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Metabolic phenotyping reveals an emerging
role of ammonia abnormality in Alzheimer’s
disease

Tianlu Chen1,6, Fengfeng Pan2,6, Qi Huang3,6, Guoxiang Xie 4, Xiaowen Chao1,
LirongWu1, Jie Wang3, Liang Cui2, Tao Sun1, Mengci Li1, YingWang2, Yihui Guan3,
Xiaojiao Zheng 1, Zhenxing Ren1, Yuhuai Guo1, Lu Wang 5, Kejun Zhou4,
Aihua Zhao1, Qihao Guo2,7 , Fang Xie 3,7 & Wei Jia 1,5,7

The metabolic implications in Alzheimer’s disease (AD) remain poorly under-
stood. Here, we conducted a metabolomics study on a moderately aging Chi-
nese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-
chain amino acids (BCAAs), and glutamate-related features exhibited strong
correlations with cognitive impairment, clinical stage, and brain amyloid-β
deposition (n = 421). These features demonstrated synergistic performances
across clinical stages and subpopulations and enhanced the differentiation of
AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We
validated their performances in eight data sets (total n = 7685) obtained from
Alzheimer’sDiseaseNeuroimaging Initiative (ADNI) andReligiousOrders Study
andMemory and Aging Project (ROSMAP). Importantly, identified features are
linked to blood ammonia homeostasis. We further confirmed the elevated
ammonia level through AD development (n = 1060). Our findings highlight AD
as a metabolic disease and emphasize the metabolite-mediated ammonia dis-
turbance in AD and its potential as a signature and therapeutic target for AD.

Alzheimer’s disease (AD) is a progressive and irreversible neurode-
generative disease with a global increase in prevalence1. The diag-
nosis of AD and its stages currently rely on clinical symptoms,
neuropsychological tests, and specific pathological features such as
Amyloid-beta (Aβ) and tau pathology2. However, AD exhibits sig-
nificant heterogeneity in phenotype, pathology, and progression,
making early detection and understanding its mechanisms crucial3.
For example, some individuals may have moderate or significant Aβ
deposition but show no signs of cognitive impairment, while others
may experience subjective cognitive decline (SCD) up to twodecades
before objective evidence of mild cognitive impairment (MCI).

Blood-based biomarkers that are easily accessible and cost-
effective have garnered attention for their potential to improve AD
diagnosis, optimize disease-modifying strategies, and enhance our
understanding of the disease2. Metabolomics, the study of small
molecules in living organisms, has emerged as a promising approach
to characterize pathological processes and identify blood biomarkers
for AD4–7. In our previous studies5,8–10, we utilized quantitative meta-
bolomics to examine the associations between metabolites and AD
markers as well as the link between AD progression and changes in
microbial metabolites using serum samples from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) and Religious Orders Study and

Received: 5 July 2023

Accepted: 16 April 2024

Check for updates

1Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Shanghai 200233, China. 2Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Shanghai 200233, China. 3Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai
200040, China. 4HumanMetabolomics Institute, Inc., Shenzhen 518109,China. 5Department of Pharmacology and Pharmacy,University of HongKong, Hong
Kong 999077,China. 6These authors contributed equally: Tianlu Chen, Fengfeng Pan, Qi Huang. 7These authors jointly supervised thiswork: QihaoGuo, Fang
Xie, Wei Jia. e-mail: qhguo@sjtu.edu.cn; fangxie@fudan.edu.cn; weijia2@hku.hk

Nature Communications |         (2024) 15:3796 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0951-4150
http://orcid.org/0000-0002-0951-4150
http://orcid.org/0000-0002-0951-4150
http://orcid.org/0000-0002-0951-4150
http://orcid.org/0000-0002-0951-4150
http://orcid.org/0000-0002-5737-3866
http://orcid.org/0000-0002-5737-3866
http://orcid.org/0000-0002-5737-3866
http://orcid.org/0000-0002-5737-3866
http://orcid.org/0000-0002-5737-3866
http://orcid.org/0000-0002-3918-3399
http://orcid.org/0000-0002-3918-3399
http://orcid.org/0000-0002-3918-3399
http://orcid.org/0000-0002-3918-3399
http://orcid.org/0000-0002-3918-3399
http://orcid.org/0000-0003-2667-281X
http://orcid.org/0000-0003-2667-281X
http://orcid.org/0000-0003-2667-281X
http://orcid.org/0000-0003-2667-281X
http://orcid.org/0000-0003-2667-281X
http://orcid.org/0000-0002-3739-8994
http://orcid.org/0000-0002-3739-8994
http://orcid.org/0000-0002-3739-8994
http://orcid.org/0000-0002-3739-8994
http://orcid.org/0000-0002-3739-8994
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47897-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47897-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47897-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47897-y&domain=pdf
mailto:qhguo@sjtu.edu.cn
mailto:fangxie@fudan.edu.cn
mailto:weijia2@hku.hk


Rush Memory and Aging (ROS-MAP) cohorts. Our findings suggested
the bile acid-ammonia axis and the gut microbiome-bile acid-brain
cholesterol axis as potential targets for the prevention and treatment
of AD11. In addition, we and others have observed that metabolic pro-
files in cognitively normal (CN), MCI and AD individuals are affected
by age, sex, and Apolipoprotein E-ε4 allele genotype (APOE-ε4)12–15.
Considering these covariates is important when studying metabolic
changes related to AD and can help explain variations in AD suscept-
ibility and severity across populations16,17.

