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Associations in cell type-specific
hydroxymethylation and transcriptional
alterations of pediatric central nervous
system tumors

Min Kyung Lee 1 , Nasim Azizgolshani1,2, Ze Zhang 1, Laurent Perreard3,
Fred W. Kolling 3, Lananh N. Nguyen4, George J. Zanazzi3,5, Lucas A. Salas 1 &
Brock C. Christensen 1,6,7

Although intratumoral heterogeneity has been established in pediatric central
nervous system tumors, epigenomic alterations at the cell type level have
largely remained unresolved. To identify cell type-specific alterations to
cytosinemodifications in pediatric central nervous system tumors, we utilize a
multi-omic approach that integrated bulk DNA cytosine modification data
(methylation and hydroxymethylation) with both bulk and single-cell RNA-
sequencing data. We demonstrate a large reduction in the scope of sig-
nificantly differentially modified cytosines in tumors when accounting for
tumor cell type composition. In the progenitor-like cell types of tumors, we
identify a preponderance differential Cytosine-phosphate-Guanine site
hydroxymethylation rather than methylation. Genes with differential hydro-
xymethylation, like histone deacetylase 4 and insulin-like growth factor 1
receptor, are associated with cell type-specific changes in gene expression in
tumors. Our results highlight the importance of epigenomic alterations in the
progenitor-like cell types and its role in cell type-specific transcriptional reg-
ulation in pediatric central nervous system tumors.

Central nervous system (CNS) tumors are the leading cause of cancer
death in the pediatric population1. While major progress has been
made in reducing the mortality in pediatric cancers in the past few
decades, the magnitude of reduction in the mortality rate of CNS
tumors have not been as substantial2. Even among patients who sur-
vive childhood cancers, those who have survived CNS tumors have the
highest cumulative burden of disease post-survival3. Craniospinal
radiation and neuro-toxic therapy are major risk factors for the future
burden on quality of life with late effects including neurocognitive

impairments such as academic and memory decline, and adverse
health outcomes like abnormal hearing and growth hormone
deficiency4–9. Efforts to address discrepancies in the reduction of
mortality rates and extensive chronic health burdens later in life have
been made with the recent advances in technology that have allowed
for better insight into the molecular characterization of pediatric CNS
tumors10–22. Molecular biomarkers are progressively being incorpo-
rated into the diagnosis and management of certain pediatric CNS
tumor types23.
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One method to supplementally diagnose and subtype CNS
tumors is DNA methylation24. Capper et al. developed a classification
method to address previous issues in inter-observer variability for
histopathological diagnosis of many CNS tumors24. Since the devel-
opment of this method, DNA methylation classification is now used
regularly for certain pediatric CNS tumor types, like ependymomas, to
understand the prognosis and manage treatment decisions13,14. This
method utilizes bisulfite-treated DNA, which does not distinguish
between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine,
although it hasbeen indicatedonly 5mCsignal fromoxidative bisulfite-
treated DNA alters the classification from this method25,26. Moreover,
while advancements have improved management strategies for some
tumor types, many other pediatric CNS tumor types remain
underexplored.

DNA methylation is one of the most well-studied epigenomic
marks, primarily known for its role in regulating gene expression. DNA
methylation occurs when a methyl group is added to the 5-carbon
position of a cytosine in the context of a Cytosine-phosphate-Guanine
(CpG) dinucleotides by DNA methyltransferases (DNMTs)27–32. Methy-
lation of CpG island promoters is associated with repression of gene
expression while methylation of gene bodies is associated with acti-
vation of gene expression33–35. 5mCmany times co-exist withH3K9me3
marks and do not overlap with H3K4me3 marks and H2A.Z34,36,37. In
addition, DNA methylation marks function as genome stabilizers by
silencing transposable elements34,38. The main ways DNA methylation
is altered in cancer include genome-wide hypomethylation in repeti-
tive elements like retrotransposable elements39,40, hypermethylation
of promoters40–43, and propensity for cytosines in CpG contexts to be
mutated44–47.

Cytosines can also remain in a hydroxymethylated state (5-
hydroxymethylcytosine, 5hmC). 5hmC is formed when 5mC is actively
being demethylated by ten-eleven translocation (TET) enzymes48–50.
TET enzymes add a hydroxyl group onto the methyl group to become
5-hydroxymethylcytosine, then add the hydroxyl group again to
become 5-formylcytosine, then again to become 5-carboxylcytosine,
which is excised to become unmethylated48–51. While 5hmC is an
intermediate, it has been shown to have functional roles and be stable
in the genome. Like 5mC, 5hmC has been associated with regulating
transcription. It is enriched in gene bodies of active genes and in
transcription start sites in which promoters are marked with
H3K27me3 and H3K4me452,53. 5hmC has also been shown to play roles
in maintaining pluripotency and tumorigenesis52,54. While generally
5hmC levels are relativelymuch lower than 5mC levels, higher levels of
5hmC are found in the brain tissue compared to other tissue and in
embryonal stem cells developmentally programmed neuronal
cells52,55–61. Although progress has been made since the discovery of
TET enzymes producing 5hmC49–51, more investigation is needed to
understand the functional roles of 5hmC. While alterations in hydro-
xymethylation patterns have not been as well examined, studies have
indicated decreased hydroxymethylation across the genome in a
variety of tumor types including adult and pediatric CNS
tumors26,54,62–70, and mutations in hydroxymethylation-associated
genes such as IDH1/2 and TET1/2/3 have been associated with certain
tumor types like gliomas and acute myeloid leukemia62,71–74.

Numerous studies have established that brain tumors display
intratumoral cellular heterogeneity17,19,20,75–85. While it is known that
both DNA methylation and hydroxymethylation patterns are tissue
type and cell type dependent52,53,86–90, limited research has addressed
cell type-specific DNA cytosine modification alterations in these
tumors. This gap exists largely due to the high cost and limitations in
technologies to profile cytosine modifications at the cell type-specific
scale91. While the importance of cell type composition effects in
epigenome-wide association studies has been well documented92–96,
single-cell methylation profiling strategies97–100 are slowly developing
in comparison to more accessible and commercially available genome

profiling technologies focused on gene expression or chromatin
accessibility. To address these shortcomings, computational methods
have been developed to deconvolute cell type composition using DNA
methylation for certain tissue types91,101–109. While these methods have
greatly improved our understanding of the cell type composition
effects on many epigenome-wide association studies, they have not
been utilized in investigating cell type composition effects on brain
tumors due to some limited applicability in brain tissue.

