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Seasonal antigenic prediction of influenza
A H3N2 using machine learning

Syed AwaisW. Shah 1, Daniel P. Palomar 1,2, Ian Barr 3,4, Leo L. M. Poon 5,6,
Ahmed Abdul Quadeer 1,7 & Matthew R. McKay 4,7

Antigenic characterization of circulating influenza A virus (IAV) isolates is
routinely assessed by using the hemagglutination inhibition (HI) assays for
surveillance purposes. It is also used to determine the need for annual influ-
enza vaccine updates as well as for pandemic preparedness. Performing anti-
genic characterization of IAV on a global scale is confronted with high costs,
animal availability, and other practical challenges. Here we present a machine
learning model that accurately predicts (normalized) outputs of HI assays
involving circulating human IAV H3N2 viruses, using their hemagglutinin
subunit 1 (HA1) sequences and associated metadata. Each season, the model
learns an updated nonlinear mapping of genetic to antigenic changes using
data from past seasons only. The model accurately distinguishes antigenic
variants from non-variants and adaptively characterizes seasonal dynamics of
HA1 sites having the strongest influence on antigenic change. Antigenic pre-
dictions produced by the model can aid influenza surveillance, public health
management, and vaccine strain selection activities.

Genetic changes accumulated in the influenza virus population may
alter their antigenic properties, resulting in antigenic drift1. Anti-
genically drifted influenza strains may escape immunity induced by
previous infection or vaccination2, leading to an increase in morbidity
and mortality1. To counter antigenic drift, influenza virus strains
included in the human influenza vaccine are regularly updated. The
World Health Organization (WHO) holds vaccine composition meet-
ings (VCMs) twice each year to recommend vaccine strains for the
upcoming northern hemisphere (NH) and southern hemisphere (SH)
influenza seasons3. Genetic and antigenic characteristics of circulating
isolates are considered when recommending vaccine strains at each
meeting3.

Antigenic characteristics of circulating isolates are primarily
determined through hemagglutination inhibition (HI) assays utilizing
ferret post-infection antisera, although assessments using both human

pre- and post-vaccination antisera are also conducted3. The HI assay
measures the cross-reactivity of a test virus isolate to an antiserum
raised against a reference virus isolate in ferrets or against the vaccine
viruses in humans. Ferret antisera are produced in naïve animals and
hence have high specificity compared to human antisera which gen-
erally have extensive cross-reactive antibodies due to encountering
multiple infections or vaccinations against influenza. Large-scale anti-
genic characterization of circulating isolates using HI assays incurs
high costs and is time and labor-intensive4,5.

Computational methods that predict ferret HI titers of influenza
viruses using genetic sequence data may help to reduce these
burdens1,6. Accurate sequence-based models could enable more
comprehensive antigenic surveillance of circulating virus isolates
without the need for increased experimental resources1. The efficiency
of evolutionary monitoring and vaccine selection procedures may be
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improved by providing targeted sets of isolates for experimental
evaluation. Furthermore, by learning the complexmap fromgenetic to
antigenic changes, accurate prediction methods could yield new
insights into influenza evolution and the processes underpinning
antigenic drift2,7.

Here we develop a machine learning (ML) model that predicts
antigenicproperties of influenzaA virus (IAV) H3N2 isolates circulating
in a season using their HA1 sequences and associated metadata while
being trained on data from past seasons only. The model is designed
and evaluated for predicting, on a season-by-season basis, HI titers of
virus-antiserum pairs involving viruses sequenced globally as part of
WHO’s seasonal influenza surveillance. This approach is distinct from
previous sequence-based HI titer prediction methods4,7–11, which in
many cases have considered the problem of predicting HI titers of
virus-antiserum pairs randomly selected over time. For training and
testing our model, we use the IAV H3N2 antigenic data of influenza
seasons from2003 – 2021 reported by theWorldwide InfluenzaCenter
at the Francis Crick Institute12, genetic data available at influenza
sequence databases13,14, and their associated metadata. The model
predicts HI titers of virus-antiserum pairs with a mean absolute error
(MAE) of 0.702 antigenic units (where 1 antigenic unit ≈ 2-fold change
in HI titer) per season and exhibits a strong discriminatory ability in
distinguishing antigenic variants across seasons. The developed data-
driven ML model captures from data the nonlinear effects in the
relation between IAV H3N2 antigenic and genetic changes, which has
been suggested by recent experimental studies15,16. We show that the
model’s predictive power is robust to limiting training data per season.
Moreover, incorporating a small amount of antigenic data from cir-
culating isolates in model training significantly enhances its accuracy,
particularly for seasons associated with strong antigenic drift. The
model identifies key sites with the strongest impact on IAV antigenic
change, most of which are located in HA1 epitopes, and reveals how
they vary across different seasons. Overall, accurate prediction of HI
titers by the developed model across seasons shows its viability for
seasonal antigenic characterization of IAV H3N2.

Results
Machine learningmodel for seasonal antigenic characterization
of IAV H3N2
OurMLmodel for seasonal antigenic characterization of IAVH3N2was
designed under a seasonal framework (Fig. 1a) that mimics the WHO
VCM protocols12 (Supplementary Fig. 1). The NH VCM is held each
February and considers antigenic data for circulating isolates from the
preceding September to January, while the SH VCM is held each Sep-
tember and considers isolates from the preceding February to August.
Each of these periods constitutes an influenza season. Under the sea-
sonal framework, for any given season, our model is trained using
genetic, antigenic, and metadata information available prior to that
season. The trained model predicts antigenic data for the current
season based on genetic data of isolates circulating in that season,
along with metadata (Fig. 1a).

The model employs an adaptive boosting method (AdaBoost)17,18

consisting of an ensemble of decision trees (Fig. 1b). The model is
trained in a supervised fashion and learns a nonlinear mapping from
genetic difference to antigenic difference (defined as normalized HI
titers (NHT); “Methods”) between virus-antiserum pairs of past iso-
lates. Pairwise genetic difference is basedon theHA1 geneof isolates in
a virus-antiserum pair and is encoded using the GIAG010101 mutation
matrix from the amino acid index 2 (AAindex2) database19 (“Methods”,
Fig. 1c). The model also utilizes metadata information including virus
avidity7, antiserum potency7, and passage category (egg or cell) of
virus isolates and antisera, which is represented using one-hot
encoding (“Methods”, Fig. 1c). The trained model predicts the anti-
genic differences (in terms of NHTs) of circulating virus isolates using
only theirHA1 genetic sequences andmetadata information (Fig. 1b, c).