In this study, we investigated the plasma metabolic profiles of a
cohort comprising moderately aging Chinese individuals (n = 1397,
meanage = 66 years), encompassingbothpreclinical and symptomatic
AD stages (Fig. 1). We comprehensively identified and evaluated
metabolic features associated with AD stages, cognitive impairment,
and brain Aβ deposition within the entire cohort, as well as in stratified
populations and independent cohorts. Our objective is to enhance and
validate prior findings in a new cohort, contributing to an improved
understanding of AD as a metabolic disorder.

Results
Study cohort
Plasma samples of 1397 individuals, including 487 cognitively normal
(CN), 239 with subjective cognitive decline (SCD), 284 with mild cog-
nitive impairment (MCI), and 387 with Alzheimer’s disease (AD), were
obtained from the Chinese Preclinical Alzheimer’s Disease Study
(C-PAS)18. The mean age of the participants was 66.2 years (standard
deviation = 8.6), with 41.3% of them being younger than 65 years. The
majority of participants werewomen (65.6%), and 28.8%were identified
as APOE-ε4 positive (Table 1). All participants underwent comprehen-
sive assessments including general cognitive tests and a battery of
standardized neuropsychological tests. A subset of 421 participants
underwent brain positron emission tomography (PET) scans using the
18F-florbetapir amyloid tracer (also called 18F-AV-45) within onemonth
after blood sampling.Detaileddescriptionsonneuropsychological tests
and clinical diagnosis are provided in supplementary information.

BAs, BCAAs, and excitatory neurotransmitters were closely
associated with AD
A total of 189 metabolites belonging to 12 types were quantitatively
measured (Fig. 2a and Table S1). Partial least squares discriminant
analysis (PLS-DA) was employed to analyze the concentrations of all
metabolites. The centroid scores plot illustrated distinct alterations
in metabolic profiles at various disease stages, with the severity of
the disease corresponding to an increased distance from the cogni-
tively normal (CN) profile (Fig. 2b). Among the 12 metabolite types,
the integrated levels (Fig. 2c, PC1 scores of PCA derived from meta-
bolites belong to each type) of 5 types, namely bile acids (BAs),
branch chain amino acids (BCAAs), excitatory neurotransmitters,
amino acids, and medium and long chain fatty acids, exhibited sig-
nificant differences among the four clinical stages (ANOVA
FDR< 0.05 using log-transformed data). In comparison to CN, the
levels of three marker types, BAs, BCAAs, and excitatory neuro-
transmitters, exhibited significant alterations (post hoc Dunnett’s
test p < 0.05) across more disease stages than other metabolites
(Fig. 2c). We also integrated levels of metabolite types by summing
up concentrations ofmetabolites belonging to each type directly and
confirmed that these three types were different in more stages than
the other types compared to CN (Fig. S1). We further observed the
levels of five sub-types belonging to these three types in 4 clinical
stages and found that the level of conjugated BAs was the highest in
AD and the lowest in CN (AD>MCI > SCD >CN) and the level of
glutamate-related metabolites was the lowest in AD and the highest
in CN (AD<MCI < SCD <CN; Fig. 2d).

Conjugated BAs, BCAAs, and glutamate-related features dis-
played stage-specific and population-specific associations
with AD
The three identified metabolite types (BAs, BCAAs, and excitatory
neurotransmitters) involve 3 BCAAs, 8 excitatory neurotransmitters,
and 18 bile acids. Based on them, 34 extended features were generated
(Table S2), comprising concentration summations and ratios reflective
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of enzymatic activities or gut microbiome function19–22. We con-
structed linear regression models (age, sex, BMI, APOE-ε4, and edu-
cation year were adjusted) and identified 13 features (out of 63
comprising 29 metabolites and 34 extended features) significantly
associated (FDR <0.05) with clinical stages within the entire popula-
tion (refer to the first column in Fig. 3a). Notably, six features related to
BAs (five of which were linked to conjugated BAs), four to BCAAs, and
three to excitatory neurotransmitters (all involving glutamate) exhib-
ited associations. Positive associations (positive effect sizes) with dis-
ease severity were observed for BA-related features, whereas BCAA
and glutamate-related features displayed negative associations
(negative effect sizes) with disease severity. Subsequently, logistic
regression models were constructed on these 13 features, facilitating
the differentiation of every two stages (M1-M6) while adjusting for
covariates. Interestingly, the number of features with different levels
(p < 0.05) was smaller in SCD and MCI (M4), while CN and AD (M3)
exhibited a larger disparity than other comparisons within the entire
population (Fig. 3a). The stage-specific and complementary perfor-
mances of these features were evident, as distinctions were observed
in BA-related and glutamate-related features across all comparisons,
except for M4 (SCD vs. MCI) and M1 (CN vs. CSD) respectively while
BCAA-related features showed differences between M1 (CN vs. SCD)
and M3 (CN vs. AD). Furthermore, the association patterns of these
features with cognition were evaluated (Fig. 3b). Comparatively,
glutamate-related features exhibited the highest number of associa-
tions, followed by BA- and BCAA-related features.

Stratification analysis, accounting for age, sex, and APOE-ε4
characteristics, revealed diverse patterns across sub-populations
(Fig. 3c–e). APOE-ε4 status exerted a more substantial impact on
these features compared to sex and age. A lower number of differential

features was observed among four stages (Fig. 3f) and in pairwise
comparison between clinical stages (Fig. 3g), as well as in features
associated with cognition (Fig. S3) among APOE-ε4 carriers compared
to non-carriers. Men exhibited a higher number of BA-related features
than women across four stages (Fig. 3f), between two stages (Fig. 3g),
and in associations with cognition (Fig. S3). Conversely, women and
younger participants showed a greater prevalence of BCAA-related
features in these scenarios.

