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Identifying tumor type and cell type-specific
gene expression alterations in pediatric
central nervous system tumors

Min Kyung Lee 1, Nasim Azizgolshani1,2, Joshua A. Shapiro 3,
Lananh N. Nguyen4, Fred W. Kolling 5, George J. Zanazzi5,6,
Hildreth Robert Frost7 & Brock C. Christensen 1,8,9

Central nervous system (CNS) tumors are the leading cause of pediatric cancer
death, and these patients have an increased risk for developing secondary
neoplasms. Due to the low prevalence of pediatric CNS tumors, major
advances in targeted therapies have been lagging compared to other adult
tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35
pediatric CNS tumors and three non-tumoral pediatric brain tissues and
characterize tumor heterogeneity and transcriptomic alterations. We distin-
guish cell subpopulations associatedwith specific tumor types including radial
glial cells in ependymomas and oligodendrocyte precursor cells in astro-
cytomas. In tumors, we observe pathways important in neural stem cell-like
populations, a cell type previously associated with therapy resistance. Lastly,
we identify transcriptomic alterations among pediatric CNS tumor types
compared to non-tumor tissues, while accounting for cell type effects on gene
expression. Our results suggest potential tumor type and cell type-specific
targets for pediatric CNS tumor treatment. Here we address current gaps in
understanding single nuclei gene expression profiles of previously under-
investigated tumor types and enhance current knowledge of gene expression
profiles of single cells of various pediatric CNS tumors.

Central nervous system (CNS) tumors account for ~25% of pediatric
cancer cases and are the leading cause of cancer death in children and
adolescents in the United States1. However, CNS tumors in the pedia-
tric population are rare in general, with 3.56 incidence per 100,000 for
malignant tumors and 2.66 incidence per 100,000 for non-malignant
tumors, which make these tumor types difficult to investigate2. Inci-
dent pediatric CNS tumors are comprised of many histologically dis-
tinct tumor types including pilocytic astrocytomas (15.2%), embryonal

tumors (9.4%), and neuronal/mixed neuronal-glial tumors (7.9%)2.
Survival rates vary widely among tumor types, with a good 10-year
survival of 95.4% for pilocytic astrocytomas and a poor 10-year survival
of 15.9% for pediatric high-grade gliomas2. Pediatric CNS tumor
patients are at risk of developing secondary neoplasms, with a 30-year
cumulative incidence ofmalignant secondary neoplasms ranging from
4.7–7.8%3,4. The standard of care treatments for primary CNS tumors
include surgery, radiotherapy, and chemotherapy with relatively
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limited options for targeted therapy compared to tumors in other
anatomic regions.

Recent advances in identifying molecular subtypes in various
pediatric CNS tumor types have been made utilizing genomic, tran-
scriptomic and epigenomic data as reflected in the 2021 World Health
Organization classification of CNS tumors5. For example, medullo-
blastoma can be classified into four separate molecularly defined
subtypes: WNT-activated, SHH-activated and TP53-wildtype, SHH-
activated and TP53-mutant, and non-WNT/non-SHH6–10. In addition,
supratentorial ependymoma can be categorized into ZFTA fusion-
positive or YAP1 fusion-positive11,12. A better understanding of the
molecular variations that exist even among each tumor type has led to
innovative treatment options. For example, Larotrectinib and entrec-
tinib, targeted therapies for NTRK fusion, which has been found in
brain tumors, have been approved by the Food and Drug Adminis-
tration to treat some brain tumors that are metastatic or unresectable
with surgery13,14.

In addition to the molecular characterization of bulk pediatric
CNS tumor tissue, emerging work has begun to investigate the tran-
scriptome and cellular states that exist in these tumors at the single-
cell level. One of the first single-cell transcriptomics contributions
focused on H3K27M -altered pediatric gliomas (n = 6, and 3300 cells)
showed that tumors are mainly composed of progenitor cell-like oli-
godendrocyte populations, rather thandifferentiatedmalignant cells15.
Later, Gojo et al. identified that cellular hierarchies in primary epen-
dymomas (n = 28) reflect impaired neurodevelopment and that
undifferentiatedprograms can infer prognosis16.Moreover, Gillen et al.
revealed that subpopulations in ependymomas (n = 26) impact tumor
molecular classification of bulk transcriptomes17. In medulloblastomas
(n = 25 and 9000 cells), Hovestadt et al. identified specific sub-
populations associated with molecular subtypes7. For example, Group
4 medulloblastoma are composed of differentiated neuronal-like
neoplastic cells, while the other three groups are composed of
subgroup-specific undifferentiated and differentiated neuronal-like
malignant populations7.

While these single cell and single nucleus transcriptomics studies
in 85 total primary CNS tumors to date have improved our under-
standing of cell states in pediatric CNS tumors, there is still much to be
investigated to advance optimal therapeutic options for both primary
cancer treatment and reduction of secondary neoplasms. Due to lim-
ited sample availability for these rare pediatric CNS tumors, progress
in single-cell-level characterization of these tumors has been relatively
slow. Here, we characterized single nuclei gene expression profiles of
35 pediatric CNS tumors and 3 non-tumor pediatric brain tissues. Our
study augments previous studies by incorporating single nuclei gene
expression profiles of additional pediatric CNS tumor types (dysem-
bryoplastic neuroepithelial tumors, gangliogliomas, etc.) and non-
tumor pediatric brain tissue which have been limited in investigation
to our knowledge.

In this study, we demonstrate the effects from cell type compo-
sition differences when comparing the transcriptome of pediatric CNS
tumors and non-tumor pediatric brain tissue by integrating single
nuclei RNA-seq and bulk tissue RNA-seq datasets as cell type hetero-
geneity is not consideredwhenmolecular profiles of bulk tumor tissue
are compared to bulk non-tumor tissue.

Results
Samples frompediatric central nervous system tumors and non-tumor
pediatric brain tissue were obtained from patients being treated at
Dartmouth Hitchcock Medical Center and Dartmouth Cancer Center
from 1993 to 2017. Non-tumor pediatric brain tissues from the supra-
tentorial regions were collected from patients undergoing surgical
resection for epilepsy. Patient characteristics are described in Table 1.
Pathological re-review for histopathologic tumor type and grade were
done according to the 2021 World Health Organization CNS tumor

classification system and categorized into the broader tumor types to
balance sample size per tumor type5. Specific diagnoses for each
sample can be found in Supplementary Table 1.

