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Functional connectivity development along
the sensorimotor-association axis enhances
the cortical hierarchy
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Human cortical maturation has been posited to be organized along the
sensorimotor-association axis, a hierarchical axis of brain organization that
spans from unimodal sensorimotor cortices to transmodal association cor-
tices. Here, we investigate the hypothesis that the development of functional
connectivity during childhood through adolescence conforms to the cortical
hierarchy defined by the sensorimotor-association axis. We tested this pre-
registered hypothesis in four large-scale, independent datasets (total n = 3355;
ages 5–23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207),
Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Pro-
ject: Development (n = 625), and Healthy Brain Network (n = 1126). Across
datasets, the development of functional connectivity systematically varied
along the sensorimotor-association axis. Connectivity in sensorimotor regions
increased, whereas connectivity in association cortices declined, refining and
reinforcing the cortical hierarchy. These consistent and generalizable results
establish that the sensorimotor-association axis of cortical organization
encodes the dominant pattern of functional connectivity development.

The mature human brain is endowed with extensive functional
diversity1–4, which gives rise to the expansive behavioral and cog-
nitive repertoire uniquely found in humans. Such functional
diversity expands during neurodevelopment. A substantial degree
of this diversity is understood to be due to variation among the
capabilities of sensorimotor and association cortices5. Sensory and
motor cortices are functionally specific and support externally
oriented processes, such as perception and movement. In con-
trast, association cortices are functionally flexible, integrative, and

are recruited for both abstract cognition and internally-directed
mentation6,7. Differences in functional capacities between sen-
sorimotor and association cortices are thought to stem in part
from regional differences in functional connectivity profiles5,
which may in turn arise from differential refinement of con-
nectivity during brain development6. Mapping spatial variation in
the development of functional connectivity can ultimately provide
insight into how the brain’s developmental program gives rise to
diverse functional capacities. Here, we sought to test the
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hypothesis that the development of cortico-cortical functional
connectivity varies across the cortical hierarchy.

In contrast to thematuration of corticalmorphology8–10 andwhite
matter11,12, there is not a widely agreed-upon pattern of functional
connectivity development. While there is clear variation in functional
connectivity profiles across the cortex5,13, studies characterizing how
such variation arises in development have yielded inconclusive results.
For instance, one study described the dorsal attention network as
globally decreasing in integration14 whereas another reported strongly
increasing connectivity with sensorimotor networks15 during devel-
opment. Furthermore, different networks have been reported to have
directionally opposite overall changes in functional connectivity dur-
ing development, for instance default mode network (DMN)
segregation16,17 and somatomotor integration15,16,18, without an inter-
pretative framework that could explain such findings. Given that brain
development in youth shapes brain organization in adults, one pro-
mising approach is to use known properties of hierarchical cortical
organization19,20 to contextualize developmental changes.

A major axis of hierarchical cortical organization is the
sensorimotor-association (S-A) axis, which spans from primary visual
and somatomotor cortices to transmodal association cortices19. The
S-A axis describes a pattern of cortical organization that aligns with
hierarchies of cortical anatomy (regional variation in feed-forward
versus feed-back projections)21,22, cortical function (from sensation to
introspection)7, and cortical evolution (degree of cortical expansion in
humans)23. Furthermore, while the S-A axis aligns with the principal
gradient of functional connectivity in the adult human brain5, it
remains unknown as to whether development of functional con-
nectivity varies systematically along this axis. Previous studies have
shown that hierarchical organization emerges gradually in
development24 and that cortical maturation may be organized along
this axis19,25. These studies suggest that spatial variability in the devel-
opment of functional connectivity may also be parsimoniously cap-
tured by the S-A axis.

Consistent with this idea, we recently reported that age-related
changes in between-network coupling varied according to a network’s
position on the cortical hierarchy18. Specifically, sensorimotor net-
works integrated (i.e., increased connectivity) with other networks,
whereas association networks segregated (i.e., decreased in con-
nectivity) from other networks through childhood and adolescence.
These findings suggest that divergent development of functional
integration and segregation may occur along the S-A axis and con-
tribute to inter-regional diversity in function.

While this earlier study included a large sample, generalizability
was not evaluated as it only included data from a single site. As such,
our earlier results fit within an existing literature marked by hetero-
geneity. This heterogeneity is a symptom of the broader reproduci-
bility crisis in translational and developmental neuroimaging. Small
samples of high-dimensional functional MRI (fMRI) data have been
repeatedly shown to lead to spurious, inconsistent, or exaggerated
findings26,27. As a result, there is an urgent need for investigators to
adopt practices that have been shown to yield replicable and gen-
eralizable findings: study preregistration, independent replication
samples, standardized processing pipelines, and adequately powered
sample sizes26–29. Recent work using structural MRI has endeavored to
map the trajectories of brain growth and morphometry throughout
the lifespan using multiple large-scale datasets, taking an important
step toward replicable humanneuroscience that is generalizable to the
population29.

Here, we sought to define highly generalizable and replicable
spatiotemporal patterns of functional connectivity brain development
in youth. In this pre-registered study30, we analyzed four independent,
large-scale datasets (total n = 3355) of youth ages 5–23 years old using
standardized processing pipelines31–33. To maximize generalizability, we
sought to include data fromdiverse populations and different sites that

were collected using disparate acquisition parameters. We hypothe-
sized that the development of functional connectivity would diverge
across the S-A axis, linking developmental variability of functional
connectivity in youth to hierarchical feature variability in adulthood.
Specifically, we predicted that unimodal sensorimotor cortices would
exhibit increasing connectivity with age while transmodal association
cortices would tend to show weakening connectivity (replicating and
extending ref. 18). As described below, results define fundamental
patterns of functional connectivity development across the cortical
hierarchy and provide consistent evidence for an S-A axis of human
cortico-cortical functional connectivity maturation.

Results
To characterize the developmental refinement of cortico-cortical
functional connectivity, we used resting-state and task-functional MRI
from four independent datasets (total n = 3355). The Philadelphia
Neurodevelopmental Cohort (PNC; n = 1207; ages 8–23) was used as
the discovery cohort34. Findings were replicated in three other large-
scale developmental datasets: Nathan Kline Institute-Rockland Sample
(NKI; n = 397; ages 6–22), Human Connectome Project: Development
(HCP-D; n = 625; ages 5–22), andHealthy BrainNetwork (HBN; n = 1126;
ages 5–22)35–37. We examined functional connectivity (FC) strength as
our primary functional connectivitymetric. FC strength was quantified
as themeanedge strengthbetween agiven region and all other cortical
regions. Individual edge strength was characterized by the Pearson
correlation between timeseries for each pair of regions. All measures
were harmonized across sites in multi-site datasets38,39.

First, we sought to establish whether the spatial distribution of
developmental changes in FC strength replicated across the four
datasets. Second, we investigated whether developmental changes in
FC strength varied along the S-A axis. We also examined whether
spatial variation in FC strength increasingly resembled the S-A axiswith
age. Finally, we aimed to delineate hierarchical patterns of functional
segregation and integration using average between- and within-
network connectivity as well as edge-level connectivity. To model lin-
ear and non-linear developmental changes in each functional con-
nectivity metric, we fit generalized additive models (GAMs) for each
brain region, with age as a smooth term and sex and in-scanner head
motion as linear covariates. Our primary cortical parcellation was the
Schaefer 200 atlas with a 7-network partition based on the 7 Yeo
network solution13,40. The schematic shown in Supplementary Fig. 1
summarizes the parameter space for each dataset. All results were
evaluated acrossmultiple cortical parcellations and networkpartitions
as sensitivity analyses (Supplementary Fig. 2).

