mean standardized CSF protein level
(Fig. 2c). As expected, Aβ40 (β =0.44, P < 1e-37) showed a stronger
association with the mean standardized CSF protein level (Fig. 2c).

To further understand potential factors associated with mean
standardized CSF protein level differences, we investigated the mean
standardized CSF protein level’s association with age, sex, education
level, intracranial volume, graymatter volume and ventricular volume.
In a multiple linear regression model, significant associations with a
highermean standardized CSF protein level were found for higher age
(β =0.544, P = 4e-31), male sex (β = −0.159, P = 2e-4), and lower ven-
tricular volume (β = −0.321, P = 5e-11), see Supplementary Tab. 1.
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Similar results were seen when evaluating Aβ-negative cognitively
normal participants only.

A cluster with superior CSF reference protein qualities
We next examined clustering of the CSF protein concentrations to
identify proteins of similar characteristics.Weused t-SNEdimensionality
reduction36, applied to the high dimensional space of 658 participants
(Fig. 3a). As the algorithm optimizes to preserve similarity of pairwise
points, proteinsof shortdistance in Fig. 3a canbe interpretedas similarly
expressed. In Fig. 3c−h, clustering characteristics of the t-SNE space are
compared against several metrics relevant in search of reference pro-
teins. A reference protein should be associated with the mean standar-
dized CSF protein level (Fig. 3c). The mean standardized CSF protein
level was highly associated with ventricular volume when adjusting for
age and sex, suggesting that the mean standardized CSF level is partly
driven by dilution. Therefore, lower levels of optimal reference proteins
could be associatedwith larger ventricular volumes (Fig. 3d). A potential
reference protein for a given model predictor, that can perform better
than simplyusing themeanstandardizedCSF level of all proteins, should
co-vary with the main predictor during normal physiology but not in
disease. Therefore, an AD reference protein should likely have a high
correlation with key biomarkers like P-tau181 and Aβ42 in cognitively
unimpaired Aβ-negative participants, which are not considered to have
thedisease (Fig. 3e, f). Lastly, awell-performing referenceprotein should
improve the predictive performance of key biomarkers, which was
evaluated by comparing results of (i) using P-tau181 together with a
potential reference protein to predict tau-PET outcome (P-tau181→Tau-
PET) or (ii) using Aβ42 together with a potential reference protein to
predict Aβ-PET outcome (Aβ42→AβPET) (Fig. 3g, h).

A semi-supervised K-means (K= 20) clustering algorithm37 was uti-
lized to divide the t-SNE space and identify a subset of potential refer-
ence proteins. The supervision was performed by selecting K and the
random initialization so that clear structural clusters were separated and
areas of overlap in Fig. 3c–h could be examined in more detail. The
resulting K-means clustering can be seen in Fig. 3b. The clustering was
relatively well in line with the OLINK panel division (see Supplementary
Fig. 5), where the area of interest was likely to not benefit a certain panel.

The AUC of each cluster in the two regression models P-
tau181→TauPET and Aβ42→AβPET were evaluated in Fig. 4a, b. The
AUCs without using an individual reference were 0.865 and 0.934
respectively. By analyzing the performance cluster-wise, we aimed to
target protein expression characteristics rather than single findings
and hence remove top performances biased by data. As seen in both
Fig. 4a, b, and as expected from the overlapping areas in Fig. 3, cluster
11 (nproteins = 219) stands out as the best performing cluster (mean
AUC± std: 0.896 ± 0.0187 and 0.947 ±0.00698 for P-tau181→TauPET
and Aβ42→AβPET respectively).

We performed cell type expression and cellular component
pathway enrichment analyses on cluster 11 to further investigate the
characteristics of promising reference proteins from a biological per-
spective. Cluster 11 had high expression in mainly neuronal cells
(Supplementary Fig. 6) but showed no significant expression differ-
ence compared to the other 2725 OLINK proteins, which was assessed
with a bootstrap enrichment test. Cluster 11 was enriched on cell sur-
faces and membranes (Supplementary Fig. 7). Additionally, we
observed that the proteins of cluster 11 had higher brain expression
than the other highly expressed OLINK proteins (Supplemen-
tary Tab. 2).

Identification of general and biomarker-specific reference
proteins
To further validate single robust reference proteins, specific candi-
dates from cluster 11 that resulted in top AUC scores for the
two models P-tau181→TauPET and Aβ42→AβPET were identified
(Figs. 4c, d). While this extensive dataset of 2944 proteins allowed for
great exploration possibilities, it also limited the validation opportu-
nities in other cohorts. Additionally, some cohort-specific biases in our
data were still expected, even after adding robustness by only looking
at the subset of proteins fromcluster 11.Wehencedid not expect small
AUCdifferencesbetween single proteins to be significant. Taking these
factors into account, we selected three reference protein candidates in
addition to Aβ40 (also in cluster 11), for further examination, based on
the following selection criteria:
1. The protein was in cluster 11.

Fig. 1 | Flowchart of reference protein search and evaluation pipeline. BF2 was
filtered by participants with CSF OLINK and CSF Aβ40 measurements (n = 830).
Thereafter, the dataset was split into 80% training (n = 658) and 20% testing
(n = 172). During the exploratory phase, all BF2 training data was used. Next, the
two models P-tau181→TauPET and Aβ42→AβPET were used to search for refer-
ence proteins in the protein search phase. The proposed candidates were

evaluated in corresponding models for unseen test data, and in a new third
model P-tau181→ADDconv on the training data. The findings were further vali-
dated in the independent cohort BF1 (n = 904) for the two models Aβ42→AβPET
and P-tau181→ADDconv. Themodel P-tau181→TauPETwas not evaluated in BF1 as
baseline tau-PET data did not exist. Complete data refers to nomissing values for
any of the relevant variables and was a filtering step in all models.
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2. The inclusion of the protein led to an increased AUC score for
both the P-tau181→TauPET and Aβ42→AβPET model.