Glutamate metabolism was associated with brain Aβ deposition
Many lines of evidences support that Aβ plays a key role in AD
pathology, and which is an established indicator of AD pathology.
Associations between the 13 features and brain Aβ deposition were
examined (n = 421). We observed consistent patterns in the levels of
glutamate-related features across different populations. Specifically,
glutamate-related features were consistently lower in individuals with
positive Aβ (Aβ + ) compared to those with negative Aβ (Aβ-) in CN +
SCD groups (n = 264), MCI + AD groups (n = 157), and the entire study
population (Fig. 4a–c). However, it’s important to note that these dif-
ferences did not reach statistical significance in the CN + SCD group
alone, with p-values exceeding 0.05 in both theMann-Whitney test and
logistic regression adjusting for age, sex, BMI, education year,
and APOE-ε4 status. Despite this, we identified a noteworthy finding
in CN+ SCD subjects, where GDCA/DCA was significantly higher
(Mann-Whitney p = 0.0082) in Aβ+ individuals (n = 43) compared to
Aβ- individuals (n = 221). This suggests an early alteration in individuals
without clinical symptoms but exhibiting signs of AD pathology.
The significance of GDCA/DCA was attenuated after adjusting for
covariates (logistic regression adjusting for the aforementioned cov-
ariates; p =0.073).

Table 1 | . Characteristics of study population from C-PAS cohort

Characteristics ALL (n = 1397) CN(n = 487) SCD(n = 239) MCI(n = 284) AD(n = 387)

Age (yr) 66.2 + 8.6a 63.6 + 8.2 64.4 + 7.4 66.5 + 8.1b 70.4 + 8.4b

[40,89] [40,84] [47,81] [43,86] [41,89]

66 (60, 72) 64 (58, 69) 64 (58, 70) 66 (61, 73) 71 (65, 77)

Sex (Men%) 34.4% 33.7% 28.9% 34.5% 38.8%

BMI (kg/m2) 23.3 + 3.8 23.4 + 3.4 24.0 + 3.5 23.1 + 3.3 22.9 + 3.4

[13.7, 33. 8] [15.4, 33.8] [16.4, 31.6] [15.5, 33.2] [13.7, 31.1]

23.2 (21.0, 25.4) 23.3 (21.2, 25.3) 23.7 (21.5, 26.0) 23.0 (20.9, 25.4) 22.7 (20. 6, 25.2)

Education (yr) 11.4 + 3.2a 12.4 + 3.1 11.9 + 3.1 11.1 + 3.0 10.2 + 3.2b

[6,22] [6,22] [6,20] [6,22] [6,19]

11 (9, 14) 12 (10, 15) 12 (9, 14) 11 (9, 12) 10 (7, 12)

APOE (ε4) carrier %a 28.8%a 19.1% 17.6% 29.6%b 47.6%b

PET acceptance(%)b 30.1%a 34.8% 39.3% 31.7%b 17.3%b

Brain Aβ + (%)c 28.5% 15.3% 18.1% 31.1% 73.1%b

MMSE 24.6 + 5.6a 28.2 + 1.7 27.7 + 1.8b 26.5 + 2.1b 16.8 + 4.7b

[10,30] [20,30] [21,30] [15,30] [10,27]

27 (22, 29) 28.5 (27, 29) 28 (26, 29) 27 (25, 28) 17.5 (12, 21)

ACEIII-CV 68.8 + 18.2a 82.0 + 7.9 77.8 + 8.0b 70.3 + 9.0b 45.7 + 14.7b

[10,97] [60,97] [60,96] [50,94] [10,77]

73 (60, 82) 83 (77, 88) 78 (73, 83) 71 (64, 76) 48 (36, 58)

MoCA-BC 23.3 + 4.8a 26.1 + 2.5 24.7 + 3.0b 21.9 + 3.4b 15.2 + 3.3b

[10,30] [20,30] [17,30] [15,30] [10,22]

24.50 (20, 27) 27 (25, 28) 25 (22, 27) 22 (20, 24) 15 (12, 18)

Data are presented as mean+S.D., [minimum, maximum], and median (IQR), or percentage.
aindicates Chi-squared test, analysis of variance, or Kruskal–Wallis test FDR<0.05 when comparing 4 groups (adjusted by Benjamini and Hochberg).
bindicates Chi-squared test, student’s t-test or Mann-Whitney test FDR <0.05when compared toCN (adjusted byBenjamini and Hochberg).C-PASChinese Preclinical Alzheimer’s DiseaseStudy,CN
Cognitivelynormal,ADAlzheimer’s disease,SCDSubjective cognitive decline,MMSEMini-Mental StateExamination,ACEIII-CVChinese versionof Addenbrooke’s cognitiveexamination-III,MoCA-BC
Chinese version ofMontreal Cognitive Assessment-Basic. a: the percentage ofAPOE-ε4 carriers. b: the percentage of the participants that accepted brain PET test. c: the percentage of participants
with positive Aβ (defined through visual assessment following the guidelines for interpreting amyloid PET) in those underwent the brain AV45-PET scans.
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Moreover, employing voxel-wise analysis, we delved into the
associations between the identified features and brain Aβ deposition.
Our results confirmed a negative association between glutamate-
related features, particularly glutamate/glutamine, and brain Aβ
deposition, predominantly in the frontal, lateral parietal, and lateral
temporal lobes (Fig. 4d–t). This underscores a close correlation
between the glutamate/GABA-glutamine cycle and AD pathology.
Interestingly, this correlation exhibited some dependency on factors
such as age, sex, APOE-ε4 status, and disease stage.

