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Genetic influence on within-person
longitudinal change in anthropometric traits
in the UK Biobank

Kathryn E. Kemper 1 , Julia Sidorenko1, Huanwei Wang1, Ben J. Hayes 2,
Naomi R. Wray1,3, Loic Yengo1, Matthew C. Keller 4, Michael Goddard5,6 &
Peter M. Visscher 1,7

The causes of temporal fluctuations in adult traits are poorly understood.
Here, we investigate the genetic determinants of within-person trait variability
of 8 repeatedly measured anthropometric traits in 50,117 individuals from the
UK Biobank. We found that within-person (non-directional) variability had a
SNP-based heritability of 2–5% for height, sitting height, body mass index
(BMI) and weight (P ≤ 2.4 × 10−3). We also analysed longitudinal trait change
and show a loss of both average height and weight beyond about 70 years of
age. A variant tracking the Alzheimer’s risk APOE-E4 allele (rs429358) was
significantly associated with weight loss (β = −0.047 kg per yr, s.e. 0.007,
P = 2.2 × 10−11), and using 2-sample Mendelian Randomisation we detected a
relationship consistent with causality between decreased lumbar spine bone
mineral density and height loss (bxy = 0.011, s.e. 0.003, P = 3.5 × 10−4). Finally,
population-level variance quantitative trait loci (vQTL) were consistent with
within-person variability for several traits, indicating an overlap between trait
variability assessed at the population or individual level. Our findings help
elucidate the genetic influence on trait-change within an individual and high-
light disease risks associated with these changes.

Genome-wide association studies (GWAS) have successfully identified
1000’s of loci across the genome associated with traits and diseases
(e.g. Zhou et al.1). Classical regressionmodels applied in GWAS assume
the variance of residuals (i.e., everything that is not explained by the
SNP tested for association) are independent of genotype. However,
many studies have shown associations between genetic variants and
trait variance at the population level2–6 (so-called varianceQuantitative
Trait Loci or vQTL), suggesting that this assumption is sometimes
violated. While the biological mechanisms underlying vQTLs are
poorly understood, these loci are thought to indicate the presence of
unmodelled interactions7 such as genotype x environment (GxE) or

genotype × genotype (GxG) epistatic interactions. Wang et al.3, for
example, reported several vQTL and find that these vQTL are enriched
among SNPs showing genotype × age interactions (i.e. an age-
dependent effect on traits).

The vQTL analysis approach typically uses cross-sectional data
(which are more readily available than longitudinal data) and tests for
associations between genetic variants and trait variance (e.g., by
regressing SNPs on the squared centred trait value). That is, trait var-
iance is studied at the population level and thus requires only one
observationperperson. Analternative is to study trait variabilitywithin
an individual, e.g., the absolute deviation of repeated measurements
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from the same individual, if such data are available. Within-person
variability is robust to confoundingwith unmeasured factorswhich are
different between people but relatively constant within a person (e.g.,
diet or activity level). Comparing vQTL at the population-level to
within-individual variability could help distinguish between different
types of interaction effects for vQTL because, for example, we would
not expectGxGeffects to contribute to variabilitywithin an individual7.

The simple approach of using the standard deviation of repeated
measurements for individuals ignores a possible directional change
over time and therefore an alternative to treating the variability within
an individual as a phenotype is to study the direction of change of a
phenotype over time. For example, growth trajectories are commonly
used as a diagnostic tool in children8, and height and weight loss are
expected with advanced age in adults9,10. Some studies of growth in
children11 and cross-sectional trajectories of BMI in adults12 suggest
genetic correlations significantly less than one across ages. This is
equivalent to saying that there is genetic variation in the rate of trait
change with time. In this study we use both approaches to investigate
repeated observations. We draw on repeated measures to assess the
genetic basis of within-person variability for 8 traits in the UK Biobank.
We use 2 approaches to assess within person variability—absolute
deviations within an individual and variation in the rate of change with
age (Fig. 1). In the first approach, we assess the absolute difference of
repeated measurements to estimate the SNP-based heritability of trait
fluctuations. In the second approach, we explicitly model age-related
trait change in height, sitting height, weight and BMI. With these
measures we estimate the SNP-based heritability of trait change and
explore a 2-stage random regression approach to model genetic var-
iation as a continuous function of age. We quantify the association
between trait change and all-causemortality, andbetween trait-change
and disease outcomes. Finally, we test if the (absolute) within-person
variability can replicate population-level vQTL to gain insight into the
contribution of within-individual variability to population-level vQTL.

We find that the genetic contribution to within-person variability
trait is small, but significant, and report specific associations between
trait-change and health outcomes.

Results
Overview
We analyse 2 repeatedmeasures of 8 anthropometric traits: weight,
height, sitting height, waist and hip circumference, fat percentage,
body-mass-index BMI, and waist-to-hip ratio; where a schematic of
the data types and analyses are given in Fig. 1. After quality control
(Methods),we included50,117unrelated individuals (π<0:05,where
π is the estimated genomic relationship between pairs) of geneti-
cally inferredBritish&WesternEuropeanancestry agedbetween40
and 79 years at their baseline measurement (sample sizes for other
ancestries were too small to conduct these analyses). The second
trait measurement was taken an average of 7.6 years later than the
first (range of 2.1-13.6 years). The correlation between the 1st and 2nd

measures was very high, exceeding 0.9 for most traits (Supplemen-
taryTableS1).Toanalysetherepeatedmeasureswecalculated(i) the
mean of the twomeasurements [i.e. μ= 1

2 ðy1 + y2Þ; where y1 and y2 are
the rawmeasurements of a trait], (ii) the (absolute) variability from
the mean [i.e. σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ðy2�y1Þ2

p
] and (iii) the (directional) rate of trait-

change over time [Δ= ðy2 � y1Þ=ðage2 � age1Þ, where age1 and age2
correspond to the age at which the twomeasurements were taken].
We first analysed the genetic influence on an individual’s mean and
absolute deviation using a SNP-based genetic correlation analysis13.
This analysis suggested potential genetic influence on within-
individual trait variation for a subset of 4 traits (height, weight, sit-
ting height and BMI), and we took these traits forward for detailed
analysis of trait trajectories over time. To analyse trajectories, we
corrected each individual’s trait-change (Δ) for the population
averageandthenconductedarangeofgeneticanalysesonthemean-
adjusted trait-change. Analyses included a SNP-based genetic cor-
relation analysis between the trait-mean and rate of change, a
genome-wide association study of trait-change and an analysis of
associations between trait-change and disease. Finally, we used the
complement set of 284 K individuals in theUKBiobankwithbaseline
observations (only) to discover population-level vQTL and attemp-
ted to replicate these vQTLusing the (absolute) variabilitywithin an
individual.