Additional molecular information of our pediatric CNS tumor
cohort was determined from the bulk RNA-seq and DNA methylation
data. Genetic variants were identified using bulk tissue RNA-seq data
for all tumors except for two tumors due to low bulk RNA-seq data
quality. Copynumber variations (CNV)were determinedusing bisulfite
treated DNA methylation array data. Genetic and cytogenic variations
varied among tumors and tumor types (Supplementary Fig. 1, Sup-
plementary Data 1). Many of the somatic genetic variants (insertions,
SNPs, deletions, etc.) detected within the pediatric CNS tumors were
identified in genes known to have functions in epigenetic processes.
For example, almost half of the tumors (14/33), across tumor types,
had genetic variants in HIST1H1E, a H1.4 linker histone gene. Interest-
ingly, across all but one tumor sample, tumors had genetic variants in
MALAT1, a non-coding RNA with roles in nuclear organization and
modulation of gene expression. While the variants were filtered under
more stringent cut-offs, there may have been undetected variants or
misclassified variants as they were called from bulk RNA-seq in com-
parison to a reference. CNV patterns in some tumor types were as
expected from previous literature. For instance, 5 out of the 9 epen-
dymoma had chromosome 1q gain, which has been considered to be
an early tumorigenic event in ependymoma18,19.

Integrated de-multiplexing method to increase single nuclei
RNA-seq data yield
Using lipid-tagged hashtag oligonucleotides (HTO), 34 samples (out of
38 total samples) weremultiplexed in 17 pools to collect 10X genomics
snRNA-seq data20. The distribution of samples across sequencing runs
and pools is provided in Supplementary Table 1B. As the level of HTO
tagging was often insufficient to distinguish from background tag
sequence levels to be efficiently demultiplexed in downstream ana-
lyses, we aimed to augment demultiplexing by analyzing bulk RNA-seq
derived genotype data from each nucleus together with HTO infor-
mation and assign additional nuclei to specific samples (Fig. 1A). The

Table 1 | Sample demographics

Nontumor Tumor

Sample size (N) 3 35

# of nuclei 17,451 67,249

Mean (Range) Pooled 1921.4 (234–5795)

Age

Mean (Range) 6.2 (0.58–11) 9.3 (0.75–18)

Sex

F 2 (66.7) 13 (37.1)

M 1 (33.3) 22 (62.9)

Location

Subtentorial 0 (0.0) 22 (62.9)

Supratentorial 3 (100.0) 13 (37.1)

Tumor type

Astrocytoma 8 (22.9)

Embryonal 6 (17.1)

Ependymoma 11 (31.4)

Glioneuronal/Neuronal 8 (22.9)

Glioblastoma 1 (2.9)

Schwannoma 1 (2.9)

Grade

Low (1 + 2) 20 (57.2)

High (3 + 4) 13 (37.1)

NEC/NOS 2 (5.7)
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large proportion of doublet assignment from the HTO method in
contrast to the much smaller number of doublet assignments from
genotype data suggests the oligonucleotides were not stained as
effectively aswould have been preferred (Fig. 1B). From the similarities
in the genotype profiles in samples that were assigned to a specific
sample from both methods compared to the ones labeled as doublet
from HTO, but as the same sample through the genotype method
provided more confidence on the accuracy of the sample assignment
in even the nuclei that the HTO method had considered to be a
doublet.

To summarize our demultiplexing process, we first used HTOs to
assign the nuclei to their respective samples. For samples that were
assigned confidently with the HTO, we filtered to keep only the nuclei
that were assigned to the same sample concordantly using genotype
information. For nuclei that were either unassigned to a sample or

assigned as a doublet with HTO, we assigned nuclei to samples using
genotype information (detailed in the methods section). The final set
of nuclei per sample were comprised of the filtered nuclei from HTO
and genotype identified nuclei. An example of the single nucleotide
variants identified per pool along with their assigned sample can be
found in Fig. 1B. An example of howmany nuclei were obtained for one
pool, during each step, is shown in Fig. 1A on the right. The integrated
demultiplex method classified an average of 1921 nuclei per sample
(range = 234–5795, Table 1). The number used in downstream analysis
per sample is included in Supplementary Table 1. The total number of
demultiplexed nuclei was increased 47.4% (additional 27,248 nuclei)
using the integrated approach over the HTO-only method, and 15.6%
(additional 11,445 nuclei) over the genotype-based method alone
(Fig. 1C). Gene expression profiles for a total of 84,700 nuclei were
used for downstream analyses.

Fig. 1 | Integrativemethod to demultiplex pooled samples increases nuclei per
sample from single-nuclear RNA-seq data. A Diagram of integrated method for
demultiplexing pooled samples. Multiplexed samples were first demultiplexed
using hashtag oligonucleotide (HTO) counts. Cells assigned using HTO were fil-
tered for those that did not match the sample assignment from genotype-based
method. Cells unable to be assigned to a sample fromHTOwere assigned based on
genotype information. On the right are the number of cells retained at each step of
the integrated demultiplexmethod for Pool #1.B Exampleof genotype information
(Pool #1) used to demultiplex samples. Blue indicates 100% alternate allele pre-
sence. Pink indicates heterogeneous alternate allele presence. White indicates no

alternate allele depth presence. Tracking bars indicate the samples assigned based
on HTO or genotype (GT). C Distribution of the number of nuclei assigned per
sample based on hashtag oligonucleotides, genotype-based method, or integrated
method. Each point indicates one sample. The total number of nuclei obtained for
eachmethod is labeledon the topof theboxplot. In theboxplot, the lowends of the
segment indicate the minimum and the high ends of the segment indicate the
maximum. Lower bounds of the box indicate the 25th percentile and the higher
bounds of the box indicate the 75th percentile. Segment in the middle is the
median. Source data are provided as a Source Data file.
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Cell-type heterogeneity in pediatric central nervous system
tumors and non-tumor pediatric brains
Out of 84,700 nuclei, 67,249 nuclei (79%) were from pediatric CNS
tumors and 17,451 nuclei (21%) were fromnon-tumor tissue (Fig. 2A).
We utilized unsupervised clustering from components of uniform
manifold approximation and projection (UMAP), a dimension
reduction strategy, to identify nuclei most similar to each other
based on gene expression levels. Across all samples, snRNA-seq data
revealed 58 clusters that were grouped into 16 major cell types:
astrocytes (AST), embryonal tumor cells (EMB), endothelial cells
(EN), macrophage/microglia (MAC/MG), neurons (NEU), excitatory
neurons (NEU_EX), granular neurons (NEU_GN), inhibitory neurons
(NEU_INH), interneurons (NEU_INT), neural stem cells (NSC), oli-
godendrocytes (OLIG), oligodendrocyte precursor cells (OPC),
radial glial cells (RGC), stromal cells (ST), T cells (TC), and unipolar
brush cells (UBC) (Supplementary Fig. 2A, Fig. 2B). The clusters
were classified into cell types using classical markers for cell types
found in the brain (Table 2). The following gene markers for cell
types were used: GFAP and AQP4 for astrocytes; FN1 and COL4A1 for
endothelial cells; CSF1R and PTPRC for macrophage/microglia;
RBFOX3 and RELN for neurons and unipolar brush cells; GAD2 for
inhibitory neurons and interneurons; SOX2 and CD44 for neural
stem-like cells; MOG and PLP1 for oligodendrocytes; PDGFRA for
oligodendrocyte precursor cells; VIM, NES, and PAX6 for radial glial
cells; FAP for stromal cells; CD3E for T cells. Not all gene markers
corresponded to expected expression levels for the major cell
types. For example, the neural stem cells (NSCs) did not express
classical neural stem cell-like genes (SOX2 and CD44) but were