Metabolic features enhanced clinical markers for the associa-
tions with clinical stages and brain Aβ deposition
The clinical contributions of the identified features were evaluated by
comparing the performances of gradient boosting models based on
basicmarkers (age, sex, BMI, education years, and APOE-ε4 status) and
models incorporating the 13 features. The inclusion of metabolic
features consistently improved the auROCs (all higher than zero with
an average of 0.05 and a maximum of 0.13) of models for stage

differentiation and prediction (Fig. 5a–g). The improvement in the
correlation coefficient with global Aβ deposition ([18 F]florbetapir
SUVr) increased from 0.21 to 0.47 (Fig. 5h).

Replication of feature performance in matched samples and
other data sets
Given the importance of age, we examined the performance of the 13
features in an age-matched sub-population (Table S3, n = 991, mean
age = 69.7, ranging from60 to89), despite age adjustments beingmade
in the above analyses. In line with the entire population, BA-related
features showed positive associations, while BCAA and glutamate-
related features exhibited negative associations with disease severity
(Fig. S3a). Glutamate-related features displayed the highest number of
associations with cognition, followed by BA- and BCAA-related features
(Fig. S3b). Sex and APOE-ε4 stratified analyses indicated that APOE-
ε4 status had a more substantial impact than sex (Fig. S3c, S3d).

The performances of the 13 features were further verified in eight
data sets comprising a total of 7685 participants (Tables S4 and S5).

-1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

CN (n=487)
SCD(n=239)
MCI (n=284)
AD (n=387)

centroid PC1 of PLSDA (mean+S.E.)

BCAAs (88%)
neurotransmitters-glutamate related (91%)
neurotransmitters-aspartate related (89%)

BAs-conjugated (62%)
BAs-unconjugated (77%)

CN SCD MCI AD

Bile acids (BAs)* (40%)

Branch chain amino acids (BCAAs)* (88%)

Excitatory neurotransmitters* (81%)

Medium and long chain fatty acids* (87%)

Amino acids* (42%)

Inhibitory neurotransmitters (87%)

Organic acids (91%)

sugar (90%)

Carbohydrates (55%)

Short chain fatty acids (93%)

Carnitines (96%)

$

$

$

$

$ $

$

$$

FC

0.8

1.0

1.2

a) b)

c) d)

ce
nt

ro
id

 P
C

2 
of

 P
LS

D
A 

(m
ea

n+
S.

E)

11.64%  22 Others
10.05%  19 Bile Acids
10.05%  19 Carnitines
5.29%  10 Short Chain Fatty Acids
4 .76%  9 Carbohydrates
3.17%  6 Sugar
2 .65%  5 Inhibitory Neurotransmitters
2.12%  4 Excitatory Neurotransmitters

n=189

1 .59%  3 Branch chain amino acids

19.58% 37 Fatty Acids
14.29%  27 Amino Acids
14.81% 28 Organic Acids

PC
1 

(m
ea

n+
S.

E.
)

CN SCD MCI AD
-0.6

-0.4

-0.2

0.0

0.2

0.4

Fig. 2 | BAs, BCAAs, and excitatory neurotransmitters exhibit strong associa-
tions with AD. a Composition of metabolic profiles stratified by metabolite type.
b The partial least squares discriminant analysis (PLS-DA) scores plot generated by
the raw concentrations of all metabolites and samples. The circles and error bars
represent the centroids (mean+S.E.) of principal component scores corresponding
to each stage. c Fold changes of PC1s (the first component of PCA) derived from the
metabolite types in subjects with SCD, MCI, and AD relative to CN. * indicates
ANOVA FDR<0.05 (two-sided) when comparing NC, SCD,MCI, and AD. $ indicates
post hoc Dunnett’s test p <0.05 (two-sided) when compared to CN. Metabolite

types are arranged in decreasing order of ANOVA FDR values. The number next to
the name represents the percentage of variation that PC1 captured. d Levels (mean
with S.E.) of five sub-types belonging to the top three types of (c) in four clinical
stages. The levels are represented by the PC1 scores derived from PCA based on
metabolites belonging to each sub-type and were scaled to the same starting point
(n = 487, 239, 284, 387 for CN, SCD,MCI, and AD respectively). The number next to
the name represents the percentage of variation that PC1 captured. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47897-y

Nature Communications |         (2024) 15:3796 4



Given the overlap of samples in ADNI data sets (Figure S4), we
employed a three-level meta-analysis to evaluate their differences
between CN and AD and their associations with global cognition.
Detailed results for each feature are provided in Figures S5 and S6.
Themajority (11 out of the 13) features showed significant alterations in
AD compared to CN (Fig. 6a, p < 0.05, random effectmodel), and their
alteration trends were consistent with the findings from the C-PAS
cohort. The overall results on Spearman correlation coefficients
between metabolic features and global cognition scores (Fig. 6b)
indicated that 11 among the 13 features were associated with cognition

(p < 0.05). Consistent with the results of C-PAS, BA-related features
were positively and BCAA- and glutamate-related features were nega-
tively associated with cognition decline.