Model training, optimization, and validation
Formodel training, optimization, and evaluation,wecompiledHI titers
data of IAV H3N2 from reports published by the Worldwide Influenza
Center (WIC) at the Francis Crick Institute, London,12 and genetic data
from influenza sequence databases, GISAID13 and IVR14. The processed
dataset included NHTs of 36,709 virus-antiserum pairs with corre-
sponding metadata, spanning 37 influenza seasons from 2003NH to
2021SH (“Methods”). Data availability was limited in the early seasons
and increased progressively over time (Supplementary Fig. 2a). Pre-
liminary assessment using a baseline model (“Methods”) revealed
sufficient data for reliable predictive performance from the 2012NH
season onwards (Supplementary Fig. 2b). The four seasons 2012NH to
2013SH were selected as validation seasons to perform feature selec-
tion and model optimization.

Using the validation seasons, it was found that incorporating all
four metadata features provided optimal performance (MAE of 1.091)
(Supplementary Fig. 3a) and substantially outperformed the baseline
model trainedwith nometadata (MAEof 1.641). Themetadata captures
distinct information: virus avidity and antiserum potency account for
experimental variations among HI assays7, while the passage category
informs about antigenicity-altering mutations incurred during in vitro
propagation of virus isolates using cell or egg lines1,20. Optimization of
themodel hyperparameters significantly improvedperformance (from
MAE of 1.091 to 0.759) over validation seasons (Supplementary
Fig. 3b). Selecting the optimal amino acid mutation matrix for genetic
data encoding (Supplementary Fig. 3c; for details see “Methods”) fur-
ther slightly improved performance (MAE of 0.75).

Optimized model accurately performs seasonal antigenic
characterization
The performance of the optimized model in predicting NHTs was
evaluated for each of the 14 test seasons (2014NH to 2020SH). This
yielded a MAE, averaged across seasons, of 0.702 antigenic units
(Fig. 2a). Predictions were generally more accurate in more recent
influenza seasons, likely due to the increased availability of data over
time (Supplementary Fig. 2a). Further experiments assessed the
robustness of our model to variations in the training data. Prediction
accuracy was retained even under conditions where there is sub-
stantially less antigenic data for training (Supplementary Fig. 4a, b).
Minimal effects on performance (compromised performance for a
single seasononly)wereobservedwhenomittingHI titers data froman
entire season (Supplementary Fig. 4c).

The ability of our model to detect antigenic variants was also
examined. An influenza virus is considered antigenically distinct from
the virus used to generate the antiserum if a more than 4-fold reduc-
tion in HI titers is observed against the antiserum4,21. Our model clas-
sified antigenic variants and non-variants with an average area under
the receiver operating characteristic (AUROC) of 92% across the 14 test
seasons (Fig. 2b). Additional metrics (e.g., sensitivity and specificity)
further demonstrated classification accuracy (Supplementary Fig. 5a).
We have incorporated the model into a web application (https://
huggingface.co/spaces/sawshah/SAP_H3N2) that reports predicted
NHTs for user-specified H3N2 virus-antiserum pairs (see “Methods”).

To further calibrate model performance, we assessed alternative
approaches. These included a linear method (NextFlu substitution
model7), ML methods (random forest (RF)22 and extreme gradient
boosting (XGBoost)23), and neural network methods (multi-layer per-
ceptron (MLP)24 and residual neural network (ResNet)24). These mod-
els, along with their implementation details, are described in
“Methods”. Among these alternative models, NextFlu is the most
widely used model for antigenic prediction. It has been employed to
predict NHTs under a non-seasonal framework, where the model was
trained on data spanning all time periods and the predictions were
made for randomly selected historical NHTs. When evaluated under
the seasonal prediction framework (Fig. 1a) over 14 test seasons
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(2014NH to 2020SH), the AdaBoost model achieved the best perfor-
mance (MAE of 0.702), followed by the MLmethods (MAE of 0.72 and
0.738 respectively for XGBoost andRF) and theNextFlumodel (MAEof
0.819). The neural network methods achieved the worst performance
(MAE of 0.964 and 0.986 respectively for ResNet and MLP) (Supple-
mentary Fig. 6).

Partial antigenic information of circulating isolates alleviates
antigenic drift effects
Disregarding the initial seasonof 2014, theMAEof our optimizedmodel
was well below average in two seasons: 2016NH and 2019NH (Fig. 2a).
This appears to be attributed to a larger antigenic drift observed in
these seasons, which is evident from the presence of circulating isolates
(red circles) that are widely dispersed from isolates of past seasons
(gray points) (Fig. 3a). Importantly, performance was recuperated in
subsequent seasons and degradation was not carried forward (Fig. 2a).

While significant antigenic drift makes prediction more challen-
ging, access to partial antigenic data for circulating virus isolates in a
season may help overcome this challenge. Further analysis confirmed
this hypothesis. For each test season, including as little as 10% of the
antigenic data for circulating isolates in the model training improved
performance uniformly, with the most significant gains observed in
those seasons with large antigenic drift (Fig. 3b and Supplementary
Fig. 7). Access to a small amount of antigenic data can therefore help
ensure high prediction accuracy irrespective of the level of drift
experienced by IAV H3N2.