identified by enrichment testing of neural stem cell/neural
progenitor-like cell gene sets. Nuclei in the EMB clusters (EMB1,
EMB2) did not have detectable levels of currently known markers
for classical brain cell types. These nuclei were found to be specific
to embryonal tumors and clustered distinctly from other tumor
types; therefore, were named the EMB (embryonal) cluster.
These marker-based cell type classifications were subsequently
validated by enrichment of cell type-specific pathways using the
Variance-adjusted Mahalanobis method, a single-cell-level pathway
enrichment method (Fig. 2C, Supplementary Fig. 2B)21–28. The cell

Fig. 2 |Heterogeneityof cell types inpediatricCNS tumor tissueandnon-tumor
pediatric brain tissue. AUniformManifold Approximation and Projection (UMAP)
clustering of the 84,700nuclei colored basedon tissue. Dark green indicates nuclei
from non-tumor tissue. Orange indicates nuclei from tumor tissue. B UMAP of the
84,700 nuclei colored bymajor cell type.C Violin plots of gene expression levels of
classical gene markers for cell types present in the brain bymajor cell type cluster.
Astrocytes (AST): GFAP and AQP4; Endothelial cells (EN): FN1 and COL4A1;

Macrophage/microglia (MAC/MG): CSF1R and; Neurons and unipolar brush cells
(NEU, NEU_EX, NEU_GN, UBC): RBFOX3 and RELN; Inhibitory neurons and inter-
neurons (NEU_INH, NEU_INT): GAD2; Neural stem cells (NSC): SOX2 and CD44; Oli-
godendrocytes (OLIG):MOG and PLP1; Oligodendrocyte precursor cells (OPC):
PDGFRA; Radial glial cells (RGC): VIM, NES, and PAX6; Stromal cells (ST): FAP; T cells
(TC): CD3E. Source data are provided as a Source Data file.

Table 2 | Classical markers for cell types

Cell type Markers

Astrocytes GFAP; AQP4

Endothelial cells FN1; COL4A1

Macrophage/Microglia CSF1R; PTPRC

Neurons/Unipolar brush cells RBFOX3; RELN

Inhibitory neurons/Interneurons GAD2

Neural stem-like cells SOX2; CD44

Oligodendrocytes MOG; PLP1

Oligodendrocyte precursor cells PDGFRA

Radial glial cells VIM; NES; PAX6

Stromal cells FAP

T cells CD3E

Italics are necessary as they are gene names.
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type-specific pathways used for enrichment testing were derived
from single-cell RNA-seq experiments of developing human and
mouse brains.

We compared the distribution of cell type proportion from pub-
licly available single-cell RNA-seq datasets of ependymoma (data
accessible at NCBI GEO database, accession GSE141460, n = 6)16 and
medulloblastoma (data accessible at NCBI GEO database, accession
GSE214357, n = 6)29 to our cohort of ependymoma and medullo-
blastoma subjects to validate our observations due to the smaller
sample size of our cohort. We assessed the two most prevalent cell
types in each tumor type: NSC andRGC in ependymoma; NSC andUBC
inmedulloblastoma. Theproportions ofNSCandRGC inependymoma
between our cohort and those in GSE141460 were not significantly
different (NSC: p =0.46, RGC: p =0.3; Supplementary Fig. 3). Similarly,
the proportions of NSC and UBC between medulloblastoma between
our cohort and those in GSE214357 were not statistically different
(NSC: p = 1, UBC: p = 0.9). Our results suggest that cell type distribu-
tions we observed in pediatric CNS tumor subtypes are consistent with
independent pediatric CNS tumors of matched subtype.

As cellular stemness is a key characteristic in sustaining tumor
survival andmalignancy30,31, we set out to investigate stemness in each
cell types of our pediatric CNS tumors. To identify stem-like pheno-
types in our tumor nuclei population, we investigated the expression
levels of classically used markers of cancer stem cells (ITGA6, CD44,
PROM1, NES, MSI1, MYC, NANOG, SOX1, SOX2, POU5F1, VIM, SDC1, SDC2,
GPC1, GPC2), as well as an enrichment score for stemness from Tirosh
et al.32,33. Although expression in some stemness marker genes were
not detected, in those that were detected, levels of expression for
genes classically used for to isolate stem-like cells in literature varied
among the different cell types (Supplementary Fig. 4, Supplementary
Table 2). Interestingly, cell types expected to be more differentiated,
like astrocytes, had relatively high levels of CD44 and VIM, and these
genes were expressed in many of the cell types. As there were some
genes that failed to be detected in a lot of the cell types, we calculated
stemness scores based on a larger set of stemness related genes. All
cell types except for neuronal cells had high levels of stemness.
Although the NSC-like cluster had a high stemness score, the expres-
sion of cancer stem cell markers was minimal. Unexpectedly, the UBC-
like clusters also had elevated stemness scores. While gene expression
levels may not always correlate with protein expression, our results
indicate cell types identified using classical stem cell markers may not
capture all tumor cells with stemness features.

Next, we tested for potential associations of clinical variables with
tumor stemness scores. We first assessed the distribution of stemness
scores among nuclei in each sample and determined the median
stemness score (Supplementary Fig. 5). We found that the stemness
scores were higher in embryonal compared to other tumor types or
non-tumor tissue (Supplementary Fig. 6A). Specifically, embryonal
tumors had significantly higher stemness scores compared to astro-
cytomas (p =0.03), ependymoma (p = 0.02), and glioneuronal/neuro-
nal tumors (p = 0.029). Compared with low grade tumors, high-grade
tumors had higher stemness scores (p =0.008, Supplementary
Fig. 6B), and somewhat unexpectedly, stemness score was positively
correlatedwith age (R =0.47,p =0.004, Supplementary Fig. 6C).When
this association was investigated by each tumor type, only astro-
cytoma was found to be statistically significant (R =0.72, p = 0.043,
Supplementary Fig. 6D). However, positive correlation coefficients
were observed for the other tumor types, and sample size limited
statistical power. No difference in stemness score was observed
between tumors in the subtentorial and supratentorial regions of the
brain (p =0.600, Supplementary Fig. 6E). Our results indicate that
stemness level of single cells is associated with tumor type and grade,
which may be important when considering potential for therapy
resistance and metastasis and when developing targeted therapies.

