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Scalable computation of anisotropic
vibrations for large macromolecular
assemblies

Jordy Homing Lam 1,2,3, Aiichiro Nakano 1,4,5 & Vsevolod Katritch 1,2,3,6

The Normal Mode Analysis (NMA) is a standard approach to elucidate the
anisotropic vibrations of macromolecules at their folded states, where low-
frequency collective motions can reveal rearrangements of domains and
changes in the exposed surface of macromolecules. Recent advances in
structural biology have enabled the resolution of megascale macromolecules
with millions of atoms. However, the calculation of their vibrational modes
remains elusive due to the prohibitive cost associated with constructing and
diagonalizing the underlying eigenproblem and the current approaches to
NMA are not readily adaptable for efficient parallel computing on graphic
processing unit (GPU). Here, we present eigenproblem construction and
diagonalization approach that implements level-structure bandwidth-redu-
cing algorithms to transform the sparse computation in NMA to a globally-
sparse-yet-locally-dense computation, allowing batched tensor products to be
most efficiently executed on GPU. We map, optimize, and compare several
low-complexity Krylov-subspace eigensolvers, supplemented by techniques
such as Chebyshev filtering, sum decomposition, external explicit deflation
and shift-and-inverse, to allow fast GPU-resident calculations. The method
allows accurate calculation of the first 1000 vibrational modes of some largest
structures in PDB ( > 2.4 million atoms) at least 250 times faster than existing
methods.

The Normal Mode Analysis (NMA) is a standard approach to derive
motions from static snapshots of a macromolecular structure. As a
computational probe to shape-changing motions, the analysis has
found wide applicability in the refinement and fitting of macro-
molecular structures1,2 and in the simulations of functional motions
when coupled with enhanced sampling techniques3,4. Many of these
predicted modes of motion align consistently with available experi-
mental data in kinases5, ion channels6 and transporters7. Such suc-
cessful applications have led to an increasing appreciation of the

interdependenceamongbiological structure, dynamics, and function8.
In NMA, the input macromolecular structure is assumed to be in a
conformationalminimumof its potential energy. Spatial arrangements
of atoms (or atom groups like residues) and forces among them are
then assimilated into the Hessian matrix and the equation of motion is
analyzedunder theharmonicapproximation. TheoutcomeofNMAare
eigenvectors, representing sets of optimal displacements for each
atom in the system, ranked by their ascending eigenvalues that reflect
increasing strain along those directions. Early attempts of NMA on

Received: 31 August 2023

Accepted: 2 April 2024

Check for updates

1Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA. 2Bridge Institute and Michelson Center for
Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. 3Center for New Technologies in Drug Discovery and Development,
University of Southern California, Los Angeles, CA, USA. 4Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
5Department of Computer Science, University of SouthernCalifornia, Los Angeles, CA, USA. 6Department of Chemistry, University of Southern California, Los
Angeles, CA, USA. e-mail: anakano@usc.edu; katritch@usc.edu

Nature Communications |         (2024) 15:3479 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5496-6228
http://orcid.org/0000-0002-5496-6228
http://orcid.org/0000-0002-5496-6228
http://orcid.org/0000-0002-5496-6228
http://orcid.org/0000-0002-5496-6228
http://orcid.org/0000-0003-3228-3896
http://orcid.org/0000-0003-3228-3896
http://orcid.org/0000-0003-3228-3896
http://orcid.org/0000-0003-3228-3896
http://orcid.org/0000-0003-3228-3896
http://orcid.org/0000-0003-3883-4505
http://orcid.org/0000-0003-3883-4505
http://orcid.org/0000-0003-3883-4505
http://orcid.org/0000-0003-3883-4505
http://orcid.org/0000-0003-3883-4505
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47685-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47685-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47685-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47685-8&domain=pdf
mailto:anakano@usc.edu
mailto:katritch@usc.edu