Fig. 1 | Summary of the experimental design and techniques used in this
manuscript. A The UK Biobank (UKB) sample was split into 2 sets of unrelated
individuals with genetically inferred European ancestry, those with follow-up
measurements or those with a baselinemeasurement only. Individuals with follow-
up measurements were restricted to 2 measurements and we calculated three
derived phenotypes per person, their trait mean (μ), trait deviation (σ) and rate of
trait change (Δ); B Summary of UK Biobank and external data, and analyses. Types
of analyses include estimation of genetic parameters using the GREML

approach (i.e., estimation of SNP-based heritability and genetic correlations),
phenotypic and genetic prediction of disease, a genome-wide association study
(GWAS), generalised summary-based Mendelian Randomisation (GSMR) analy-
sis and replication of variance quantitative trait loci (vQTL). For each analysis type
the datasets used for the dependent (i.e. discovery, predictor or exposure) and
independent (i.e. outcome or replication) variables are noted, in either the UKB
single or repeated measurement sub samples. Note the three derived phenotypes
(μ, σ, Δ) were for quantitative traits (QT).
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Genetic influence on (absolute) variability within an individual
We used a bivariate GREML analysis13 to estimate the SNP-based her-
itability and genetic correlation between the within-person mean trait
measurement (μ) and absolute trait deviation (σ) for 8 anthropometric
traits (Table 1). The SNP-based heritability estimate for themeanof the
two traitmeasurementswere in linewith previous reports14.We expect
the heritability of themean of 2measurements to be slightly increased
relative to estimates from a single measurement, in the order of 1.05,
due to a slight reduction in themeasurement error associatedwith the
repeated observations on a trait with highly correlated measurements
(Supplementary Note 1). The SNP-based heritability estimates for the
within-person absolute deviationwere significantly different fromzero
for height (0.024 s.e. 0.007, P = 2.0 × 10−4), sitting height (0.020 s.e.
0.007, P = 2.4 × 10−3), BMI (0.054 s.e. 0.007, P = 9.0 × 10−15) and weight
(0.053 s.e. 0.007,P = 2.6 × 10−14; Table 1). Estimateswere alsonominally
significant for hip circumference (P <0.05), although this did not pass
Bonferroni correction for multiple testing across traits (P <0.05/8). A
significant and strong genetic correlation between the within-person
mean and absolute-deviation was observed for BMI (0.872 s.e. 0.052,
P = 1.1 × 10−63) and weight (0.799 s.e. 0.050, P = 1.4 × 10−56), consistent
with a mean-variance association, but the relationship was not sig-
nificantly different from zero for height or sitting height. This implies
that the genetic association between an individual’s mean height and
variability is not strong.

Longitudinal change in height, sitting height, weight and BMI
An alternative approach to studying non-directional deviations from
themean trait measurement is to model the trait’s change with age (Δ,
Fig. 1). This approach relaxes the assumption, compared to the analysis
of absolute deviation above, that the repeated measurements are of
the same trait with a genetic correlation of one between measure-
ments. To study longitudinal trait change we first model the average
population trait-change, and then determined the genetic influence on
deviations from the population average. Modelling the population
average is important as our data are both cross-sectional and long-
itudinal. For example, 2 identical height measurements for an indivi-
dual in their 40’s will have a different interpretation compared to two
identical measurement for someone in their 70 s because, on average,
a person’s height is expected to decrease with age10.

The population average trait change with age was modelled by
fitting sex-dependent linear regressions on the (mean corrected) age
and age2 for height, sitting height, weight and BMI. Results show the
rate of change in height is always negative and linearly dependent on
age for both males and females (i.e., individuals shrink and the rate of
shrinking increases with age, Fig. 2A, Supplementary Table S2). The
linear effect on rate of change is significantly greater for females as
compared to males (P = 1.4 × 10−7; bf = � 0:005 cm/yr, s.e. 1.4 × 10−4;
bm = � 0:004 cm/yr, s.e. 1.4 × 10−4). Thus, height decreases with age in
both sexes, and the total height loss is greater in females than inmales.
Integration of the sex-dependent regressions with respect to age
makes this effect more obvious and shows, on average, height loss
from 40 to 80 years is about 2.88 cm in females; and about 2.58 cm for
males (Fig. 2B, Supplementary Note 2). The population average trait
change in sitting height follows a similar pattern to (standing) height
but with larger effects. Thus, overall height loss from 40 to 80 was
predicted to be greater for sitting height, compared to standing
height, and greater in females compared to males (i.e., 3.61 cm for
females, 3.28 cm for males; Supplementary Fig. S1, Supplemen-
tary Note 2).

The population average change in weight showed a significant sex-
dependent linear relationshipwithage (P=2.3 × 10−8;bf = � 0:016 kg/yr,
s.e. 6.8 × 10−4; bm = � 0:010 kg/yr, s.e. 7.0 × 10−4) and, for females only, a
significant quadratic effect of age2 (af = 5.8 × 10−4 (kg/yr)2 s.e. 7.6 × 10−5,
Supplementary Table S2). Thus, there was a steady (males) or slight
increase in weight (females) until the age of about 55 followed weight

loss thereafter (Fig. 2C). Integration of the sex-dependent regressions
with respect to age and evaluation at the relevant ages predicted a
relative weight loss, on average, of 2.74 kg for females and 2.88kg for
males between the ages of 55 and 80 years (Fig. 2D). There was a similar
trend in the population mean change for BMI although, because of
concurrent reductions in height, the point ofmaximumBMIwas slightly
delayed to around 60 years (Supplementary Fig. S1). Overall, the popu-
lation average change in BMI with age was relatively small (<1 kg/cm2

over the 40-year period).

Genetic control over longitudinal trait change
Each individual’s trait-mean or rate of trait-change with age was cor-
rected for the sex-dependent population average age-related mean or
trait-change (see Methods). These new sex and age-corrected traits
were used to estimate the SNP-based heritability and genetic correla-
tions (between the mean and rate of change) using a bivariate GREML
analysis in GCTA13. The SNP-based heritability for the trait-mean were
very similar to those previously presented and the SNP-based herit-
ability of the sex and age-corrected rate of change was about half that
reported for the within-person absolute deviation of the measure-
ments (Table 1). The SNP-based heritability on the rate of change for
height (0.015 s.e. 0.006), weight (0.035 s.e. 0.007) and BMI (0.031 s.e.
0.007) were significantly greater than zero (P <0.05). There was a
significant genetic correlation between mean BMI and the rate of BMI
change (0.163 s.e. 0.059; P = 0.006) but not, notably, between mean
height and rate of height change. Similar to the relationship between
the trait mean and absolute deviation, this suggests that there is not a
strong genetic relationship between mean adult height and rate of
height change.