Metabolite-mediated ammonia abnormality in AD
The identified features were found to be associated with elevated
blood ammonia levels, which is a neurotoxin and has been implicated
previously in AD pathology (Fig. 7a). Analysis of available plasma
samples from the C-PAS cohort, n = 1060, including 329 CN, 198 SCD,
230MCI, and 303 AD, confirmed that ammonia levels were the highest
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in AD and the lowest in CN (AD >MCI > SCD >CN; Fig. 7b) and were
negatively associated with cognition and BCAA- and glutamate-related
features, while positively associated with BA-related features (Fig. 7c).
These findings highlight the contributions of BA, BCAA, and glutamate
metabolism to peripheral ammonia levels and their combined impact
on AD development.

Discussion
Previous studies have shown strong evidence for the associations
between blood-based metabolic features and AD1,23. However, most of
these studies focused on European ancestry populations, with only a
few studies conducted in East Asians. In our previous research, we
identified andproposedpotential roles of alteredmetabolic features in
AD development, such as regulating gut microbiota and brain cho-
lesterol catabolism, using populations from the United States and
China5,8–10. In this study,weexamined the plasmametabolomeof a new
Han Chinese cohort, including relatively young participants and indi-
viduals at thepreclinical stageof AD.Wenotonly confirmedpreviously
reported associations of conjugated BAs, BCAAs, and glutamate
metabolism with AD progression but also extended our analysis to
assess their performances in stratified populations and independent
cohorts. Beyond their connections to clinical stages and cognitive
function, we identified the association of glutamate-related features
with AD pathology. Furthermore, we proposed the intermediary role
of ammonia in the relationship between metabolic features and AD,
providing additional support to the emerging hypothesis that ammo-
nia disturbance contributes to AD progression. Our findings sig-
nificantly contribute to expanding our comprehension of AD as a
metabolic disease, offering observational evidence for early detection
and advancing our understanding of AD pathology.

The metabolic profiles were different among clinical stages and
were associated with disease severity. Features related to conjugated
bile acid, BCAA, and glutamatemetabolismwere extensively examined
in entire and stratified populations. We observed that their perfor-
mances were not only stage-specific but also population-specific. This
implies that employing distinct sets of metabolic features tailored to
specific stages and populations enhances the precision in character-
izing the metabolic patterns of AD. These observations may also help
explain the inconsistencies in associations between metabolites and
AD reported in other studies, and aid in interpreting the differences in
pathophysiology and symptoms observed across different popula-
tions. On the other hand, caution is warranted in interpreting our
findings. Further analysis, incorporating additional covariates and
exploring their interactions, will contribute to a more nuanced
understanding of these features and the overallmetabolic landscape in
AD. More in-depth discussions on the potential influences of age, sex,
and APOE-ε4 status on the association betweenmetabolic profiles and
the progression of AD are provided in supplementary information.

The alterations in the identified features alignwith previous cross-
sectional and longitudinal reports6–9,24–27. These features have been
proposed to have direct or indirect roles in various processes linked to
AD pathology, including ammonia abnormality, gut microbiome dis-
turbance, energy metabolism disorder, mitochondrial dysfunction,
oxidative stress, apoptosis, and neuronal autophagy. Our findings
further support the emerging role of metabolite-mediated ammonia
disturbance in AD, as the identified features are involved in the reg-
ulation of blood ammonia homeostasis through several mechanisms
(Fig. 7a). The higher levels of conjugated BA-related features in AD can
be attributed to enhanced BA reabsorption in the intestine and
increased transport of conjugated BAs into the bloodstream. This
leads to a decrease in conjugated BAs in the intestinal tract, resulting in
increased ammonia levels. The observed lower levels of glutamate and
glutamate/glutamine in AD and MCI compared to CN suggests
abnormalities in the glutamate-glutamine cycle, which generates
ammonia as a byproduct28. Ammonia has significant effects on gluta-
matergic and GABAergic neuronal systems, which are predominant in
cortical structures29. BCAAs are connected to ammonia through their
conversion to glutamate30 and their involvement in protein synthesis
anddegradation31. Clinical trials have shown that oral administrationof
BCAAs can effectively reduce blood ammonia levels and benefit indi-
viduals with hepatic encephalopathy and impaired cognition32. While
BCAAs are recognized risk factors for insulin resistance (IR) and type 2
diabetes (T2D)33,34, which are independent risk factors for AD35, their
effects on IR/T2D and AD may differ. The core connection between
IR/T2D and AD may not solely rely on the role of BCAAs. Together,
existing evidence is rich but insufficient to fully elucidate the impact
of identified metabolic features to AD progression. Ongoing investi-
gations, incorporating longitudinal designs and accounting for factors
like nonlinear changes, complications, medications, and diet, are
underway.

Glutamate metabolism is associated with the pathological pro-
cess of AD and blood levels of glutamate-related features may serve
as a marker reflective of brain glutamate metabolism and Aβ
deposition. Previous studies30,36–38 have reported contradictory
results (lower levels vs. higher levels) of glutamate in AD patients.
Our findings of a negative relationship between glutamate levels in
plasma and amyloid deposition in brain are inconsistent with the
notion that elevated glutamate induces neurotoxicity, impacting
neurons adversely39. Conversely, reduced glutamate levels could
signify synaptic dysfunction and cognitive decline40,41. Diverse
methodologies, patient heterogeneity, and disease progression
stagesmay collectively contribute to the observed discrepancies. It is
important to note that the current evidence is insufficient to fully
determine whether this association is causal or a consequence of Aβ
deposition. Additionally, as our study did not include other types of
dementia, we cannot ascertain the specificity of these markers for