In this study, we use amulti-omic approach to study cell type-level
epigenomic alterations in pediatric CNS tumors to maximize the
applicability of currently available methods. By integrating single
nuclei RNA-seq and cytosine modification data, we provide a more
complete picture of the cytosine modification alterations associated
with pediatric CNS types and cytosine modifications that are asso-
ciated with changes in transcription at the cell type level in pediatric
CNS tumors.

Results
Our cohort included 32 tumor tissues (8astrocytomas, 6 embryonal
tumors, 10 ependymomas, 8 glioneuronal/neuronal tumors) and 2
non-tumor tissue (Table 1). To assess the potential normal tissue
margin inour tissues thatmay confounddownstreamanalyses, wefirst
determined the tumor purity of our pediatric CNS tumor samples that
were used to measure DNA cytosine modifications. Tumor purity in
our samples varied but did not significantly differ based on tumor type
or grade (Supplementary Fig. 1). The genetic variants associated with
each tumor can be found in ref. 110.

Epigenomic burden from altered cytosine modifications in
pediatric CNS tumors
To determine the global epigenomic burden of altered cytosine mod-
ifications in pediatric CNS tumors compared to non-tumor pediatric
brain tissue, we comparedmedian beta values for both 5hmC and 5mC
across samples at each CpG and determined the methylation dysre-
gulation index (MDI). MDI is a summary measure of the epigenome-
wide alteration of tumors compared to non-tumor tissue111. Tumor
tissues (N = 32) displayed a decrease inmedian 5hmC beta values and a
slight increase in median 5mC beta values compared to non-tumor
tissue (Non-tumor tissue N = 2; KS test: 5mC: D =0.019, p < 2.2e-16;
5hmC: D =0.19, p < 2.2e-16; Fig. 1A). The 5hmC MDI values were not
significantly different by tumor type (N = 8 (ATC), 6 (EMB), 10 (EPN), 8
(GNN)) or by tumor grade (N = 14 (G1), 5 (G2), 6 (G3), 6 (G4); Fig. 1B),
whereas 5mCMDI values varied by tumor type. Embryonal tumors had
the greatest extent of epigenome-wide alteration burden compared to
non-tumor tissue, astrocytomas had the lowest burden of 5mC MDI
compared to non-tumor tissue, and we observed increasing 5mC MDI
with increasing tumor grade. 5hmC MDI and 5mC MDI were positively
correlated (R =0.44, p =0.013, Fig. 1C). We repeated our analysis after
removing one astrocytoma samplewith an outlier 5hmCMDI value and
observed consistent results (Supplementary Fig. 2). In addition, we
determined MDI for distinct genomic contexts and again found con-
sistent results inwhich5mCMDI, but not 5hmCMDI values significantly
varied among tumor types (Supplementary Fig. 3). Interestingly, both
5hmC MDI and 5mC MDI in gene body, enhancer and exon regions
were slightly, but statistically significantly higher than 5hmC MDI and
5-MDI when adjusted for tumor types (Supplementary Table 2). For
both 5hmC and 5mC, MDI were highest in enhancers, then gene body/
exon regions, and were lowest in promoter CpGs. We tested and con-
firmed that theburdenof observed epigenomic alterationswas notdue
to differences in tumor purity (Supplementary Fig. 4, Supplementary
Table 3A). However, we did observe significant differences in 5mCMDI
by tumor grade (Supplementary Table 3B). While 5hmC is prevalent at
only 6% of 5mC, the level of dysregulation of the hydroxymethylome is
comparable to the level of dysregulation of the methylome with 5hmC
MDI being 49% of 5mC MDI (Supplementary Table 4). Our results
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Fig. 1 | Global methylation dysregulation, but not global hydroxymethylation
dysregulation, is associated with tumor type and grade. A Cumulative propor-
tion of median 5hmC and median 5mC in tumors (N = 32) and non-tumor tissue
(N = 2). B Methylation dysregulation index of 5-mC and 5mC by tumor type (N = 8
(ATC), 6 (EMB), 10 (EPN), 8 (GNN)) and (D) grade (N = 14 (G1), 5 (G2), 6 (G3), 6 (G4)).
Differences in MDI were calculated using the rank-based Kruskal-Wallis test.
C Correlation between 5hmC MDI and 5mC MDI calculated using Spearman rank

correlation. Linear regression line is indicated by the blue line. 95% confidence
interval of the linear regression line indicated by gray bands. Color of each point
indicates tumor type. In the boxplots of (B) and (D), the low ends of the segment
indicate the minimum and the high ends of the segment indicate the maximum.
Lower bounds of the box indicate the 25th percentile and the higher bounds of the
box indicate the 75th percentile. Segment in the middle is the median. Source data
are provided as a Source Data file.

Table 1 | Subject demographics

Tumor types

Total (N = 34) Astrocytoma (N = 8) Embryonal (N = 6) Ependymoma (N = 10) Glioneuronal/neuronal (N = 8) Non-Tumor (N = 2)

Sex

F 14 (41 %) 3 (38%) 3 (50%) 5 (50%) 1 (12%) 2 (100%)

M 20 (59 %) 5 (62%) 3 (50%) 5 (50%) 7 (88%) 0 (0%)

Age (years)

Mean (SD) 8.5 (±5.3) 5.6 (±4.5) 9.2 (±5.4) 9.5 (±4.3) 10.5 (±6.5) 5.8 (±7.4)

Grade

High 12 (35 %) 0 (0%) 6 (100%) 5 (50%) 1 (12%) 0 (0%)

Low 18 (53 %) 8 (100%) 0 (0%) 4 (40%) 6 (75%) 0 (0%)

NEC/NOS 2 (6 %) 0 (0%) 0 (0%) 1 (10%) 1 (12%) 0 (0%)

Missing 2 (5.9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (100%)

Location

Metastasis 1 (3 %) 1 (12%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Subtentorial 19 (56 %) 5 (62%) 5 (83%) 8 (80%) 1 (12%) 0 (0%)

Supratentorial 14 (41 %) 2 (25%) 1 (17%) 2 (20%) 7 (88%) 2 (100%)
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suggest that while 5hmC may not be as prevalent, epigenome-wide
alterations of 5hmC in tumors are occurring at comparable levels to
altered 5mC.