Replicable spatial patterns of functional connectivity
development
We first sought to characterize the magnitude and direction of
developmental changes in FC strength across the cortex and evaluate
the extent to which these changes were similar across datasets. To
quantify theoverallmagnitude of regional age effects, the effect size of
each age spline was computed as the change in adjusted R2 (ΔR2

adj)
between a full model and reduced model with no age term. A quanti-
tative analysis confirmed remarkably high consistency in age effects
across the four independent datasets. Specifically, spatial Pearson’s
correlations between FC strength age effects for each pair of datasets
range from 0.49 to 0.88 (mean correlation =0.71, pspin = 0.00175 for
NKI-HBN; pspin = 0.0001 for all other pairwise correlations; Fig. 1a). We
note that correlations for NKI may potentially be lower than for other
datasets due to a smaller sample size and lack of susceptibility dis-
tortion correction in this dataset.

We hypothesized that these replicable age effects of FC strength
would spatially align with the sensorimotor-association (S-A) axis
(Fig. 1b), which spans from primary and unimodal sensorimotor cor-
tices to heteromodal and paralimbic transmodal association cortices.
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The S-A axis rank for each cortical region represents that region’s
relative position along a dominant feature axis that spatially corre-
sponds with anatomical, functional, and evolutionary hierarchies of
the cortex20. Lower-ranking regions are involved in externally oriented
perception and actionwhereas higher-ranking regions support higher-
order cognitive, social, and emotional psychological functions5,7. The
age effect of FC strength showed a spatial pattern across the cortical
surface thatwas similar in all four datasets and qualitatively resembled
the S-A axis (Fig. 1c). Somatomotor cortices exhibited positive age
effects, indicating increases in FC strength with age, whereas associa-
tion cortices displayed negative age effects, indicating decreasing FC
strength through development. Taken together, these results empha-
size that development of functional connectivity strength is highly
generalizable across datasets.

Development of functional connectivity varies along the S-A axis
We next sought to systematically assess the extent to which the
development of functional connectivity aligns with the S-A axis. To
delineate developmental trajectories of FC strength in every individual
brain region, we visualized the age-smooth functions produced by
each regional GAM. We hypothesized that dissociable patterns of FC
strengthdevelopmental trajectorieswould be found along the S-A axis.

We found a spectrum of developmental trajectories that varied
continuously according to a region’s position on the S-A axis
(Fig. 2a–d). Lower ranking regions (blue; sensorimotor pole) exhibited
linear increases in FC strength, middle ranking regions (yellow;middle
axis) generally showed flatter trajectories, whereas highest ranking
regions (red; association pole) displayed decreasing FC strength
throughout development. To further illustrate this variability, we
examined developmental trajectories for large-scale networks that
represented each third of the S-A axis: the somatomotor network
(representing the sensorimotor end of the axis), the salience/ventral

attention network (representing the middle of the axis), and the DMN
(representing the association end of the axis; Fig. 2e–p). Networks
were defined using the Schaefer 7-network partition based on the Yeo
7-network solution13,40. Developmental trajectories for visual, dorsal
attention, limbic, and fronto-parietal networks are displayed in Sup-
plementary Fig. 3. Across all datasets, brain regions in the somato-
motor network, involved inmotor tasks and sensation, increased in FC
strength with age and did not plateau, indicating ongoing integration
with other brain regions (Fig. 2e–h). Middle-axis brain regions in the
salience/ventral attention network are situated between cortices that
carry out externally-oriented processes (e.g., perception) and those
involved in internally-oriented processes (e.g., self-referential
thought)6. Salience/ventral attention brain regions exhibited flatter
trajectories and tended to show overall increases in FC strength with
age (Fig. 2i–l). The DMN, which is linked to abstract or self-referential
processing, is located in transmodal association cortex. Brain regions
in this network decreased in FC strength through development
(Fig. 2m–p and Supplementary Fig. 4). Developmental trajectories of
FC strength were strikingly similar across all four large-scale datasets.

Given the observed differences in developmental trajectories
across the S-A axis, we next sought to directly quantify the degree to
which developmental effects aligned with the S-A axis. We found that
age-related changes in FC strength were largely explained by a brain
region’s position on the S-A axis, with high replicability across all
datasets (Fig. 3a–d; PNC: r = −0.71, pspin = 0.0001; NKI: r = −0.56,
pspin = 0.0001; HCP-D; r = −0.62, pspin = 0.0001; HBN: r = −0.72,
pspin = 0.0001). FC strength of lower-order regions became more
positivewith age, whereas FC strength of higher-order regions became
more negative. Sensitivity analyses using resting-state fMRI data alone
yielded consistent results (Supplementary Fig. 5d–f; PNC: r = −0.68),
pspin = 0.0001; HCP-D: r = 0.63, pspin = 0.0001; HBN: r = −0.73,
pspin = 0.0001). Results remained consistent after additional sensitivity

PNC (N = 1207)

NKI (N = 397)

HCP-D (N = 625)

HBN (N = 1126)

a c

b
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Sensorimotor-Association Axis Rank
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0.75HCP-D
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NKI HCP-D HBN

0.00 0.25 0.50 0.75 1.00
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Age Effect (ΔAdj R2)

Fig. 1 | Functional connectivity strength developmental effects replicate across
four large datasets. a The Pearson correlation plot of the age effect maps shows
high spatial correlation among all four datasets (pspin = 0.00175 for NKI-HBN;
pspin = 0.0001 for all other spatial correlations). Pearson correlation between pairs
of age effect maps was used to determine spatial correlation, with statistical sig-
nificance determined using spin-based spatial permutation tests. b The
sensorimotor-association (S-A) axis is an axis of cortical organization that spans
continuously from primary and unimodal sensorimotor cortices (sensorimotor

pole; dark blue; lowest ranks), to multimodal cortices (middle axis; yellow; middle
ranks), and finally to transmodal association cortices (association pole; dark red;
highest ranks)19. c The spatial pattern of FC strength age effects is replicable across
datasets and resembles the S-A axis. Age effects are shown on the cortical surface
for PNC, NKI, HCP-D, and HBN with yellow indicating increasing FC strength with
age and purple indicating decreasing FC strength with age. All regions outlined in
black display significant changes in FC strength (QFDR < 0.05). Source data are
provided as a Source Data file.
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analyses, which computed FC strength in three additional ways: using
the absolute value of the correlation coefficient as the measure of
functional connectivity, thresholding connectivity matrices to only
include positive correlations, and excluding global signal regression
during preprocessing (Supplementary Fig. 6). These results provide
consistent and generalizable evidence that FC strength development
significantly and systematically varies across the S-A axis.