We also wanted to estimate the genetic correlation between dif-
ferent ages, where a genetic correlation less than one suggests dif-
ferent genetic factors influence the trait. We started by using the
bivariateGREML results, that is the 2 × 2 variance-covariancematrix for
the trait mean and rate of trait-change (i.e. slope), in a 2-stage random
regression. The random regression approach allows for trait variation
to bemodelled as a continuous function of age. Then, for example, the
genetic correlation between any two ages can be determined using the
parameter estimates from the 2 × 2 variance-covariance matrix. Note
our analysis is ‘2-stage’ as our input into the bivariate GREML analysis
are mean-corrected phenotypes. For example, we found the genetic
variance of weight at (mean-corrected) age x is given by:

gðxÞ=46:1 +0:172x +0:020x2

where 46.1 is the genetic variance estimate for the mean, 0.020 is the
genetic variance estimate for the slope and 0.172 is twice the genetic
covariance between the mean and the slope. The residual variance and
genetic covariance between any two ages can be calculated in a similar
way (see Supplementary Note 3 for details). We estimate genetic corre-
lations less than one between young (50 years) and older (70 years) ages
for BMI and weight (e.g., for weight rg =0.918 s.e. 0.017P= 1.7 × 10−6;
Supplementary Note 3). However, we also observed a strong concave
shape for the error variance and this may indicate potential problems
with the model. This could arise from the extrapolation of observations
from a relatively short period (average follow-up 7.4 years) to a span of
over40years, concurrentwith imposinga linear changeon the trait. This
observation does bring these results into question, but we detail the
approach to highlight its applicability to longitudinal data. Future
applications might address the current limitations by expanding the
interval between measurements and/or increasing the number of
records per person.

An alternative to the 2-stage random regression, and similar to12, is
to use the age-corrected observations and cross-sectional data to
estimate genetic correlations between ages in a series of bivariate
analyses. We divided the 284K UK Biobank participants of inferred
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Table 1 | Bivariate GREML estimates of variance components between the (within-person) mean and two measures of within-
person variability

Trait h2
SNP

rg s.e. P

mean s.e. variability s.e. P-value

A. Within-person trait mean and (absolute) trait deviation

height 0.527 0.008 0.024 0.007 2.0 × 10−4 0.094 0.053 0.081

BMI 0.256 0.008 0.054 0.007 8.8 × 10−15 0.872 0.052 1.1×10−63

weight 0.284 0.008 0.053 0.007 2.6 × 10−14 0.799 0.050 1.4×10−56

body fat % 0.242 0.008 0.000 0.007 0.966 — — —

waist cir. 0.226 0.008 0.011 0.006 0.103 — — —

hip cir. 0.246 0.008 0.009 0.006 0.157 — — —

waist:hip 0.200 0.008 0.000 0.006 0.969 — — —

sitting height 0.456 0.008 0.020 0.007 2.4×10−3 0.078 0.063 0.213

B. Within-person trait mean and rate of trait change

height 0.524 0.008 0.015 0.006 0.023 −0.130 0.072 0.072

BMI 0.254 0.008 0.035 0.007 3.4×10−7 0.163 0.059 0.006

weight 0.284 0.008 0.031 0.007 3.0×10−6 0.089 0.059 0.129

sitting height 0.452 0.008 0.010 0.006 0.125 — — —

Within-person variabilitywas assessedwith either A. the non-direction (absolute) trait deviation or B. the age- and sex- adjusted rate of trait change for 2 repeatedmeasures of up to 8 anthropometric

traits. Variancecomponents are theSNP-basedheritability (h2
SNP) andgeneticcorrelation (rg) between themeanand themeasureof variability,wheregeneticcorrelations are reportedonlywhenh2

SNP

of both traits significantly greater than zero (P < 0.05). Estimates are shown with standard errors (s.e.), and chi-squared tests (with 1 df) were used to calculated unadjusted P values.
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Fig. 2 | Within-person trait change for height and weight is dependent on sex
and age.Panels show rate of heightA andweightC change, where lines indicate the
sex- and age-dependent polynomial fitted to the data. Points and vertical bars (95%
CI) indicate the mean value of the rate of trait-change in 10 (approximately) equal
age groups for the average age of measurement for females (N = 25,759) and males

(N = 24,313). Also shown are the curves for cumulative height (B, cm) and weight
(D, kg) change obtained by integrating, with respect to age, the sex-specific
regressions shown in A, C. The average age of measurement is 59.0 and 60.3 years
for females and males, respectively.

Article https://doi.org/10.1038/s41467-024-47802-7

Nature Communications |         (2024) 15:3776 4



European ancestry with a single observation into 5 age subgroupings
(i.e., 40–49 years, 50–54 years, 55–59 years, 60–64 years and 65–69
years) and estimated the genetic correlation between age groups using
Haseman-Elston regression (Supplementary Table S3). These analyses
indicated genetic correlations significantly less than one between
the youngest and oldest age groups for BMI and weight. For example,
the genetic correlation between 40–49 year old individuals and those
65–69 years was 0.919 (s.e. 0.023) for weight and 0.926 (s.e. 0.023) for
BMI, which was significantly different from 1.0 (P = 3 × 10−4 and
P =0.001, respectively).

Phenotypic association of trait-change with all-cause mortality
There is evidence of a U-shaped distribution for the association
betweenweight change and all-causemortality15,16. That is, bothweight
loss and weight gain in later life are (phenotypically) associated with
increased risk of death. We hypothesised that change in height, sitting
height, weight and BMI are associated with all-cause mortality, and
tested for linear and quadratic associations in our data. We found
strong phenotypic associations between trait change and all-cause
mortality for all 4 traits (Supplementary Table S4). The strongest linear
effect waswith change in height (b= � 0:217, s.e. 0.028, P = 1.9 × 10−14),
where height loss was associated with increasedmortality. Weight and
BMI showed strong quadratic or U-shaped distributions, where
increasedmortality was associatedwith either weight gain or loss (e.g.,
for weight, a=0:044, s.e. 0.006, P = 2.8 × 10−13). There was also a
smaller quadratic effect for height-change, where increased mortality
was associated with height gain (i.e., relative to the mean, so main-
tenance of height) or loss (a=0:037, s.e. 0.007, P = 3.7 × 10−7).