Cell type composition influences bulk-omics comparisons
between pediatric CNS tumors and non-tumor pediatric
brain tissue
We utilized our single nuclei RNA-seq data to identify the cell type
composition of pediatric CNS tumor tissue and non-tumor pediatric
brain tissue110. The cell types identified in our cohort like radial glial
cells (RGC) in ependymomawere similar to comparable pediatric CNS
tumors in previous literature22,112. As we wanted to account for major
cell types present that may confound comparisons between the epi-
genomes of tumors and non-tumors, we identified the cell types pre-
sent with most variability. Based on the cell type proportion
distributions for all of our samples, we identified neuronal-like cells
(NEU), neural stem cells (NSC), oligodendrocyte precursor cells (OPC),
RGC, and unipolar brush cells (UBC) as having the most variance from
PCA analysis (Supplementary Fig. 5A, B). For each tumor type we
compared proportions of cell types with non-tumor pediatric brain
tissue. Supporting our principal component analysis, the cell types
with the greatest differences were NEU, NSC, OPC, RGC, and UBC
(Supplementary Fig. 5C).

We conducted an epigenome-wide association study to deter-
mine the differential hydroxymethylated and methylated CpGs asso-
ciated with each tumor type (N = 8 (ATC), 6 (EMB), 10 (EPN), 8 (GNN))
compared to non-tumor pediatric brain tissue (N = 2). To reduce
potential confounding by cell type composition, we incorporated cell
type proportions as covariates in a stepwise manner to each series of
linearmodels. Age at diagnosis, sex, and tumor purity were adjusted to
reduce potential confounding from these variables in these linear
models. Due to sample size, tumor location was not included in the
model. Importantly, as the number of cell type proportion covariates
included in the models increased, the scope of differentially hydro-
xymethylated and differentiallymethylated CpGs associatedwith each
tumor type decreased (Fig. 2A, Table 2, Supplementary Figs. 6–9,
Supplementary Data 1–8). In addition, across our models in different
tumor types, the extent of differentially hydroxymethylated CpGs
(dhmCpGs) was far greater than that of differentially methylated CpGs
(dmCpGs). When all five cell types (NEU, NSC, OPC, RGC, and UBC)
were incorporated into the model, we observed low number of
dmCpGs associated with each tumor type. Embryonal tumors had the
greatest number of dhmCpGs, and the 83.1% were specific to the
embryonal tumors (Fig. 2B). In the model with all five cell types
included, 87 dhmCpGs were associated with astrocytoma, 850
dhmCpGs were associated with embryonal tumors, 31 dhmCpGs were
associatedwith ependymoma, and 126 dhmCpGswere associatedwith
glioneuronal/neuronal tumors. We identified 90 dhmCpGs (10.4%)
that were shared across two or three of the tumor types and 28
dhmCpGs (3.2%) that were shared across all tumor types (Fig. 2B,
Supplementary Table 5). The 28 shared CpGs were located pre-
dominantly in island (42.9%) and open sea (42.9%) regions in relation
to CpG islands (Supplementary Table 6). In addition, 64.3% of the
shared dhmCpGs were in DNase hypersensitive sites (DHS) (Supple-
mentary Table 7). The shared CpGs tracked to genes including ESRRG,
HECA, THBD, and TJP1 (Supplementary Table 5).

We then investigated if specific genomic regions were associated
with the changes in the number of dhmCpGs by assessing the rela-
tionship between the proportion of the dhmCpGs for each genomic
context with each model using Spearman rank tests. We identified
positive relationship between number of cell types included in the
model and the proportion of dhmCpGs in regions within 200bps of
the transcription start sites (TSS200) and 1st exon regions (Fig. 2C,
Supplementary Fig. 10). Moreover, we found negative relationship
between the number of cell types included in the model and the

proportion of dhmCpGs in gene body, open chromatin, and tran-
scription factorbinding sites.Our results suggest that epigenome-wide
association studies comparing bulk pediatric CNS tumor tissue to non-
tumor pediatric tissue are considerably influenced by the cell type
composition, especially in promoter and gene body genomic regions.
Moreover, it was quite unexpected that the observed differences were
almost solely in hydroxymethylation and not in methylation.

We then compared transcriptomedata frombulk RNA-seq in each
of the tumor types (N = 8 (ATC), 6 (EMB), 10 (EPN), 8 (GNN)) with non-
tumor pediatric brain tissue (N = 2). The differential expression testing
model included the same covariates (sex, age at diagnosis, and tumor
purity) and the same five cell type proportions used for the EWAS
analysis. Including proportions of major cell types of interest led to
differences in an average of around 702 genes (range: 536–892)
detected as significantly differentially expressed. In astrocytoma and
glioneuronal/neuronal tumors, the adjusted model identified more
genes that were significantly differentially expressed. In embryonal
tumors and ependymomas, the adjustedmodel identified fewer genes
that were significantly differentially expressed. Some key tumor
progression-associated genes like PTEN in astrocytoma and in
embryonal tumors,MYCN in ependymoma, andBRCA2 in glioneuronal/
neuronal tumors would not otherwise have been identified as sig-
nificantly differentially expressed in the tumors had the cell type
proportions not been adjusted for.

As we reduced potential confounding effects from cell type
composition differences, we sought to explore genes with differential
expression thatwere specifically associatedwith the tumors. Across all
tumor types, the majority of differentially expressed genes were
increased in expression compared to the non-tumor pediatric brain
tissue (Supplementary Fig. 11A, 12–15, Supplementary Data 9–16).
Almost half (43%, 3020 genes) of all genes with increased expression
were shared across all tumor types (Supplementary Fig. 11B). Among
the genes with shared increases in expression in tumors were IRX5,
MYOSLID,CWH43, ITGA2, andHOXA3. Genes with increased expression
across all tumor types were associated with biological oxidations and
keratinization among other pathways (Supplementary Fig. 11D). There
were 253 genes (13.6%) that had decreased expression shared across
tumor types (Supplementary Fig. 11C), includingNPTXR, SCG2, B4GAT1,
and ATRN. Genes that were decreased in expression across all tumor
types were associated with the insulin receptor signaling and ion
channel transport among other pathways (Supplementary Fig. 11E).
Our results suggest potential non-cell type-specific avenues for ther-
apy that may be shared across the pediatric CNS tumor types.