3. The protein was measured in our independent validation
cohort (BF1).

The resulting three proteins, NTRK3, NTRK2 and BLMH, are
marked out in Fig. 4c. See Supplementary Note 1: Reference Protein
Candidate Profiles for a biological description of the three proteins
and BF2 data information further confirming the proteins’ potential as

Table. 1 | Demographics for all data paths in Fig. 1

BioFINDER-2 (n = 830) BioFINDER-1 (n = 904)

Exploratory

BF2 train BF2 test BF1

n 658 - -

Age [years] 68.2 (12.0) - -

Sex male (%) 351 (53.3%) - -

Education [years] 12.4 (3.75) - -

MMSE 26.3 (4.23) - -

APOE ε4 carriera 319/655 - -

NC/SCD/MCI/Dementia/Other 196/94/147/176/45 - -

P-tau181→TauPET (Predictors: CSF P-tau181, age, sex, individual reference, outcome: Tau-PET Braak I−IV > 1.36)

BF2 train BF2 train BF2 test BF2 test BF1 BF1

positive negative positive negative positive negative

n 170 470 32 131 - -

Age [years] 72.3 (8.20) 66.7 (12.7) 72.9 (8.69) 69.0 (10.7) - -

Sex male (%) 85 (50%) 249 (53%) 14 (44%) 68 (52%) - -

Education [years] 12.8 (4.48) 12.4 (3.51) 12.0 (4.47) 12.7 (3.57) - -

MMSE 22.7 (5.05) 27.6 (2.96) 21.8 (5.29) 27.3 (3.31) - -

APOE ε4 carriera 123/169 183/469 26/32 55/131 - -

NC/SCD/MCI/Dementia 13/9/45/103 221/84/100/65 1/2/9/20 63/14/36/18

CSF P-tau181 [pg/ml] 37.5 (16.5) 18.8 (8.09) 37.1 (19.9) 20.6 (13.3) - -

Tau-PET Braak I-IV [SUVR] 2.08 (0.602) 1.15 (0.0990) 2.00 (0.562) 1.16 (0.0920) - -

Aβ42→AβPET (Predictors: CSF Aβ42, age, sex, individual reference. Outcome: Amyloid-PET Centiloids > 20)

BF2 train BF2 train BF2 test BF2 test BF1 BF1

positive negative positive negative positive negative

n 133 272 40 71 101 144

Age [years] 71.5 (8.53) 63.3 (14.5) 72.9 (6.91) 65.5 (11.8) 72.5 (4.90) 72.2 (5.82)

Sex male (%) 66 (50%) 138 (51%) 16 (40%) 38 (55%) 54 (53%) 69 (48%)

Education [years] 12.9 (4.43) 12.5 (3.43) 12.1 (3.88) 12.7 (3.04) 11.3 (3.26) 11.6 (3.35)

MMSE 27.3 (2.35) 28.5 (1.77) 27.1 (2.26) 28.6 (1.59) 27.5 (1.63) 28.5 (1.54)

APOE ε4 carriera 98/133 89/272 30/40 24/71 71/101 34/142

NC/SCD/MCI/Dementia 19/35/74/5 155/52/62/3 13/5/20/2 39/10/22/0 12/29/60/0 61/39/44/0

CSF Aβ42 [pg/ml] 972 (275) 1960 (737) 953 (300) 2030 (760) 743 (292) 1586 (625)

Amyloid-PET [Centiloids] 77.8 (32.1) −6.12 (7.64) 66.6 (30.9) −6.59 (7.42) 82.5 (33.6) 2.41 (8.33)

P-tau181→ADDconv (Predictors: CSF P-tau181, age, sex, individual reference. Outcome: Conversion to AD dementiab)

BF2 train BF2 train BF2 test BF2 test BF1 BF1

positive negative positive negative positive negative

n 40 292 9 75 145 436

Age [years] 71.7 (8.32) 63.6 (14.5) 73.4 (6.78) 66.2 (11.4) 72.8 (4.80) 71.8 (5.65)

Sex male (%) 14 (40%) 148 (51%) 5 (56%) 34 (45%) 75 (52%) 182 (42%)

Education [years] 14.1 (5.69) 12.5 (3.40) 12.4 (3.05) 12.7 (3.18) 11.4 (3.23) 12.2 (3.57)

MMSE 26.8 (1.85) 28.8 (1.41) 26.2 (1.86) 29.0 (1.27) 27.1 (1.73) 28.9 (1.21)

APOE ε4 carriera 34/39 74/198 7/9 32/75 106/145 125/434

CSF P-tau181 [pg/ml] 36.8 (13.6) 19.1 (8.34) 33.8 (6.61) 18.0 (9.33) 35.4 (15.2) 19.2 (7.44)

NC/SCD/MCI 1/2/37 176/93/23 0/1/8 52/15/8 6/35/104 263/124/49

Conversion time [years] 1.88 (1.13) - 1.62 (1.05) - 3.31 (2.06) -

Details of all data used for exploration, protein search andprotein evaluation in concordancewith thedifferentdatapaths inFig. 1. The regressionmodels all includeage, sex and individual reference,
but differ bymain predictor andoutcome. The differences generated a variation in number of participants anddemographics for eachmodel, depending on the data available. Exploratory workwas
only performed on training data in BF2. In BF1, tau PET data did not exist. mini mental state examination (MMSE), positron emission tomography (PET), normal cognition (NC), subjective cognitive
decline (SCD), mild cognitive impairment (MCI), standardized uptake value ratio (SUVR).
amissing data for some individuals.
bnegative = stable cognition for at least 2 years.
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suitable references (e.g., high association with mean standardized CSF
level, small concentration differences betweendiagnostic groups, high
association with the main predictors, low model performance when
used without a main predictor and high detectability in majority of
subjects [missing frequency ≤0.0008]).

Wehypothesized that eachmainpredictormayhave oneor several
optimal reference candidates. An optimal reference is co-varying to a
higher extentwith themainpredictor duringnormal physiologybut not
in disease. For Aβ42, a natural biomarker specific reference is Aβ40, as
both are generated from the amyloid precursor protein (APP)35 and
hence largely follow the same biological pathway. To further evaluate
this concept of biomarker-specific reference proteins, we investigated
the possibility of finding exceptionally high-performing references for
CSF P-tau181. There is high relevance in identifying optimal references
for CSF P-tau181, as there is no state-of-the-art way of normalizing this
biomarker. Furthermore, as CSF P-tau181 was more correlated with the
mean standardized CSF level than Aβ42, it may have more potential for
improvement when adjusting for a reference protein. This idea was
strengthened by the results shown in Fig. 4, where the AUC improve-
ment was considerably larger for P-tau181→TauPET than Aβ42→AβPET
when adjusting for a reference (max AUC improvement: 0.076 versus
0.031, cluster 11 mean AUC improvement: 0.031 versus 0.013). We
therefore identified the three proteins in cluster 11 that improved P-
tau181→TauPET the most: CBLN4, PTPRN2 and PTPRS in Fig. 4d. See
Supplementary Note 1: Reference Protein Candidate Profiles for a bio-
logical description of the three proteins and BF2 data information fur-
ther confirming the proteins’ potential as suitable references.