Antigenically important sites identified by the model are tem-
porally associated with HA1 epitopes
Analysis of historical data has demonstrated that the antigenic evolu-
tion of influenza is strongly influenced bymutations at a subset of sites
within HA17,25,26. Our model enables the identification of the specific
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Fig. 1 | Overview of the seasonal framework and the designed ML method for
seasonal antigenic characterizationof IAVH3N2. a Seasonal division of data into
training and test datasets respectively for training and evaluation of computational
methods in a time-series fashion. Under this framework, historical genetic, anti-
genic, and metadata information of virus isolates from past seasons is included in
the training dataset, while genetic and metadata information of virus isolates from
the current season formthe test dataset.bThe trainedAdaBoostmodelwasused to
predict NHTs using only encoded genetic difference and metadata information of

virus-antiserum pairs. c Details of the encoding performed at the input of the
AdaBoost model. The HA1 sequences of isolates in each virus-antiserum pair were
encoded using the amino acid mutationmatrix available in the AAindex2 database.
One-hot encodingwas used to represent themetadata information, which includes
virus avidity, antiserum potency, and passage category of isolates. The encoded
genetic difference and metadata of each virus-antiserum pair were used as input
features of the AdaBoost model. Each training virus-antiserum pair was labeled by
NHT-based antigenic difference (see “Methods”).
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HA1 sites that have the greatest effect on antigenic changes during a
given season, providing insights into the seasonal dynamics of these
sites. Such sites can be predicted based on their feature importance22

scores from the model (“Methods”). Aggregating the top 20 sites
identified for seasons 2014NH to 2020SH revealed 30 important sites
in total (Fig. 4a). Of these, 25 were located within established HA1
epitopes25,27,28 (A, B, C, D, and E). Substitutions in these epitope regions
are known to have a dominant effect on the antigenic evolution of IAV
H3N22,25. Epitopes A and B were statistically significantly enriched
among the identified 30 sites (P<0:05), which supports previous
findings that epitopes A and B are the most immunodominant26,28.

Seasonal analysis (Fig. 4b) revealed nine sites within epitopes that
were consistently ranked in the top 20 sites over all 14 seasons from
2014NH to 2020SH. Thesecomprised three sites in epitopeA (140, 144,
145), three in B (158, 186, 189), and three in D (173, 208, 213). The
relative importance of epitopes A and B persisted across all seasons,
though epitope A appears to have become more important more
recently (Fig. 4b, c). Outside epitopes A and B, the importance of
epitope D was also reasonably stable across all seasons and this epi-
topewas relativelymore important thanepitopesC andE (Fig. 4b, c). In
earlier seasons (2014NH and 2014SH), site 189 of epitope B was pre-
dicted to be the most important antigenic site by our model. This site
was previously identified experimentally to be responsible for two
antigenic cluster transitions26 (EN72 to VI75 andBK79 to SI87). This site
was also predicted to be themost important antigenic site by NextFlu7

on a dataset from 2005–2016. In recent seasons (2019SH to 2020SH),
our model predicts site 159 of epitope B to be the most important
antigenic site. The genetic analysis by CrickWIC12 showed that most of
the viruses circulating in these seasons belong to clade 3C.2a1b.2a.2,
where one of its characteristic substitutions includes Y159N resulting
in loss of glycosylation that affects recognition of epitopes by
antibodies29.

Of the 30 sites identified across seasons as beingmost important,
five did not belong to any known epitope (Fig. 4a). Among these, four
sites are in close proximity (with distance between carbon-alpha atoms
<8Å) to the known epitopes: sites 223 and 241 are located close to
epitope D, site 269 is located close to epitope E, while site 225 is close
to both epitopes A and D (Fig. 4c). Two of these sites, 183 and 225, are
part of the functionally important receptor binding sites (RBS)28. Site
225 was consistently ranked in the top 20 important sites across all
seasons considered (Fig. 4b). Mutations at site 225 can alter the fitness

landscape of epitope B30, and a mutation at this site was linked to egg-
passaging adaptation in isolates circulating from 2019 to 202131.

Overall, our model identified HA1 sites (predominantly within
known epitopes but also some outside) that contributed significantly
to the antigenic evolution of IAV H3N2 in the last decade and char-
acterized the dynamics of these antigenic “drivers” over time.

Discussion
We have presented a machine learning model (Fig. 1b, c) that can
accurately predict antigenic properties (in terms of NHTs) of IAVH3N2
isolates circulating in an influenza season using only their genetic
sequence data and associated metadata. The model was trained and
tested under a seasonal framework (Fig. 1a), mimicking the periodic
influenza surveillance process followed by WHO for annual vaccine
strain selection (Supplementary Fig. 1). The model remained robust
under data-limited scenarios.

Computational methods have been developed previously for
antigenic characterization of IAV. These include the well-known
antigenic cartography2 method, a multi-dimensional scaling
approach that is helpful to visualize and study the relationship
among virus isolates and antisera in two dimensions. Other
sequence-based models have also been developed1,6, most of which
considered a non-seasonal framework4,7–11, distinct from the seasonal
framework (Fig. 1a) adopted in this work. The non-seasonal frame-
work disregards season/time information and randomly distributes
HI titers (or virus isolates) in the multi-seasonal HI data among
training and test datasets. Under this framework, the testing data
may comprise isolates having antigenic changes that the model has
already learned during training, which can lead to overfitting and
inflate model performance. In addition to sequence data, informa-
tion such as structural and physicochemical properties of HA have
also been used for IAV antigenic prediction10,11.

Antigenic changes in influenza HA have been shown to be non-
linearly related to genetic changes in recent experimental studies15,16.
These studies demonstrated that epistatic interactions or specific HA
backgrounds can affect the antigenicity of HA substitutions. Thus,
linear or additive models that assume independent effects of HA
substitutions on antigenicity might be suboptimal for capturing the
genetic-to-antigenic relation for HA. By adopting a data-driven ML
approach, tree-based models (including AdaBoost, as well as XGBoost
and RF) capture nonlinearities in the mapping between genetic and

a

b

Fig. 2 | Performance of the optimized model for seasonal antigenic character-
ization of IAV H3N2. a, b Model prediction and classification performance is
shown in terms of (a) MAE and (b) AUROC respectively over 14 test seasons from
2014NH to 2020SH. The optimizedmodel consisted of encoded genetic difference
using the best-performing amino acid mutation matrix GIAG010101, optimized
hyperparameters (see “Methods”), and all features in the metadata information
(virus avidity, antiserum potency, and passage category (egg or cell) of virus

isolates and antisera) (Supplementary Fig. 3). The classification score AUROC was
obtained by converting the measured and predicted NHTs to binary labels such
that if NHTwas greater than 2 units it was assigned a binary label 1, otherwise0. The
‘Average’ cell in (a, b) indicates the score averaged over 14 test seasons from
2014NH to 2020SH. The darker color cells indicate better performance. Source
data are provided as a Source Data file.
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antigenic changes. This is shown to yield improved performance when
compared to a linear prediction model7 (Supplementary Fig. 6).
Moreover, improved performance is still observed even when the
AdaBoost model parameters are matched to those of the linear model
(Supplementary Fig. 6). Capturing nonlinearities is however not the
only factor which determines the performance, as highlighted by the
inferior performance of the nonlinear NN models (MLP and ResNet).
This discrepancy in the performanceof NNmodels could be attributed
to the tabular structure of the dataset used. Similar findings have been

reported in the literature, indicating diminished performance of NN
models when applied to tabular datasets32.