To identify potentially important gene regulation by differential
hydroxymethylation we compared changes in hydroxymethylation in
dhmCpGs from the five-cell type-adjustedmodel with gene expression
in each tumor type (N = 8 (ATC), 6 (EMB), 10 (EPN), 8 (GNN)). The genes
we identified in our differential gene expression analysis were used in
comparisons to changes in 5hmC. Generally, genes with decreased
hydroxymethylation levels had increased gene expression across
tumor types compared to non-tumor pediatric brain tissue (Fig. 3).
When correlations between changes in 5hmC and changes in gene
expression were performed to assess any directional relationship, the
correlation coefficients across all tumor types were non-existent and
not statistically significant even for genes that had statistically sig-
nificant changes in gene expression (R, p = −0.03, 0.93 (ATC); −0.02,
0.85 (EMB); 0.096, 0.86 (EPN); 0.39, 0.19 (GNN), Fig. 3).

Only one dhmCpGs associated with ependymoma had significant
decreased expression. The dhmCpGs with differential expression did
not generally favor promoters or gene body regions (Fig. 3, Supple-
mentary Table 8). Only embryonal tumors displayed slightly varying
associations. While many of the dhmCpGs associated with embryonal
tumors followed similar patterns of decreased 5hmC levels and
increased gene expression, there were some CpGs with decreased
5hmC and decreased gene expression, as well as CpGs with increased
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Table 2 | Summary of dmCpGs in unadjusted and five-cell type adjusted EWAS model

Unadjusted model dmCpGs
N (%)

dmCpGs that are also dhmCpGs
N (%)

Adjusted model dmCpGs
N (%)

dmCpGs that are also dhmCpGs
N (%)

Astrocytoma (ATC) 7 (0.001%) 3 (42.9%) 0 (0%) 0 (0%)

Embryonal (EMB) 183 (0.04%) 90 (49.1%) 202 (0.04%) 15 (7.4%)

Ependymoma (EPN) 39 (0.008%) 25 (64.1%) 0 (0%) 0 (0%)

Glioneuronal/neuronal (GNN) 3 (0.0006%) 1 (33.3%) 0 (0%) 0 (0%)

Fig. 2 | Adjusting forproportions of cell typesof interest reduces thenumberof
differentially hydroxymethylated and methylated CpGs across tumor types
compared to non-tumor pediatric brain tissue. A The number of differentially
hydroxymethylated (hmC) and methylated (mC) CpGs under q <0.05 threshold in
astrocytoma (ATC), embryonal tumors (EMB), ependymoma (EPN), and glioneur-
onal/neuronal tumors (GNN) compared to non-tumor pediatric brain tissue. X-axes
indicate each cell type proportion included in the model. Each model, even

‘unadjusted’models, includes sex and age at diagnosis in the linear model. B Venn
diagram of the differentially hydroxymethylated CpGs among the different tumor
types. C Heatmap of correlation between number of cell types included in model
and proportion of dhmCpGs per genomic context. Correlation calculated by
Spearmanrank test. Heatmapcellswith * indicate statistically significant correlation
at p <0.05. Source data are provided as a Source Data file.
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5hmC with increased or decreased gene expression levels. Embryonal
tumor associated dhmCpGs with significantly increased gene expres-
sion were less likely to be in promoter regions compared to dhmCpGs
with significantly decreased gene expression (OR =0.23, 95%
CI = 0.064–0.78, p =0.01). On the contrary, embryonal tumor asso-
ciated dhmCpGswith significant increased expressionweremarginally
more likely to be in gene body regions (OR= 2.81, 95%CI = 0.84–10.34,
p =0.06). We could not test for associations between promoter or
gene body regions for other tumor types due to the limited number of
dhmCpGs.

Interestingly, there were two CpGs with decreased 5hmC levels
and increased gene expression in astrocytoma, ependymoma, and
glioneuronal/neuronal tumors: cg18280362 located in the promoter
region of CWH43 and cg08278401 located in the promoter region of
LRRC72. In addition, we investigated the association between changes
in 5mC methylation and gene expression in the embryonal tumors
where there were 24 dmCpGs associated with significant changes in
gene expression (Supplementary Fig. 16). Unlike dhmCpGs,magnitude
of changes in 5mC levels were negatively associatedwithmagnitude of
changes in gene expression for genes that did not have statistically
significant gene expression changes (R = −0.45, p =0.029) and genes
with statistically significant gene expression changes (R = −0.41,
p =0.0002, Supplementary Fig. 16). While we could not conduct sta-
tistical tests to test for an enrichment of promoter/gene body regions
for shared dhmCpGs with increased gene expression, there were 18
dhmCpGs with increased gene expression in non-promoter regions
and 3 dhmCpGs with increased gene expression in promoter regions.
Moreover, there were 9 dhmCpGs with increased gene expression not

in gene body regions and 12 dhmCpGs in gene body regions. Our
results suggest potential roles of hydroxymethylation in regulating
gene expression of certain pediatric CNS tumor-associated genes, that
require further investigation to validate.

Molecular alterations in pediatric CNS tumors occur in a cell
type-specific and tumor type-specific manner
One of the major questions that remains unanswered in many
epigenome-wide association studies is whether altered cytosine
modification can be ascribed to a specific cell type. With data from
single nuclei RNA-seq for these pediatric CNS tumors and non-tumor
pediatric brain tissues, we sought to identify epigenomic alterations at
a cell type-specific level. To reduce the number of covariates in our
analysis we focused on neuronal-like and progenitor-like cell types
(Supplementary Table 9). The progenitor-like cells were an aggrega-
tion of NSC, RGC, OPC, and UBC. We used an approach developed by
ref. 103 called CellDMC to identify cell-type-specific differentially
hydroxymethylated and methylated CpGs. We compared the epigen-
ome of each tumor type to non-tumor tissue and used CellDMC to
identify which cell typewasdriving the change in 5hmCand 5mC in the
tumors compared to the non-tumor tissue. Overall, we identified
abundant dhmCpGs for each cell type and tumor type, far greater than
the scope of CpGs identified with bulk tissue EWAS (Fig. 4A, Supple-
mentary Figs. 17–20, Supplementary Table 10, Supplementary
Data 17–20). While there were a relatively lower number of dmCpGs
compared to the dhmCpGs, there were some dmCpGs detected in the
cell type-specific model (Fig. 4B). Majority of the cell type-specific
dhmCpGswere tumor-type-specific (Fig. 4C,D, Supplementary Fig. 21).