macromolecules9–12 were derived from all-atom potentials and full
dense Hessian matrices. This approach to NMA is still the golden
standard in analyzing the shear and hinge motions of proteins with
sizes typically less than 5000 atoms13. However, applying NMA in this
form to larger macromolecules is difficult as their energy minimiza-
tions are prone to overstepping, rendering unphysical modes14,15. In a
pioneering work by Tirion15, this requirement was relaxed by replacing
the detailed all-atom potentials with an elastic network of pairwise
Hookean potential, connecting atoms within a neighborhood bound-
ary. The NMA analysis then proceeds by assuming that the provided
structure was minimized under experimental conditions. As such,
crystal coordinates, which lack hydrogens and/or sidechains, can be
analyzed directly in absence of a forcefield. This practical form of NMA
is now commonly known as the elastic network model (ENM). Despite
its simplicity, as demonstrated convincingly by Hinsen16,17 and
Sanejouand18, the low-frequency ENMmodeswere shown to agreewith
thefluctuations observed inX-ray crystallography aswell aswithNMAs
performed under standard all-atom potentials, as long as only low-
frequency modes are concerned. The ENM also found major applica-
tions in Cryogenic Electron Microscopy (Cryo-EM) and Cryogenic
Electron Tomography (Cryo-ET) for the flexible refinement of the
composite density maps19–21 and the flexible fitting of atomic
models22–24 when EM volume or atomic templates are available. These
applications of NMA are especially compelling for large macro-
molecular complexes, when other methods are computationally
expensive. However, computing the NMA, even in this practical ENM
form, remains challenging for large macromolecular systems of more
than 1,000,000 particles. Namely, the storage, the construction and
the diagonalization of the Hessian matrix all create imminent difficul-
ties in terms of time andmemory complexities as the size of thematrix
increases quadratically with the number of atoms N. While ideally the
memory complexity of NMA only increases linearly, the linear factors
due to packing density of atomsaswell as the cubic time complexity to
diagonalize the Hessian matrix present a major bottleneck in calcula-
tions (See Methods). As such, many innovative approaches, including
Anisotropic Network Model (ANM)15,25, Rotation-Translation Block
(RTB) method26 and Block Normal Mode (BNM)27, were undertaken to
eliminate the degrees of freedom (DOF) to be differentiated in these
larger systems, hence reducing N for 8-10 times. Agreement of these
methods with experimental data18,25 are satisfactory, though the dis-
placement information of the discounted atoms were lost and the
appropriate level of granularity, especially in presence of elongated
(e.g., lipids) or planar (e.g., aromatics) chemical moieties, are hard to
be determined. To apply NMA without excessive coarse-graining, the
development of faster numerical recipes is necessary28,29. More
recently, the choices on diagonalization algorithmswere examined on
a hyperthreaded machine in the work of Koehl30. This ultimately
allowed the first 100 ENM modes of a ZIKV virus (PDBID: 5IZ7), with
around 800 thousand atoms and around 300 million nonzero entries
in its Hessian, to be calculated within an hour when the Jacobi-
Davidson Method (JDM)31,32 were filtered with an 80-degree low-pass
Chebyshev polynomial of the Hessian30. However, the current state-of-
the-art is still far from handling megascale systems with more than a
million atoms and billions of non-zero entries in the Hessian.

In this work, we designed several synergistic algorithms to fully
engage dense graphic processing unit (GPU) kernels in both con-
struction and diagonalization of the Hessian in atomic NMAs. Specifi-
cally, we developed a level-structure algorithm to minimize the
bandwidth of the Hessian, prior to its construction, and thereby con-
verting its sparse computation into a globally-sparse-yet-locally-dense
computation, which enables the batched execution of tensor products
on GPUs. We also mapped, optimized and compared several low-
complexity Krylov-subspace eigensolvers, supplemented by techni-
ques such as Chebyshev filtering33–35, sum decomposition, external
explicit deflation36 and shift-and-inverse, to allow fast calculations on a

GPU device. The level-structure algorithm produces an isomorph of
the original elastic network, for which its unpermuted eigenpairs can
be recovered in linear complexity using the bijection mapping. The
implementation of this INCHING (“Isomorphic Nma Calculations Har-
nessing 1NecessaryGpu”) algorithmpresented herewasbenchmarked
on macromolecules from the Protein Data Bank37 with sizes up to 2.4
million atoms. Compared to other existing methods, 250–370 times
speedup in throughput was achieved while maintaining residual error
under 10�12. Theutility of the INCHINGmethodwasalsodemonstrated
through examples, including the largest experimentally resolved ato-
mistic structure of a mature HIV-1 capsid38 (PDBID:3J3Q) with 2.4 mil-
lion atoms and 1.6 billion non-zero entries in its Hessian. Using our
INCHING program, we were able to resolve its first 64 atomic normal
modes within 44min of wall-clock time on a single NVIDIA® A100
Tensor Core GPU and its first 1000 atomic normal modes within 63 h.
Fast, accurate, and highly scalable GPU-optimized implementation of
NMA approach will find practical applications in conformational ana-
lysis of large and dynamic macromolecular complexes, and facilitate
their refinement from cryo-EM/cryo-ET data.