Previous studies7,11,33 have demonstrated the value of incorporat-
ing virus avidity and antiserumpotency in the computational antigenic
characterizationof IAVH3N2. Our findings highlight the importanceof
using passage history categories of virus isolates and antisera (e.g., if
ferret antisera were raised to cell-propagated or egg-propagated virus
isolates), as additionalmetadata features inmodel development. Using
passage categories alone leads toperformance improvement similar to

Large antigenic drift Small antigenic drifta

b

Previous two seasons
Current season

Performance of AdaBoost model

Including 10% circulating isolates in training dataset

Fig. 3 | Partial antigenic information mitigates effects of seasonal
antigenic drift. a Antigenic maps56 to visualize the antigenic drift in circulating
isolates compared to isolates from the previous two recent seasons (see “Meth-
ods”). The maps on the left show two instances of large antigenic drift in the
2016NH (top-left) and 2019NH (bottom-left) seasons, while the maps on the right
show two instances of small antigenic drift in the 2017SH (top-right) and 2020SH
(bottom-right) seasons. Each square in a grid indicates the antigenic difference of
two units, corresponding to a four-fold dilution of the antibody in the HI assay.

Large antigenic drift is indicated by the presence of circulating isolates (red circles)
dispersed far frompast isolates (gray points).bTheMAEperformanceof themodel
was evaluatedover 14 test seasons, ranging from2014NH to 2020SH. The top panel
displays theMAEperformanceof themodel trainedondata from2003NHup to the
corresponding test season. The bottom panel shows the MAE performance of the
model when data of randomly selected 10% circulating isolates was included in
model training. For each test season, average scores of 50 Monte Carlo runs are
reported. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47862-9

Nature Communications |         (2024) 15:3833 5



that of using virus avidity and antiserum potency, and we show that
incorporating all of these features together leads to significantly
improved model performance (Supplementary Fig. 3a).

The model’s predictive power is robust to variations in the train-
ing data (Supplementary Fig. 4a, b). Omitting data from a complete
season degradesmodel performance in the following two seasons, but
not beyond that (Supplementary Fig. 4c). This indicates that errors due

to a lack of data in specific seasons are not retained in later seasons,
and only affect themodel’s accuracy for amaximumof one or two test
seasons. Additional tests showed that training with data from only the
two most recent seasons performed similarly to training based on all
historical seasons (Supplementary Fig. 8). This is in line with the
observed rate of antigenic drift of 1.2 units per year2 (equivalent to two
seasons) for IAV H3N2, which infers that the antigenicity of H3N2

Epitope Important HA1 sites aggregated across seasons

A* 122, 131, 135, 138, 140, 142, 144, 145

B* 158, 159, 186, 189, 193, 194, 196, 197

C 45, 311

D 171, 173, 208, 213, 219

E 62, 261

Unknown 183, 223, 225, 241, 269

a

b

* P value < 0.05

c 2014NH HN4102HS0202 2020SH
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isolates would differ substantially beyond two seasons and thereby the
corresponding data would likely contribute less to predicting anti-
genicity of the isolates in the current season.

Some clades of H3N2, e.g., 3C.2a, failed to react in HI assays in
the past as they had lost the ability to agglutinate red blood cells
(RBC)34. To avoid such issues, HI assays are complemented with
virus neutralization assays3. In comparison to HI assay data, neu-
tralization assay-based antigenic data has been rarely used5 for
developing computational models. This is because the HI assay is
still considered the gold standard for characterizing IAV anti-
genicity, given its well-established protocols and high level of
reproducibility and reliability, and in the last few years very few
H3N2 viruses do not bind avian or mammalian RBC. Nonetheless,
our model can be adapted to predict neutralization titers, a
worthwhile problem to pursue in a future study.

To predict NHTs, we used genetic information from the
HA1 subunit of the HA protein since it contains the key antibody
binding sites (epitopes)1,2. Recent research has shown high rates of
amino acid substitutions outside the HA1 epitope region as well as in
the other influenza surface protein (neuraminidase, NA), possibly
indicating positive selection by host immunity1. The proposed model
could be augmented with genetic information of the HA2 subunit and
NA protein for potentially improving prediction accuracy and for
examining the role (and temporal dynamics) of HA2 and NA in driving
further antigenic changes in IAVH3N2.We focusedon IAVH3N2due to
the availability of rich HI titers data for this subtype, as compared to
other human influenza viruses1,21. We have also adapted the proposed
model for IAV H1N1 using a dataset33,35 spanning 18 influenza seasons
from 2001NH to 2009SH. This data set lacked comprehensive passage
information, and hence, passage metadata was excluded. We found
that the H1N1-adapted model performed seasonal antigenic char-
acterization with an average MAE of 0.747 over these 18 influenza
seasons (Supplementary Fig. 9). Our findings motivate the develop-
ment of methods to track the antigenic evolution of other influenza
subtypes, such as IAV (H1N1) pdm09 or influenza B viruses, provided
sufficient antigenic data is available.

Serological data is useful not only for guiding IAV vaccine strain
selection during VCMs, but also for building computational models
addressing general questions related to influenza evolution. These
include models for identifying antigenic clusters2,36,37, and predicting
relative growth of viral clades (genetically related isolates stemming
from a common ancestor) and forecasting the clades that will likely
proliferate in the next season5,38–41. The predictions produced by our
model can augment experimentally available serological data and can,
in turn, be incorporated into models of influenza evolution that use
antigenic data.