To reveal any specific cell populations that are only present in a
restricted set of tumor types, we evaluated the association between
cell type proportions and tumor type (Fig. 3, Supplementary Fig. 7).
Non-tumor tissue contained nuclei from all major expected cell types
found in normal brain, including astrocytes, oligodendrocytes, and
excitatory and inhibitory neurons which demonstrated the high-
quality data derived from the non-tumor tissues. Some tumor samples
had small proportions of cell types normally present only innon-tumor
tissue, such as excitatory neuron cluster #5 (NEU_EX5) and inhibitory
neuron cluster #2 (NEU_INH2). These cases are likely the result from
the inclusion of cells from the tumor margin. Non-tumor tissues had
limited numbers of nuclei from progenitor-like cell types, like NSCs,
RGCs, or UBCs. While OPCs are a progenitor cell type, they are also
found in normal brain tissue. The non-tumor OPCs were limited to the
OPC4, a population transcriptionally distinct from tumor OPCs resid-
ing in OPC1-3.

Some cell types were exclusive to a specific tumor. For example,
the glioblastoma sample was comprised of 91% NSC1, and an epen-
dymoma sample consisted predominantly (86%) of OPC2. MG2 was
present at higher proportions (mean = 3.3%, range = 0.3–31.2%) in
tumors compared to non-tumor tissue (0.9%). All astrocytomas had at
least small proportions of A4, OPC1, and OPC5. The embryonal tumors
had cell types thatweremore neuronal (apart fromEMBcell types) like
NSCs and UBCs. Large proportions of ependymoma samples were
made of RGC clusters. The glioneuronal/neuronal tumor type samples
were more varied in terms of which cell types were more present in
each tumor. The expanded cell types were consistent with some
known cell types of origin for these tumors, such as the RGCs in the
ependymomas.

Cell-type-specific pathway enrichment in pediatric CNS tumors
We set out to investigate potential therapeutically targetable pathways
specific to cell types associated with tumorigenesis and progression in
the pediatric CNS tumors. First to determine cell type-specific pathway
enrichment in each nuclei of the tumor samples, we conducted a
pathways analysis at the single-cell level using the Variance-adjusted
Mahalanobis (VAM) method, which computes cell-level pathway
scores that account for the technical noise and inflated zero counts of
single-cell RNA-seq data21. We used 196 pathways from the MSigDB
Pathway Interaction Database (PID) collection for our enrichment
testing23,24,34. The cell-level enrichment p-values generated by VAM
were corrected for false discovery rate using the Benjamini-Hochberg
methodandclassified to be significantly enriched in each nucleus if the
FDR adjusted p-value was less than 0.1 as binary classifications (enri-
ched or not enriched).

Next, we determined any pathways that were more specific for
each cell type by comparing the enrichment classifications from above
for each cell type to determine important cell type-specific pathways.
The PID pathways were considered to be important/specific to the cell
type under adjusted p-value < 0.05 threshold in the differential
enrichment test. For cell typeswith a limitedpresence in tumor tissues,
like many of the excitatory neurons and A1, we observed no pathways
that were specific to the clusters (Supplementary Fig. 8A, Supple-
mentary Data 2). The immune-related cells (MG1, MG2, and TC), which
were present in tumor tissue at slightly higher levels than in non-tumor
tissue, had more than 44% of the PID pathways specific to these cell
types. The high percentage of PID pathways that were important in the
immune-related cell types is likely due to the relatively greater number
of cytokine and other immune-associated pathways are included in the
PID database.

All NSC clusters, except for NSC6 (3.6% pathways), hadmore than
10% of PID pathways that were important to the NSCs (range =
11.73–42.35, Supplementary Fig. 8A, Supplementary Data 2). While
there were no shared pathways that were considered to be important
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in all 8 NSC clusters, there were numerous pathways shared among
majority of theNSCs (Fig. 4A, Supplementary Fig. 8B). The retinoic acid
pathwayand telomerase pathwaywere considered tobe important in 7
of 8 NSC clusters (Fig. 4B). Aurora-B, PLK1, FOXM1, E2, ATR, FOXO,
Retinoic Acid pathways were considered to be important in just 6 of
the 8 NSC clusters. Our results provided potential cell type-specific
targets within these PID pathways important for each cluster for future
therapeutic strategies.

Transcriptomic alterations in tumors compared tonon-tumor at
the single-cell level
We next aimed to determine transcriptomic alterations in pediatric
CNS tumors compared to non-tumor pediatric brain tissue. In bulk
differential gene expression analyses, it is typically not possible to
account for the impact of cell composition differences on gene
expression levels35–38. Here, using single nuclei level data, wecompared
expression of the 4000most variable genes in nuclei from each tumor
type to the gene expression of nuclei in non-tumor tissue, controlling
for cell-type composition differences (Fig. 5A). Genes were considered
differentially expressed if they met the FDR <0.05 threshold.

As expected, adjusting for cell type proportions reduced the
number of significantly differentially expressed genes compared with
cell-type-unadjusted analyses. However, importantly, cell-type-
adjusted analyses identified on average 200 genes per tumor type

that not observed in unadjusted models. (Fig. 5B, Supplementary
Fig. 9A, B, Supplementary Data 3). Moreover, cell type-unadjusted
analyses identified average 758 genes per tumor types that were not
detected in adjusted models. Genes uniquely identified in cell-type-
adjusted models represent underlying tumor biology that was
obscured by variation in cell type proportions composing the tumor
microenvironment across subjects (Fig. 5C). For example, WNT3A, a
gene shown to mediate glioblastoma progression39 was shown to be
upregulated in glioneuronal/neuronal tumors and Schwannoma only
using the adjusted analysis (Supplementary Data 3). Furthermore, the
unadjusted model often gave estimates that were contrary to the
direction of change from the adjusted model. For example, FAT2 was
significantlydecreased (estimate = −1.80) in embryonal tumors relative
to non-tumor tissue in the adjusted model but significantly increased
(estimate = 0.42) in embryonal tumors in the unadjusted model. Also,
FGFR2 had significantly increased in expression (estimate = 0.76) in the
Schwannomanuclei relative to non-tumor tissue in the adjustedmodel
but was significantly decreased in expression (estimate = −0.52) in the
unadjusted model.