Functional connectivity strength increasingly alignswith the S-A
axis with age
Our results show that FC strength age effects tend to be in opposite
directions at the sensorimotor and association ends of the S-A axis,
suggesting that FC strength differentiates across the axiswith age. This
interpretation is supported by our findings that the spatial pattern of
FC strength resembled the S-A axismore at age 22 and 14 than at age 8
(Supplementary Fig. 7). As such, an outcome of this hierarchical
developmental scheme may be that spatial variation in FC strength

becomes increasingly organized along the S-A axis with age. We
therefore aimed to test the extent to which spatial variation in FC
strength was aligned with the S-A axis throughout the course of child
and adolescent development.

We performed an age-resolved analysis in which we calculated
model-predicted FC strength at approximately 1-month intervals
between age 5 and 22 years (as available per dataset). At each 1-month
age interval, we correlated regional FC strength with S-A axis rank,
producing age-specific correlation values that captured the extent to
which regional differences in FC strength were accounted for by a
region’s location on the S-A axis. We found that the across-cortex
spatial correlation between fitted FC strength and S-A axis ranks
strengthened fromage 5 to 22 across all datasets (Fig. 4a–d), indicating
that the spatial patterning of FC strength increasingly resembled the
S-A axis with age. Of note, the pattern for the NKI dataset diverges
somewhat from that of other datasets, with the alignment to the S-A
axis being greater in childhood. However, the pattern of FC strength
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Fig. 2 | Functional connectivity strength shows dissociable patterns of
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mode networks (m–p). Regions in the somatomotor network generally show
increasing FC strength through development. Regions in the salience/ventral
attention network exhibit both increasing and decreasing FC strength with age.
Regions in the DMN predominantly show decreasing FC strength during develop-
ment. Source data are provided as a Source Data file.
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alignment to the S-A axis converges to an absolute correlation of 0.6,
consistent with other datasets. Differencesmay be due to NKI having a
smaller sample size compared to PNC, HCP-D, and HBN and the
absenceof susceptibility distortion correction, leading to greater noise
in the estimation of age effects in younger children. These results
confirm that the S-A axis gradually captures more regional hetero-
geneity in cortico-cortical functional connectivity profiles throughout
child and adolescent brain development.

Hierarchical developmental changes in segregation and
integration
We have found that S-A axis rank is strongly associated with how FC
strength changes in development. However, while FC strength sum-
marizes overall connectivity of a given region to the rest of the brain, it
does not capture differences in connectivity based on network orga-
nization. Average between- and within-network connectivity are con-
stituent components of FC strength and can provide insight into
functional network segregation and integration, which in turn can
elucidate system-specific developmental patterns of connectivity
strengthening andweakening.Wecalculated the averagebetween- and
within-network connectivity as the mean edge strength of a given
region to all other regions outside of and within that region’s network,

respectively. Functional network segregation may be reflected by
decreasing between-network connectivity and increasing within-
network connectivity, whereas functional network integration may
be represented by increases in both between-network connectivity
and within-network connectivity.

First, we evaluated whether regional age effects for average
between-network connectivity and within-network connectivity also
varied along the cortical hierarchy. We found that both average
between-network connectivity age effects and within-network con-
nectivity age effects were associated with a region’s S-A axis rank,
revealing that both contributed to the developmental alignment of
FC strength along the S-A axis. However, between-network con-
nectivity developmental effects were more strongly related to the
S-A axis (Fig. 5a–d; PNC: r = −0.66, pspin = 0.0001; NKI: r = −0.50,
pspin = 0.0002; HCP-D: r = −0.55, pspin = 0.0001; HBN: r = −0.70,
pspin = 0.0001) than within-network connectivity developmental
effects (Fig. 5e–h; PNC: r = −0.49, pspin = 0.00085; NKI: r = −0.31,
pspin = 0.0335; HCP-D: r = −0.31, pspin = 0.0393; HBN: r = −0.37,
pspin = 0.0002). Opposite sign age effects for average between-
network connectivity were seen in sensorimotor and association
cortices; age effects for average within-network connectivity were
largest in sensorimotor cortices. This may contribute to the

r = −0.71, pspin< 0.0001
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r = −0.71, pspin = 0.0001. These findings are replicated in additional independent
datasets, including (b) Nathan Kline Institute-Rockland Sample (NKI; r = −0.56,
pspin = 0.0001), (c) Human Connectome Project: Development (HCP-D; r = −0.62,
pspin = 0.0001), and (d) Healthy Brain Network (HBN; r = −0.72, pspin = 0.0001). The

age effect of FC strength for each region (Schaefer 200) is plotted against the given
region’s rank on the S-A axis. Regions that do not display significant change in FC
strength over development are colored in gray (QFDR > 0.05) and were included in
the correlation. Spearman’s rank correlations were used to quantify the association
between S-A axis ranks and observed developmental effects, with statistical sig-
nificance determined using spin-based spatial permutation tests. Source data are
provided as a Source Data file.
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difference in alignment of between- versus within-network effects to
the S-A axis. These results suggest that low-order regions tend to
integrate with other cortical regions, whereas segregation of high S-A
rank regions appears to be driven by decreases in between-network
connectivity rather than changes in within-network connectivity.
Specifically, the lowest ranking networks, somatomotor and visual
networks, tended to increase in connectivity to other networks,
whereas the highest ranked network, DMN, tended to segregate from
all other networks with age (Supplementary Figs. 8–10).

We next investigated the extent to which developmental changes
in functional connectivity were dependent upon the identities of both
brain regions forming the functional connection. To do this, we per-
formed an edge-level analysis of functional connectivity. We modeled
the effect of each combination of S-A axis rank (representing pairs of
brain regions) on edge-level age effects by using a bivariate smooth
interaction. Results across all datasets revealed that sensorimotor-to-
sensorimotor edges tended to strengthen with age, whereas connec-
tions between sensorimotor and association regions weakened
(Fig. 6a–d). Association-to-association connections also weakened
with development but less prominently. Overall, these results indicate
that lower S-A rank (i.e., sensorimotor) brain regions tend to integrate

with other brain regions, but particularly with other low S-A rank
regions. In contrast, higher S-A rank (i.e., associative) brain regions
tend to segregate with age, with connections to the opposite end of
the S-A axis weakening the most. Brain regions in the middle axis
integrate with lower S-A rank parcels but segregate from higher S-A
rank parcels.