Fig. 3 | Hypo-hydroxymethylation of CpGs is associated with changes in gene
expression. Association between differentially hydroxymethylated CpG beta
coefficients and log2 fold changes in gene expression for astrocytoma, embryonal
tumors, ependymoma, and glioneuronal/neuronal tumors. Red points indicate
significantly differentially expressed genes. Shapes indicate genomic context of
CpGs. Correlations were calculated using the Pearson method. Differential

hydroxymethylated CpGs were identified from linear regression model and sig-
nificant dhmCpGs were identified using q <0.05 significance threshold. Log2 fold
changes in gene expression were identified from negative binomial regression
model and significantly differentially expressed genes were identified using
adjusted p value threshold <0.05. Source data are provided as a Source Data file.
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However, 128 dhmCpGs were observed in the neuronal-like cell types
and 534 dhmCpGs were observed to be driven by the progenitor-like
cell types across all four tumor types. While some neuronal-like cell-
specific driven dhmCpGs were acting on the same genes as the
progenitor-like cell-specificdhmCpGs, genes that haddecreased 5hmC
in the progenitor-like cells were exclusive (Supplementary Fig. 22).

We then assessed the genomic context of cell type-specific
dhmCpGs and tested for enrichment to various genomic contexts
stratified by the direction of differential hydroxymethylation. Inter-
estingly, both increased and decreased dhmCpGs in neuronal-like and
progenitor-like cell types of astrocytoma and glioneuronal/neuronal
tumors were enriched in similar contexts at DHS, 1st exons, promoter
regions (TSS200, TSS1500), and 5’UTR regions (Fig. 5, Supplementary
Data 21). dhmCpGs in ependymomawere dependent on the cell type in
which it was occurring. Ependymoma-associated dhmCpGs in the NEU
and CpGs with increased 5hmC in progenitor-like cells were enriched
in similar regions as the astrocytoma and glioneuronal/neuronal
tumors. On the contrary, ependymoma-associated CpGs with
decreased 5hmC in the progenitor-like cells were enriched in

transcription factor binding sites (TFBS), 3’ UTR, gene body, and exon
regions. The dhmCpGs, especially for those occurring in the
progenitor-like cell types, in embryonal tumors were enriched in dis-
tinct genomic contexts compared to the other tumor types.
Progenitor-like cell type-specific dhmCpGs were enriched in the tran-
scription factor binding sites, 3’ UTR, gene body, exons, and
enhancers.

Our findings indicate that hydroxymethylation alterations are
driven by different cell types in different tumor types.

Cell type-specific gene expression changes associated with
changes in hydroxymethylation
Wenext evaluated cell-specific gene expression changes for geneswith
cell-type-specific changes in hydroxymethylation. We calculated gene
expression scores for genes associated with CpGs with differentially
hydroxymethylated CpGs in the neuronal-like cells and progenitor-like
cells for each granular cell types incorporated in our analysis for each
tumor type (Supplementary Figs. 23–26). Interestingly, for all tumor
types, the expression scores for genes associated with CpGs with

Fig. 4 | 5hmC is altered incell type-specific and tumortype-specificmanner.Cell
type driven differentially (A) hydroxymethylated and (B) methylated CpGs in each
tumor type identified by epigenome wide association study adjusted for cell type
proportions. Significantly differentially hydroxymethylated and methylated CpGs
were defined by q <0.05. Venn diagramof shared differentially hydroxymethylated

CpGs in (C) neuronal-like cell types and (D) progenitor-like cell types across the
four tumor types. Number of cell type driven differential CpGs were statistically
significant under adjustedp <0.05. ATCAstrocytoma, EMBEmbryonal tumors, EPN
Ependymoma, GNN Glioneuronal/neuronal tumors. Source data are provided as a
Source Data file.
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increased or decreased hydroxymethylation were increased in the
OPCs of the tumors compared to non-tumor pediatric brain tissue
(Fig. 6A). Only the OPCs in embryonal tumors did not show a statisti-
cally significant increase in the expression of genes with increased
5hmC in the progenitor-like cells. On the contrary, gene expression
levels for each of the gene sets with cell type-specific alterations in
5hmCwere decreased in each of the cell types for all tumors compared
to the non-tumor pediatric brain tissue.

HDAC4, established as associated with cancer progression and
poor prognosis in a variety of tumor types113–121, was one gene with cell
type-specific dhmCpGs across all four tumor types. Interestingly, the
majority of the CpGs with decreased 5hmC were associated with
progenitor-like cell types, while the majority of the CpGs with
increased 5hmCwere associatedwith the neuronal-like cell types in the
tumor tissue (Fig. 6B). More than 50% of the dhmCpGs in HDAC4 for
each tumor type were in the gene body (Table 3). There were few
dhmCpGs in the 5’UTR, TSS200, andDHS. The neuronal-like cell types
had lower expressionofHDAC4 across all tumor types compared to the
non-tumor tissue (Fig. 6D). On the contrary, the progenitor-like cell
types had higher levels of HDAC4 expression. However, these differ-
ences in gene expression in each cell type of each tumor type com-
pared to the same cell types in non-tumor tissues were not statistically
significant which was likely due limitations from sample size (Fig. 6D).

IGF1R had dhmCpGs across all tumor types and is associated with
tumorigenesis, therapy resistance, and poor survival in different can-
cer types, including in some pediatric CNS tumor types122–132. Most of
the dhmCpGs with decreased 5hmC were associated with the
progenitor-like cell types in the tumor tissue while only a couple
dhmCpGs were in the neuronal-like cell types of the tumor tissue
(Fig. 6C). Like HDAC4, the dhmCpGs in IGF1R were mostly located in
the gene body and DHS, with a few scattered in the enhancer and 3’
UTR regions (Table 4). Consistent with the lack of changes in hydro-
xymethylation in the neuronal-like cell types of the tumors, gene
expression levels of IGF1R did not differ between tumors and the non-
tumor tissue among neuronal-like cell types (Fig. 6D). However, fol-
lowing the decreases in hydroxymethylation, IGF1R gene expression
levels were higher in the progenitor-like cell types, particularly the

OPCs, in the tumors than in the progenitor-like cell types of non-tumor
tissue. As with HDAC4, the differences between each cell type of each
tumor type and same cell type of non-tumor tissues were also not
statistically significant (Fig. 6D). EWAS results from bulk tumor tissue
identified only one or two CpGs in HDAC4 and IGF1R as differentially
hydroxymethylated in either cell type-adjusted or unadjusted model
(Table 4).

Our results suggest potential roles of hydroxymethylation of
CpGs located within the gene body regions in affecting the gene
expression of critical cancer genes, like HDAC4 and IGF1R. However as
statistical significance levels were not reached in cell type specific
differences in gene expression levels likely due to limited sample size,
further experimentation is needed to validate these results.