Using cell type-adjusted models, we detected tumor type-specific
alterations in gene expression compared to non-tumor tissue. In
astrocytomas, we identified 958 significantly downregulated and
970 significantly upregulated genes compared to non-tumor tissue
(FDR <0.05). Genes upregulated in astrocytomas include ID4, CD74

Fig. 3 | Tumor type-specific presence of cell types. Heatmap of the proportions
(%) of each cell type present in each sample. Scatter plot on the left of the heatmap
indicates the median stemness level of each cell type. Horizontal tracking bars
indicate the tumor type and grade of each sample. Vertical tracking bars indicate

the major cell types of the nuclei. The cell types with greater than 5% are labeled
within each cell. ATC astrocytoma, EMB embryonal tumors, EPN ependymoma,
GBM glioblastoma, GNN glioneuronal/neuronal tumors, NT non-tumor, SCH
schwannoma. Source data are provided as a Source Data file.
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and FOS. The differentially expressed (DE) genes in astrocytomas were
associated with translation-related and nonsense-mediated decay-
related processes (Supplementary Fig. 10A, Supplementary Data 4).
Embryonal tumors had 915 downregulated and 944 upregulated genes
relative to nontumor tissue that were associated with rRNA processing
and translation-associated processes (Supplementary Fig. 10B, Sup-
plementary Data 5). In embryonal tumors, the topmost DE genes
included many ribosome-associated genes like RPS2, RPLP1, and
RPL13A as well as histone H3.3 related genes like H3F3A and H3F3B.
Ependymomas had 1024 downregulated and 1213 upregulated genes
compared to non-tumor tissue. The topmost DE genes were IGFBP5,
CFAP54 and COLEC12. Similar to astrocytomas, DE genes in ependy-
momas were associated with translation and nonsense-mediated
decay-related processes (Supplementary Fig. 10C, Supplementary
Data 6). Glioneuronal/neuronal tumors had 1,035 downregulated and
1,079 upregulated genes relative to non-tumor tissue; these genes that
were associated with extracellular matrix and integrin-related pro-
cesses and MET signaling (Supplementary Fig. 10D, Supplementary
Data 7). TAFA1, ALK, and VAV3 were some of the topmost DE genes in
glioneuronal/neuronal tumors. In the glioblastoma, there were 1,575
downregulated genes and 524 upregulated genes that were associated
with RNA processing and translation-related processes (Supplemen-
tary Fig. 10E, Supplementary Data 8). Some genes that were topmost
DE in glioblastoma nuclei include RMST, ID4 and PBX3. Lastly, in the

Schwannoma, there were 864 downregulated genes and 813 upregu-
lated genes relative to non-tumor tissue that were associated with
elastic fibers and RHO/RAC1 GTPases cycles (Supplementary Fig. 10F,
Supplementary Data 9). CEMIP, THSD4, and GPC6 were among the
topmost DE genes in the Schwannoma nuclei. The list of differentially
expressed genes and their associated pathways per tumor type are
listed in Supplementary Data 3–9.

Of the 4000 most variable genes that were used in differential
gene expression analysis, there were 558 genes that were differentially
expressed in all six of the tumor types, 717 in five of the tumor types,
and 596 in four of the tumor types compared with non-tumor tissue
(Fig. 6A and Table 3). There were differentially expressed genes spe-
cific to a single tumor type: 43 genes for astrocytomas, 61 for embry-
onal tumors, 52 for ependymomas, 68 for glioneuronal/neuronal
tumors, 98 for glioblastoma, and 57 for Schwannoma. While 60.9%
(340/558) of the differentially expressed genes shared among all the
tumor types were either increased or decreased the same direction,
the remainder of genes varied in the direction of change based on
tumor type compared to non-tumor tissue. The proportion of genes
that either increased or decreased in the same direction for the shared
significantly differentially expressed among all tumor types were sig-
nificantly higher than expected (p < 2.2 × 10−16). Protein-coding genes
with increased expression across all tumor types included E2F7, ETS1,
EZH2, ID3/4, MKI67, PIK3R3, and TOP2A.

Fig. 4 | Enrichedpathways in neural stemcell-like cells inpediatric CNS tumors.
ADifferentially enriched pathways from Pathways Interaction Database (PID) in the
NSC subpopulations compared to all other cell clusters in pediatric CNS tumors as
identified byWilcoxon rank sum tests. Blue points indicate statistically significantly
enrichedpathways at adjustedP-value thresholdof0.05. Labeledpathways indicate
more commonly enriched pathways in the NSC subpopulations. Average log2 Fold
Change indicates the fold change of # of cells with enriched pathways in NSCs

compared to all other cell types. The few points that appear to be cut-off have
−log10(adjusted P-value) of infinity as the adjusted P-values were essentially zero.
B Relative enrichment and percentage expressed in cluster of the top enriched
pathways per NSC clusters. Color indicates relative enrichment. Size indicates
percentage expressed in each NSC cluster. Source data are provided as a Source
Data file.
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We conducted a pathways analysis of the genes with increased
expression across all tumor types, and genes with decreased expres-
sion across all tumor types with Reactome pathways to understand the
molecular context of the differentially expressed genes40. Interest-
ingly, translation or nonsense-mediated decay-related processes hav-
ing increased expression across all tumor types compared to non-
tumor tissues (Fig. 6B). Shared decreased protein-coding genes across
all tumor types included FOXP2, GABRA1/2/4/5, NRGN, SST, and SYNPR.
Even when differential gene expression analyses were adjusted for cell
type, across all tumor types, there was decreased expression in genes
associated with neuronal system such as transmission across chemical
synapses and activation of NMDA or GABA receptors (Fig. 6C). Hier-
archical clustering of the differentially expressed genes revealed that
transcriptomic alterations were similar in ependymomas and glio-
neuronal/neuronal tumors and likewise in astrocytomas and embry-
onal tumors (Fig. 6A).

Discussion
In this study, we characterized gene expression profiles of 84,700
nuclei from snRNA-seq of 35 pediatricCNS tumors and 3 pediatric non-
tumor brain tissues. We utilized an integrated hashtag oligonucleotide
and genotype-based methods to maximize the number of sample-
assigned nuclei from our multiplexed snRNA-seq experiment.
Although the original MULTI-seq20 work showed that multiplexing
nuclei was feasible, some difficultly encountered with the approach in
our study may have been attributable to use of fresh frozen samples

that had been stored in the freezer for decades. In our study, we detail
a uniqueapproach to increase thenumber of cells assigned to a specific
sample from pooled sequencing runs by integrating a genotype-based
approach to demultiplex snRNA-seq data. We included demultiplexed
nuclei in alignment bybothmethods aswell as demultiplexednuclei by
either method if the other method had an undetermined assignment
to increase the number of nuclei for this analysis. As some nuclei were
not in alignment for both, limitations in accuracy of sample assign-
ment remain in our downstream analysis. Future studies are expected
to benefit from our integrated demultiplexing method to maximize
data usage while decreasing the cost of snRNA-seq experiments.