Seed-based analyses using edge-level data examined age effects
from exemplar regions from the visual, somatomotor, salience/ventral
attention, fronto-parietal, and default mode networks. Visual and
somatomotor regions tended to increase most in connectivity with
other sensorimotor regions while decreasing in connectivity with
regions in the DMN (Supplementary Figs. 11, 12). The seed from the
salience/ventral attention network generally integrated with other
attention network regions and with somatomotor regions but
decreased in connectivity with DMN (Supplementary Fig. 13). In addi-
tion to increasing connectivity to other fronto-parietal network
regions, the fronto-parietal seed tended to increase in connectivity to
diverse regions acrossmultiple networks (Supplementary Fig. 14). The
DMN seed showed developmental decreases in connectivity to all
other networks while increasing connectivity to other DMN regions
(Supplementary Fig. 15).
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Fig. 4 | The spatial distributionof functional connectivity strength increasingly
alignswith the sensorimotor-association axiswith age.An age-resolved analysis
reveals that variation in regional FC strength becomes more aligned with the S-A
axis over the course of development. Plots show age-specific correlation values
between FC strength and S-A axis ranks across regions, which converge to a strong
absolute correlation of approximately 0.6 by early adulthood. aAcross regions, the
absolute correlation between fitted FC strength and S-A axis ranks strengthens
from age 8 to 22 in the PNC. This increase in spatial alignment is replicated in (b)
NKI (ages 6-22), (c) HCP-D (ages 5-22), and (d) HBN (ages 5–22). Model-predicted

values of functional connectivity strength were generated from regional GAMs at
1-month intervals between the youngest and oldest ages in each dataset. Reliable
estimates of the correlation value at each age were obtained by sampling 10,000
draws from the posterior fitted FC strength value predicted by each region’s GAM
smooth function. We computed age-specific correlations between fitted FC
strength values across regions and S-A axis ranks for all 10,000 draws. The median
correlation value (r) computed across all draws is represented by the black line. The
95% credible interval around the median correlation value is shown in the gray
band. Source data are provided as a Source Data file.
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Discussion
We leveraged four independent, large-scale neuroimaging datasets to
characterize fundamental spatial patterns of functional brain devel-
opment across the cortical hierarchy. Specifically, we delineated a
consistent and highly generalizable alignment between the develop-
ment of functional connectivity and the S-A axis. Age-related changes
in functional connectivity strength varied along this axis, with a pro-
minent dissociation between sensorimotor and association regions at
opposite poles of the axis. As a result of these hierarchically organized
developmental changes, the spatial distribution of functional con-
nectivity strength increasingly aligns with the S-A axis with age, linking

developmental variability throughout youth to cortical organization in
adulthood. Together, these results resolve heterogeneous findings in
the field and provide strong evidence that the S-A axis encodes the
dominant pattern by which cortico-cortical functional connectivity
develops in humans. Our findings underscore the promise of capita-
lizing upon generalizable patterns of functional brain development in
future studies of human brain maturation in health and disease.

Due to inconsistencies in prior findings41–45 and the lack of an
interpretive developmental framework, no unifying description of
functional connectivity maturational patterns has previously been
agreed upon. For instance, both increasing42,43,46 and decreasing15,16
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between-network connectivity have been observed in higher-order
brain regions such as those involved in the default and fronto-parietal
networks. Even when results are not directly contradictory, the field
has lacked a coherent interpretation that accounts for such hetero-
geneity. While prominent earlier work has suggested that long-range
connectivity strengthens and short-range connectivity weakens in
development47, this was later shown to be largely driven by motion
artifact48,49. It should be noted that such heterogeneity regarding
fundamental patterns of functional brain development is relatively
unique compared to widespread agreement on the direction of
developmental changes in cortical thickness, which decreases in
childhood and adolescence, and white matter fractional anisotropy,
which increases throughout development11,50–54. Here, we sought to
resolve heterogeneity in the field by studying functional connectivity
development using an explicit, empirically-grounded interpretive fra-
mework– that brain development conforms to and shapes hierarchical
cortical organization along the S-A axis – while taking many steps to
promote rigor and test the generalizability of our findings.

We recently introduced a model of human cortical development
which posited that the S-A axis of brain organization also represents a
major spatial and temporal axis of neurodevelopment19. By showing
that functional connectivity refinement varies continuously across the
S-A axis, our findings provide strong empirical evidence for this
developmental model. Our results, which were conducted on four
independent, large-scale datasets, are timely in the context of recent,
urgent calls for reproducible research26,27. A well-documented cause of
the reproducibility crisis is small sample sizes for high-dimensional
fMRI data that yield low statistical power26,28. Recent work has also
shown that false positive findings may in part be due to inconsistent
and custom processing and analysis pipelines26,55,56, leading to high
analytical flexibility and the potential for selective reporting56. Further,
generalizability of neuroimaging findings has been limited due to
single-site data using similar imaging parameters56 as well as limited
demographic diversity57. These factors may be sources of hetero-
geneity and discrepancies in prior work, restricting the field’s under-
standing of functional brain development.

Sensorimotor Parcel Association Parcel

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

PNC

NKI

HCP-D

HBN

S-A Axis Rank

S
-A

 A
xi

s 
R

an
k

Age Effect (ΔAdj R2)

−0.01 −0.005 0 0.005 0.01 0.015-0.015

a c

b d

Fig. 6 | Edge-level age effects confirm divergent connectivity refinement along
the sensorimotor-association axis. a–d Topographical plots display edge-level
connectivity age effects as a function of S-A axis rank. Colors indicate the magni-
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demonstrate lack of change ormodest decreases in connectivity. Sensorimotor-to-
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decreases in connectivity. Association-to-association connections (top right; light
purple) also moderately weaken in development. Note that plots display the age
effect of edges rather than of regions. Source data are provided as a Source
Data file.
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Weaddressed these challenges by following procedures to ensure
rigor and evaluate the generalizability of our findings. In addition to
leveraging four large-scale, independent datasets to replicate all find-
ings, we publicly pre-registered our hypotheses, analyses, and
datasets30. We employed standardized, containerized, and publicly
available image processing pipelines to all datasets according to our
preregistration to reduce analytical flexibility, limit degrees of free-
dom, and minimize selective reporting55,56. To confirm that findings
were consistent across analytical choices, we conducted sensitivity
analyses using four different cortical parcellations and two different
community structures. Findings were also consistent across type of
MRI scan (rest-only versus concatenated task-rest fMRI), preproces-
sing with and without global signal regression, and ways of char-
acterizing functional connectivity strength. Lastly, our results were
consistent across differences in dataset characteristics, scanning
parameters, analytical approaches, and demographics, bolstering
confidence in the generalizability of these results.

Across datasets, we found that cortices at the sensorimotor pole
of the S-A axis exhibited marked increases in connectivity through
development. These cortices becamemore interconnected with other
sensorimotor cortices and with middle axis regions, which include
attention systems. Of note, unlike the rest of the sensorimotor cor-
tices, the primary visual cortex showed a unique decrease in functional
connectivity strengthduringdevelopment. Thisfindingmay reflect the
need for segregated visual processing in this region. Nonetheless, our
findings largely suggest increased functional integration of sensor-
imotor regions and facilitation of cross-system coherence6 in the age
window studied. In previous work, sensorimotor cortices have been
shown to undergo segregation in infancy and early childhood58,59; we
did not observe these effects, potentially due to the age of participants
in our sample. However, the literature contains disparate accounts of
how sensorimotor systems develop in later development. Studies have
observed both decreasing44 and stable60 sensorimotor connectivity.
Other studies have reported increases in sensorimotor connectivity
after mid-childhood6,18, particularly to sensorimotor and attention
regions18,61, which our findings support. Such sensorimotor integration
has been shown to be negatively associated with cognition62 and has
been linked to cognitive decline in aging and neurodegenerative
diseases63–65. Thus, our results suggest a lifespan process that may
begin in adolescence.