Results
Overview of the INCHING algorithm
The NMA is a study of a high-dimensional potential energy surface
under harmonic approximation. In thiswork, the INCHINGalgorithm is
applied to the elastic network model (ENM), a practical form of NMA
introduced by Tirion15. As described in Methods, NMA is based on
solving a standard eigenproblem, HQ =QΩ, concerning a Hessian
matrix H 2 R3N × 3N , where Ω 2 R3N × 3N and Q 2 R3N × 3N are the
eigenvalue matrix and the eigenvector matrix, respectively. For large
collective conformational changes, only the eigenpairs with the smal-
lest non-zero eigenvalues (the lowest-frequencymodes) are of interest.
However, challenges in the construction and diagonalization of the
Hessian grow with the system size, and are notoriously resistant to
parallelization. Consequently, current approaches to NMA are not
readily adaptable for GPU computing, which imposes even stricter
memory limits and algorithmic requirements to fully leverage on-chip
parallelism. As illustrated in Fig. 1a, the INCHING algorithm was
implemented in three synergistic stages—permutation, construction,
and diagonalization—to resolve the challenges of calculating NMA on
GPU. In the following sections, we will describe each stage in detail.

Permutations to achieve bandwidth reduction
GPUs are hardware engineered to efficiently access contiguous mem-
ory locations, thus inherently favoring dense computations. However,
in practice, the experienceofmemory access is dictated by the sparsity
pattern of the data presented. Since the inception of NMA, it has been
recognized that the Hessian is globally-sparse with prevailing zeros,
primarily due to the long-range cut-offs applied to molecular
mechanics potentials11. These globally-sparse Hessians are also locally-
sparse, requiring very large bandwidths with non-uniform adjacencies
(Fig. 1b–f, c.) due to sequentially distal segments of polymer(s) inter-
acting in tertiary and/or quaternary structure(s)39,40 (Supplementary
Fig. 1), and the situation is further complicated by chemicals (e.g.,
cofactors, ions, water, lipids) with no inherent order being integrated
into the polymer structure (Supplementary Fig. 2). All these factors
contribute to degrade on-chip parallelism when dense row-sweeps
were performed in batches.

The primary objective of the INCHING algorithm is to strategically
permute columns and rows of the Hessian, prior to all its computa-
tions, such that a globally-sparse-yet-locally-dense computation can be
achieved in subsequent stages. By permuting the atom ordering, we
can always generate a graph isomorph of the original elastic network,
while allowing retrieval of its unpermuted eigenpairs in linear com-
plexity if a bijection mapping is provided. However, finding a permu-
tation that exactly minimizes the bandwidth of a matrix is NP-
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complete41. To approximate this reduction, we have designed a level-
structure algorithm called 3DRCM, which extends on the well-
established Reverse Cuthill-McKee (RCM)42,43 algorithm, to handle
3-D coordinate data. Traditional RCM and variants44–46 operate under
the assumption that the input —a matrix— is realized and stored once-
and-for-all. This framework is suitable for testing new offline analyses
on the preservedmatrix. However, amajor problem overlooked is that
it may not even be practical to realize the matrix efficiently, when its
parallel computation spans a large bandwidth. In 3DRCM, a 3-D-tree
data structure47 is taken as input instead of a matrix to eliminate this
circular reference. This modification enables efficient dynamic neigh-
borhood lookups in the permutation process and avoids premature
realization of the Hessianmatrix. In Supplementary Fig. 3a, we showed
that for macromolecules with over 100 thousand atoms, the mean
bandwidth for the Hessian in default PDB sequence ordering can vary
between 10% and 90% of N. However, by permuting the Hessian with
3DRCM before its construction, the mean bandwidth of the Hessian is
consistently reduced and remains below 10% of N, hence confirming
the local density of the matrix. In Method and Supplementary Fig. 3b,
we also showed that the time complexity of 3DRCM is practically

dominated by a linear term proportional to the packing density of the
macromolecule, thereby ensuring the cost-effectiveness of the
algorithm.