Adjusting for reference proteins improves biomarker
performance
In accordance with the flowchart in Fig. 1, five combinations of models
and datasets were evaluated. For all models, performance was com-
pared between no reference and Aβ40, mean standardized CSF level
and the three general reference protein candidates NTRK3, NTRK2,
BLMH as reference. Additionally, as the three candidates were highly
correlated (Pearson correlation 0.85–0.91, see Supplementary Fig. 8a),
the first component of a singular value decomposition was also eval-
uated as a possible reference, created from the three candidates
(SVD1). For all models using BF2 data, the P-tau181-specific reference
protein candidates (CBLN4, PTPRN2 and PTPRS, Pearson correlation
0.79–0.89, see Supplementary Fig. 8b) and their corresponding first

component of a singular value decomposition (SVD2) were evaluated
as well.

The twomodels P-tau181→TauPET andAβ42→AβPETwere retrained
on the full BF2 training dataset and evaluated on the BF2 test dataset
(Fig. 5a–d and Supplementary Tab. 3). For both models and all refer-
ences, the performance significantly increased (AUC=0.895–0.946 and
0.977–0.992, P<0.05, for P-tau181→TauPET and Aβ42→AβPET respec-
tively) compared to no reference (AUCs=0.828 and 0.966). Addition-
ally, using a single reference protein or an SVD of three candidates
(AUCs=0.908–0.946 and 0.982–0.992) also outperformed using the
mean standardized CSF level as reference (AUCs=0.895 and 0.977). For
P-tau181→TauPET, top performance was reached when adjusting for
SVD2 (AUC=0.946, P<0.01), closely followed by CBLN4 (AUC=0.944,
P<0.01). For Aβ42→AβPET, top performance was reached when
adjusting for Aβ40 (AUC=0.992, P<0.05).

To validate the generalizability of the reference candidates,
Aβ42→AβPET was applied in BF1 and the new model P-tau181→ADD-
conv was applied in both BF2 and BF1 (Fig. 5e–g and Supplementary
Table. 3). Note thatmeasurements of CBLN4, PTPRN2 and PTPRSwere
not available in BF1. Again, using no reference consistently resulted in
the lowest performance (AUCs =0.866, 0.880 and 0.916 for P-
tau181→ADDconv in BF2, P-tau181→ADDconv in BF1, and Aβ42→AβPET
in BF1 respectively). For P-tau181→ADDconv in BF2 (Fig. 5e), no sig-
nificant improvements were achieved, most likely due to the small
sample size (npos = 40, nneg = 292). However, the same trends as in
Fig. 5c were seen, where the proposed P-tau181-specific reference
candidates again achieved top performance, together with corre-
sponding SVD2 (AUCs = 0.922–0.930). For the same model P-
tau181→ADDconv in BF1 (Fig. 5f), the available data was larger
(npos = 145, nneg = 436), and several significant improvements were
achieved both compared to no reference and mean standardized CSF
level as reference, with NTRK3 showing best performance (AUC =
0.935, P <0.01). For Aβ42→AβPET in BF1 (Fig. 5g), a significant
improvement was only achieved with Aβ40 (AUC=0.970, P <0.05),
which was clearly superior to all other tested references.

Reference proteins explain discordance between CSF and PET
tau positivity
We investigated how adjusting for an individual reference protein
affected concordance between AT(N) grouping for CSF P-tau181 and
tau-PET (Fig. 6). For this analysis, all participants from the BF2

Fig. 2 |ManyCSF proteins vary in concordancewith an individual protein level.
For each participant (row), the standardized concentration of 2944 CSF proteins,
sorted by increasing absolute association with the mean standardized CSF protein
level (Supplementary Fig. 1), is displayed. Systematic blue horizontal lines can be
seen for individuals with consistently low values across most proteins, and corre-
spondingly red horizontal lines for individuals with high values across most

proteins (all relative to the total sample). a a subset of 50 randomly selected par-
ticipants.b all 658participants sortedbymeanstandardizedCSF level.c same as (b)
but also including biomarkers Aβ42 and P-tau181, which together with Aβ40 are
marked out. The further right the protein is located, the more associated with the
mean standardizedCSF level and thereforemore strongly co-varyingwith themean
standardized CSF protein level.
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training dataset with tau-PET data were included (n = 640).
A-grouping was performed with CSF Aβ42/Aβ40 (cutoff 0.0838).
T-grouping was made using (1) no reference (Fig. 6a, CSF cutoff of P-
tau181 > 21.8 pg/ml, as in e.g., ref. 20) and (2) the reference protein
candidate CBLN4 (Fig. 6c, CSF cutoff of P-tau181 > 39.0 + 10.1cCBLN4,
adapted from a logistic regression model). In addition, the grouping
methods were compared against (3) tau-PET grouping (Fig. 6b, d).
The concordance between CSF and PET grouping increased both
visually and quantitively when not requiring a cutoff based on CSF
P-tau181 only, but also accounting for the reference protein. The
accuracy increased from 76% to 89% (Fig. 6e). Particularly notable is
that the A-T+ group was reduced from n = 37 to n = 10 when using a
reference protein. Among the ten CSF A-T+, most were close to the
decision boundary of being A-T- and only one was classified as A-T+
by PET, indicating that this group could be even further reduced.

Examples of how previously published research results of
P-tau18120,21 were affected by this CSF AT(N) grouping improvement
can be seen in Fig. 7a and Supplementary Results: Adjusting for a
Reference in P-tau181 Applications. Figure 7a and Supplementary
Figs. 9–11 show how concentrations of sTREM2, sAXL and sTyro3
turned out to be substantially less differentiable between AT(N)
groups when adjusting for a reference protein during grouping. These

latter results were clearly more similar to results obtained when using
PET (instead of CSF) to define AT(N) groups, indicating that the
reported relations betweenAT(N) and thesemicroglia-related proteins
were strongly driven by inter-individual variability in CSF protein
levels. Further examples of this effect can be seen in Supplementary
Tables 4, 5, where correlations between P-tau181 and sTREM2, sAXL,
sTyro3 and α-synuclein were clearly attenuated when adjusting for a
reference protein.