In contrast to the developmental increase in connectivity that we
observed in sensorimotor regions,we found that connectivity declined
with age in higher-order association regions.We observed segregation
of association regions that appeared to be driven by decreasing aver-
age between-network connectivity. While both developmental
integration42,43,46 and segregation15,16 of association cortices have been
observed in previous literature, our findings generally agree with prior
work reporting that association regions such as the prefrontal cortex
tend to display decreases in between-network connectivity14 and
increases in within-network connectivity16,47,60. Segregation may sup-
port efficient information transmission, reduce cross-modal inter-
ference, facilitate specialized processing66–68, and has been
consistently shown to be positively correlated with executive function
during development14,16,18,66,69. The maturation of association cortices
observed in this age window may occur during a critical period of
protracted plasticity70.

Lastly, we found that the middle of the S-A axis exhibited an
intermediate pattern of connectivity refinement between the two
poles of the S-A axis. The middle axis primarily consists of cortices
involved in the salience/ventral attention and dorsal attention
networks71. Middle-axis cortices exhibited both increasing and
decreasing connectivity, with greater between-network connectivity
than higher-order cortices, consistent with prior literature14. Specifi-
cally, middle-to-sensorimotor connections strengthened whereas
middle-to-association connections attenuated with development.

Strengthened connectivity between dorsal attention systems to lower-
order visual cortices has been shown to be positively associated with
reasoning ability61, possibly by facilitating top-down, goal-driven
attention6. In contrast, connectivity between DMN and attention net-
works has been reported to be negatively associated with age and
cognition61,72. Of note, while we have summarized our findings focused
on three major divisions of the S-A axis (sensorimotor end; middle;
association end), it is important to recognize that developmental
effects and connectivity changes were continuously graded along the
entire axis. Taken together, our results suggest that the spectrum of
developmental connectivity refinement along the S-A axis produces
heterogeneous modes of inter-regional functional connectivity, which
ultimately support diverse brain functions.

Our study suggests that the different developmental programs
across the cortex lead to the differentiation of association from sen-
sorimotor connectivity profiles. Our findings are consistent with
recent work that showed increasing differentiation between associa-
tion and sensorimotor cortex functional connectivity profiles from
childhood through adolescence24. We observed reduced differentia-
tion of functional connectivity across the S-A axis in HBN, which is
enriched for psychopathology compared to all other datasets, sug-
gesting that psychopathology may be linked to differences in devel-
opmental trajectories. We also found that functional connections
between association and sensorimotor regions weakened the most
during development. Attenuated connectivity may support the func-
tioning of higher-order cortices, such as those in theDMNthat support
internal mentation, by reducing interference from sensorimotor cor-
tices that provide extraneous input from the environment73. Differ-
entiation across the S-A axis may lead to developmental strengthening
of the cortical hierarchy, whereas segregation between the regions
situated at the ends of the S-A axis may facilitate perceptual decou-
pling in higher-order cortices.

Several limitations of this study should be noted. First, we used
cross-sectional neuroimaging data, precluding our ability to examine
within-person development. Future work should employ longitudinal
data to characterize within-person changes in functional connectivity
and alignment of developmental change with S-A axis74. Second, BOLD
signal from fMRI is sensitive to confounding factors such as head
motion, which is a major challenge when studying children and
adolescents48. We mitigated the impact of head motion by using top-
performing preprocessing pipelines and by including head motion as a
covariate in all analyses75. Third, the age window in the present study
does not capture the dramatic changes in functional connectivity that
occur in very early childhood, such as the segregation of sensorimotor
cortices58. Furthermore, becausewe utilized standardized group average
cortical parcellations and network solutions, we were not able to eval-
uate whether network or community sizes changed through develop-
ment. Lastly, while Pearson correlation is conventionally used to define
functional connectivity76, this similarity measure is limited by factors
such as nonlinear relationships and interactions between BOLD signals.
Future work might also evaluate additional measures of functional
connectivity, such as partial correlation and wavelet coherence76.

In conclusion, we provide consistent evidence from four datasets
that functional connectivity is refined in development along the hier-
archy defined by the S-A axis. These results strongly support the
hypothesis that the S-A axis is not only an axis of brain organization,
but also of brain development. Our findings also suggest that func-
tional connectivity development refines and helps to strengthen the
cortical hierarchy, with implications for functional diversity through-
out the human cortex. Our findings resolve prior inconsistencies in the
field and provide a broadly generalizable account of human functional
brain development. This work coheres with other efforts to promote
reproducibility in translational neuroimaging, such as a recent paper
using large-scale structural MRI datasets to develop brain growth
charts with generally stable centile scores29. Our highly replicable and
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generalizable findings support the feasibility of creating analogous
functional brain growth charts77. Moving forward, such generalizable
patterns of functional brain development may be important for
understanding not just healthy brain development, but also how
deviations from normative hierarchical patterns of development may
confer risk for diverse psychopathology.

Methods
Participants
Data were drawn from four large-scale datasets: the Philadelphia
Neurodevelopmental Cohort (PNC; n = 1207), Nathan Kline Institute-
Rockland Sample (NKI; n = 397), Human Connectome Project: Devel-
opment (HCP-D; n = 625), and Healthy Brain Network (HBN; n = 1126).

The PNC34 is a community sample of children and adolescents
from the greater Philadelphia area collected for studying brain devel-
opment, which originally includedn = 1559participantswith fMRI data.
Demographic and neuroimaging data from 1207 participants ages
8–23 from the PNC were included in this study after inclusion criteria
were applied (Supplementary Fig. 16). All study procedures were
approved by the Institutional Review Boards of both the University of
Pennsylvania and the Children’s Hospital of Philadelphia.

NKI37 is a community-ascertained lifespan sample (ages 6–85)
designed to reflect U.S. demographic distributions and included
n = 1268 participants in the original sample. Participants ages 6–22
with demographics and neuroimaging data (n = 397) were included in
this study. The Institutional Review Board approved this project at the
Nathan Kline Institute.

HCP-D35 is a study that aims to characterize healthy brain devel-
opment in children and adolescents whose sample design parallels the
demographics of youth in the U.S. Participants were recruited across
four sites: University of Minnesota, Harvard University, Washington
University in St. Louis, and University of California-Los Angeles. The
original sample included n = 652 participants with fMRI data. After
applying inclusion criteria, we used demographic and neuroimaging
data from 625 participants ages 5–22. All study procedures were
approved by a central Institutional Review Board at Washington Uni-
versity in St. Louis.

HBN36 aims to characterize the phenotypic heterogeneity in
developmental psychopathology and consists of a community sample
of children and adolescents residing in theNewYorkCity area. Families
who have concerns about psychiatric symptoms in their children were
encouraged to participate through a community-referred recruitment
model. Participants were scanned at four sites: Staten Island Flagship
Research Center, Rutgers University Brain Imaging Center, CitiGroup
Cornell Brain Imaging Center, and CUNY Advanced Science Research
Center. The original sample included n = 2255 youth with fMRI data.
Demographic and neuroimaging data from 1126 participants ages 5–22
from HBN were used in this study. The study was approved by the
Chesapeake Institutional Review Board.

In all studies, written informed consent was obtained for all study
participants. For participants under the age of 18, written consent was
provided by legal guardians and assent was obtained from partici-
pants. Demographic information for all datasets may be found in
Table 1.