Discussion
In this study, we investigated the cell type-specific cytosine modifica-
tion alterations in pediatric central nervous system tumors with a
multi-omic approach. We described the cell type composition effects
that occur in epigenome-wide association studies using bulk pediatric
central nervous system tumors and non-tumor pediatric brain tissue.
We identified that there were more differentially hydroxymethylated
CpGs associated with each tumor type, particularly in the progenitor-
like cell types, rather than differentially methylated CpGs. Lastly, we
show that the cell type-specific changes in hydroxymethylation are
associated with cell type-specific gene expression changes in pediatric
central nervous system tumors.

Based on methods to classify tumor subtypes and the pre-
dominant focus on DNA methylation, it was unexpected that there
were very few differentially methylated CpGs associated with each
tumor type. One possible explanation for this phenomenon may be
that as these are pediatric tissues, there is still ongoing development
with which 5hmC is associated. As our results suggest the epigenome-
wide alterations of 5hmC in these tumors, it may be critical to distin-
guish between 5mC and 5hmC to better understand the molecular
underpinnings of these pediatric CNS tumors. Furthermore, it may be
beneficial to incorporate 5hmC into cytosine modification-based
classification methods to improve performance.

Fig. 5 | Cell type-specific differential hydroxymethylation tumor type-specific.
Enrichment of differentially hydroxymethylatedCpGs at specific genomic contexts
by tumor type and direction of differential methylation as represented by odds
ratios and 95% confidence intervals. Odds ratio points and confidence intervals

colored by tumor type. The direction of 5hmC change is indicated by the shape
indicating the odds ratio. Odds ratios were calculated by Mantel-Haenszel test.
Source data are provided as a Source Data file.
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Pediatric tumors are known not to have substantial genetic
alterations133. Our results suggest that pediatric CNS tumors may be
characterized by non-mutational epigenomic reprogramming134,135. We
identified a substantial number of differentially hydroxymethylated
CpGs associated with progenitor-like cell types of each tumor type.
Additionally, even among the shared differentially hydroxymethylated

CpGs in the progenitor-like cell types, numerous differentially hydro-
xymethylated CpGs were located within different genes that regulate
epigenetic patterns, such as DNMT3A, HDAC4, MLLT3, and KAT2B.
Furthermore, pediatric brain cancers have been shown to contain
somatic mutations in epigenetic regulator genes such as H3F3A,
KDM6A, and MLL3136–138. Considering the dysregulation of the

Fig. 6 | Alterations in hydroxymethylation are associatedwith cell type-specific
changes in gene expression. A Summary heatmap of changes in gene expression
in the gene sets with differentially hydroxymethylated CpGs per cell type. The
proportion of differentially hydroxymethylated CpGs associated with (B) HDAC4
and (C) IGF1R at eachgenomiccontext across thedifferent tumor types in neuronal-
like cell types and progenitor-like cell types. Blue bars indicate the proportion of
hydroxymethylatedCpGs that aredecreased in the tumors. Yellowbars indicate the
proportion of hydroxymethylated CpGs that are increased in the tumors. D Gene
expression levels ofHDAC4 and IGF1R for each cell type across the tumor types and

non-tumor tissue. Sample size: ATC = 8, EMB= 6, EPN = 10, GNN= 8. Differences
between each tumor type to non-tumor tissue were determined by Wilcoxon rank
sum test. Number above the boxplot indicates p value from theWilcoxon rank sum
test. In the boxplots of (D), the low ends of the segment indicate the minimum and
the high ends of the segment indicate the maximum. Lower bounds of the box
indicate the 25th percentile and the higher bounds of the box indicate the 75th
percentile. Segment in the middle is the median. Source data are provided as a
Source Data file.
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epigenomemaybe importantwhen developing innovative therapeutic
strategies for these tumors.

While much more investigation has been conducted into how
DNA methylation regulates gene expression, less is known about how
DNA hydroxymethylation can also be associated with changes in gene
expression. We identified relationships between cell type-specific
hydroxymethylation patterns and cell type-specific gene expression in
our pediatric CNS tumors. Our findings indicate that hydro-
xymethylation changes in the gene body regions can alter gene
expression. Previous studies have found positive associations between
DNA methylation in gene body regions and gene expression
changes33,44. However, many genome-wide DNA methylation studies
use the traditional bisulfite treatment approach to measure 5mC.
Becausebisulfite treatment alone cannotdistinguishbetween 5mCand
5hmC25, somemethylation signals may have been from 5hmC. Further
studies that explicitly distinguish between 5hmC and 5mC are needed
to gain a clearer understanding of the effects of DNA cytosine mod-
ifications on gene expression.

We identified two genes, HDAC4 and IGF1R, in our pediatric CNS
tumors that were both epigenetically and transcriptionally altered in
comparison to non-tumor pediatric brain tissue.HDAC4 and IGF1R had
differentially hydroxymethylated CpGs and increased expression in
OPCs across all four of our tumor types. Our results suggest a potential
role of hydroxymethylation regulating genes associated with tumor-
igenesis. With these targets already having been studied in adult can-
cers, there are pharmacological inhibitors that already exist for these
targets. Our study expands previously suggested ideas of targeting
HDAC4 and IGF1R in certain pediatric CNS tumor types127,139,140.

Accruing a large sample size for pediatric CNS tumors is particu-
larly difficult as they are very rare in the general population. The lim-
ited sample size prevented us from including other potential variables
like tumor location. As different parts of the brainmay be composedof

differing cell types, not adjusting for tumor location introduces lim-
itations in our conclusions. However, as we compare the epigenome
within major cell types, we believe that some limitations of not
including tumor location were addressed. Furthermore, the limited
sample size reduced our statistical power in our analyses. While our
study does incorporate a reasonable sample size for these rare tumors,
the smaller sample size limited the inclusion of other variables and cell
types that may affect methylation and transcription into our models.
Moreover, our study incorporates multiple genome-wide and
epigenome-wide molecular features of the matched tumor sample to
give a more comprehensive landscape of each tumor type. Multi-omic
approaches involving single nuclei RNA-seq, bulk RNA-seq, 5mC, 5hmC
epigenome profiles of different pediatric CNS tumors have been lim-
ited in investigations to our knowledge.

Future studies with an expanded cohort of pediatric CNS patients
will allow us to assess the epigenomic alterations in additional cell
types of interest, such as glial cells.Moreover, following our findings of
cell type-specific changes in DNA cytosine modifications in these
pediatric CNS tumors, other tumor types may also have cell type-
specific that have yet to be detected. Tools to understand the cell type
composition of tissues should be incorporated in bulk epigenome-
wide association studies to discriminate the cell type composition
effects.