Reference proteins often attenuate CSF biomarker associations
Examples of how other CSF proteins are affected by adjusting for a
reference protein are seen in Fig. 7b, c and Supplementary Results:
Change inResultswhenAdjusting for Reference Proteins. In Fig. 7b and
Supplementary Fig. 12, partial correlations between ten established
biomarkers from the NeuroToolKit assay panel proteins with and
without adjusting for a reference are given. In general, correlations
decreased when adjusting for a reference. This was seen most evi-
dently for the cognitively unimpaired Aβ-negative participants and for
proteins highly associated with the mean standardized CSF level, such
as CSF levels of sTREM2, YKL-40 and tau. Additionally, examples of
reference proteins’ impact on associations between certain CSF pro-
teins and genetic variants are presented. This includes strengthened

Fig. 3 | Dimensionality reduction reveals a cluster of CSF proteins with desired
reference protein characteristics. T-distributed stochastic neighbor embedding
(t-SNE), reducing the high dimensional space of 658 participants to a two-
dimensional one. Each scatter point illustrates one of the 2944 CSF proteins, with
relative similarity of pairwise proteins aimed to be preserved. In (c−h), min-max
scaling for six different criteria has been performed to visualize relative differences
within the space, all plots ranging between 0–1 (dark blue to yellow). In (c−f)
associations are analyzed as absolute β-coefficients, all adjusted for age and sex.
a The raw t-SNE map. b Semi-supervised K-means (K= 20) clustering of t-SNE map,

aiming to separate the evident clusters from t-SNE dimensionality reduction and
areas of overlap in (c−h). t-SNE map colored by (c) absolute association with mean
standardized CSF level; (d) absolute associationwith ventricle volume; (e) absolute
association with biomarker CSF P-tau181 (cognitively unimpaired Aβ-negative
participants only); (f) absolute association with biomarker CSF Aβ42 (cognitively
unimpaired Aβ-negative participants only); (g) model performance when used as
reference protein in P-tau181→TauPET; (h) model performance when used as
reference protein in Aβ42→AβPET. Source data are provided as a Source Data file.
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associations of apolipoprotein E (APOE) ε4 alleleswith protein levels of
ApoE4 and reduced/disappeared associations of trans-protein quan-
titative trait loci (pQTL) with genes from the GMNC-OSTN region
(previously shown to be associated with variations in ventricular
volume and suggested to be linked to both CSF P-tau and several other
CSF proteins14,39), Fig. 7c, Supplementary Tables 6–8 and Supplemen-
tary Fig. 13.

Discussion
We establish the existence of non-disease related individual CSF
variability (Fig. 2), which explain a considerable part of variation in CSF
biomarkers.We conclude thatmanyproteins are affectedby individual
CSF levels, including proteins relevant in AD, and may benefit from
adjustment of this factor when used as biomarkers. We identify a
robust subset of potential reference proteins (“cluster 11”) from which
we further characterize six specific reference protein candidates
(NTRK3, NTRK2, BLMH, CBLN4, PTPRN2 and PTPRS) that can sig-
nificantly improve the accuracy of key AD biomarkers (Figs. 3, 4). The
results are validated on unseen test data and in an independent cohort
(Fig. 5). We provide evidence that Aβ40 works well as a reference
protein, not only for Aβ42, but for P-tau181 and other CSF biomarkers

as well. Further, we show that several previously reported CSF bio-
marker classifications and associations increased in accuracy/effect or
were greatly diminished when adjusting for reference proteins
(Figs. 5–7). This implies that future studies should account for a
reference protein to improve biomarker sensitivity and/or ensure that
observed CSF biomarker relationships are not mainly driven by non-
disease related differences in CSF protein levels. Our work focuses on
biomarkers in AD, but since the issue of CSF variability is not AD spe-
cific, this concept likely has broad relevance across all neurological and
psychiatric conditions where CSF biomarkers are used.

In general, when using disease-related biomarkers, we observe an
altered level of a protein in a groupof patients and relate it to adisease.
Previously, the definition of “an altered CSF level” has been that the
level is different from what is normal on a group level (for example
when using a universal cutoff/threshold). Since we see inter-individual
differences of the mean standardized CSF protein levels not related to
disease (Fig. 2 and Supplementary Fig. 3), this means that false posi-
tives (individuals with high biomarker levels not due to disease, but
just because many protein concentrations in the CSF are relatively
high) and false negatives (individuals with low biomarker levels but
have the disease, but just because many protein concentrations in the

Fig. 4 | Cluster 11 stands out as superior when used as reference in models P-
tau181→TauPET andAβ42→AβPET. In (a, b) each error bar represents the cluster’s
mean performance ± one standard deviation when the proteins of the cluster are
used as a participant’s individual reference (one protein at a time, all proteins
evaluated once, adjusting for age and sex). The dashed lines correspond to the
models’AUCswithout using a reference (0.865 in a) and (0.934 inb). Each cluster is
colored as in Fig. 3b. For both models, cluster 11 stands out as the best performing
cluster on average. In (c, d) every scatter point corresponds to the result when
evaluating that protein as individual reference. Consequently, the top right corner
contains proteins of most interest. Proteins in cluster 11, Aβ40 and three other

reference protein candidates are highlighted. Note that (c, d) are identical apart
from the highlighted markers. a results for P-tau181→TauPET by cluster. b results
for Aβ42→AβPET by cluster. c proteins NTRK3, NTRK2 and BLMH selected as
general reference proteins, after enforcing the selection criteria.d proteins CBLN4,
PTPRN2 and PTPRS selected as P-tau181 specific reference proteins, as they
improved P-tau181→TauPET the most. All models were evaluated using 10-fold-
cross-validation on the BF2 training dataset. Number of proteins in each cluster:
(n1= 135, n2= 305, n3= 183, n4= 132, n5= 107, n6= 206, n7= 163, n8= 79, n9= 171,
n10= 109, n11= 219, n12= 165, n13= 53, n14= 103, n15= 119, n16= 167, n17= 133, n18= 112,
n19= 87, n20= 196). Source data are provided as a Source Data file.
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CSF are relatively low) can occur from this commonly used method.
Proteins that aremajorly changed in CSF in a brain-disease like AD can
clearly be identified even without a reference protein (like using CSF
Aβ42 without Ab40 as a reference). But when normalizing to reference
proteins, we can likely detectmoreproteins that are changed in a brain
disease and further avoid some false positive findings (as illustrated by
many examples in this manuscript).