GPU-resident construction of the Hessian with batched tensor
products
The proposed 3DRCM permutation enables spatial neighbors from
each batch of atoms to be retrieved as locally-dense indexing slices. In
our Method, we further showed that, by extending on the tensorial
representation suggested by Koehl30, the Hessian can be constructed
in batches through vectorized operations, such as tensor products and
broadcasts, to leverage efficient on-chip parallelism in GPU. This
replaces the need for explicit index loading and external storage of the
distance matrix to enable fast computations. Besides, in our imple-
mentation, only the lower triangle of the Hessian was incrementally
stored, and later accessed, in Compressed Sparse Row (CSR) format,
this halves the memory requirement. In Supplementary Fig. 4, we
showed that even for a system comprising 2.4 million atoms (PDBID:
3J3Q), the computation of the 3DRCM permutation ordering and the
subsequent construction of the Hessian on GPU took only 5.2min and

Fig. 1 | Overview of the INCHING algorithm. a Our Isomorphic NMA Calculations
Harnessing 1 Necessary Gpu algorithm (INCHING) consists of three stages, namely,
permutation, construction, and diagonalization. In the permutation stage, the
3-Dimensional Reverse Cuthill-McKee algorithm (3DRCM) takes atom coordinates
as the input and produce a bandwidth-reduced indexing as output. The initial atom
ordering is denotedwithin square-shaped nodes, while the 3DRCM-permuted atom
ordering is represented using parentheses. In the construction stage, the lower
triangle of a Hessian with globally-sparse-yet-locally-dense pattern is constructed
incrementally on a Graphic Processing Unit (GPU) with tensor products and
broadcasts. In the diagonalization stage, the eigenproblem is solved on GPU to
produce depictable mode shapes. b Sparsity pattern of the Hessian with default

atom ordering for the PsbM-deletionmutant of photosystem II. The top left square
highlighted corresponds to the proteins in the macromolecular complex, which
also comprises cofactors, lipids and water molecules. c Sparsity pattern of the
Hessian lower triangle with 3DRCMpermuted atomordering for the same complex
(d) overall spatial distribution of the chemicals intercalated in multiple protein
chains in default sequential order (green, blue, pink, orange, yellow). Only one of
the dimeric halves of the structure is colored, the rest of the macromolecule is
shown as a gray surface; note that the complex is asymmetric due to slight differ-
ence in lipids and cofactors intercalated. TheHessianmatrix in default ordering has
a much longer bandwidth everywhere than that with the 3DRCM ordering.
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6.9min in wall-clock time, respectively. Our method shows significant
speedup over ProDy2.448, an open-source implementation intended
for coarse-grained protein representation in ANM tasks. For the largest
case that ProDy2.4 handled (PDBID: 6NCL), containing 305 thousand
atoms, ProDy2.4 took 7.8 h to construct the Hessian, whereas our
INCHING approach delivered the matrix in just 93 seconds, showing a
302-fold acceleration.

GPU-resident diagonalization of the Hessian matrix
In NMA calculations, a significant portion of computational resources
is often dedicated to diagonalizing the Hessian, where the throughput
is dependent on the performance of the eigensolver. One popular
method in solving large symmetric eigenproblem is the Implicitly
Restarted Lanczos Method (IRLM)49, which is available in the ARPACK
package50, a backend incorporated into ProDy2.4. In ARPACK, the
matrix-vector multiplications are accelerated by threaded BLAS sub-
routines. However, despite theutilizationof ahigh-endAMDprocessor
with 64 threads, ProDy2.4 routines (ProDy-ARPACK-FullSparse) fail to
converge within 48h when systems exceed 305 thousand atoms
(PDBID: 6HIV, 311 thousand atoms), indicating that we have reached
the limit of hardware improvement. Note that ProDy2.4 with the
default LAPACK51 backend (ProDy-LAPACK-FullDense) working on a
full dense Hessian is faster than all other programswhen there are less
than 500 atoms, but we were not able to proceed once exceeding 29
thousand atoms due to rapid rise in memory consumption. We also
implemented a version of INCHING (INCHING-ARPACK-FullSparse)
that uses our fast Hessian construction routine on GPU followed by a
one-time device-to-host transfer to carry out diagonalization with
ARPACK, but we were not able to proceed beyond 1.2 million atoms in
48 h, reflecting the bottleneck in calculation is fundamentally the
diagonalization process.