The AdaBoost model designed for seasonal antigenic character-
ization has several limitations. First, like any ML model, its perfor-
mance is contingent on the availability of trainingdata (Supplementary
Fig. 2b). Given the limited training data available before 2012 (Sup-
plementary Fig. 2a), we evaluated themodel’s performance for seasons
after 2012 only. Second, regardless of the amount of training data, the
model’s performance is reduced in seasons with large antigenic drift
(Fig. 3a). A small amount of antigenic information of circulating virus
isolates (e.g., as low as 10% of the available data) formodel training can

help to largely overcome this issue (Fig. 3b). Third, since the model
uses amino acid sites as features, it can determine the importance of
individual sites (Fig. 4), but not specific amino acid substitutions. This
may be addressed in future work by using amino acid substitutions as
features for theAdaBoostmodel. Lastly, while theAdaBoostmodel can
learn a nonlinear genotype-to-phenotype mapping and identify
important sites individually, it cannot explicitly identify the collective
effects of sites (i.e., epistasis) on antigenicity. Interpretable artificial
intelligence techniques, such as Shapley Additive exPlanations
(SHAP)42, may potentially be explored to study the effect of interac-
tions between sites.

Seasonal influenza poses a significant threat to global public
health, with high mortality and morbidity rates. The virus’s ability to
evolve and evade population-level immunity developed from past
infections and vaccinations underscores the importance of con-
tinued antigenic surveillance for controlling future influenza out-
breaks. Noting that only a subset of circulating viruses is tested with
HI assays due to practical constraints (e.g., animal availability,
resources, cost), our approach could be used to provide normalized
HI titers estimates for all sequenced circulating viruses in a given
season. This would provide a more comprehensive picture of the
antigenic landscape of viruses circulating in each season and could
provide complementary input when making vaccine strain selection
decisions. Furthermore, our approach can be applied to make rapid
sequence-based predictions that suggest which subset of circulating
viruses should be tested experimentally with HI assays in a given
season. ML-based models, like the one proposed in this work, offer
powerful tools for complementing existing antigenic characteriza-
tion efforts, enabling comprehensive global influenza antigenicity
monitoring, improved vaccine strain selection, and effective public
health management.

Methods
Antigenic and genetic datasets of IAV H3N2
Weobtained the antigenicHI titers data for IAVH3N2 from 35 biannual
reports published during 2003 – 2021 by the Worldwide Influenza
Center (WIC) at the Francis Crick Institute, London12 (Supplementary
data 1). A total of 82,776 HI titers values against virus-antiserum pairs
were extracted from these reports, where in each pair the virus
represents the circulating/test virus isolate and the antiserum repre-
sents the reference virus isolate against which the post-infection ferret
antiserum was raised. From these reports, we also extracted the
metadata informationof virus isolates including their names,passages,
and collection dates. Based on the passage information, we labeled
each virus isolate with either a cell or egg passage category. We used
both the name and passage to represent a unique virus isolate. Invalid
HI titers43 andHI titers of virus-antiserumpairs with passage categories
other than egg or cell were removed. Following standard practices of
the WHO2,7, we computed NHT-based antigenic differences for each
virus-antiserumpair from the compiledHI titers values. NHT is defined
as the difference of the 2-fold dilutions of the homologous and het-
erologous titers values as follows2,7

dab = log2 Tbβ

� �
� log2 Taβ

� �
,

Fig. 4 | Model-inferred important sites: Correspondence with known epitopes
and seasonal dynamics. a Majority of the 30 important sites identified by the
model based on the feature importance scores lie in known IAVH3N2 epitopes. The
sites are color-coded according to epitopes. The sites that do not lie in any known
epitope are referred to as unknown. P value indicates the one-sided statistical
significance of epitope enrichment within the identified important sites (see
“Methods”).bThe AdaBoost-based feature importance scores for the 30 important
sites are analyzed across subsets of training data from 2003NH to x (x ranges from
2014NH to 2020SH), with the top 20 sites based on the feature importance scores

listed for each subset. The darker color cells indicate a higher importance score of a
site. c Change in the set of important sites, color-coded by epitopes, across two
seasons (2014NH and 2020SH) is displayed over the HA structure (Protein Data
Bank ID: [6AOU]; A/Brisbane/10/2007). The sites in epitopes A and D are labeled in
the top-view (left panel)while the sites in epitopesC, E, and the unknown region are
labeled in the front-view (right panel). For epitope B, sites 158, 159, 189, and 196 are
labeled in the top-view (left panel) and sites 186, 193, 194, and 197 are labeled in the
front-view (right panel). HA1 subunit is shown in white and the HA2 subunit is
colored gray. Source data and exact P-values are provided as a Source Data file.
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where the homologous titers Tbβ and the heterologous titers Taβ

represent the reciprocal of the maximum dilution of antiserum β that
is required to inhibit cell agglutination by the reference virus isolate b
and the test virus isolate a, respectively. In case the homologous titers
were unavailable, we used the maximum titers value available for that
antiserum2. We removed the virus-antiserum pairs against which
sequences were not found in the influenza genetic databases and used
the remaining antigenic data for seasonal antigenic characterization.
This included a total of 36,709 NHTs corresponding to 3737 virus
isolates paired with 268 antisera.

In addition toNHT, Archetti Horsfall Titers (AHT)9,44 is also used to
characterize antigenic differences between virus isolates. AHT mea-
surement is a two-way analysis45 that requires four HI assays, and
antiserummust be raised against each virus isolate in a pair. AHT is not
used byWHO46 and thus was not considered in this work. We also note
that HI assays are dependent on the agglutination of red blood cells.
The source of these red blood cells has varied from chicken to turkey
and then to guinea pig over the course of time, due to changes in
receptor binding sites47 of IAVH3N2.While thesevariations arepresent
in the dataset that we consider, the insensitivity of the model to these
variations shows that they are likely taken care of by the model para-
meters of virus avidities and antiserum potencies7.

For the virus isolates and antisera in this data, we downloaded the
corresponding HA protein sequences from the GISAID13 and the IVR14

databases. We aligned the HA protein sequences using MAFFT48 with
the full-length HA protein (566 amino acids) of A/Beijing/32/1992
(isolate ID: AAA87553)7 as a reference. We restricted our model to the
HA1 subunit (amino acid sites 17–345) of theHAprotein, as this subunit
forms the globular head of the HA protein containing key epitopes
known to be important for antigenicity of IAV H3N21,2.