Fig. 3 | Conjugated BAs, BCAAs, and glutamate-related features were asso-
ciated with clinical stages and cognition in a stage-/population-specific way.
a Effect sizes of 13 metabolic features significantly different among four clinical
stages (M0) and their performances in differentiating every two stages (M1-M6)
based on linear regression (M0) and logistic regression models (M1-M6) respec-
tively. Data from entire population was used. Colored cell indicates FDR <0.05
(M0) or p <0.05 (M1-M6) and * indicates FDR <0.01 (M0) or p <0.01 (M1-M6).
Covariates including age, sex, BMI, education year, andAPOE-ε4were adjusted. The
p-valueswere based on two-sided tests.bAssociations of 13metabolic features and
cognition scores (entire population). Cell color indicates the correlation coefficient
from Partial Spearman analysis (red: positive; blue: negative; blank: p ≥0.05; two-
sided). c The distribution of men and women in four clinical stages. d The dis-
tribution of APOE-ε4 carriers and non-carriers in four clinical stages. e Age dis-
tribution of participants in four clinical stages. f Effect sizes of 13metabolic features
when differentiating four clinical stages based on linear regression models (M0) in
stratified populations. Colored cell indicates FDR<0.05 and * indicates FDR <0.01

(two-sided).g Effect sizes of 13metabolic featureswhen differentiatingCN and SCD
(M1), CN andMCI (M2), CN and AD (M3), SCD andMCI (M4), SCD and AD (M5), and
MCI and AD (M6) respectively in stratified populations. Colored cell indicates
p <0.05 and * indicates p <0.01 (two-sided). The correlation coefficients of 13
metabolic features and cognition scores based on Partial Spearman in stratified
populations are shown in Figure S2. Source data are provided as a Source Data file.
GCDCA Chenodeoxycholic acid glycine conjugate, GDCA Deoxycholic acid glycine
conjugate, CDCA Chenodeoxycholic acid, DCA Deoxycholic acid, CA Cholic acid,
PriBA concentration summation of primary BAs, MMSE Mini-Mental State Exam-
ination, ACEIII-CV Chinese version of Addenbrooke’s cognitive examination-III,
MoCA-BCChinese versionofMontrealCognitiveAssessment-Basic, FAQFunctional
Assessment Questionnaire, ADL Activities of Daily Living, AVLT Auditory Verbal
Learning Test, BVMT Brief Visuospatial Memory Test, AFT Animal Verbal Fluency
Test, BNT Boston Naming Test, STT Shape Trail Test, JLO Judgement of Line
Orientation, SDMT Symbol Digit Modalities Test, DST Digit Span Test.
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Fig. 4 | The associations of glutamate metabolism with brain Aβ deposition
(n = 421). The levels of glutamate (a), glutamate/glutamine (b), and glutamate/
GABA (c) in CN+ SCD, MCI + AD, and all participants stratified by positive and
negative Aβ deposition which was determined by the consensus of physicians’
visual interpretation of PET image. The solid line in violine plot represents the
median and the dashed line represents quartile. The p values were from Mann-
Whitney test (two-sided). d Typical brain regions. Brain Aβ deposition were
negatively associated with glutamate/glutamine (e–l), glutamate/GABA (m–q), and

glutamate (r–t), based on the voxel-wise analysis, in entire and stage-/sex-/age-/
APOE-ε4-stratified participants. The significance level of the linear regression (e–t)
was set at p <0.05 (two-sided) with peak-level false discovery rate (FDR) correction
and the cluster-defining voxel threshold at the default of 0.001. The color bar
stands for theTvalues of the voxel-wise analysis. Covariates including age, sex,BMI,
education year, and APOE-ε4 were adjusted when applicable. Source data are
provided as a Source Data file.
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AD. Further investigations are warranted to elucidate the interplay of
glutamate-related features in both the brain and blood, unravel their
causal associations, and determine their specificity in relation to
brain Aβ deposition.

Accurate and timely diagnosis of AD, including preclinical and
prodromal stages, remains challenging for clinicians1. Currently, CSF
and PET tests, which are costly and invasive, are not widely accessible.
Therefore, there is increasing reliance on blood-based markers in the
diagnostic workup of AD. Although plasma A/T/N markers have gar-
nered attention, their levels in plasma are much lower than in the brain
and CSF, posing challenges for current testing technology and hinder-
ing their clinical implementation. In comparison, the detection of the
identified features inplasma is reproducible andcost-effective.Ourdata

demonstrate their consistent contributions to the differentiation of
clinical stages, making them potential alternative markers in clinical
practice, particularly in scenarios requiring frequent and long-term
monitoring. We here propose a small panel of 4 features as promising
biomarker targets considering their overall performances and under-
lyingbiological significance. TheyareGDCA/DCA,GDCA/CA, valine, and
glutamate/glutamine.

The strengths of our study include the distinctive population, the
top-down and stratification analysis approach, the imaging-based
association analysis, and the validation in multiple cohorts. However,
there are several limitations to consider. First, the findings are obser-
vational and await replication in longitudinal studies with larger sam-
ple sizes, appropriate stratification, and consideration of additional
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Fig. 5 | Metabolic features improved the performances of clinical markers in
entire and stratified participants. The auROC values (mean with S.E. from 7-fold
cross validation) of gradient boosting models using basic (age, sex, BMI, APOE-ε4,
and education year; blue) and combined (basic and 13 metabolic features; red)
features for the differentiation of every 2 stages, in all (a) and stratified (b–g)
participants. The sample numbers for NC, SCD, MCI, and AD are 487, 239, 284, and
387 respectively, for all (a) and stratified analysis (b:165, 69, 99, 154; c: 322, 170, 185,