A genome-wide association study for rate of trait-change
To further investigate the genetic influences on health outcomes, we
next aimed to identify individual variants associated with the rate of
trait-change. We tested up to 6,493,789 imputed sequence variants
(MAF > 0.01; missingness <0.01) from the UK Biobank for associations

with the age-corrected rate of change for height, sitting height, weight,
and BMI in the 50,117 individuals with 2 repeat observations. There
were 4 variants that reached genomewide significance (P < 1 × 10−8) for
rate of change for weight and BMI.

The 4 variants identified for rate of change for weight and BMI
included the top variant rs429358 (Fig. 3; P = 2.16 × 10−11 for weight,
P = 7.7 × 10−11 for BMI). The C allele of rs429358 with the C allele of
rs7412 defines the APOE-E4 allele, where APOE-E4 is associated with
increased risk of late onset Alzheimer’s disease17,18. In this study, the C
allele at rs429358 is associated with loss of weight (β = −0.047 kg per
yr, s.e. 0.007) and BMI (β = −0.016 kg/m2 per yr, s.e. 0.003). The
rs429358 variant explains 0.09% of the variance in the rate of weight
change. Interestingly, the second variant of the APOE-E4 allele (rs7412)
was not associated with any rate of change traits (P >0.05, Fig. 3).
When we investigated the two variants defining the APOE alleles we
found that the C allele of rs429358 almost perfectly tracks theAPOE-E4
allele as the 4th potential allele at APOE (E3r) is rarely observed19

(Supplementary Table S5).

Causal relationships with disease
We investigated the putative causal relationships between the rate of
change traits (outcome) and risk to disease (exposure) using the
Generalised Summary-data-based Mendelian Randomisation (GSMR)
method20. TheGSMRmethod uses the effect ofmultiple SNP identified
from an exposure trait GWAS (bzx) and their effect on an outcome trait
(bzy) to estimate the causal effect of the exposure on the outcome (bxy
= bzy/bzx). The approach requires several genetic variables (i.e., > 10
independent SNP) with strong genome-wide significant associations
with the exposure to maximise power. Thus we used large meta-
analysed GWAS as exposures in the analyses and selected GWAS
representing risk to coronary artery disease (CAD)21, osteoporosis22

and Alzheimer’s disease23.
We found lumbar spine and femoral neck bone mineral density

(BMD), two clinical predictors of osteoporosis, to have GSMR results

Fig. 3 | The association betweenweight changeper year and SNPnear theAPOE
gene on chromosome 19. The two highlighted SNP (rs429358 and rs7412) are in
the APOE gene and define the APOE alleles2 E2, E3, E4 and E3r, where the APOE-E4
allele is the largest known risk locus for Alzheimer’s disease19,20. The rs429358 SNP
tracks APOE-E4 almost perfectly as APOE-E3r is rarely observed (Supplementary

Table S5). Shown are the chi-squared (with 1 df) test statistics for the linear asso-
ciation between sex and age-corrected weight change per year (N = 49,999), and
the linkage disequilibrium (LD, r2) between rs429358 and all other variants 2Mb
region. LD was calculated using 284,165 unrelated UK Biobank participants with
European ancestry.
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consistent with a causal association with rate of height change
(P < 0.005). The strongest relationship suggested that decreased
lumbar spine BMD was causally associated with greater height loss
(bxy =0.011, s.e. 0.003, P = 3.5 × 10−4, based on 30 BMD-associated
SNPs; Fig. 4). We also estimated a causal effect of Alzheimer’s risk on
weight change (bxy= −0.034, s.e. 0.005, P = 2.3 × 10−10, based on 64 AD-
associated SNPs), but this result was dependent on the many SNP
located on chromosome 19 (i.e., near the APOE locus). Since horizontal
(biological) pleiotropy can bias Mendelian randomization estimates20,
and the APOE locus was highly significant for weight-change, we con-
ducted a sensitivity analysis excluding chromosome 19 for Alzheimer’s
risk and weight change. After excluding chromosome 19 we found a
similarmagnitudeof effectbut, with fewer SNPs included in themodel,
the causal effect of Alzheimer’s risk on weight change was not sig-
nificantly different from zero (bxy = −0.022, s.e. 0.014, P =0.12, based
on 23 genetic instruments). There was no evidence for a significant
causal effect of CAD risk on any rate-change trait (P >0.05).

Genetic predictors and their relationship with disease
An alternative, complementary, approach to using GSMR is to associ-
ate polygenic scores (PGS) of the rate-change traits with the disease of
interest. This approach is dependent on disease prevalence in the UK
Biobank, rather than large external diseaseGWAS in the 2-sampledMR
analysis abovewherewe could test for causal associations between the
exposure and outcome. The PGS has the advantage of combining
information from all SNP and not being reliant on a handful of strongly
associated SNP. However, the PGS analysis is a simple association
statistic which cannot make statements about causality.

We created a PGS for each rate-change trait and aimed to test the
association between the PGS and disease diagnosis in an independent
subset of the UK Biobank (N = 284,165) using logistic regression. For
the disease traits, we defined disease (see Methods) based on ICD-10

codes corresponding to major osteopathic fractures, lumbar spine
fractures, CAD and AD. We determined sufficient power to detect
associations between the rate-change traits and disease under some
realistic assumptions (Supplementary Note 4). However, the incidence
of lumbar spine fractures and AD in the UK Biobank samples was low
(<1%), meaning that the PGS needed to have a large effect to detect an
association at the required significance threshold. For the traits with
higher prevalence (all-cause mortality, major osteopathic fractures
and CAD) there was > 80% power to detect PGS with odds-ratio of
> 1.03.

The PGS for rate-change traits were not predictive of all-cause
mortality, diagnosis of CAD, Alzheimer’s disease or lumbar spine
fractures (Supplementary Table S7). However, there was a significant
association between diagnosis of major osteopathic fractures and the
PGS for rate-change in height (−0.026, s.e. 0.011,P = 0.01). This equates
to an odds-ratio of 0.97, meaning that a 1-SD unit increase in PGS for
rate-change in height (i.e., maintenance of height with age) is asso-
ciated with a 3% reduction in the odds of osteopathic fractures.

Replication of vQTL using within-individual variability
Finally, we investigated if vQTL detected using cross-sectional data at
the population-level could be replicated using within-individual
(absolute) variability. Population-level vQTL are typically ascribed to
unmeasured interactions with the genotype, and our analysis aims to
clarify potential sources of these interactions. We detected 70 inde-
pendent population-level vQTL reaching genome-wide significance
(P < 1 × 10−8) across the 8 traits using apublished approachon the set of
284 K individuals with inferred British andWestern European ancestry,
and only baselinemeasurements3 (Supplementary Data 1). These vQTL
represented 54 SNP, with several SNPs identified for more than one
trait (Supplementary Fig. S2). For example, rs62106258 on chromo-
some 2 was associated with heterogeneous variance of four traits;
weight, BMI, hip and waist circumference. There were more than 5
SNPs (per trait) identified for BMI, weight, waist and hip circumference
and these were taken through to the replication stage using within-
person variability.