Encoding genetic and metadata information
To provide inputs in numeric form to the AdaBoost17 model, we
encoded the genetic sequences of virus isolates using the amino acid
mutationmatrices in the AAindex2 database19 (Fig. 1c). As alternatives,
we also explored binary and one-hot encoding methods for encoding
the genetic sequences of virus isolates (see below for details). The
metadata information of virus isolates was represented using the
standard one-hot encoding (Fig. 1c). The encoded genetic and meta-
data information was used as input features of the AdaBoost model.

The AAindex2 database contains 94 20× 20 amino acid mutation
matrices, where each numeric entry of a matrix describes the rate at
which an amino acid in a protein sequence is replaced by another
amino acid over evolutionary time. These numerical values are based
on the physiochemical and biochemical properties of pairs of amino
acids. Of these 94 matrices, two matrices (MEHP950101 and
MEHP950103) were discarded for being incomplete as they included
gaps in their entries. Thus, the remaining 92 matrices were investi-
gated for encoding the genetic information of isolates. Specifically, for
each virus-antiserum pair, we computed genetic difference from a
reference (antiserum) to test virus isolate by encoding the amino acid
mutations at each site of their HA1 protein sequences using the
numeric entry of the corresponding amino acid pairs in mutation
matrices as described in ref. 44. Briefly, for a specific mutation matrix
M, the encoded genetic difference g between the sequences of a virus
v and an antiserum a at HA1 position i is given by:

gi =mvi ,vi
+mai ,ai

� 2mai ,vi
,

where vi and ai are respectively the amino acids at position i in the
virus and antiserum sequence, and mj,k is the entry of the matrix M
corresponding to amino acids j and k.

In the binary encoding scheme, for each virus-antiserum pair, the
amino acid differences at each HA1 site were encoded as ‘1’ and
otherwise ‘0’. Any ambiguous amino acid or gap in the protein

sequences was also encoded as zero to avoid mapping ambiguous
genetic information to antigenicity. For each virus-antiserum pair, the
binary encoded genetic difference was represented by a binary vector
of length 329 corresponding to the length of the HA1 protein
sequence.

In the one-hot encoding scheme, for each virus-antiserum pair, at
each HA1 site, the amino acids in the two sequences were initially
represented as binary vectors of length 20 (corresponding to 20 valid
amino acids), as per standard one-hot encoding. Subsequently, a
logical OR operationwas applied between these two vectors to encode
the amino acid differences. Consequently, at each HA1 site, distinct
amino acids in a virus-antiserum pair are encoded as a binary vector of
length 20 with a pair of ones, each representing a one-hot encoded
amino acid. For the alternative case in which the amino acids are the
same at a given site, these are encoded into a binaryvector of length 20
with a single one, preserving the amino acid information. With this
one-hot encoding strategy together with logical OR combining, the
genetic difference for each virus-antiserum pair produces an encoded
binary vector of length 20 × 329.

Each metadata information of isolates—including their virus
avidities, antiserum potencies, and passage categories—was con-
sidered as categorical data and converted to numeric data using
one-hot encoding scheme in Scikit-learn49. The encoded vector
corresponding to each virus-antiserumpair represents virus avidity,
antiserum potency, and passage categories of virus and antiserum.
The virus avidity of an isolate is represented by a binary sparse
vector of length equal to the number of unique virus isolates in the
training dataset, wherein all entries are ‘0’ except a ‘1’ at the position
of that isolate in an array of all the virus isolates sorted by their
collection dates, names, and then passages. A similar procedure was
followed to represent the antiserum potencies corresponding to
antisera. For instance, if the training dataset contains 100 unique
virus isolates and 10 unique antisera and considering the two pas-
sage categories (cell/egg) for isolates corresponding to both virus
and antiserum, the one-hot encoding corresponding to each virus-
antiserum pair will result in a binary vector of length
100 + 10 + 2 + 2 = 114. Hence, the one-hot encoding scheme resulted
in a sparse binary vector of length equal to the number of categories
in each metadata information for the corresponding virus-
antiserum pairs in the training dataset. It is worth noting that
when predicting the antigenicity of a circulating virus isolate
against an antiserum, the virus avidity is represented by a zero
vector. This is because the virus itself is not available during the
model’s training process under the seasonal framework.

Training, validation, and test datasets
The compiled dataset consisted of 37 influenza seasons from 2003NH
to 2021NH. For each test season s, the training dataset includes the
NHTs corresponding to past virus-antiserum pairs starting from the
earliest season 2003NH to the most recent season s � 1, while the test
dataset includes NHTs of the isolates circulating in the test season s
pairedwith thepast antisera. The training and test data for each season
are described in Supplementary Fig. 2a.

We selected four seasons from 2012NH to 2013SH as validation
seasons, which were used formodel optimization. The next 14 seasons
from 2014NH to 2020SH were selected as test seasons for model
evaluation. This selection was based on the stable performance of a
baseline model (explained in the next section) over these seasons.
Note that virus-antiserum pairs available for the 2021NH season were
very limited (Supplementary Fig. 2a). Thus, this season was excluded
from the analysis to allow reliable model evaluation. Unlike prior
works21,46,50,51 that used the entire dataset (including test seasons) for
model optimization, our model was optimized solely using the data of
past seasons to prevent data leakage issues52 that could inflate model
performance46.
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AdaBoost model
In the designed AdaBoost17,18 model, the encoded genetic difference at
each site of the HA1 protein sequences was treated as an input feature
that nonlinearly contributes toward the computation of the NHT. The
remaining features of the AdaBoost model consist of binary identifiers
for the virus and antiserum related metadata information, including
virus avidity, antiserum potency, and their passage categories (Fig. 1c).
The designed AdaBoost model is an ensemble of sequentially trained
decision trees employing a boosting technique, where each subsequent
decision tree seeks to rectify errors present in the preceding decision
treeby assigningmoreweight to trainingdata sampleswith large errors.
At each splitting node of a decision tree, the candidate set of features is
a random subset of the features (including encoded genetic differences
at each site of the HA1 protein sequences and one-hot encoded meta-
data information). The predicted NHT by the AdaBoost model is the
sum of the weighted predicted NHTs by an ensemble of decision trees.