The existence of individual variability in CSF protein levels
provides valuable insights on a CSF characteristic that must be
acknowledged and further explored by the field of CSF biomarkers.
When investigating potential biological factors associated with the
mean standardized CSF protein level differences, we found that an
increased mean standardized CSF protein level was seen in males
and was associated with higher age. This may be connected to other
sex and age-related CSF dynamics, like differences in CSF pressure

and CSF production and clearance rates. These dynamical differ-
ences have previously been observed in both human and animal
studies40–43. A reduced CSF production and clearance rate, as seen
during aging, may for example contribute to longer accumulation
time of CSF proteins, resulting in an increased individual CSF pro-
tein level. Additionally, as the mean standardized CSF protein level
was associated with ventricular volume (but not intracranial
volume) when adjusting for age and sex, we believe that CSF dilution
is an important factor explaining why these individual differences
exist. As CSF fills the ventricles, it is reasonable that the size of the
ventricles affects the produced CSF volume independently of CSF
protein secretion, leading to these CSF dilution differences. Sup-
porting this hypothesis is that individuals with idiopathic normal
pressure hydrocephalus (iNPH), characterized by an abnormal
buildup of CSF resulting in enlarged ventricles, also show

Fig. 5 | Performance evaluation of all models with andwithout references. ROC
curves in (a, b), and corresponding AUCs in (c, d), for the two models P-tau181→-
TauPET and Aβ42→AβPET, evaluated on the BF2 test dataset. AUCs for (e) model P-
tau181→ADDconv on the training dataset BF2, (f) model P-tau181→ADDconv on BF1
and (g) model Aβ42→AβPET on BF1. No reference corresponds to the model
without use of a reference protein, consistently outperformed by all tested refer-
ences: Aβ40, mean standardized CSF level, NTRK3, NTRK2, BLMH, SVD1, CBLN4,

PTPRN2, PTPRS and SVD2. Quantitative details, including exact P values, can be
found in SupplementaryTable. 3. For visualizationpurposes, theROCcurvesdonot
show all protein candidates but solely the corresponding SVDs. AUCs were com-
pared with one-sided ROC test using bootstrapping (niter = 2000). P values were
adjusted for multiple comparisons by Benjamini–Hochberg method. All models
were adjusted for age and sex. *P <0.05, **P <0.01 compared to the bar of same
color as asterisk.
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substantially low (diluted) CSF AD biomarker levels compared to
healthy subjects44. We acknowledge that the hypothesis of CSF
dynamics being a driving factor of inter-individual CSF variability
needs to be confirmed in future studies before concluded, by for

example examining relationships between CSF protein levels and
CSF clearance and production rates45.

The results of our study challenge previously held notions of
strong relationships between several CSF biomarkers in AD. We show

Fig. 6 | Adjusting for an individual reference protein (here CBLN4) results in a
better AT(N) grouping concordance between CSF P-tau181 and tau-PET. In (a
−d), the x-axis is a participant’s CSF P-tau181 concentrations, and the y-axis the
suggested reference protein CBLN4. In (a, c), CSF P-tau181 and CSF Aβ42/Aβ40
(cutoff 0.08) has been used to group participants. In (b, d), a tau-PET composite
corresponding to Braak I-IVwith ROIs > 1.36 andCSFAβ42/Aβ40was used to group
participants. To create a cutoff for CSF P-tau181 (black line), the reference protein
CBLN4was adjusted for in (c, d) (cutoff: CSF P-tau181 > 39.0 + 10.1cCBLN4) but not in

(a, b) (cutoff: CSF P-tau181 > 21.8). The concordance between CSF P-tau181 and tau-
PET grouping increased when not requiring a vertical cutoff line but allowing for it
to have a slope. In (e) corresponding concordance matrices of PET and CSF with
and without using a reference for CSF P-tau181 can be seen. The concordance
increased from 76% to 89% when adjusting for the reference protein. Particularly
notable is that the A-T+ group (which is pathophysiologically difficult to explain)
was reduced from n = 37 to n = 10 when using a reference protein, again in higher
concordance with grouping with PET.

Article https://doi.org/10.1038/s41467-024-47971-5

Nature Communications |         (2024) 15:3676 9



that many of these correlations were mainly driven by individual
variability in CSF protein levels, as they did not remain robust when
accounting for a reference protein. Associations were markedly
reduced for P-tau181 versusmicroglia-relatedproteins (e.g., sTREM2or
TAM receptors [sAXL and sTYRO3]), astrocytic biomarker YKL-40 and
the Parkinson’s disease-related biomarker α-synuclein, indicating that
these biological processes/pathologies may not be as related to tau-
pathology as both we and others have previously suggested20,21,29–31.

Our findings provide important insight of how biased inter-
correlations betweenCSF biomarkers and biomarker groups can appear
when not accounting for non-disease related differences in CSF protein
levels. Specifically highlighting this was how the use of a reference
protein for P-tau181 in the AT(N) grouping context (Fig. 6e) showed that
the A-T+ group (which is pathophysiologically difficult to explain17) was
reduced from n =37 ton = 10when using a reference protein. This result
is more in line with studies using PET to classify individuals according to
the AT(N) system46. The characteristics of A-T+ is highly researched and
discussed25–28,47–49.Weshowthat thisgroup largely consistsof individuals
with high overall mean standardized CSF protein levels (rather than any
specific disease marker), which may explain why many A-T+ individuals
have high CSF concentrations of other proteins than P-tau18120,21,27.
Other conclusions from results in the CSF-based A-T+ group, like
hypotheses about tauopathy (T+) not affecting cognition19, canbehighly
influenced by erroneous classification of individuals with high overall
CSF levels into an A-T+ group.

Throughout the evaluation, three general reference proteins
(NTRK3, NTRK2 and BLMH) and Aβ40 were examined. For all P-tau181
associations, NTRK3, NTRK2 and Aβ40 performed similarly, while
BLMH performed slightly inferior. As reference to Aβ42, Aβ40 was
superior. Aβ40 consistently provided improved accuracy and top
performance when used as reference for P-tau181 as well, congruent
with ref. 13. As Aβ40 is already often measured in CSF studies, the
performance of Aβ40 as a reference can easily be further validated for
other biomarkers and cohorts. Aβ40 could be a suitablefirst individual
reference to adjust for when working with CSF AD biomarkers.