Our study addresses gaps that currently exist in understanding
epigenomic alterations at the cell type level in pediatric central ner-
vous system tumors. Changes in hydroxymethylationwere particularly
drastic in progenitor-like cells and were associated with cell type level
alterations in transcription. We highlight the relevance of epigenome
dysregulation in pediatric central nervous system tumors that may
lead us to more effective therapeutic targets.

Methods
This study complies with all Dartmouth Hitchcock Medical Center
Institutional ReviewBoard regulations. This studywas approvedby the
Dartmouth Hitchcock Medical Center Institutional Review Board
Study #00030211. Parents/legal guardians of the subjects provided
consent for the use of tissues for research purposes.

Sample information
Cytosine modifications, bulk tissue gene expression, and single nuclei
gene expression weremeasured in 32 pediatric CNS tumors of various
types and 2 non-tumor pediatric brain tissues (Table 1, Supplementary
Table 1). Only samples with all four molecular measurements were
included in downstream analyses. The samples were collected from
patients being treated atDartmouth-HitchcockMedical Center and the
Dartmouth Cancer Center from 1993 to 2017. For each tumor type, the
number of samples was distributed evenly with 8 samples for astro-
cytoma, 6 for embryonal tumors, 10 for ependymoma, and 8 for
glioneuronal/neuronal tumors. Pathological re-review for the

Table 4 | Comparison of the number of differentially hydro-
xymethylated CpGs in HDAC4 and IGF1R identified by bulk
tissue EWAS and CellDMC for each tumor type

Tumor
type

Bulk EWAS
(CT
unadjusted)

Bulk
EWAS (CT
adjusted)

CellDMC
(Neuronal-
like)

CellDMC
(Progenitor-
like)

HDAC4 ATC 0 0 12 7

EMB 1 1 11 17

EPN 1 0 1 30

GNN 0 0 1 2

IGF1R ATC 0 0 4 4

EMB 2 0 1 2

EPN 1 0 0 8

GNN 0 0 0 2

Table 3 | Genomic context of dhmCpGs in (A) HDAC4 and (B) IGF1R for each tumor type

A) HDAC4

TSS200 TSS1500 Gene body 1st exon 5’ UTR 3’ UTR Exon bound Enhancer DHS dhmCpG total

ATC 2 (15%) 0 (0%) 10 (77%) 0 (0%) 1 (8%) 0 (0%) 0 (0%) 1 (8%) 5 (38%) 13

EMB 0 (0%) 1 (5%) 16 (84%) 0 (0%) 2 (11%) 0 (0%) 0 (0%) 1 (5%) 9 (47%) 19

EPN 0 (0%) 0 (0%) 27 (90%) 0 (0%) 3 (10%) 0 (0%) 0 (0%) 0 (0%) 6 (20%) 30

GNN 0 (0%) 0 (0%) 2 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (50%) 2

B) IGF1R

ATC 0 (0%) 0 (0%) 4 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (50%) 4

EMB 0 (0%) 0 (0%) 3 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (33%) 2 (67%) 3

EPN 0 (0%) 0 (0%) 6 (75%) 0 (0%) 0 (0%) 2 (25%) 0 (0%) 1 (13%) 3 (38%) 8

GNN 0 (0%) 0 (0%) 2 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (50%) 2 (100%) 2
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histopathologic tumor type and grade were done according to the
2021WorldHealthOrganization CNS tumor classification system, then
categorized into broader tumor types. The non-tumor pediatric brain
tissues were obtained from patients who underwent surgical resection
for epilepsy.

Data collection and pre-processing
Single nuclei RNA-sequencing. Nuclei were isolated from fresh frozen
tissue samples following theNuclei Pure Prep nuclei isolation kit (Sigma-
Aldrich, St. Louis, MO) with some modifications The samples were first
washedwith PBS to remove extraneousOCT the sampleswere frozen in.
The tissue was homogenized with both wide and narrow pestles sub-
merged in 2.5mLof the lysis buffer in aDouncehomogenizer. The lysate
mixed with 4.5mL 1.8M sucrose cushion were gently layered on top of
the 2.5mL of 1.8M sucrose cushion in Beckman ultracentrifuge tubes.
Samples were centrifuged for 45min at 22,673 g at 4 °C in an ultra-
centrifuge. Each sample was multiplexed with lipid-tagged oligonu-
cleotides following the MULTI-seq protocol141. Libraries for single nuclei
RNA-seq were prepared following the 10X Genomics Single Cell Gene
Expression workflows (10X Genomics, Pleasanton, CA). Libraries were
pooled and sequenced using the Illumina NextSeq500 instrument. 10X
Cell Ranger software was used to align sequences to the GRCh38 pre-
mRNA reference genome.

Low-quality nuclei, as defined as having greater than 10,000 and
less than 2000 features and more than 5% of reads that map to mito-
chondrial genes, were removed for analyses. Samples were demulti-
plexed using an integrative approach, combining barcode based
demultiplexing and genotype-based demultiplex method142,143. Pooled
nuclei were demultiplexed by hashtag oligonucleotides using HTO-
Demux function in Seurat v4142,144–146. Pooled samples were also
demultiplexed using Vireo, a genotype based demultiplexing
method143. We performed genetic demultiplexing analysis using gen-
otype data following the methods described in ref. 147, implemented
in a Nextflow workflow148. Briefly, bulk RNA-seq reads from each
sample were mapped to the reference genome (GRCh38.p13) using
STAR149. Pooled single-nuclei RNA-seq reads were mapped to the
reference genome using STARsolo150. Variants among the samples
within each pool were identified and genotyped with bcftools
mpileup151 using the mapped bulk reads. Individual cells were then
genotyped only at the sites identified using the bulk RNAusing cellsnp-
lite (mode 1a)152. Cell genotypes were used to identify the sample of
origin for each cell using Vireo143. Code for the genetic demultiplexing
workflow can be found at https://github.com/AlexsLemonade/alsf-
scpca/tree/main/workflows/genetic-demux.

To integrate the methods, we first used sample identity assigned
from the hashtag oligonucleotides. If the nuclei were confidently
assigned a sample, it was compared to the genotype-based sample
assignment. Those that did not match the same sample were filtered
out. If the nuclei were assigned as a doublet or to none of the samples,
the nuclei were assigned to a sample based on the genotype-based
approach. 84,700 nuclei with confident sample assignment were used
in analysis.