Sample construction
Age exclusion. For each dataset, participants ages 5-23 were included
in our study. In the PNC, HCP-D, and HBN, no additional participants
were excluded since all participants were within the age window stu-
died. Data from n = 844 individuals were excluded from NKI’s original
lifespan sample of n = 1268 due to participants being outside the
desired age window.

Medical exclusion. Exclusion criteria included the presence of medi-
cal conditions affecting brain function (when assessed) or gross

neurological abnormalities, as well as MRI scanner contraindications.
In the PNC, n = 146 were excluded from the sample of n = 1559, and
n = 21 participantswere excluded from the original sample ofn = 652 in
HCP-D. Medical exclusion data was not available for NKI and HBN.

T1 exclusion. We excluded low-quality T1-weighted images that did
not survive manual quality assurance (when possible, based on avail-
able data). For the PNC, three highly trained raters provided manual
ratings ofwhether imageswereusableor not basedon artifacts. Thirty-
nine participants were excluded for T1 quality in the PNC. For NKI and
HBN, the Swipes for Science web application78 was used to perform
visual quality control. Raters chose to pass or fail an image based on
visual inspection of the general quality of the image and the blurriness
between the white and gray matter boundary79. An additional n = 5
participants were excluded from NKI due to poor T1 quality. For HBN,
586 participants were excluded for T1 quality. No additional partici-
pants were excluded in HCP-D; T1 exclusion was completed by the
team that collected the data.

fMRI motion exclusion. We excluded task and rest fMRI scans with
high in-scanner head motion, as defined as mean framewise displace-
ment ≥0.3. Participants were excluded at this stage if all fMRI scans for
a given participant failed head motion exclusion. For the PNC, an
additional n = 112 participants were excluded for high in-scanner
motion. In NKI, n = 18 participants were excluded; in HCP-D, n = 2
participants were excluded; and in HBN, n = 354 participants were
excluded for high in-scanner head motion. In PNC, HCP-D, and HBN,
task and rest scans that survived head motion exclusion were con-
catenated tomaximize scan time. NKI collected only resting-state fMRI
and was not concatenated. Note that because NKI had multiple ses-
sions ofMRI scans available, weutilized scans from the sessionwith the
greatest number of scans surviving T1 and head motion exclusion for
subsequent analyses.

Scan time exclusion. Lastly, we excluded participants with less than
7min of concatenated resting-state and task fMRI data. In the PNC, an
additional n = 55 participants were excluded for having a total scan
time of less than 7min. Six additional participants were excluded in
NKI; n = 4 participants were excluded in HCP-D; and n = 189 partici-
pants were excluded in HBN.

Supplementary Fig. 16 summarizes sample selection and inclu-
sion/exclusion criteria for each dataset.

MRI data acquisition
T1-weighted structural MRI and resting-state and task fMRI data from
all four datasets were used in this present study. Imaging acquisitions
for PNC, NKI,HCP-D, andHBN34–37,80 are summarized in Supplementary
Tables 1–3.

After image processing (described below), denoised time-series
from resting-state and task functional MRI data were concatenated for
each dataset as available. This approach was informed by studies
showing that functional networks are largely similar between task and
rest states and that individual variability rather than task-dependent
variability accounts for the majority of variation in functional
connectivity81. Furthermore, scan length improves reliability of func-
tional connectivity regardless of whether the data is derived from
resting-state or task scans and helps better identify individual
differences82. The range and median timeseries length and maximum
number of volumes for concatenated resting-state and task fMRI scans
that survived quality control are summarized in Table 2 for each
dataset.

Image processing
Preprocessing of T1-weighted images and functional MRI timeseries
used fMRIPrep 20.2.3 (PNC and NKI) and 22.0.2 (HCP-D and HBN). A
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newer release of fMRIPrep was used for HCP-D and HBN to allow for
top up-based susceptibility distortion correction given the acquisition
of reverse phase encoding directions. Following pre-processing with
fMRIPrep, post-processing used XCP-D31–33,83.

Structural data preprocessing. Structural images underwent correc-
tion for intensity non-uniformity with N4BiasFieldCorrection from
ANTs 2.3.384,85, skull-stripping with a Nipype 1.6.1 implementation of
ANTs brain extraction workflow, and brain tissue segmentation with
fast FSL 5.0.9 (PNC and NKI) and 6.0.5.1 (HCP-D and HBN)86. Brain
surfaces were then reconstructed using FreeSurfer 6.0.1 (PNC andNKI)
and 7.2.0 (HCP-D and HBN)87. Volume-based spatial normalization of
the T1-weighted image to two standard spaces (MNI152NLin6Asym,
MNI152NLin2009cAsym) was performed through nonlinear registra-
tion with ANTs.

Functional data preprocessing. A skull-stripped reference BOLD
volume was generated through fMRIPrep. A B0 field map was then
estimated based on a phase-difference map calculated with a dual-
echo GRE (gradient-recall echo) sequence (in PNC) or was estimated
based on two or more echo-planar imaging (EPI) references with top
up from FSL and aligned with rigid-registration to the target EPI
reference run (HBNandHCP-D)88. The phase-differenceB0fieldmap in
PNC was converted to a displacements field map with FSL’s fugue and
SDCflows tools. Susceptibility distortion correction (SDC)was omitted
in all NKI participants, six participants (13 scans) in HBN, and 34 par-
ticipants (72 scans) in PNC as these participants did not have
fieldmaps.

The BOLD reference was then co-registered with rigid transfor-
mations (six degrees of freedom) to the T1-weighted reference using
bbregister in FreeSurfer. Head-motion parameters with respect to the
BOLD reference were calculated before any spatiotemporal filtering
using FSL’s mcflirt89. BOLD runs were slice-time corrected using
3dTshift from AFNI 2016020790 and resampled onto their original,
native space by applying a single, composite transform to correct for
head-motion and susceptibility distortions. The BOLD time-series were
also resampled onto the fsaverage surface and into standard space,
generating a preprocessed BOLD run in MNI152NLin6Asym space.
Furthermore, to project BOLD timeseries onto the fsLR cortical sur-
face, grayordinate files91 containing 91k samples (32k vertices per
hemisphere) were generated using the highest-resolution fsaverage as
the intermediate standardized surface space.

Functional data postprocessing. Outputs of fMRIPrep were post-
processed by XCP-D 0.0.8 (NKI), 0.3.0 (HCP-D), and 0.3.2 (PNC and
HBN). XCP-D83 is an extension of the eXtensible Connectivity Pipeline
Engine (XCP)31,32 and was developed to mitigate motion-related arti-
facts and noise in functional MRI data from developmental cohorts.
First, outlier detectionwasperformed. In order to identify high-motion
outlier volumes, framewise displacement was calculated92 with a head
radius of 50mm. Then, the BOLD data were despiked, mean-centered,
and linearly detrended. Despiking is a temporal censoring operation

that performs similarly to scrubbing in prior benchmarking studies75.
Thirty-six confounds were estimated based from the preprocessed
timeseries in fMRIPrep: six motion parameters, mean global signal,
mean white matter signal, mean CSF signal with their temporal deri-
vatives, and the quadratic expansion of sixmotion parameters, tissues
signals and their temporal derivatives31,75. The 36 nuisance regressors
were regressed from the BOLD data using linear regression as imple-
mented in Scikit-Learn 0.24.2 (NKI), Scikit-Learn 1.1.3 (HCP-D), or
nilearn 0.9.2 (PNC and HBN). Processed functional timeseries were
extracted from residual BOLD using ConnectomeWorkbench91 for the
following atlases: the Schaefer 17-network 200 and 400 parcel atlas40,
the HCP-MMP atlas93, and the Gordon atlas94. The Schaefer 200 atlas
was used as the primary atlas and Schaefer 400, HCP-MMP, and Gor-
don atlases were used in sensitivity analyses. Lastly, parcellated rest
and task fMRI timeseries were concatenated and the Pearson correla-
tion between concatenated timeseries was computed for every pair of
cortical regions.