We attempted to replicate vQTL for BMI, weight, waist and hip
circumference by regressing the individual-level vQTL effect on the
population-level effect and determining if the regression slope was
significantly different from zero (Fig. 5). This across-vQTL replication
analysis wasperformedbecause of relatively limitedpower to replicate
individual loci. The regression slopewas significantly greater than zero
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Fig. 4 | Two-sampled Mendelian Randomisation suggests a causal relationship
between risk of low lumbar spine bone mineral density (ls-BMD) and
height loss. The effect of lumbar spine bone mineral density (ls-BMD) on long-
itudinal height-change using 30 ls-BMD associated SNPs from Estrada et al.24 as
instrument variables. The regression line from GSMR22 (bxy =0.011, s.e. 0.003,
χ21 = 12.75, P = 3.5 × 10−4) indicates that increasedosteoporosis risk (i.e. decreased ls-
BMD) is causative for greater height loss with age. Each point represents the
average effect of an individual SNP on either ls-BMD (x-axis, N = 31,800) or rate of
height-change (y-axis, N = 50,072) with bars indicating the standard error of the
estimates.
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mentary Fig. S3.
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(β =0.49, s.e. = 0.07, P = 7.5 × 10−8) using all SNP across traits, and each
regression was also significant when traits were considered indepen-
dently (P <0.05, Supplementary Fig. S3). These results indicate repli-
cation of population-level vQTL using variability within an individual.

Discussion
Studies inhumangenetics typically focus on genetic variation between
individuals. Here, we investigate the genetic influence on variability
within individuals for anthropometric traits in the UK Biobank. For
some traits, we explicitly model and describe a component of this
variability, i.e., the age-related directional trait change. Longitudinal
data on biobank scale with associated genetic data is a data type that is
likely to increase over the next decade in terms of sample sizes and
traits represented. Our approach provides a framework for analysis as
these data sets emerge.

We observed genetic variation in both the absolute deviation of
trait measurements, and in the rate of trait change (per year) for
height, weight and BMI (P <0.05; Table 1). Notably, we estimate the
mean height for an individual is genetically uncorrelated with within-
person variability or trait-change in height (P >0.05; Table 1). We find
that the Alzheimer’s disease risk locus (rs429358) is strongly asso-
ciated with weight-loss (Fig. 3), and present evidence consistent with a
causal association between increased osteoporosis risk (lumbar spine
BMD) and height loss (Fig. 4). Finally, we replicate vQTL discovered at
the population-level using within-person variability. This finding indi-
cates that within-person variability can (at least in part) drive hetero-
geneous variance at the population-level discovered using cross-
sectional data.

This study is one of the largest using genomic information to
investigate age-related change in height and weight in an older
cohort, and explicitly model longitudinal trait change. From 40 to 80
years, we estimate a mean reduction in height for females of about
2.88 cm and a 2.58 cm reduction in males. This is similar to a large
Austrian cohort24 and an English study which predicted a cumulative
2–4 cm decline from maximum height with age25. Our observations
on weight are consistent with studies citing a decrease in body
weight after the age of 60 years26 which is referred to as sarcopenia
(i.e. age-related loss in muscle mass and strength)9,27. Our results
indicate the population mean loss in body weight associated with
aging is <5 kg in both males and females. Since both linear and
quadratic effects of age are evident on the population-mean for BMI
and weight, we recommend careful consideration of the impact of
population age-related effects when analysing BMI and weight using
cross-sectional data.

Our study used two different sources of information, that is
longitudinal and cross-sectional data, to confirm that the genetic
correlation between weight measured at younger (≤50 years) and
older ages (≥65 years) is significantly less than one (2-stage random
regression: rg = 0.918 s.e. 0.017; cross-sectional: rg = 0.919 s.e. 0.023).
These results are supported by Robinson et al.12, who estimate a sig-
nificant interaction between genotype and age for BMI (i.e. a GxE,
where ‘E’ is age; they estimate rg = 0.56 s.e. 0.19 between 18 and 40 year
olds and individuals > 66 years). This is despite the SNP-based herit-
ability for weight being relatively consistent across age brackets
(h2

SNP ~ 0.27, Supplementary Table S3). The presence of genotype by
age interactions may explain some of the variability between twin and
family-based heritability estimates for BMI where, depending on the
experimental design, GxE effects could be partitioned into the com-
mon environmental or residual component12,28. We observed a curva-
ture in the environmental variance (and therefore heritability
estimates) from the 2-stage random regression and propose this was
caused by the extrapolation of short-term within-person estimates of
trait change to a span of over 40 years. Future applications of random
regression should aim for observations over a longer follow-up period
to obtain more robust results.

We found trait-change over time to be associated with health
outcomes. At the phenotypic level, there was a strong U-shaped
association with all-cause mortality for weight and BMI change with
age (e.g., for weight, a=0:044, s.e. 0.006, P = 2.8 × 10−13; Supplemen-
tary Table S4). That is, individuals closely following the population
mean age-related change had the lowest risk of death. Our results add
to the debate for the role of longitudinal change in BMI with all-cause
mortality, where both loss and gain of weight have been associated
with increased mortality in older adults15. We also showed a linear and
quadratic relationship between height and sitting height-change and
all-cause mortality (e.g., for height, b = −0.217, s.e. 0.031, P < 2 × 10−16;
a =0.037, s.e. 0.007, P < 3.7 × 10−7). Although linear effects of height-
loss andmortality are evident in previous studies29, a quadratic effect is
rarely tested and is more difficult to explain. We showed using GSMR
evidence consistent with osteoporosis risk (i.e. ls-BMD) being causally
associated with greater height loss with age (Fig. 4).