Due to the rarity of pediatric CNS tumors, it is difficult to accrue a
large sample size for a highly powered study. Although our sample size
was limited, our study incorporates pediatric CNS tumor types that
have been limited in characterization with single cell or single nuclei
RNA-seq such as gangliogliomas and further enhances the current
limited literature on some pediatric CNS tumor types. Moreover, our
dataset incorporates a large number of nuclei per sample with an
average of around 1920 nuclei, which is a relatively larger nuclei
sample size per sample in comparison to some other studies. We also
incorporated non-tumor pediatric tissues in our experiment, which to
our knowledge have been understudied in previous pediatric CNS
tumor single-cell RNA-seq studies. Lastly, our cohort of pediatric CNS
tumor patients include longitudinal follow up data, from which we
were able to assess five-year recurrence for. We describe changes in
cell type proportions specific to each tumor type and use this

Fig. 5 | Adjusting for cell type identity identifies previously unlinked genes
associated with pediatric CNS tumor types. A Volcano plot of differentially
expressed genes for each tumor type compared to non-tumor tissue, adjusted for
major cell type. Number of genes on the left of the volcano plot indicate genes that
are downregulated compared to non-tumor tissue. Number of genes on the right of
the plot indicate genes that are upregulated compared to non-tumor tissue. Some
examples increased or decreased in each tumor type compared to non-tumor tis-
sues are labeled. B Comparison of the number of differentially expressed genes in
the adjusted model and the unadjusted model per each tumor type. Brown bars

indicate the number of differentially expressedgenes identifiedbyboth unadjusted
and adjusted model. Blue bars indicate the number of differentially expressed
genes in only the unadjusted models. Yellow bars indicate the number of differ-
entially expressed genes in only the adjusted models. C Distribution of differential
expression estimates in the unadjusted model compared to estimates in adjusted
model per tumor type. Dashed lines at 0.5 and 1.5 to indicate genes with similar
estimates in the two models. ATC astrocytoma, EMB embryonal tumors, EPN
ependymoma, GBM glioblastoma, GNN glioneuronal/neuronal tumors, SCH
schwannoma. Source data are provided as a Source Data file.
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information to identify the gene expression profiles and pathways
enriched across tumor and normal samples through a cell type-
adjusted analysis. Extended studies with larger sample size in colla-
boration with other medical centers or consortiums are needed to
increase statistical power.

We characterized major cell subpopulations in specific tumor
types, some of which have been limited in investigation. This includes
the expansion of oligodendrocyte precursor cell (OPC) subpopula-
tions in astrocytomas, and unipolar brush-like cells (UBC) with high
stemness levels enriched in embryonal tumors. In the ependymomas,
there was a significant presence of radial glial-like cells (RGC). Some
glioneuronal/neuronal tumors featured stromal cells (ST) that were
less present in other tumor types, demonstrating significant variability
even within subtypes of tumors. The glioblastoma sample was pre-
dominantly comprised of a neural stem cell-like cell population. The
Schwannoma sample was comprised of a specific stromal cell type.

Despite some overlap in the major cell types between tumor and non-
tumor nuclei, their gene expression profiles were distinct. For exam-
ple, the OPC4 cluster is unique to non-tumor nuclei, while tumor OPCs
reside in OPC1-3. Some neuron-like clusters (i.e. NEU_EX3) that were
present in tumorshad very limitedpresence in thenon-tumor samples.
Our results suggest distinct tumor-associated gene expression altera-
tions even if the tumor cell may resemble a normal brain cell type.
However, comparisons with especially Schwannoma and pediatric-
type high-grade glioma samples need to be further studied as although
thousands of nuclei were included in the analysis, they were derived
from only one sample each.

Our study supported some key findings from previous scRNA-seq
experiments in ependymomas. Gojo et al. along with other studies
identified radial glial-like cells as potential cells of origin in
ependymomas16,41,42. Our results corroborate this finding with an
abundance of radial glial cells in our ependymoma samples. Moreover,

Fig. 6 | Transcriptomic alterations in pediatric CNS tumor cells compared to
nontumor pediatric brain cells. A Heatmap of differential expression direction
and significance in all 4000 genes tested in differential expression analyses. Red
indicates significantly upregulated in the tumor type compared to non-tumor tis-
sue. Blue indicates significantlydownregulated in the tumor type compared to non-
tumor tissue. Gray indicates the gene is not significantly differentially expressed.

Tracking bar indicates the gene type: non-coding RNA (ncRNA), protein-coding,
pseudo-gene, unknown (UNK) or other gene type. B Top Reactome pathways
associated with genes commonly upregulated across all tumor types. C Top
Reactome pathways associated with genes commonly downregulated across all
tumor types. Enrichment of each pathway is tested using hypergeometric models.
Source data are provided as a Source Data file.
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Gojo et al. indicate that stem-like cell populations are associated with
more aggressive ependymomas16. Our results indicate a similar pattern
in our expanded pediatric CNS tumor types, in which higher grade
tumors are associated with cells with more stem-like features. Our
study also supported results from Reitman et al., who demonstrated
that pilocytic astrocytoma tumors are overall comprised of OPCs and
mature glial-like cells43. Our results indicated a similar pattern in which
much of our pilocytic astrocytoma samples were comprised of varying
OPC clusters and couple of astrocyte-like clusters. The similarity of our
results with previously published studies supports our results and
previous findings in separate patient populations.

We identified the pathways enriched in varying cell types, with a
focus on neural stem-like cells. Since NSCs have been shown to be
associated with therapy resistance, metastasis, and tumormalignancy,
it is important to specifically consider NSCs when treating pediatric
CNS tumors and reducing risk for secondary neoplasms44–50. We
determined potential targetable NSC-specific pathways. While some
commonly enriched pathways like MYC and FOXM1 in NSCs may be
considered very difficult to target asMYC and transcription factors are
considered to be less druggable, there were more easily targetable
pathways enriched in NSCs like Aurora-B kinase and retinoic acid
pathway. However, the enriched pathways need to be validated further
as the fold enrichment were incremental, although statistically
significant.

With our cell type-adjusted approach, we addressed a critical
confounder in differential gene expression analyses to identify tran-
scriptomic alterations that exist in tumors compared to non-tumor
tissue. While it may be intuitive that cell type composition differences
introduce confounding effects in molecular comparisons between
tumor and non-tumor tissue, very limited studies have empirically
investigated the cell type composition effects, especially in pediatric
CNS tumors, to our knowledge. Although the number of significantly
differentially expressed genes decreased in the cell type-adjusted
model compared to the cell type-unadjusted model, the adjusted
model identified previously unlinked genes associated with tumors
that would not have been uncovered in the unadjusted model. More-
over, the significantly differentially expressed genes exclusive to the
unadjusted model likely stem from variations in cell type proportions,
rather than from the underlying tumor biology that would be neces-
sary for discovering effective therapeutic targets.