Quantification of functional connectivity metrics
To examine developmental changes in global functional connectivity
profiles, we computed functional connectivity (FC) strength as our
primary measure of interest. Furthermore, to gain insight into devel-
opmental changes in functional segregation and integration, we
quantified average between- and within-network connectivity and
edge-level connectivity as secondary measures.

To calculate the FC strength for a given cortical region, we
first computed Pearson correlations of its time series with that of
all other regions. We then averaged the Pearson correlations to
define FC strength for that region. Hence, FC strength represents
the mean edge strength of a given region with all other regions,
without thresholding. Average between-network connectivity was
defined as the mean edge strength (Pearson correlation) of a given
region and all other regions not in that region’s network. Average
within-network connectivity was defined as the mean edge
strength (Pearson correlation) of a given region and all other
regions within that region’s network. Furthermore, to examine the
development of connectivity between specific pairs of functional
networks, we computed the average connectivity between each
pair of networks as well as within-network connectivity (derived
from Yeo’s 7-network solution). Of note, the average and range of
S-A ranks for each network are as follows: visual (rank = 33,
range = 2–109), somatomotor (rank = 40, range = 1–94), dorsal
attention (rank = 84, range = 42–139), salience/ventral attention
(rank = 113, range = 70–175), limbic (rank = 136, range = 108–167),
fronto-parietal (rank = 144, range = 68–197), and default (rank =
155, range = 81–200).

Lastly, we examined functional connectivity at the edge level by
extracting the Pearson correlation between timeseries for each pair of
regions. Seed-based analyses examining age-related connectivity in
exemplar regions from the visual, somatomotor, salience/ventral
attention, fronto-parietal, and default mode networkswere conducted
using edge-level connectivity data.

Table 1 | Demographic characteristics for each dataset

Dataset N Female (%) Age Range (Mean, SD) Race (self-reported)

Asian Black Other/Mixed White Missing

PNC 1207 646 (53.5%) 8–23 (15.4 ± 3.5) 11 (0.9%) 513 (42.5%) 132 (10.9%) 551 (45.7%) 0 (0%)

NKI 397 186 (46.9%) 6–22 (14.5 ± 4.4) 34 (8.5%) 82 (20.7%) 11 (2.8%) 258 (65.0%) 12 (3.0%)

HCP-D 625 337 (53.9%) 5–22 (14.5 ± 4.1) 48 (7.7%) 69 (11%) 97 (15.5%) 395 (63.2%) 16 (2.6%)

HBN 1126 439 (40%) 5–22 (11.6 ± 3.5) 33 (2.9%) 139 (12.3%) 307 (27.3%) 498 (44.2%) 149 (13.2%)

The Philadelphia Neurodevelopmental Cohort (PNC) served as the discovery dataset. Replication datasets included the Nathan-Kline Institute-Rockland Sample (NKI), the Human Connectome
Project: Development (HCP-D), and theHealthy Brain Network (HBN). Demographic data on racewas self-reported. The racial category “Other/Mixed” includes individuals identifyingwithmore than
one race, as well as individuals identifying as American Indian or Alaska Native, Hispanic or Latino, or Native Hawaiian or Other Pacific Islander.
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Harmonization of imaging data
Harmonization of functional connectivity metrics in multi-site data
(HCP-D andHBN)wasperformed to ensure the imagingmeasureswere
comparable across sites95–97. To do so, we applied an extension of
Correcting Covariance Batch Effects (CovBat) where the biological
covariate of age was modeled as a smooth term via a generalized
additive model in both the initial mean-correction stage and the
covariance-correction stage, similar to ComBat-GAM38,39. Harmoniza-
tion was completed using theCombatFamily package (version 0.1.0) in
R. Sex and in-scanner motion were included as covariates as well. This
algorithm was chosen to remove any covariance-related batch effects
that have been shown to be present in functional connectivity data
while simultaneously respecting the non-linear downstreammodeling
approach.

Developmental models
To model both linear and non-linear associations between functional
connectivity metrics and age, GAM were fit using the mgcv package
(version 1.8.39) in R98–102. GAMs were fit for each parcellated cortical
regionwith a given functional connectivitymetric (e.g., FC strength) as
the dependent variable, age as a smooth term, and both sex and in-
scanner motion as linear covariates:

Connectivity∼ sðageÞ+ βsex +βheadmotion ð1Þ

In-scanner head motion was quantified as the mean framewise
displacement averaged across all functional runs included for each
subject. That is, the average mean framewise displacement of the
concatenated task and rest scans surviving T1 and head motion
exclusion was used as a covariate. Age was modeled using thin plate
regression splines as the smooth term basis set with the maximum
basis complexity (k) set to 3 to avoid overfitting. This basis complexity
consistently resulted in the lowest model Akaike information criterion
across cortical regions and datasets. The GAM smooth term for age
produces a smooth function (or spline) resulting from a linear com-
bination of weighted basis functions. This spline represents a given
region’s developmental trajectory for a functional connectivitymetric.
To examine the spatial distribution of FC strength at specific ages, we
generated fitted values of FC strength from the GAM at ages 8, 14, and
22 using the “fitted_values” function in the gratia package (ver-
sion 0.7.0).

To quantify the age effect as in prior work18, for each brain region
or edge, the effect size of age-related change was quantified by the
change in adjusted R2 (ΔR2

adj) between a fullmodel and reducedmodel
with no age term. The significance of the association between the
functional connectivity metric and age was assessed using analysis of
variance to compare the full and reduced models. To characterize the
direction of the effect (increasing or decreasing functional con-
nectivity with age), we evaluated the sign of the age coefficient froman
equivalent linear model18,103. Multiple comparisons were controlled for
with false discovery rate (FDR) correction; Q <0.05. All statistical
analyses were conducted in R 4.1.2.

Correspondence of developmental effects to the S-A axis
Alignment of functional connectivity metric age effects to the
S-A axis. To quantify the association between S-A axis ranks and
observed developmental effects, we used Spearman’s rank correla-
tions. The S-A axis was derived in ref. 19 frommulti-modal brain maps
that exhibit stereotyped feature variability between primary sensor-
imotor and transmodal association cortices. As a result, the S-A axis
represents the average cortical hierarchy derived from multivariate
brain properties. A vertex-level S-A axis (in the fsLR surface-density
32k) was parcellated with study atlases to yield regional S-A axis ranks.
The S-A axis is publicly available andwas obtained from https://github.
com/PennLINC/S-A_ArchetypalAxis for this study.