233;d: 255, 122, 110, 90; e: 393, 197, 200, 203; f: 94, 42, 84, 184; g: 232, 117, 174, 297).
h Scatter plot of whole brain Aβ deposition level and output of gradient boosting
regression model with (red, Spearman correlation coefficient r = 0.47, p = 1.0E-15,
two-sided) and without (blue, r = 0.21, p = 1.4E-5, two-sided) metabolic features
(n = 421). The lines are linear fitting lines with 95% CI. Source data are provided as a
Source Data file.
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Fig. 6 | Replication of feature performance in other data sets. Three-level meta-
analysis forest plots of identified features on their alteration trends with AD pro-
gression (a; standardized mean difference with 95%CI of AD and CN stages; > 0,
higher in AD; < 0, higher in CN) and on their associations with global cognition (b;
Partial Spearman r value with 95%CI based on all available data. Age and sex were
adjusted.). The p-values were based on two-sided tests. C-PAS (study No.9) and
another 8 data sets derived from ADNI and ROSMAP were involved. 1: ADNI-

Duke2016; 2: ADNI-Duke2017; 3: ADNI-California2017; 4: ADNI-Hawaii2021; 5: ADNI-
Nightingale2021; 6: ADNI-DukeBAs2016; 7: ADNI-M2OVEAD2016; 8: Rosmap-
Hawaii2017; 9: C-PAS-Shanghai2023. Variables were scaled to 0-1 within each study
respectively and p-values were from random effect models. Cognition scores for
ADNI, C-PAS, and ROSMAP data sets were ADAS-13, -1*MMSE, and a composite
measure of global cognition created by averaging the z-scores of all tests respec-
tively. Source data are provided as a Source Data file.
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risk factors and confounders. Further research is required to elucidate
the collective impacts of identified features and ammonia on AD.
Second, our top-down analysis may have overlooked sporadic meta-
bolites whose significance may have been overshadowed by others
within the same group. Employing two- or three-fold stratification
analysis could enhance the granularity of the findings. Third, the
subjects are relatively younger than that of some other AD cohorts and
more patients with familial AD may be included. All the samples were
collected in a non-fasting state. However, it is important to note that
the performances of the identified features are consistent in some
other cohorts with older subjects and fasting samples, which enhances
the reliability of our findings.

In summary, leveraging the new Han cohort alongside several
publicly available datasets,we validated the associations of conjugated
BAs, BCAAs, and glutamate metabolism with AD. Our study unveiled
the diverse performances of these metabolites in sub-populations,
offering powerful evidence for the mechanistic link between
metabolite-mediated ammonia abnormality and AD development.
Future investigations are imperative to validate the clinical potentials
of the identified features and unravel their interconnected roles in
maintaining ammonia homeostasis, influencing Aβ deposition, and
contributing to AD development. Further exploration in these direc-
tions holds promise for advancing our understanding and potential
interventions in AD.

Methods
Study cohort and samples
The ethics committee of Shanghai Sixth People’s Hospital Affiliated to
Shanghai Jiao Tong University School of Medicine reviewed and
approved the C-PAS Study (2019-032), following the principles of the
Declaration of Helsinki. Written informed consent was obtained from
participants or their caregivers. All relevant ethical regulations were
followed during the study. ADNI is a multi-center study focused on
biomarker development for early AD detection and tracking. Informed
consent was obtained from participants, and the study was approved

by each participating site’s institutional review board. The ROSMAP
study was approved by the review board of Rush university, and par-
ticipants provided informed consent.

C-PAS. Plasma samples and related information were obtained from
1397 individuals enrolled in the C-PAS from April 2019 to June 2021.
C-PAS is a nationwide longitudinal study aimed at identifying bio-
markers for early detection and progression tracking of Alzheimer’s
disease (AD). Inclusion and exclusion criteria, clinical and neuroima-
ging protocols, and other information about C-PAS are described
here18.

ADNI. Seven serum metabolomics data sets from ADNI were used,
including Duke2016 (n = 818), Duke2017 (n = 898), California2017
(n = 820), Hawaii2021 (n = 1172), Nightingale Health2021 (n = 1681),
ADNI-DukeBAs2016 (n = 833), and ADNI-M2OVEAD2016 (n = 897).
Demographic information and clinical data were downloaded from
the ADNI data repository (www.adni-info.org and www.loni.usc.edu/
ADNI/).

ROSMAP. The serum data set named ROSMAP-Hawaii2017 (n = 566)
was obtained from the ROSMAP project5,8,9. Inclusion and exclusion
criteria, clinical and pathological protocols, and other information
about ROSMAP are described at https://dss.niagads.org/cohorts/
religious-orders-study-memory-and-aging-project-rosmap/.