Downstream analyses for single nuclei-RNA seq were done with
the Seurat package v4 in R142,144–146. Cell types for the nuclei were
assigned by expression levels for classical markers for brain cell types
such as GFAP and AQP4 for astrocytes and MOG and PLP1 for oligo-
dendrocytes. The cell types were then validated by using the Variance-
adjusted Mahalnobis method, a gene set enrichment testing devel-
oped to be specific to singe cell RNA-seq data, with gene sets derived
from specific brain cell types153. Further details for single cell RNA-seq
pre-processing and analysis are detailed in ref. 110.

Bulk RNA-sequencing. Unused nuclei from our single nuclei RNA-seq
experiment were used for bulk RNA-sequencing. RNA was isolated
following the RNeasy Plus kit (Qiagen, Hilden, Germany). Libraries for

bulk RNA-seq were prepared following the Takara Pico v3 low-input
protocol (Takara Bio, Kusatsu, Japan).

Quality control for raw single-end RNA-seq data was checked
using FastQC v0.11.8154. Reads were trimmed of polyA sequences and
low-quality bases using Cutadapt v2.4155. Reads were aligned to the
human pre-mRNA genome GRCh38 with STAR v2.7.7a149. Quality con-
trol of aligned reads was confirmed with CollectRNASeqMetrics in the
Picard software v2.18.29156. Duplicate reads were identified with
MarkDuplicates function in the Picard software156. One sample with an
exceedingly high duplicate read percentage was removed from
downstreamanalyses. Counts per genewereestimatedusing thehtseq-
count function in the HTseq software v0.11.2157.

DNA methylation and hydroxymethylation. In total, DNA from 32
paired pediatric brain tumor and 2 non-tumor brain samples was
treated with tandem bisulfite and oxidative bisulfite conversion fol-
lowed by hybridization to InfiniumHumanMethylationEPICBeadChips
to measure DNA methylation (5mC) and hydroxymethylation (5hmC).
RawBeadArray data were preprocessed using the SeSAMe pipeline (v1)
from Bioconductor, including data normalization and quality
control158. Cross-reactive probes, SNP-related probes, sex chromo-
some probes, non-CpG probes, and low-quality probes (pOOBHA>
0.05) were masked in the analysis159. The oxBS.MLE function was used
to infer 5mC and 5hmC levels160.

Tumor purity estimates. Tumor purity for the tissue samples with
DNA cytosinemodificationswas estimated using the getPurity function
with the non-tumor pediatric tumor tissue as our non-tumor reference
and the low-grade glioma option as our cancer type in the Infi-
niumPurify package v1.3.1 in R161.

Statistical analyses
Distribution of tumor tissues 5mC and 5hmC were compared to dis-
tribution of non-tumor 5mC and 5hmC, respectively, using a
Kolmogorov-Smirnov tests. Distributions were considered to be sta-
tistically significant at p <0.05 threshold. Outliers for MDI were
determined using the Grubb’s test for outliers at statistical significance
threshold of p <0.05. Linear regression models were used to deter-
mine association between 5hmC and 5mC Methylation Dysregulation
Index values with genomic context and tumor type. Linear regression
models were run with the lm function in the stats package in R.

Epigenome-wide association studies. Linear regression models,
adjusting for sex, age at diagnosis, and tumor purity in allmodels, were
used to identify differentially methylated and hydroxymethylated
CpGs associated with each tumor type compared to the non-tumor
tissue. Due to sample size, tumor location was not adjusted for in the
linear regression models. Multiple linear regression models, with
adjustments for different cell type proportions identified from the
single nuclei RNA-seq data, were added to the models. Linear regres-
sion models were fit by using lmFit and eBayes functions in the limma
(v3.54.2) package in R162. CpGs were considered differentially methy-
lated or hydroxymethylated under the q-value threshold of 0.05.

Cell type-specific differential hydroxymethylation and methyla-
tion for each tumor typewere identifiedusingCellDMC103. CellDMC is a
statistical model that identifies both differentially methylated CpGs
and which cell type drives the differential methylation by incorporat-
ing cell type proportions as interaction terms in the linear regression
model in the epigenome wide association study103. CellDMC was con-
ducted within the EpiDISH (v2.14.1) R package103. Proportions of cell
types of interest (neurons and progenitor-like cell types) were pulled
from the single nuclei RNA-seq dataset. To limit overfitting the model
in our relatively smaller sample size, we aggregated the progenitor-like
cell types into a single cell type category. The progenitor-like cell types
included NSC, RGC, OPC, and UBC. UBCs were included due to the
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high levels of stemness score in the cell types identified previously.
Separate models to compare each tumor type to the non-tumor tissue
were run with the same cell types (progenitor-like and neuronal-like
cell types) included in each model.

Differential gene expression testing. Negative binomial regression
models were used to identify the differential expressed genes in each
tumor type compared to non-tumor tissue. One model was fit adjust-
ing for age at diagnosis and sex. The other model was fit adjusting for
age at diagnosis, sex, and the proportions for cell types of interest
(NEU, NSC, RGC, OPC, UBC). Negative binomial models were fit by
usingDESeq function in theDESeq2 package v1.36.0 inR163. Geneswere
considered as differentially expressed under the adjusted p-value
threshold of 0.05.

Pathways enrichment testing. Reactome pathways enrichment
associatedwith differentially expressed genes in each tumor typewere
identified using the enrichPathway function in the ReactomePA pack-
age v1.40.0 in R164.

Genomic context enrichment test. Enrichment tests for genomic
context for differentially hydroxymethylated CpGs were conducted
using theMantel-Haenszel (MH) test. TheMH test was adjusted for the
type of probe (Type I or Type II) used for the CpG in the Illumina
Methylation EPIC array.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw single nuclei-RNA seq data and the processed data for single
nuclei-RNA seq generated in this study are available in the Gene
Expression Omnibus under accession code GSE211362. The raw
hydroxymethylation/methylation data generated in this study have
been deposited in the Gene Expression Omnibus under accession
code GSE152561. The raw bulk RNA-seq data generated in this study
have been deposited in the Gene Expression Omnibus under acces-
sion code GSE241396. Source data are provided as a Source Data file.
All larger size source data files are available at https://figshare.com/
projects/Associations_in_cell_type-specific_hydroxymethylation_and_
transcriptional_alterations_of_pediatric_central_nervous_system_tumors/
193781. GRCH38 reference data are available in the National Library of
Medicine database (https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF_000001405.26/). Source data are provided with this paper.

Code availability
Code used for analysis is available at https://github.com/sarahmklee/
IntegrativePCNS.
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