GPU-accelerated approaches for solving large sparse symmetric
eigenproblems continues to be a vibrant area of research52–57. To
explore this next-generation technology, we implemented, optimized
and compared several diagonalization methods on a single NVIDIA®
GPU device, including the Implicitly Restarted Lanczos Method
(IRLM)49,50, the Thick Restart Lanczos Method (TRLM)58, the Jacobi
Davidson Method (JDM)31,32 and some of their Chebyshev-filtered ver-
sions e.g. the Chebyshev-filtered Thick Restart Lanczos Method
(CTRLM)34 and Chebyshev-Davidson Method (CDM)35. In general,
these methods all share the objective of computing eigenpairs within
an interval (e.g., those with the smallest eigenvalues), but they differ in
their approaches to update the Krylov subspace that approximates the
eigenpairs. (See Methods for detail). The IRLM and TRLM are variants
of the Hermitian Lanczos Method (HLM), but they differ in how they
utilize the solutions of a much smaller tridiagonal eigenproblem to
reinitialize the Krylov subspace at restarts. On the other hand, the JDM
directly corrects the Krylov subspace by solving for an approximate fit
to eliminate residuals and subsequently also works over solutions of a
smaller projected eigenproblem. The CTRLM and CDM uses filters
(low- or band-pass) constructed from Chebyshev polynomials to
magnify wanted interval in the spectrum. The choice among these
methods is not obvious, though their speed all depends on the cost of
matrix-vector multiplication. In our INCHING protocols (INCHING-
TRLM-HalfSparse, INCHING-IRLM-HalfSparse, INCHING-JDM-Half-
Sparse, INCHING-CTRLM-HalfSparse, INCHING-CDM-HalfSparse),
these multiplications are accelerated by the SpMV CSR kernel in
cuSPARSE59. The GPU computation was instructed through CuPy60, a
python API to NVIDIA®’s CUDA61, cuBLAS62, cuSPARSE63 and custom
kernel programming. To accommodate the lower memory capacity of
GPU, the Hessian is accessed as a sum decomposition of its lower
triangle, halving the memory requirement. Alternatively, the calcula-
tions can also be done in the full sparse matrix with a further 40%
speedup, when GPU memory is not exhausted. (See Supplementary
Fig. 5) In Supplementary Fig. 6, we further showed that an explicit

external deflation36 of the first 6 rigid modes with zero eigenvalues
(rotations and translations) can help to improve runtime of the
remaining 58 non-zero eigenpairs in sub-megascale regime while
sharing very similar memory footprint. Finally, by incorporating low-
and band-pass Chebyshev filters34,57, we also lifted the memory limit
regarding the number ofmodes to be resolved. (See INCHING-CTRLM-
HalfSparse in Fig. 2 and Supplementary Figs. 7 and 8)