Neuropsychological measurements and clinical diagnosis
of C-PAS
Neuropsychological measurements and clinical diagnosis were
performed according to our previously published reports18. The
Chinese version of Mini-Mental State Examination (MMSE), Montreal
Cognitive Assessment-Basic (MoCA-BC) and Addenbrooke’s Cognitive
Examination-III (ACE-III-CV) were selected as general cognitive
screening tests. Different cognitive domains were assessed using a
battery of standardized neuropsychological tests.
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Fig. 7 | Metabolite-mediated ammonia abnormality in AD. a Biological associa-
tions of elevated blood ammonia andmetabolic features related to conjugated BA,
glutamate, andBCAA.b Levels of bloodammonia in four clinical stages. The sample
number for CN, SCD, MCI, and AD are 329, 198, 230, and 303 respectively. The
centre line denotes the median value (50th percentile), while the box contains the
25th to 75th percentiles of dataset. The whiskersmark the 5th and 95th percentiles,

and values beyond these upper and lower bounds are considered outliers.
c Associations (correlation coefficient r with 95% CI) between blood ammonia and
cognition and metabolic features (n = 1060). Cognition scores and metabolic fea-
tures with Spearman correlation p <0.05 (two-sided) are listed. * represents
p <0.05 (two-sided) after adjusting age, sex, BMI, education year, and APOE-ε4.
Source data are provided as a Source Data file.
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Quantitative calculation and visual interpretation of PET images
[18 F]Florbetapir PET data were quantified using the standardized
uptake value ratio (SUVr), with the cerebellum grey matter serving as
the reference region. The global cortical Aβ burden was computed as
the mean SUVr in cortical area, including posterior cingulate, pre-
cuneus, frontal, lateral parietal, lateral temporal, medial temporal, and
occipital regions. The positive 18F-florbetapir PET imagesweredefined
through visual rating following the guidelines for interpreting amyloid
PET42. Three physicians independently assessed all amyloid PET ima-
ges, and results were determined based on a consensus, with agree-
ment among at least two physicians. Additional details on the
acquisition and preprocessing of [18 F]Florbetapir PET neuroimaging
are provided in the supplementary information.

Quantitative measurement and pretreatment of metabolic data
(C-PAS)
Among numerous metabolites, 189 ones from 12 metabolite types
(Fig. 2a and Table S1) that are stably measured in mammalian were
quantitatively measured using UPLC-MS/MS43. The raw data files
underwent processing using TMBQ software (V1.0, HMI, Shenzhen,
China), encompassing peak integration, calibration, quantification,
quality control, and batch effect adjustment for each metabolite,
adhering to the manufacturer’s guidelines. Outliers were identified
through Cauchy distribution robust fit (K sigma=7). Any outliers
( < 0.2%) andmissing values (< 0.1%)were substituted usingmultivariate
normal imputation. To normalize their distribution for statistical ana-
lysis, the data underwent logarithmic transformation (base = 2).

Plasma ammonia measurement
Ammonia levels inplasmasamplesweremeasuredusing a colorimetric
assay kit (Elabscience, China) according to the manufacturer’s
instructions.

Statistical analyses
Differences in clinical markers were evaluated using the Chi-squared
test, student’s t-test, Mann-Whitney test, analysis of variance, or
Kruskal–Wallis test followed by Dunn’s multiple-comparison post-hoc,
as appropriate and as denoted in the text and figure legends.

Metabolites were classified into 12 types according to their
chemical structure. Partial Least Squares Discriminant Analysis
(PLSDA) was performed to visualize AD progression. The levels of
metabolite types were represented by the first principal components
(PC1s) derived from principal component analysis (PCA) based on
metabolites of corresponding types. Differences in metabolite types
(log transformed) were evaluated using analysis of variance test fol-
lowed by Dunn’s multiple-comparison post-hoc. Linear regression
and logistic regression were used to identify features associated with
4 and 2 clinical stages respectively, adjusted for age, sex, BMI, edu-
cation year, and APOE-ε4 status. The features were z-score scaled and
the resulting effect size values were comparable. The determination
of potential covariates for adjustment involved balancing the need to
prevent confounding while limiting model complexity. Partial
Spearmanwas conducted to explore associations betweenmetabolic
features and cognition, adjusted for aforementioned covariates.
Voxel-wise correlations of Aβ deposition and metabolic features
were analyzed by multiple variables linear regression model using
SPM12 in entire cohort and sub-populations. The contributions of
metabolic features to clinical practice were assessed according to
the improvement of auROC derived from gradient boosting
models based on basic markers alone (age, sex, education years, and
APOE-ε4) and on basic markers combined with the 13 identified
metabolic features. Seven-fold cross validation was performed to
avoid over-fitting.

For meta-analysis, given the overlap of samples from ADNI data
set (Figure S4), the three-level meta-analysis model (random effect

model), a method specifically designed to address dependencies
between samples or data44, was conducted to examine the standar-
dized mean differences of features between CN and AD groups and
their associations with global cognition (partial spearman correlation
adjusting age and sex). Features were scaled to 0-1 within each data set
to correct batch effect. Outliers ( < 0.2%) were identified by Local
Outlier Factor andwere excluded from analysis45. Detailed information
on dataset inclusion criteria, population characteristics, overlap of
samples, and the three-level meta-analysis model are provided in
Supplementary Information.

Data analyses were performed using R (V3.5.1), GraphPad (V9.3),
and STATA (V13.0). All p-values were adjusted using the
Benjamini–Hochberg’s false discovery rate (FDR) and a significance
level of 0.05 (two-tailed) was used unless otherwise indicated in text
and figure legends. For voxel-wise analysis, the significance level was
0.05 with peak-level false discovery rate (FDR) correction and the
cluster-defining voxel threshold at the default of 0.001.Moredetails of
methods are provided in supplementary method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Metabolomics datasets of ADNI cohort can be accessed via the AD
Knowledge Portal (https://adknowledgeportal.org; accession No.
syn31513378). The full complement of clinical and demographic data
for the ADNI cohort are hosted on the LONI data sharing platform and
can be requested at http://adni.loni.usc.edu/data-samples/access-
data/. Metabolomics datasets of C-PAS (accession No. MTBLS4554)
and ROSMAP (accession No. MTBLS9583) cohorts are accessible at
MetaboLights. Source data are provided with this paper.
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