The pathways associated with the differentially expressed genes
across the multiple tumor types in the cell type-adjusted model
(translation-associated processes like peptide chain elongation and
translation initiation/termination along with nonsense-mediated
decay (NMD) processes) suggest the importance of these pathways
commonly being dysregulated in pediatric central nervous system
tumors. Previous studies have suggested the importance of down-
regulation of NMD responses in the differentiation of neural stem
cells51–53. Moreover, high levels of NMD factors were sufficient to keep
the stemness of neural stem cells51. Interestingly, our results indicate
upregulation of NMD associated genes across all pediatric CNS tumor
types in comparison to non-tumor pediatric brain which suggest the

potential mechanism of upregulation of NMDmaintaining more stem-
like cells in these tumors. As more stem-like cells contributes to ther-
apy resistance and recurrence, further studies investigating the NMD
pathways and how they can be exploited to be potential therapeutic
targets in pediatric CNS tumors are necessary.

Our study characterizes the heterogeneity that exists across
pediatric CNS tumor types in comparison to non-tumoral pediatric
brain tissue at the single-cell level. We also identify potential tumor
type and cell type-specific molecular characteristics that may be used
therapeutic targets for the various pediatric CNS tumors from primary
tissue samples. Although there were very limited samples, our study
included thousands of nuclei from these tumor types to gain a better
understanding of cells that exist in these tumor types that previous
studies have not studied deeply. From our results, complementary
preclinical in vitro and in vivo experiments are needed to validate these
targets to advance these potential targets as therapeutic options in the
clinic.

Methods
Study population
This study complies with all Dartmouth Hitchcock Medical Center
Institutional ReviewBoard regulations. This studywas approvedby the
Dartmouth Hitchcock Medical Center Institutional Review Board
Study #00030211. All subjects provided consent for the use of tissues
for research purposes. Tumor and non-tumor tissues were collected
from patients treated at Dartmouth Hitchcock Medical Center from
1993 to 2017. Parents/legal guardians of the patients consented to use
of tissues for research purposes. Histopathologic tumor type and
grade for each sample were re-reviewed according to the 2021 WHO
classification of CNS tumors and categorized into the major tumor
types5. Tumor types included in this study are astrocytoma, embryonal
tumors, ependymoma, glioneuronal/neuronal tumors, glioblastoma,
andSchwannoma. The average age atdiagnosis of subjects fromwhom
the tumor tissues were derived from in this study was 9.3 (range:
0.75–18). Male subjects accounted for 62.9% of the tumor samples and
female subjects accounted for 37.1% of the tumor samples. Non-tumor
brain tissues were obtained from pediatric patients with epilepsy who
underwent surgical resection. The average age at diagnosis of subjects
from whom the non-tumor samples were derived from was 6.2
(0.58–11).Male subjects accounted for 33.3%of thenon-tumor samples
and female subjects accounted for 66.7% of the non-tumor samples.
Specific demographic characteristics of patients for the study are
provided in Table 1 and sample information for each subject are pro-
vided in Supplementary Table 1.

Identification of genetic variation with bulk tissue RNA-seq
RNA was collected using Qiagen RNeasy plus kit (Catalog ID: 74034,
Qiagen, Hilden, Germany). RNA-seq libraries were prepared following
the Takara Pico v3 low input protocol and sequenced on Illumina
NextSeq500.

Raw RNA-seq data were trimmed for polyA sequences and low-
quality bases using cutadapt (v2.4)54. Reads were aligned to human
genome hg38 using STAR (v 2.7.2b)55. Duplicate read identification and
other quality control checks for read alignment were performed using
CollectRNASeqMetrics and MarkDuplicates in Picard Tools.56 Reads
containing N were split using SplitNCigarReads function in the Gen-
ome Analysis Toolkit (GATK)57,58. Bases quality scores were recali-
brated using known variants from the GATK resource bundle and with
the BaseRecalibrator and ApplyBQSR functions in GATK57,58. Somatic
SNV and indels were called with Mutect2 in tumor-onlymode57,58. Only
variants with at least read depth of 10, 5% allele frequency, read depth
of 5 for the alternate allele were kept for analysis. Somatic variants
determined to be false positives were removed with the GATK Filter-
MutectCalls. The variants were then filtered for variants in sex or
mitochondrial chromosomes, RNA editing sites, repeat masker

Table 3 | Number of significantly differentially expressed
genes shared among all or subsets of tumor types

# of tumor types # of genes shared among tumor types

0 868

1 379

2 424

3 458

4 596

5 717

6 558
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regions, and variants in Panel of Normal (from GATK) references.
Variants were then annotated using the Funcotator function in
GATK57,58.

Identification of copy number variation with DNA
methylation arrays
DNA were treated with sodium bisulfite following the TrueMethyl®
oxBS Module (Tecan Genomics Inc, Redwood City, CA). Converted
DNA were hybridized to Infinium HumanMethylationEPIC BeadChips.
Raw idat files from the EPIC arrays were processed using pre-
processNoob function inminfi inR59. Copy number variations of tumor
samples were estimated in comparison to non-tumor samples using
the CNV.fit function in conumee package in R60.

Nuclei isolation, sample multiplexing, and single nuclei-RNA-
sequencing
Nuclei from fresh frozen tissues were isolated following the Nuclei
Pure Prep nuclei isolation kit (Sigma-Aldrich, Catalog ID: NUC201)
with some modifications. To summarize, ~10mg of tissue were
washed with PBS to remove extraneous OCT the samples were
frozen in. The tissue was homogenized with both wide and narrow
pestles submerged in 2.5 mL of the lysis buffer in a Dounce homo-
genizer. The lysate mixed with 4.5 mL 1.8M sucrose cushion were
gently layered on top of the 2.5mL of 1.8M sucrose cushion in
Beckman ultracentrifuge tubes. Samples were centrifuged for
45min at 22,673 × g at 4 °C in an ultracentrifuge. Samples were
multiplexed with lipid-tagged oligonucleotides following the
MULTI-seq protocol (Supplementary Table 3)20. Nuclei were resus-
pended in 1% BSA PBS and filtered with 70 μm and 40 μm Flowmi
filters. Nuclei were quantified with Cellometer K2 (Nexcelom,
Lawrence, MA). We aimed for 2500–5000 nuclei per sample to be
sequenced. Four tumor samples were not multiplexed and were
separately prepared (Supplementary Table 1).

Libraries for single nuclei RNA-seq were prepared following the
10x Genomics Single Cell Gene Expression workflows (10x Genomics,
Pleasanton, CA) and were sequenced on Illumina NextSeq500 to
average 45,000 reads per cell. 10X Cell Ranger software was used to
align sequences to GRch38 pre-mRNA reference genome and generate
feature-barcode matrices for downstream analyses.