We identify that the C allele of the rs429358 SNP as significantly
associated with the rate of weight loss over time (Fig. 3; −0.047 kg per
yr, s.e. 0.007, P = 2.2 × 10−11). Venkatesh et al.30 also identify this variant
using a different approach studying longitudinal change in BMI in the
UK Biobank, and it is also genome-wide significant in Jiang et al.31 for
the categorical response to ‘weight change compared to 1 year ago’
(−0.018, s.e. 0.002, P = 9.5 × 10−21). The rs429358 SNP is a cystine-to-
argininemissense variant in the APOE gene and, with rs7412, forms the
haplotype defining the APOE-E4 allele. This allele is a well-known AD
risk variant17 and it accounts for about 20% of the SNP-based herit-
ability in AD32. Few of the UK Biobank participants in our study had an
AD diagnosis prior to their final measurement and so, given the risk of
AD for the rs429358 carriers, our findings provide strong evidence
supporting previous reports of weight loss proceeding an AD
diagnosis33. Our initial GSMR results suggested a causal link between
AD risk and weight-loss, but this result was dependent on the APOE
locus which is has a large effect on both traits. Thus, we cannot make
strong conclusions about early-stage AD causing weight loss (i.e., due
to reduced appetite), weight loss being a predisposing factor to AD or
potentially a third factor influencing both traits.

The APOE gene encodes for a glycoprotein (apoE)34 where dif-
ferent isoforms exhibit different clearance rates of the amyloid-β (Aβ)
peptide in the brain35 and build-up of Aβ deposits is a defining char-
acteristic of AD36. The APOE-E4 allele has been associated with a range
of traits, including increased risk of hypercholesterolaemia and cor-
onary artery disease and reduced risk of obesity and type 2 diabetes37.
However, our study finds no evidence to support an association
between rs7412 with weight change (P >0.05) and the rs429358 SNP
tracks the APOE-E4 allele almostly perfectly (Supplementary Table S5).
Bennet et al.38 use Aβ concentration in spinal fluid and serum lipid
levels to provide compelling evidence for independent action of the
two variants. That is, they find that rs429358 alone mediates Aβ con-
centration in the central nervous system and rs7412, with a minor
(independent) influence of rs429358, is associated with peripheral
lipid levels. We checked the results of Jiang et al.31 to confirm that the
rs429358 is strongly associatedwithUKBiobankparticipants reporting
their mother’s AD diagnosis and with taking cholesterol lowering
medication, and that rs7412 is also associated with these traits (Sup-
plementary Fig. S4). However, we note that the observed test statistics
and linkage disequilibriumpatterns are consistent withmultiple causal
variants for cholesterol lowering medication use in this region. Future
studies examining APOE should consider these variants independently
to aim for a clearer resolution of pleiotropy at this locus.

Finally, we show evidence for the replication of population-level
vQTL using within-individual variation (Fig. 5, Supplementary Fig. S3).
Population-level vQTL3–6 have been consistently reported for a number
of traits, most numerously for BMI39,40. The typical interpretation of a
population-level vQTL is that the increased variance for a genotype
class arises from an (unobserved) interaction effect that mixes two
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normal distributions with different means. Wang et al.3, for example,
found that their population-level vQTLwere enriched for genotype-by-
environment (GxE) interactions. Our analyses extend these findings to
explicitly include within-person variability as potential source of
variability in population-level vQTL discoveries. Studying variability
within individuals restricts the range of potential interacting factors as,
for example, epistatic effects are fixed within an individual and cannot
contribute to variability over time. The relative importance of
population-level GxE effects and within-individual effect is unknown
but our results, combined with the observation that age is frequently a
significant GxE effect3, suggests that closer examination of long-
itudinal age-related trait changes are warranted.

The UK Biobank is known to have a ‘healthy volunteer’ bias, and
this is exaggerated by using a subset of the UK Biobank with repeated
observations. For example, the all-cause mortality is estimated at
45–55% lower in the UK Biobank compared to the general population
residing in the United Kingdom41. We observe that individuals with
repeated observations have 20–50% reduction in the incidence of
disease diagnosis compared individuals in the UK Biobank with only
baseline observations, and there is approximately a 70% reduction in
the all-cause mortality rate among these individuals (compared to UK
Biobank participants with only baseline measurements, Supplemen-
taryTable S6).We conducted aGWASbasedon having baseline only or
follow-up measures and found loci differentiated between the two
groups tobe also associatedwith traits such as educational attainment,
current smoking, sleep duration, BMI, triglycerides and walking pace
(Supplementary Note 5). Sometimes these associations had effects
consistent with a healthy volunteer bias (e.g. the C allele of rs2410678
was more frequent in individuals with repeated measures and
decreased current smoking) but sometimes there was evidence for
antagonistic pleiotropy (e.g. the G allele of rs784256 was more fre-
quent in repeated measure individuals with the effect of increased
walking pace and educational attainment, but the G allele also
decreasedmood and increased incidence of corneal dystrophy). There
is evidence of an age-related bias in the repeated measures sample as
the frequency of the AD risk allele (rs429358, Supplementary Fig. S5)
decreases in individuals older than about 60 years at baseline who
subsequently returned for a follow up visit. Evidence of participation
bias in the UK Biobank is in line with many other reports42. We expect
attenuation of main effects due to a healthy participation bias but
caution is warranted due unpredictable the nature of collider bias43

and pleiotropy (as described above).
We note that scale-dependent effects might influence our key

results (Supplementary Note 6) and conclude that, although there
potentially exists a scale which will homogenise the variances44, we
conducted our analysis on the biologically relevant scale.

In summary, we report evidence for genetic control of within-
person variability for height, sitting height, weight and BMI. We show
for weight and BMI evidence for a genotype-by-age interaction, where
the genetic correlation between younger (≤50 years) and older ages
(≥ 65 years) is less than unity. We provide evidence for weight loss
associated with the rs429358 allele prior to a formal AD diagnosis, and
a causative effect of osteoporosis risk on height loss. Conclusions from
our study are limited by the relatively short follow-up time (average 7.6
years), and participation biases inherent in volunteer-based cohorts
such as the UK Biobank. Our approach provides an analytical frame-
work for researchers to build on as larger genetic data sets with
repeated observations become available.

Methods
Ethical compliance
The UK Biobank study was proved by the North West Centre for
Research Ethics Committee (11/NW/0382). Participants volunteered
for the study and provided signed electronic consent. Details on the
ethics and governance framework of the UKBiobank is available on the

UK Biobankwebsite (https://www.ukbiobank.ac.uk/media/0xsbmfmw/
egf.pdf). This research is approved under the University of Queensland
human ethics committee (approval number 201100173).