We hypothesized that each CSF biomarker might have one or sev-
eral optimal reference proteins that co-vary highly with the main pre-
dictor during normal physiology but not in disease, in addition to
representingan individualCSFprotein level. This idea is strengthenedby
the fact that the top reference protein candidates showed high corre-
lation with the main predictors in cognitively unimpaired Aβ-negative
participants but were not predictive of the outcome when applied in
models alone (AUCs between 0.62 and 0.67, as seen in Supplementary
Note 1: Reference Protein Candidate Profiles). Additionally, simply
adjusting for the mean standardized CSF level never resulted in best
performance, which also is in line with reference markers in other areas
ofmedicine. As a comparison, one can consider howbiomarkers in urine
are processed today, where the normalizationmethod of urine is critical
due to dilution differences. For urine biomarkers, total protein con-
centration can be used as a standardization technique, but it is

Fig. 7 | Several CSF proteins are affected by adjusting for a reference protein.
Further details of these results and extensive analyses on similar findings can be
found in Supplementary Information. a During AT(N) grouping assessed by CSF,
adjusting for a reference protein created a better concordance with PET when
comparing concentration differences of CSF sTREM2. The significant findings from
not using a reference protein during grouping most likely appeared due to mean
standardized CSF protein level differences between groups. This analysis included
NC, SCD and MCI BF2 participants. Error bars represent the mean concentration
± one standard deviation. P values (adjusted for multiple comparisons) were
assessed by a one-way ANCOVA adjusted for age and sex. Source data are provided
as a Source Data file. b Partial correlationmatrices for ten NeuroToolKit proteins in
BF2 cognitively unimpairedAβ-negative participantswith andwithout adjusting for

a reference protein, always adjusting for age and sex. Proteins were sorted
according to decreasing association with mean standardized CSF level (see Sup-
plementaryTable 10). Almost all correlationswere severely reducedwhen adjusting
for a reference protein, most clearly seen for proteins highly associated with the
mean standardized CSF level (top rows). c Results from protein quantitative trait
loci (pQTL) analyses where associations between certain CSF proteins and genetic
variants have been identified. Several CSF trans-pQTL associations of the GMNC-
OSTN region showed severely weakened relationships when adjusting for a refer-
ence protein. For details, see Supplementary Results: CSF pQTL Analysis and
Supplementary Table 8. Thesemodels included BF1 participants (n=1445) and were
adjusted for age, sex, dementia diagnosis and ten genetic principal components.
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considered less precise compared tousing ratios toother excreted small
molecules or proteins like creatinine15,16. This concept is very similar to
what we propose with CSF reference proteins in this work.

For Aβ42, a reference that will outperform Aβ40 is unlikely to
emerge, as this peptide so closely follows the same biological pathway
as Aβ42. Previous work has shown the benefit of adjusting Aβ42 levels
with Aβ4033,34, and in extension, our results confirm that Aβ40 per-
formed best as reference for Aβ42 when compared to other possible
CSF references. For P-tau181, no such optimal reference has previously
been suggested, but three possible candidates (CBLN4, PTPRN2 and
PTPRS) were evaluated in this paper. The candidates performed best
for two P-tau181 models, but these candidates were only evaluated in
BF2 and did not significantly outperform other suggested candidates.
Additionally, none of them are as obviously associated with P-tau181 in
regards to biological pathway as Aβ40 is with Aβ42, which further
decreases their probability of being optimal P-tau181 specific refer-
ences. However, other factors could make CSF protein concentrations
co-vary, such as cellular localization aswell as protein size, charge, and
solubility. The properties and generalizability of these candidates
should be further examined before they can be claimed optimal or
non-optimal reference proteins for P-tau181.

As seen in Supplementary Note 1: Reference Protein Candidate
Profiles, the six reference protein candidates (NTRK3, NTRK2, BLMH,
CBLN4, PTPRN2 and PTPRS) all had higher association with the mean
standardized CSF protein level (partial correlations 0.62–0.80) than
Aβ40 (partial correlation 0.48). Many of them were cell surface
receptors and involved in cell survival and differentiation. Most had
enhanced brain specificity, but low regional brain specificity. From
their performance as reference proteins in BF2, we cannot conclude
that these specific six candidates were significantly superior reference
proteins. On the contrary, several proteins shared similar expression
characteristics that were beneficial for a reference protein. We there-
fore presented a subset of many such proteins by using a data-driven
approach to group them into the cluster referred to as cluster 11. From
the cell type expression analysis, we found that cluster 11 was repre-
sentative of the entire set of 2944 proteins with majority of proteins
highly expressed in neuronal cells. The proteins of cluster 11 were
enriched on cell surfaces and membranes and are therefore probably
constantly shedded into the CSF during normal physiology, which can
explain why they maintain a relatively consistent concentration level
representative of the individual CSF protein level. Additionally, as a
large proportion of the total CSF proteome consists of blood-derived
proteins (~80%; mainly albumin11), many CSF proteins are likely affec-
ted by the integrity of the blood-CSF barrier. As the proteins of cluster
11 showedhigher brain expression than the other highly expressedCSF
proteins, they are not as impacted by blood-CSF barrier permeability
and therefore likely more robust reference proteins for biomarkers in
brain diseases.

A potential limitation of the study was that we only had the pos-
sibility to validate parts of the results in an independent cohort. While
being a key asset for the data driven approach in the BioFINDER-2
study, the extensive CSF measurements of 2944 proteins also limited
the validation possibilities of the findings. Other cohorts with such
extensive CSFmeasurements are difficult to reproduce and access due
to financial and technical constraints. Additionally, the biological and
technical variability of the suggested reference protein candidates
should be further examined to ensure robustness of longitudinal
measurements in participants. Furthermore, t-SNE is a data-driven
method that with high probability will generate a very different visual
result for a new dataset, limiting reproducibility. However, the actual
clustering of proteins was semi-supervised (based on reference pro-
tein characteristics) and generated generalizable reference proteins,
which we were able to confirm using a left-out BF2 test set and the
external, independent cohort BF1. We also want to highlight that sta-
tistical associations in cross-sectional data were the focus in this work.