Specifically, ten cortical maps were used to derive the S-A axis.
These tenmaps included anatomical hierarchy as quantified by the T1-
weighted to T2-weighted ratio104, functional hierarchy5, evolutionary
hierarchy105, allometric scaling106, aerobic glycolysis107, cerebral blood
flow108, gene expression109, first principal component of NeuroSynth
terms110, externopyramidization111, and cortical thickness19. Vertex-
level representations for each of the ten maps were obtained. Vertices
were rank-ordered based on feature value. Vertex rankings were then
averaged across all tenmaps to derive the spatial patterning of feature
variability along a unidimensional S-A axis. The vertex-level S-A axis
was parcellated into four cortical atlases used in this paper (Schaefer
200, Schaefer 400, HCP-MMP, and Gordon) such that each region was
assigned a unique S-A rank indicating its relative position on the
S-A axis.

After comparing the two parcellated cortical feature maps (i.e.,
S-A axis and age effect maps) using Spearman’s correlation, we tested
for statistical significance using spin-based spatial permutation tests
using the “rotate_parcellation” algorithm in R112. The spin-based spatial
permutation test, or “spin test,” mitigates issues with distance-
dependent spatial autocorrelation that is prominent in neuroimaging
data. The spin test generates a null distribution by rotating spherical
projections of one feature map at the cortical surface. This approach
preserves the spatial covariance structure of the data113. Here, we
generated a null distribution based on 10,000 spherical rotations. The
spin tests compute a p value (pspin) by comparing the empirically
observed correlation to the null.

We additionally investigated how the S-A rank of the cortical
regions on each end of a functional connection is associated with
developmental strengthening or weakening of the connection. To
evaluate how the development of edge-level connectivity differs
across the sensorimotor-association axis, we examined age-related
changes in connectivity across edges by fitting a bivariate smooth
interaction. The effect of S-A axis rank on edge-level age effects was
modeled using a tensor product smooth to create topographical
plots18,114:

ΔR2adj∼ teðSA:rankparcel1,SA:rankparcel2Þ ð2Þ

Age-resolved analysis of FC strength alignment with the S-A axis.
Lastly, we performed an age-resolved analysis to examine how the
spatial distribution of FC strength aligns with the S-A axis across the
broad age range studied. This analysis was performed to gain insight
into whether the spatial patterning of functional connectivity across
the cortical mantle becomes increasingly hierarchical through
development.

We first computed smooth functions from the GAM model for
each region as described above. We then calculated the model-
predicted FC strength at ~1-month intervals between age 5 and 22 years
(as available per dataset), which corresponds to 200 unique ages. The
values of FC strength across the cortex at each agewas then correlated
with the S-A axis rank of eachbrain region, quantifying the relationship
between a region’s FC strength and its position on the S-A axis and
yielding age-specific correlations across the entire age window.

Table 2 | fMRI time-series length for each dataset

Dataset Range (min) Median timeseries
length (min)

Maximum number
of volumes

PNC 8.35–33.25 28.25 665

NKI 7.75–24.10 24.10 1424

HCP-D 7.47–42.67 42.67 3200

HBN 8.33–23.33 18.33 1750

For each dataset, resting-state and task fMRI scans were concatenated after undergoing image
processing and T1 andheadmotionquality control. The range andmedian timeseries length and
maximum number of volumes for each dataset are shown here. Note that NKI only obtained
resting-state fMRI and thus only rest scans were concatenated.

Article https://doi.org/10.1038/s41467-024-47748-w

Nature Communications |         (2024) 15:3511 12

https://github.com/PennLINC/S-A_ArchetypalAxis
https://github.com/PennLINC/S-A_ArchetypalAxis


To determine a point estimate and 95% credible interval for age-
specific correlation values, we used a Bayesian approach. In this
approach, we first created a multivariate normal distribution based on
the normal distributions of each covariate’s coefficients. We then
sampled from this posterior distribution 10,000 times to estimate
uncertainty around the model parameters, fitted FC strength values,
and ultimately the FC strength-to-SA-axis correlation value to generate
credible intervals at each age. Specifically, using the posterior dis-
tribution of each region’s fitted GAM, we took 10,000 draws to gen-
erate 10,000 simulated age smooth functions and fitted values of FC
strength for each region. For each draw, we correlated the fitted value
of FC strength with S-A axis rank at each of the 200 sampled ages. This
generated a distribution of correlation values at each age, which was
then used to determine themedian correlation value and 95% credible
interval of the correlation values for each age.

Sensitivity analysis
To investigate whether our findings were consistent across analytic
choices, such as type of MRI scan (concatenated task and rest scans
versus rest only) and atlas used for cortical parcellation, sensitivity
analyses were performed. First, for a sensitivity analysis using only
resting-state data while excluding fMRI acquired during task condi-
tions, PNC,HCP-D, andHBNwere analyzed.Main analyses for NKIwere
completed with only resting-state fMRI due to the absence of task
scans, and thus NKI was not included in this sensitivity analysis. We
included participants with at least 6min of resting-state fMRI. We
analyzed data from 998 participants (549 females) from PNC, 611
participants (328 females) from HCP-D, and 842 participants (342
females) from HBN. The maximum scan time for resting-state scans
was 11.2min (224 volumes) for PNC, 25.5min (1912 volumes) for HCP-
D, and 10.15min (750 volumes) for HBN.

Furthermore, analyses were evaluated using additional cortical
parcellations. Our primary parcellation utilized the Schaefer 200 atlas;
secondary atlases included the Schaefer 400 atlas, the Gordon atlas,
and the HCP-MMP atlas40,93,94. For analyses of secondary outcome
measures that require community structure, namely average between-
and within-network connectivity, we evaluated both the Yeo 7 and 17-
network partitions associated with the Schaefer atlas.

To evaluate whether the main findings with FC strength were
impacted by negative correlations and global signal regression (GSR),
FC strength was computed in three additional ways. First, the absolute
value of the correlation coefficient was used as the measure of func-
tional connectivity following preprocessing with GSR. Second, after
processing the data using GSR, connectivity matrices were thre-
sholded to include only positive correlations. FC strength was then
computed on thresholded matrices. Thirdly, the data was processed
without GSR, and signed edgeswere retainedwithout thresholding. FC
strength was then computed on connectivity matrices that were
derived from this data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This paper analyzes publicly available data from four datasets: the
Philadelphia Neurodevelopmental Cohort, accessible from the Data-
baseofGenotypes andPhenotypes (phs000607.v3.p2) at https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000607.v3.p2; Nathan Kline Institute-Rockland Sample is available
at https://openneuro.org/datasets/ds001021/versions/ 1.0.0; Human
Connectome Project: Development is available for download through
the NIMH Data Archive (https://nda.nih.gov/); and Healthy Brain Net-
work is accessible through https://fcon1000.projects.nitrc.org/indi/
cmihealthybrainnetwork/. Source Data115 generated in this study have

been deposited in the Zenodo database under accession https://doi.
org/10.5281/zenodo.10818786.

Code availability
Analysis code116 is available at https://github.com/PennLINC/network_
replication. A detailed description and guide to the code can be found
at https://pennlinc.github.io/network_replication/.
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