UK Biobank data
The data used for this study were from the full release of the UK
Biobank. Briefly, the UK Biobank is a study of about 500,000 people
recruited from across the United Kingdom. Individuals have a range of
physical measurements, biological samples and questionnaire-style
assessments at up to four timepoints, namely at baseline (2006-2012),
a first repeat assessment (2012-2013), and a first (2014 + ) and repeat
(2019 + ) imaging visit. Genotyping data consists of 807,411 or 825,927
markers from theUKBiLEVE andUKBiobankAxiomarrays, with quality
control and whole genome imputation using the Haplotype Reference
Consortium panel performed by the UK Biobank team45. We identified
approximately 450K individuals for further analysis who passed basic
quality control and ancestry filters14. These individuals have (i) inferred
British andWestern European ancestry14, (ii) a consistent self-reported
and genetic sex, (iii) had not rescinded consent, (iv) imputed geno-
types, (v) born between 1937 and 1970 and (vi) aged between 40 and
69 at baseline.

Phenotypes
Six height and weight-related traits (height, sitting height, weight, fat
percentage as measured by impedance, waist and hip circumference)
were extracted at the four above mentioned timepoints in the UK
Biobank (Supplementary Table S1). We calculated body mass index
(BMI, height/weight2) and waist to hip ratio (WHR, waist/hip) at each
timepoint. There were 53,373 individuals with more than one assess-
ment and from this set we removed (i) one member in each pair of
relatives (where relatives were defined by their genomic relationship
(π), and π>0:05), and (ii) individuals failing additional quality control
measures (see below). Genomic relationships were determined with
1.1M imputed HapMap3 SNP (minor allele frequency, MAF >0.01)
using GCTA (v1.93.2 beta)31. Quality control measures removed indi-
viduals with height, weight, waist or hip circumference observations >
5 SD from their individual mean, where the SD was the population
average standard deviation of observations per individual for each
trait. Individuals without a recorded date of measurement, a baseline
assessment or with <2 observations after quality control were also
removed. The final set consisted of 50,117 individuals.

Most individuals (82%) in our set of individuals had only 2
observations. Hence, we created a final dataset with exactly 2 obser-
vations for each person. In this set, we used the baseline assessment
plus either the 2nd imaging or 1st recall assessment (if 2nd imaging visit
was not available); or both observations if only 2 were available. The
mean time to follow-up in the dataset was 7.6 years with standard
deviation of 2.6 years. For each individual we then calculated 3 new
phenotypes for each trait, the within person (i) mean [μ= 1

2 ðy1 + y2Þ;
where y1 and y2 are the 1st and 2nd measurements of a trait], (ii) the
absolute deviation [σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðy2 � y1Þ2

q
] and (iii) rate of trait change

[Δ= ðy2 � y1Þ=ðage2 � age1Þ, where age1 and age2 correspond to the
age of two measurements].

Additive genetic variance associated with the mean and within-
person variability
To examine the genome-wide influence of additive genetic variance on
variability, we conducted a SNP-based heritability analysis using the
50,117 individuals with exactly 2 repeatedmeasures. We fitted amodel
to the within-person mean and absolute deviation as follows:

Z =mu+ sex +batch+ age+ centre:1 + centre:2 + ageDiff + e ð1Þ

where Z is the individuals mean (μ) or absolute deviation (σ), mu is the
overall mean, sex is the genetic sex (male or female), batch is the
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genotyping batch (106 levels), age is the age at baseline measurement
(as a factor, 30 levels), centre.1 (22 levels) and centre.2 (5 levels) are the
assessment centres of the 1st and 2nd measurements; ageDiff is the age
difference in days between measurements and e is the residual. Resi-
duals were standardised N(0,1) within sex. A bivariate GREML analysis
using GCTA (v1.93.2 beta)31 was used to estimate the SNP-based
heritability and genetic correlation between the trait-mean and
absolute deviation. In GCTA we fitted 25 principal components from14

as covariates. The genomic relationshipmatrix is described above (i.e.,
that used to identify unrelated individuals) and was built with 1.1M
HapMap3 SNP with MAF >0.01.

Replication of vQTL using within-person variability
We conducted a discovery genome-wide vQTL study using an inde-
pendent subset of the UK Biobank from the individuals with single
measurements (N = 284,165). These individuals were unrelated
(π<0:05) to each other and were also unrelated (π<0:05) to the 50,117
individuals with repeat measurements. We extracted the 6 height and
weight-related phenotypes (height, sitting height, weight, fat percen-
tage, hip andwaist circumference), calculatedBMI andWHR, andfitted
the following model to the data:

y=mu+ sex + yob+batch+ age + centre + e ð2Þ

where y was the measured phenotype, mu, sex, batch and age are as
defined inmodel [1]; yob is year-of-birth as a factor (34 levels), centre is
the assessment centre where the measurement was taken (22 levels)
and e is the residual. We normalised residuals within sex and fitted 25
principal components from14 as covariates to test 8,538,964 autosomal
imputedmarkers (MAF >0.01, biallelic, Hardy-Weinberg equilibrium >
1 × 10−5, info score > 0.3, missing genotype rate > 0.05) for associations
with heterogeneous error variance.We followed the approachofWang
et al.3 and as implemented in the OSCA (v0.46) software46. Genotypes
were hard-called prior to analysis using PLINK2 (--hard-call 0.1)47.
Independent genome-wide significant (P < 1 × 10−8) markers were
identified using the ‘--clump-r2 0.01’ and ‘--clump-kb 5000’ options
in PLINK (v1.90p)47. Similar to Wang et al.3, we detected 8,786 loci that
were genome-wide significant across 6 traits (BMI, weight, fat
percentage, waist and hip circumference and waist:hip ratio;
P < 1 × 10−8), a total of 70 independent trait-loci genome-wide sig-
nificant markers (Supplementary Table S3), or 54 independent loci
across the genome. A breakdown of the number of loci per trait, and
the number of loci associated with multiple traits is shown in
Supplementary Fig. S2. Traits where there were > 5 genome-wide
significant loci identified (BMI, WC, HC, weight) were taken forward to
a replication phase using within-individual variability.

The replication of effects was tested using a regression approach.
That is, the estimated population-level vQTL effects were used as
independent variables (x-axis) to predict or explain the within-person
variability (y-axis). The expectation for replication is a regression slope
~ 1. Population-level vQTL effects were estimated for the genome-wide
significant loci using the z2 approach of Yang et al.4, where z is the
z-score and z2 assesses variance. Phenotypes were squared residuals
from model [2], standardised to a unit normal within sex. GWAS was
conducted using the fastGWA-lr option in GCTA (v1.93.2 beta)31 with 25
principal components from14

fitted as covariates. Estimation of within-
person variability effects followed a similar procedure using GCTA and
fitting principal components from14 as covariates, where phenotypes
were the squared standard-deviation (σ2

i ) residuals from model [1],
standardised to a unit normal.