Conclusions about causal relationships would require further investi-
gation. Lastly, we also want to acknowledge that the age of the BF2
cohort is relatively young compared to typical dementia patients.
Nevertheless, this work supports the proof-of-principle that adjust-
ment for non-disease related inter-individual differences in CSF pro-
tein levels will likely be highly useful in future studies aiming to
understand associations between different CSF proteins or using key
CSF proteins as diagnostic or prognostic biomarkers.

In conclusion, we show that non-disease related inter-individual
differences in CSF protein levels affects diagnostic and prognostic
performance for several CSF biomarkers. These differences can also
result in false conclusions regarding associations between different
CSF proteins or their relations to genetic variations. The issue can be
addressed by using certain CSF reference proteins to represent the
non-disease related concentration of the protein studied. Aβ40 is
one of several promising general reference proteins (not just for
Aβ42) and may be a suitable reference option due to its frequent
availability in AD cohorts. Accounting for a CSF reference protein in
future studies may make it possible to detect more proteins that are
changed in a brain disease, and/or help ensure that reported cor-
relations between CSF proteins are not mainly due to individual
variability in CSF protein levels. Our reference protein method
improves the accuracy of CSF biomarkers, and reduces the risk for
false positive findings, with broad implications for both research
and clinical practice.

Methods
Participants
Two study cohorts, both approved by the ethics committee at Lund
University, were included: the Swedish BioFINDER-2 (BF2) cohort
(enrollment from 2017 and still enrolling, n = 982, NCT03174938) and
the Swedish BioFINDER-1 (BF1) cohort (enrollment between 2010 and
2015, n = 1571, NCT01208675). All participants were recruited at Skåne
University Hospital and the Hospital of Ängelholm, Sweden. BF2 and
BF1 consisted of individuals with either normal cognition (NC), sub-
jective cognitive decline (SCD), mild cognitive impairment (MCI),
dementia or another neurodegenerative disease. Conversion to AD
dementia was determined during follow-up based on the treating
physician’s assessments50. Participants labeled as “non-converted”
remained NC, SCD or MCI stable for at least two years. Further details
about BF2 and BF1 can be found in ref. 51 and ref. 52 respectively, or at
www.biofinder.se.

Only BF2 participants with complete CSF measures of 2944 pro-
teins were included for analyses. No other exclusion criteria were
implemented, but further filtering was later performed depending on
the variables included in the statistical model. In BF1, the participants
with complete CSFmeasures of 369 proteins were included in a similar
manner.

Ethics
The study was approved by the Swedish Ethical Review Authority. All
participants gave their informed consent to participate in the study
and the data were collected according to the Declaration of Helsinki.

CSF collection and analysis
CSF samples were collected close in time after baseline examination
(first visit) and handled according to established preanalytical
protocols51,53. CSF samples were analyzed with validated, highly sensi-
tive and specific Proximity Extension Assay (PEA) developed by OLINK
Proteomics (Uppsala, Sweden). For BF2, the full OLINK Explore 3072
librarywas used, resulting in eight ProseekMultiplex panels (Oncology
I and II, Neurology I and II, Cardiometabolic I and II, Inflammation I and
II) to measure the concentration of 2943 CSF proteins. Each panel
contained 367–369 proteins. For BF1, four panels (Neurology-
exploratory, Neurology-I, Inflammation-I and Cardiovascular-III) were
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used to measure the concentration of 368 CSF proteins. Each panel
contained 92 proteins. All 368 proteins from the BF1 panels were also
included in the BF2 Explore 3072 panels. Protein concentrations were
provided as log2 scale of Normalized Protein eXpression (NPX) values.
High NPX values correspond to high protein concentrations. Note that
NPX values correspond to relative (and not absolute) protein con-
centrations within a cohort. A total CSF protein level was considered a
less informative measure than a mean standardized CSF protein level
in the context of (1) showing how brain-derived proteins follow a
similar pattern and (2)when searching for referenceproteins related to
biomarkers for brain disease. This as total CSF protein levels would
mainly reflect the most prominent proteins (albumin and other blood
derived proteins11), making it unclear how less prominent proteins
(brain-derived ones) reflect inter-individual variability. In contrast, a
mean standardized CSF protein level weighs all proteins equally,
making it robust to differences in absolute concentrations between
proteins. Details of OLINK quality control and protein detectability are
included in Supplementary Methods.

CSF biomarkers from the NeuroToolKit assay panel (P-tau181,
Aβ42, Aβ40, sTREM2, YKL-40, GFAP, neurogranin, T-tau, S100, alpha
synuclein andNfL) weremeasured in both cohorts using Elecsys assays
in accordancewith themanufacturer’s instructions (RocheDiagnostics
International Ltd)54. CSF analyses were performed by technicians
blinded to all clinical and imaging data. CSF amyloid positivity was
defined based on CSF Aβ42/Aβ40 that was dichotomized using the
previously established cutoff of < 0.0838.

PET imaging
In both BF1 and BF2, amyloid-PET imaging was performed using [18F]
flutemetamol. Standardized uptake value ratio (SUVR) images were
created for the 90–110 min post-injection interval with whole cere-
bellum as reference region. A global neocortical composite region
(volume of interest) corresponding to a set of cortical regions was
used to summarize [18F]flutemetamol data, as described inref. 46.
SUVR values were transformed into centiloids. The composite was
used as a dichotomous variable with centiloids >20 regarded as
amyloid positivity55. In BF2, tau-PET was correspondingly performed
using [18F]RO948. SUVR images were created for the 70–90 min
post-injection interval using the inferior cerebellar cortex as refer-
ence region. A composite corresponding to Braak I-IV regions56 was
used to represent AD-related tau pathology in the brain. The com-
posite was used as a dichotomous variable with SUVR > 1.36 regar-
ded as tau positivity57.

Statistical analysis
All analyses were implemented using Python version 3.9 or R version
4.2. When searching for reference proteins, all exploratory evaluations
were performed using 10-fold-cross-validation within the BF2 training
dataset. When evaluating results on the BF2 test dataset, the models
were first refit on the full training dataset and thereafter evaluated
once on the test dataset. When evaluating results on the BF1 dataset or
a new model on the BF2 training dataset, bootstrap-resampling with
replacement (niter = 2000) was performed such that a resampled
training set of same size as the full dataset was created. Thereafter, a
validation dataset was created from the participants that were never
selected into the training set, which consequently varied in size
between runs. This methodology was used to gain higher diversity
between runs so that uncertainty estimations within a model could be
performed with high reliability.