The baseline model was based on the AdaBoost model with
default hyperparameters within the module AdaBoostRegressor in
Scikit-learn49, which consists of the following hyperparameters:
n_estimators = 50, learning_rate = 1.0, loss = linear, base_estimator =
decision tree with a hyperparameter of max_depth = 3. We used a ran-
dom seed equal to 100 for reproducibility. No metadata information
was provided to this model and a binary encoding scheme was used.
Hence, in this case, NHTs were predicted based on only the binary
encoded genetic difference at each site of the HA1 protein sequences
of the virus-antiserum pair.

To optimize the AdaBoost model, we performed hyperparameter
optimization independently for each of the 92 amino acid mutation
matrices as well as for binary and one-hot encoding. We considered
two hyperparameters in the module AdaBoostRegressor in Scikit-
learn49 with each hyperparameter optimized over a search space
defined as follows: n_estimators49—ranging from 10 to 1000 in steps of
10; and learning_rate49 ranging from 0.1 to 1.5. We set the estimator
hyperparameter of the AdaBoostRegressor to DecisionTreeRegressor
with its twohyperparameters optimized over a search spacedefined as
follows: max_depth49—ranging from 1 to 10000 in steps of 10; and
max_features49— ranging from 0.1 to 1. The values of hyperparameter
learning_rate49 and max_features49 were sampled from a uniform dis-
tribution, while the rest of the hyperparameters were sampled from a
quantized uniform distribution53. Bayesian optimization procedure
termed as the Tree of Parzen Estimator (TPE)53 under module
hyperopt53 was used to automate the process of hyperparameter
optimization over 100 runs on the defined search space. The hyper-
parameter optimization of the AdaBoost model (with binary encoded
genetic data and including all metadata features) significantly
improved its performance fromMAE of 1.091 to 0.759 (Supplementary
Fig. 3b). Further, depending on the choice of the mutation matrix the
MAE varied between 0.835 to 0.750 (Supplementary Fig. 3c). This
performance variation occurs because each mutation matrix incor-
porates specific amino acid attributes. The optimized AdaBoostmodel
consisted of genetic difference encoded using the best-performing
amino acid mutation matrix, GIAG01010119, and the hyperparameters
were set as follows: n_estimators = 230, learning_rate = 1.393, max_-
depth = 1860, and max_features = 0.394. To ensure reproducibility, we
maintained a fixed random state of 100 for each Python package
across all simulations.

Performance metrics
To assess the performance of the developed model in a particular
season, we computed theMAE between themeasured d and predicted
d̂ NHTs as

MAES =

P
i,jð Þ2S dij � d̂ij

��� ���
#ðSÞ

Here, S denotes the set of virus-antiserum pairs ði,jÞ in a season
and #ðSÞ represents the cardinality of the set S.

To compute the average performance of the model over N test
seasons, we used the weighted average of the MAESn obtained for the

season n, with the weights equal to the cardinality of the dataset in the
season n. This is given by

AverageMAE=
PN

n= 1
#ðSnÞMAESnPN

n= 1
#ðSnÞ

To compute the classification scores, the NHTs were converted to
binary labels using a threshold of 2 antigenic units4,21 (equivalent to
4-folds change in HI titers). Thus, a virus-antiserum pair was classified
as either antigenic variant (NHT > 2) and assigned a binary label ‘1’ or
antigenically similar (NHT ≤ 2) and assigned a binary label ‘0’. The
ability of the model to classify antigenic variants was then determined
using standard classification metrics including accuracy, sensitivity,
specificity, MCC, and AUROC. Similar to MAE, the classification per-
formanceof themodel across seasonswas computed using aweighted
average. Note that the classification threshold can be chosen to
improve the classification performance for either antigenic variants or
antigenically similar virus-antiserum pairs, considering the target
problem. For example, in the scenarios when both sensitivity and
specificity are equally important, the threshold can be optimized to
maximize Youden’s index (sensitivity + specificity – 1) averaged over
the most recent three seasons for a given test season (Supplemen-
tary Fig. 5b).

Alternate models
To benchmark the performance of the AdaBoost model for H3N2
antigenic characterization, we compared it with alternate methods.
These included a linearmethod (NextFlu substitutionmodel7), twoML
methods (RF22 and XGBoost23), and two neural network methods
(MLP24 and ResNet24). The implementation details of these methods
are provided below.

Linear prediction model (NextFlu): The NextFlu substitution
model, a well-known linear model for antigenic prediction, was
employed to benchmark our model’s ability to capture nonlinearities
in the genetic-to-antigenic mapping. In the original work7, this model
was evaluated under a non-seasonal framework. We adapted its
implementation (available at https://github.com/nextstrain/augur/
blob/master/augur/titer_model.py) to fit our seasonal framework
(Fig. 1a) and input data format. Our adapted version, like the original,
did not incorporate passage information, and modeled normalized HI
titers (NHT) as a linear combination of genetic difference, virus avidity,
and antiserum potency.

Machine learning and neural network models: For the RF model,
we used the module RandomForestRegressor in Scikit-learn49. For the
XGBoost model, we used module XGBRegressor in XGBoost23. For the
MLP and ResNet models, we used TensorFlow54 to implement the
architectures used in ref. 24., where the MLP architecture is defined as

MLPðxÞ= LinearðMLPBlockð. . . ðMLPBlockðxÞÞÞÞ

MLPBlock xð Þ=DropoutðLeakyReLUðLinearðxÞÞÞ

and the ResNet architecture is defined as

ResNet xð Þ= PredictionðResNetBlockð. . .ResNetBlockðLinearðxÞÞÞÞ

ResNetBlock xð Þ=x+DropoutðLinearðDropoutðReLUðBatchNormðxÞÞÞÞÞ

Prediction xð Þ=LinearðReLUðBatchNormðxÞÞÞ
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where, x = ½x1 . . . xj� is a feature vector of j features corresponding to a
single data sample. Here, ‘Linear’ indicates a fully connected neural
network layer, ‘Dropout’ layer is used for regularization to reduce
overfitting that makes the input equal to zero of a few nodes/neurons
in a layer, ‘BatchNorm’ layer normalizes theoutputs such that themean
is close to zero and the standard deviation is close to one, and rectified
linear unit ‘ReLU’ and ‘LeakyReLU’ indicate nonlinear activation func-
tions defined as