Pre-processing snRNA-seq data
To filter low-quality nuclei, only those with greater than 200 and less
than 10,000 features and less than 5% of reads that map to the mito-
chondrial genes were used in downstream analyses. Pooled nuclei
were demultiplexed by hashtag oligonucleotides using HTODemux
function in Seurat v461–64. Pooled samples were also demultiplexed
using Vireo, a genotype-based demultiplexing method65. We per-
formed genetic demultiplexing analysis using genotype data following
the methods described in Weber et al.66, implemented in a Nextflow
workflow67. Briefly, bulk RNA-seq reads from each sample were map-
ped to the reference genome (GRCh38.p13) using STAR55. Pooled
single-nuclei RNA-seq reads were mapped to the reference genome
using STARsolo68. Variants among the samples within each pool were
identified and genotyped with bcftools mpileup69 using the mapped
bulk reads. Individual cells were then genotyped only at the sites
identified using the bulk RNA using cellsnp-lite (mode 1a)70. Cell gen-
otypes were used to identify the sample of origin for each cell using
Vireo65. Code for the genetic demultiplexing workflow can be found at
https://github.com/AlexsLemonade/alsf-scpca/tree/main/workflows/
genetic-demux.

To integrate the methods, we first used sample identity assigned
from the hashtag oligonucleotides. If the nuclei were confidently
assigned a sample, it was compared to the genotype-based sample
assignment. Those that did not match the same sample were filtered
out. If the nuclei were assigned as a doublet or to none of the samples,

the nuclei were assigned to a sample based on the genotype-based
approach. 84,700 nuclei with confident sample assignment were used
in analysis.

As our dataset included a very large number of nuclei to be inte-
grated and was expected to have certain cell types only present in
certain samples, we used the reciprocal PCA integration approach on
the 2000 most variable features to combine the nuclei from each
sample. We first found the integration anchors with the FindInte-
grationAnchors function then used the IntegrateData function in
Seurat v4 to integrate all our filtered nuclei62–64.

Dimension reduction and clustering of snRNA-seq data
The integrated dataset was scaled using the ScaleData function in
Seurat. First, PCA dimensionality reduction analyses were done to
identify 100 principal components (PCs). To further reduce the
dimensionality and cluster our nuclei by their gene expression profile,
we conducted UMAP analyses on the 50 PCs with highest standard
deviationwith RunUMAP function in Seurat61,71. Then, we clustered our
cells using FindNeighbors (n_neighbors = 30) and FindClusters (reso-
lution = 1.0) function in Seurat61.

Gene set enrichment testing
Gene set enrichment tests at the single-cell level were conducted using
the Variance-Adjusted Mahalanobis (VAM) method21. The vamFor-
Seurat function from the VAM R package was used to calculate
enrichment scores for each nucleus. Brain cell type-specific gene sets
from the Molecular Signatures Database (MSigDB) v7.5.1 were used
to validate our single-cell identities23–28. For identifying cell types,
p values were calculated from the cumulative distribution function
values generated by VAM. Nuclei were considered to be associated
with a specific brain cell type-pathway if the VAM-generated p value
was ≤ 0.05. Nucleus-level pathway scoring was also conducted using
VAM for pathways in the MsigDB Pathways Interaction Database (PID)
collection34. PID Pathways were considered to be enriched in each
nucleus at the FDR adjusted p-value threshold of 0.1 for the VAM-
generated p values.

Stemness scores for each nucleus were calculated using the
stemness-associated gene list from Tirosh et al.32 and the AddModu-
leScores function in Seurat.

Differential gene expression and pathways
Differential expression analysis between tumor nuclei and non-tumor
nuclei were conducted using monocle372–75. Differential expression
analyses were conducted only on the top 4000most variable features
identified from the FindVariableFeatures Seurat function. The unad-
justed differential expression testing was done using the fit_models
function in monocle3 (v1.0.0) R package with the quasi-poisson dis-
tributionwith thenon-tumornuclei being the referent gene expression
profile72,74,75. The adjusted differential expression testing was done
with the same quasi-poisson distribution with non-tumor nuclei
being the referent but including the major cell type identity in the
model. Gene types for each gene used in the differential expression
testing were annotated using the org.Hs.eg.db76, Human genome
annotation package, and mapIds function in the AnnotationDbi R
package77. Pathways associated with the differentially expressed genes
were identified using the Reactome pathways and ReactomePA R
package40.

Pathways important for each cell cluster were identified using
FindAllMarkers function in Seurat with the Wilcoxon rank sum test in
Seuraton thebinary classificationofPIDpathways enrichment for each
nuclei78. Log fold change andminimumpercentage of cells enriched in
eachpathwaywere both set to 0. To identify the pathwayswith greater
number of nuclei with enriched pathway per cluster, we selected
pathways that were only positive in direction in the FindAllMarkers
options.
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Statistical testing
Observed proportion of genes that were either increased or decreased
in the same direction in the shared differentially expressed genes
among all the tumor types (60.9%) were compared to expected pro-
portion of genes that would be increased or decreased in the same
direction across all the tumor types (3.13%) using a one-sample pro-
portion test. The expected proportions were determined based on the
permutations of direction of change compared tonontumor for the six
tumor types.

Comparison between our cohort and publicly available datasets
Weutilized the cell types identified in our single nuclei RNA-seqdata as
reference to annotate cell types of publicly available single-cell RNA-
seq datasets in GSE141460 (ependymoma)16 and GSE214357
(medulloblastoma)29. Both GEO datasets were pre-processed and
integrated in the same manner as our dataset as discussed above. We
identified transfer anchors (pairs of cells fromeach datasetwithin each
mutual nearest neighbors) between the publicly available datasets and
our dataset by using the FindTransferAnchors function in Seurat. We
then classified the cells in the publicly available datasets based on cell
types labeled in our pediatric CNS tumor dataset by using the Trans-
ferData function in Seurat. The distribution of cell types between the
publicly available datasets and respective tumor type in our cohort
were compared using the Wilcoxon signed rank test. The statistical
significance threshold for these comparisons were set to p
value < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw single nuclei-RNA-seq data and the processed data for single
nuclei-RNA-seq generated in this study are available in the Gene
Expression Omnibus under accession code GSE211362. The raw
hydroxymethylation/methylation data generated in this study
have been deposited in the Gene ExpressionOmnibus under accession
code GSE152561. The raw bulk RNA-seq data generated in this study
have been deposited in the Gene ExpressionOmnibus under accession
code GSE241396. The processed single nuclei RNA-seq data is also
available through the Pediatric Single Cell Atlas provided by the Alex’s
Lemonade Stand Foundation (https://scpca.alexslemonade.org).
Detailed annotation of which pool each sample wasmultiplexed in can
be found in Supplementary Table 1. All other data generated in this
study areprovided in the Supplementary Information/SourceData file.
The source data large in size are available in Figshare (https://figshare.
com/projects/Associations_in_cell_type-specific_hydroxymethylation_
and_transcriptional_alterations_of_pediatric_central_nervous_system_
tumors/193781). Source data are provided with this paper.

Code availability
Codeused for this study is available at https://github.com/sarahmklee/
IntegrativePCNS.
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