All protein concentrationswere z-scored to allow for comparisons
between measures in different units. Standardization was performed
within each cohort and always fitted to training data. For every parti-
cipant i, amean standardizedCSF level yiwas computed as the average
z-score over all 2943OLINKproteins + Aβ40 for BF2, and all 368OLINK

proteins + Aβ40 for BF1, Eq. 1:

yi =
1

nproteins

Xnproteins

j = 1

zj , ð1Þ

where zj is the z-score of protein j. Consequently, nproteins = 2944 in
BF2 and nproteins = 369 in BF1.We investigated if amean standardized
CSF protein level calculated from the subset of 369 proteins (as was
done in BF1) represented a similar structure as one that was
calculated from 2944 proteins (as was done in BF2). In BF2, we
computed a mean standardized CSF protein level for each
participant using both the full sample (2944) and subsample (369)
of proteins. The correlation coefficient between these two mean
standardized CSF protein levels was 0.964, suggesting that the
subset resulted in a similar representation ofmean standardized CSF
protein level as using all 2944 proteins.

For data exploration and visualization purposes, t-distributed
stochastic neighbor embedding (t-SNE)36 was applied. t-SNE is for-
mulated as a non-linear optimization problem, aimed to preserve
relative similarity of pairwise points in a high dimensional space when
projected to a lower one36. The t-SNE results were combined with a
semi-supervised K-means clustering37 algorithm (K = 20) to sufficiently
create subsets of data. The supervised part was performed by adjust-
ingK and the random initialization seed so that clear structural clusters
were separated and areas with characteristics relevant to a reference
protein were joined. This was not a unique nor mathematically opti-
mized way of dividing the t-SNE space. It was solely used due to its
efficiency in this application as it enabled a more robust examination
of subsets of similarly expressed proteins. To provide evidence that
the resultswere not heavily dependent on the selection of Kor random
initialization, a robustness analysis is provided, see Supplementary
Methods: K-means Robustness Analysis and Supplementary
Figs. 14–16. Additionally, a sensitivity analysis whenonly using proteins
with missing frequency <75% can be seen in Supplementary Methods:
LOD Sensitivity Analysis and Supplementary Figs. 17–20, resulting in
similar findings as when using all 2944 proteins.

To analyze associations with a continuous dependent variable,
linear regressionmodels (SupplementaryMethods: Statistical models)
were applied. In addition, partial correlation coefficients (Pearson)
were computed to study correlation matrices between continuous
variables. To predict a dichotomous variable, logistic regression
models were applied (Supplementary Methods: Statistical models). As
dichotomous data for most models was unbalanced, receiver operat-
ing characteristic (ROC) curve and Area under the ROC curve (AUC)
were used to evaluate performance. AUCs were compared with a one-
tailed ROC test using bootstrapping (niter = 2000). To compare AT(N)-
groups, one-way ANCOVA was applied. P values were adjusted for
multiple comparisons by Benjamini–Hochberg method. All models
were adjusted for age and sex.

Main models
To search for appropriate reference proteins, performance was eval-
uated in three logistic regression models. In each model, a well-
established AD CSF biomarker (P-tau181 or Aβ42) was used as main
predictor of either PET images or conversion to AD dementia. The
three models were:
1. P-tau181→TauPET. Predicting tau-PET positivity with CSF P-tau181

as main predictor.
2. Aβ42→AβPET. Predicting Aβ-PET positivity with CSF Aβ42 as main

predictor.
3. P-tau181→ADDconv. Predicting conversion to AD dementia versus

remained stable for at least 2 years with CSF P-tau181 as main
predictor.
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The first two models were used to search for suitable reference pro-
teins, the third was solely used for validation. The change in overall
model performance when adjusting for different individual references
was themeasure of interest. A flowchart describing the pre-processing
steps after split into training/test data for all models can be seen in
Supplementary Fig. 21.

Cell type expression, pathway enrichment and tissue expression
analyses
To investigate properties of a cluster of proteins, we performed
pathway enrichment and cell type expression analyses. For pathway
enrichment, we used the WEB-based Gene SeT AnaLysis Toolkit
(WebGestalt)58. We performed a human over-representation analysis
(ORA) on cellular components, defining the background set as the
2943 OLINK proteins. For cell type expression, we used Seurat version
4.3.0 to analyze the open-access Human MTG 10x SEA-AD Allen Brain
data from 202259. This dataset includes single-nucleus transcriptomes
from 166,868 total nuclei derived from the middle temporal gyrus
(MTG) from five post-mortem human brain specimens. We used the
class and subclass annotation available from the Allen Institute and
applied the function AverageExpression (after removing all “None”
annotations). From the average expression we then calculated a per-
centage expression across all cell types. A bootstrap enrichment test
(n = 10,000) was used to compare significant (Benjamini–Hochberg
corrected q values < 0.05) cell type expression differences between a
subset of proteins and all other proteins.

Tissue expression analyses were performed using three tissue
datasets from the Human Protein Atlas (Normal tissue data, RNA
consensus tissue gene data andRNA single cell type tissue cluster data,
all found at: https://www.proteinatlas.org/about/download). Here, we
examined (1) the proportion that had Medium/High level of detection
in cerebral cortex or (2) the normalized Transcripts PerMillion [nTPM]
in cerebral cortex/brain, comparing proteins in cluster 11 (n = 219) to
the rest of the highly detectable proteins (n = 1512).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Pseudonymized BioFINDER-1 and BioFINDER-2 data can be shared to
qualified academic researchers after request (PI:OH) for thepurposeof
replicating procedures and results presented in the study. Data
transfermust be performed in agreementwith EU legislation regarding
general data protection regulation and decisions by the Ethical Review
Board of Sweden and Region Skåne. Human MTG 10x SEA-AD Allen
Brain data from 202259 are publicly available and can be downloaded
from celltypes.brain-map.org/rnaseq. Tissue datasets from the Human
Protein Atlas are also publicly available and can be downloaded from
https://www.proteinatlas.org/about/download. Source data are pro-
vided with this paper.

Code availability
Code for the analyses can be found in the following GIT repository:
https://github.com/karlssonlinda/reference_protein_project. Python
dependencies include NumPy60, pandas61, Matplotlib62, Scikit-learn63,
Statsmodels64 and Pingouin65. R dependencies include Tidyverse66 and
pROC67. Seurat version 4.3.0 and WEB-based Gene SeT AnaLysis
Toolkit (WebGestalt) 2019 were also used.
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