Benchmarks
Benchmarks on correctness, memory and speed for calculating the
first 64 modes are illustrated in Fig. 2. All reported runtimes are wall-
clock time, and the tests were conducted on a computer with a 64-
threads AMDEPYCTM 7513 processor and a single NVIDIA®A100Tensor
Core GPU, unless specifically noted. The accuracy is measured by the
2-norm of the residual error. Across 116 benchmark cases encom-
passing macromolecules ranging from around a thousand atoms to
around 2.4 million atoms, including PDBID:3J3Q, the largest experi-
mentally resolved atomic structure in PDB at <10Å range, our INCHING
protocols were able to afford accuracy at 10�12 level and achieved a
peak memory consumption consistently lower than the ProDy2.4
routines. Importantly, with memory requirement halved by accessing
only the lower triangle of the Hessian with a sum decomposition, the
throughputs of our INCHING protocols, including construction and
diagonalization of the Hessian, are still 146–251 times faster than
ProDy-ARPACK-FullSparse and are 265–1290 times faster than ProDy-
LAPACK-FullDense, depending on our choice of diagonalization algo-
rithm. Remarkably, for a 305-thousand-atoms system (PDBID: 6NCL),
all of our INCHING protocols took at most 5min to converge with the
fastest convergence being achieved by INCHING-TRLM-HalfSparse at
2.9min. The same task took ProDy-ARPACK-FullSparse 12.4 h to con-
verge. INCHING-TRLM-HalfSparse, INCHING-JDM-HalfSparse and their
Chebyshev-filtered versions (INCHING-CTRLM-HalfSparse, INCHING-
CDM-HalfSparse) also converged for the HIV-1 capsid structure
(PDBID:3J3Q, 2.4million atoms),with the fastest convergence achieved
by INCHING-CTRLM-HalfSparse within 44min. In Supplementary
Fig. 7, we show that, at the same accuracy level as JDM (10�12), mod-
erate speed-up in sub-megascale regime (mean at 1.21) can be achieved
by CDM with an 80-degree polynomial, though the speed-up dimin-
ished to a slow-down in the megascale regime (mean at 0.91). This
contrasts with applying an optimized low-pass filter to TRLM, where
we showed that the Chebyshev-filtered TRLM (CTRLM) can steadily
deliver a speed-up over TRLM in the megascale regime (mean at 7.44).
In Supplementary Fig. 8,we further showed that linear or better scaling
in runtime has been achieved in terms of the radii RC = 6,8,14Å to be
considered, except for several cases at a lower radius RC = 6Å, likely
due to poorer conditioning of the matrix. In Fig. 3, by incorporating a
band-pass Chebyshev filter developed in recent works34,57 into our
TRLM implementation (INCHING-CTRLM-HalfSparse), we also
achieved linear time scaling in the number modes to be solved, while
keepingmemory usage constant. This ultimately allows 1000modesof
all the benchmarks to be solved, in batches of 64 eigenvectors on a
standard A100 NVIDIA® GPU, without compromising memory or run
time or atomic details. The method was also tested on a much less
expensive RTX4090 NVIDIA® GPU in batches of 28 eigenvectors in
Supplementary Fig. 10.

Anisotropic vibrations of some megascale systems
To illustrate the usage of our software, we have applied INCHING to
some of the largest atomic objects available, both natural and artificial.
In Fig. 4, we illustrate thefirst non-zeromodeof thematureHIV-1 capsid
structure (PDBID:3J3Q), the largest experimentally resolved atomic
object to date at <10Å resolution range, containing 2.4 million atoms
and 1.6 billion non-zero entries in its Hessian. The cone-shaped capsid is
an assembly of 186 hexamers and 12 pentamers, and it was suggested
that these pentamers located at its hemispherical ends induce stable
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closure of the capsid by allowing sharp bite angles at the surface64. With
our INCHING-JDM-HalfSparse protocol, we were able to resolve its first
64 normal modes at residual error 10�12 within 1.3 h on an NVIDIA®
A100 Tensor Core GPU, where the first non-zero mode corresponds to
the oscillation of its hexameric surface roughly anchored at the penta-
mers supporting the theory of quasiequivalence65. In Fig. 5, the normal
modes of a dilated human nuclear pore complex (NPC)66 resolved at 50
Å were shown (EMDB: EMD14321, PDBID: 7R5J). The structure contains
4.8million atoms and 3.5 billion non-zero entries in itsHessian.Wewere
able to obtain the first 30 non-zero modes of this NPC structure within
12.5 h at accuracy of 10�12. In this calculation, an explicit external
deflation36 was applied to remove the first six rigid modes. We observe
that while the first 14 non-zero modes mostly concern motions in the
cytoplasmic and nuclear ring, the constriction of the inner ring can be
observed at the fifteenth non-zeromode, reflecting the key functionally
relevant conformational change. This calculation is at the edgeof 80GB
of memory limit for the hardware used, though more powerful GPU
systems on the market could handle even larger macromolecule
superstructures. In Fig. 6, we applied the same methodology on the
largest artificial DNA origami nano-structure, a DNA airplane made of
33kbps at its relaxed state67 containing around 1.8 million atoms,
including hydrogens, with a Hessian containing 1.8 billion non-zero
entries. The structure has an apparent bilateral symmetry, where the
joints leading to thewings are not chemically symmetric67. Interestingly,
while its first non-zeromode presents a symmetric flop in its wings, the
second non-zero mode demonstrates a complicated non-symmetric
twisting motion involving its wings and stabilizers. In Supplementary
Fig. 9, we also solved the first 64 modes of a 5-million pseudo-atoms
coarse-grained representation of a Faustovirus capsid68 (PDBID: 5J7V 26
million atoms resolved at 15.5 Å), illustrating the potential to incorpo-
rate coarse-graining strategies in handling systems that cannot fit into
memory.