Longitudinal analysis
The longitudinal analysis used thewithin individual trait-mean, the rate
of trait change and the average age of measurement of height, weight,
sitting height and BMI. The age ofmeasurement was first corrected for

the mean within each sex, then we fitted a model as follows:

Z =mu+ sex + age+ sex:age+ age2 + sex:age2 ð3Þ

where Z is the individual’s mean (μ) or rate of change (Δ), mu is the
overallmean, sex is the effect of beingmale or female, age and age2 are
the linear and quadratic effects of age, and sex.age and sex.age2 are the
interactions between these effects and sex. Terms without significant
effects on the outcome (P > 0.01)were dropped from themodel before
the creation of age and sex-corrected residuals for the trait mean and
rate of change. We took the integral of final equations with respect to
age to infer the relative trait change for each trait (Supplementary
Note 2). A bivariate GREML analysis using GCTA (v1.93.2 beta)31 was
conducted (as above) to estimate the SNP-based heritability and
genetic correlation between the age- and sex-corrected trait mean and
rate of change for each trait. In GCTA we fitted 25 genotypic principal
components from14 as covariates.

Full details of the random regression results and transformations
applied can be found in Supplementary Note 3. The supporting
bivariate analysis divided the 284,165 individuals with single records
into 5 age groups based on the age at measurement, treated each age
group as a trait and estimated the genetic correlation between the age
groups with the Haseman-Elston (--HEreg) option in GCTA (v1.93.2
beta)31. The genomic relationship used was constructed with 1.1M
HapMap3 SNP (MAF >0.01)14 and we also fitted the 25 principal
components14 as covariates. Standard errors were estimated using the
jackknife approach in GCTA. Traits were residuals from (2) for height,
weight, BMI and sitting height.

Association of trait-change with disease & mortality
The associations used logistic regression and either the age- and sex-
corrected rate of change as the phenotypic predictor, or a PGSderived
from the GREML analysis as the genetic predictor. Predictors were
standardised to a unit normal prior to the regressions. To create the
PGS, we used the --reml-pred-rand and --snp-blup options in GCTA
(v1.93.2 beta)31 to estimate SNP effects, and then predicted the PGS for
the independent subsample of the UK Biobank, i.e. individuals with
only a single measurements (N = 284,165).

All-cause mortality was for any recorded death in the registry
(UKB field 40023). Osteoporotic outcomes48 were defined by an ICD-
10 code (UKB field 41202) for lumbar spine fracture (S320) or major
osteoporotic fracture affecting the hip, vertebrae, humerus or wrist
(M80, S120-S122, S127, S220-S221, S320, S422-S424, S525-S526, S620-
S621, or S72). CAD was defined following Jiang et al.49 using ICD-10
codes for myocardial infarction (I21-I23, I24.1 or I25.2) and coronary
revascularisation (K401-K404, K411-K414, K451-K455, K491, K492,
K498, K499, K502, K751-K754, K758-K759). We diagnosed Alzheimer’s
disease cases as of August 2021 (assessed via RAP) based on the fol-
lowing criteria: individuals with (i) available date of first occurrence of
G30 (Alzheimer’s disease) or F00 (dementia in Alzheimer’s disease,
UKB fields 131036 and 130836); (ii) ICD-10 diagnosis (UKB field 41270)
or G30 or F00 or (iii) self-reported (UKB field 200002, instance 0-3)
dementia/Alzheimer’s/cognitive impairment.

Genome-wide association study of rate of trait-change
We tested up to 6,493,789 imputed sequence variants (MAF >0.01,
missingness <0.01) from the UK Biobank for an association with the
age and sex-corrected rate of trait change for height, sitting height,
BMI and weight. Associations used the --fastGWA-lr option in GCTA
(v1.93.2 beta) and we fitted 25 principal components14 as covariates.

GSMR analysis
We downloaded publicly available summary statistics for CAD50,
femoral neck and lumbar spine BMD22 and Alzheimer’s disease23

(excluding UK Biobank and 23andMe samples), and conducted a
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GSMR20 analysis using GCTA (v1.93.2beta)31. To maximise power, we
tested for exposure to disease risk as causative for trait-change. Briefly,
GSMR identifies independent variants for the disease GWAS reaching
genome-wide significance (P < 5 × 10−8, r2 < 0.01) using a reference set
of genotypes, where we used the UK Biobank sample with repeated
measures (N = 50,117) as the reference. The corresponding variants
from the trait-change GWAS are extracted and the SNP effects for the
outcome (bzy) regressed on the exposure (bzx) to estimate the causal
effect of the exposure on the outcome (bxy = bzy/bzx). We did not
conduct GSMR analyses using the trait-change traits as the exposure
trait because there were few independent genome-wide significant
SNP to select as instrumental variables.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from this study is available from the UK Biobank. Data access
policies (http://www.ukbiobank.ac.uk/register-apply/) and a descrip-
tion of the genetic data (http://www.ukbiobank.ac.uk/scientists-3/
genetic-data/) are available from the UK Biobank website. We down-
loaded the genome-wide summary statics for Alzheimer’s disease
(excluding UK Biobank and 23andMe samples) reported in Wightman
et al.23 from the Complex Traits Genetics lab website (https://ctg.cncr.
nl/documents/p1651/PGCALZ2ExcludingUKBand23andME_METALInv
erseVariance_MetaAnalysis.txt.gz), the male and female pooled sum-
mary statistics reported in Estrada et al.22 for femoral neck and lumbar
spine bone mineral density from the genetic factors for osteoporosis
consortium website (http://www.gefos.org/sites/default/files/GEFOS2_
FNBMD_POOLED_GC.txt.gz and http://www.gefos.org/sites/default/
files/GEFOS2_LSBMD_POOLED_GC.txt.gz), and the CADIoGRAM meta-
analysis statics reported in Schunkert et al.50 from the CARDIo-
GRAMEplusC4D consortium website (http://www.cardiogramplusc4d.
org/media/cardiogramplusc4d-consortium/data-downloads/cardiogr
am_gwas_results.zip). Data and scripts to reproduce figures and tables
are provided in the Source data provided with this paper. Summary
Statistics for BMI, weight, height, and sitting height rate-change; plus
the case-control analysis of single and repeat measures participants in
the UK Biobank are available for download on the website (https://
cnsgenomics.com/content/data). Source data are provided with
this paper.

Code availability
Software programs used in this study are all publicly available; PLINK2
and PLINK v1.9 can be downloaded from Christopher Chang’s website
(https://www.cog-genomics.org/plink/), GCTA and OSCA from the
Yang lab website (https://yanglab.westlake.edu.cn/software/gcta/#
Overview), R from the CRAN website (https://cran.r-project.org/) and
Rstudio from the posit website (https://posit.co/products/open-
source/rstudio/).
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