ReLU xj
� �

= maxð0, xjÞ

LeakyReLU xj
� �

=
xj if xj ≥0

αxj if xj <0

(

For a fair performance comparison against the AdaBoost model,
we optimized the hyperparameters of these models to minimize the
average MAE over four validation seasons (2012NH to 2013SH). For
optimization of the RF model, we used 92 mutation matrices in the
AAindex219 database as well as binary encoding. We found that the
selection of mutation matrices had a relatively minor effect on the
performance of themodel (Supplementary Figs. 3c, 10). Based on this
observation, we used nine mutation matrices (obtained by combin-
ing the set of top five mutation matrices for AdaBoost (Supplemen-
tary Fig. 3c) and RF models (Supplementary Fig. 10) for optimizing
the remaining models (XGBoost, MLP, and ResNet). As for the Ada-
Boost model, a Tree of Parzen Estimator (TPE)-based Bayesian opti-
mization procedure53 undermodule hyperopt53 was used to automate
the process of hyperparameter optimization over 100 runs for the RF
and XGBoost models, and the same procedure under module
optuna55 was used over 50 runs for the MLP and ResNet models on
their defined search space of hyperparameters (Supplementary
Table 1). The optimized models include optimal values of their
hyperparameters (Supplementary Table 1) for the top-performing
mutation matrix (AZAE970101 for RF, GIAG010101 for XGBoost,
WEIL970102 for MLP, and MUET010101 for ResNet) and their per-
formance was then evaluated over 14 test seasons (Supplemen-
tary Fig. 6).

Antigenic cartography
To observe antigenic drift of IAV H3N2 isolates across seasons
(Fig. 3a), we performed antigenic cartography of these isolates
using R’s (version 4.2.0) Racmacs package56 (version 1.1.35).
Racmacs uses the multidimensional scaling procedure, proposed in
ref. 2., to position virus isolates and antisera on a lower-dimensional
space (2D in our case) based on their HI titers. The 2D coordinates of
virus isolates were obtained using default settings of Racmacs with
1000 optimizations and setting parameter minimum_column_basis
to ‘none’.

Feature importance scores of the AdaBoost model
In the AdaBoost model, the feature importance scores depend on the
base estimator, which is a decision tree in the proposed model. First,
the importance of a feature in each decision tree is determined by how
much that feature contributes to increasing leaf purity through var-
iance reduction22. The importance scores from each tree are subjected
to a weighted average calculation and normalized to a sumof one. The
relatively high scores indicate more important features. We computed
feature importance scores for all HA1 sites in the proposed AdaBoost
model using the built-in function feature_importances_ in Scikit-learn49.
To compute these scores, the AdaBoost model was trained on subsets
of training data from 2003NH to x (x ranges from 2014NH to 2020SH).
For each subset, out of the 329 HA1 sites, we selected the top 20 sites
corresponding to the highest feature importance scores.

Statistical significance of epitope enrichment in top sites
(P-values)
Epitope enrichment in the 30 important sites, identified using feature
importance scores across seasons (Fig. 4), was calculated using a P
value. It represents the probability of observing at least i sites out of j
epitope sites in the set of important sites, where the set of important
sites comprises 30 sites out of a total of 329 HA1 sites. Mathematically,
this can be written as

P =
Xminðj,nÞ

q= i

j

q

� �
329� j

30� q

� �
329

30

� �

The null hypothesis that i epitope sites were observed in the 30
important sites by a random chance was rejected if P <0:05.

Structural analysis
We used Pymol (www.pymol.org) for representing the identified
important sites over the three-dimensional HA structure of IAV H3N2
A/Brisbane/10/2007 (available in the Protein Data Bank; PDB ID:
[6AOU]). To calculate the distance between an epitope and an identi-
fied important site that did not lie in any known epitope, wemeasured
the 3Ddistancebetween the carbon-alpha of eachepitope site and that
of the identified site. The identified site was considered close to the
epitope if the calculated distance was less than eight Angstroms for at
least one of the epitope’s sites.

Web application
Using streamlit (https://streamlit.io), we have developed a web appli-
cation that provides an easy-to-use GUI for applying our model to
perform seasonal antigenic prediction for IAV H3N2. With this web
application, users can directly input full-length (329 amino acids)
HA1 sequences of test virus-antiserum pairs and corresponding
(optional) metadata information, or they may choose to upload the
same data for multiple virus-antiserum pairs using a CSV file. Based on
the seasonof the virus isolates being tested, theweb application allows
the user to select the appropriate model trained up to (but excluding)
the test season.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The antigenic HI titers data for IAV H3N2 were obtained from biannual
reports published by the Worldwide Influenza Center at the Francis
Crick Institute, London12. The antigenicHI titers data for IAVH1N1were
obtained from the published dataset35. The corresponding HA protein
sequences for IAVH3N2 andH1N1 were downloaded from the GISAID13

and the IVR14 databases. Supplementary Data 1 provides information
on the virus-antiserum pairs of IAV H3N2 used in this analysis. It
identifies the specific HI data from the Crick WIC reports12 and the HA
protein sequence data from the GISAID13 and the IVR14 databases. The
three-dimensional HA structure of IAVH3N2 A/Brisbane/10/2007 (PDB
ID: [6AOU]) used in this analysis was obtained from the Protein Data
Bank (https://www.rcsb.org). The amino acid mutation matrices were
obtained fromAAindex19 database. All data used in thiswork is publicly
available as of the date of publication. Source data are provided in
this paper.

Code availability
Source codes implementing the proposed AdaBoost model, and the
results presented in this paper can be accessed from GitHub (https://
github.com/saws-lab/SAP_H3N2_ML)57. The web server running the
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web application for seasonal antigenic prediction of IAV H3N2 using
our proposed AdaBoost model can be accessed from Hugging Face
Spaces (https://huggingface.co/spaces/sawshah/SAP_H3N2). All statis-
tical analyses in this work were performed using Python 3.8.12.
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