Discussion
In recent years, there has been a significant shift in the focus of NMA
methodologies, with an emphasis on accommodating larger atomic
systems. The aim of an NMA is to gain insight into how some macro-
scopic motions involving communicating domains or subunits in
macromolecular ensembles, can arise from microscopic interactions
at the atomic level. In this respect, the mode shapes of NMA, which
orchestrate collective motions concerning distal parts of the macro-
molecule, can often provide hints to understanding the biological
structure at hand. Existingmethods to analyze NMA can readily handle
medium-sized structures with a few thousand atoms, but beyond this
application of NMA is limited by computing resources and is not easily
scalable by parallelization. This fundamentally restricts the molecular
plasticity analysis in experimental techniques such as Cryo-ET and
Cryo-EM, where macromolecular structures studied are often com-
posed of millions of atoms and rather flexible. In these applications,
fast and accurate megascale NMA would greatly facilitate modeling
conformational dynamics in the refinement of the composite density
maps19–21 and the flexiblefitting of atomicmodels22–24 when EM volume
or atomic-resolution template structures are available. Two major
challenges in NMA scaling to megascale macromolecular complexes
are the construction of the Hessian matrix and solution of the large-
scale eigenproblem entailed. In this work, we have developed and
implemented several advanced numerical recipes optimized for GPU
computing, including a bandwidth-reduction algorithm and several
alternative eigensolvers, to handle these challenges. This allows us to
resolve normal modes, under the practical form of elastic network
model, without coarse-graining the provided atomic structure for
systems with several million atoms. In many cases, coarse-graining of
biomolecular residues is expert-driven, and the appropriate level of
granularity can be hard to determine when the chemical moiety is
elongated (e.g., lipids) or is planar in shape (e.g., aromatics), especially

a

b

c

Fig. 2 | Benchmark on throughput, memory consumption and correctness for
eachmacromolecular structure in the benchmark dataset. For all methods, the
first 64 eigenpairs were calculated. Methods tested includes 2 ProDy methods
(i.e., “ProDy-LAPACK-FullDense” and “ProDy-ARPACK-FullSparse”) and 5 INCHING
methods (i.e., “INCHING-TRLM-HalfSparse“, “INCHING-CTRLM-HalfSparse“,
“INCHING-JDM-HalfSparse“, “INCHING-IRLM-HalfSparse“, “INCHING-ARPACK-
FullSparse“). Text in the name describe the eigensolver (e.g., ARPACK, LAPACK,
JDM, TRLM, CTRLM, IRLM), the access of the Hessian matrix (e.g., “Full” means
that the whole Hessian matrix is accessed and stored; “Half” means that only the
lower triangle of the Hessian matrix is accessed and stored.), and the storage
format of the Hessian matrix (e.g., “Dense” means a 2-D array is stored in double
precision; “Sparse” means a Compressed Sparse Row (CSR) format is stored in
double precision). “TRLM”, “CTRLM”, “JDM”, “IRLM” are our implementation of
the Thick Restart Lanczos Method (TRLM), Chebyshev-filtered Thick Restart
Lanczos Method (CTRLM), Jacobi-Davidson Method (JDM) and Implicitly Restar-
ted Lanczos Method (IRLM). a Benchmark on overall run time including Hessian
realization and subsequent diagonalization. The run time is wall-clock time to
complete all the calculation. b Benchmark on peak memory consumption. Note
that for “ProDy-LAPACK-FullDense”, we were not able to proceed once there are
more than 29 thousand atoms due to memory overflow. Note that for “ProDy-
ARPACK-FullSparse”, we were not able to proceed once there are more than 305
thousand atoms as it takes more than 48 h to converge. Also note that “INCHING-
TRLM-HalfSparse“, “INCHING-CTRLM-HalfSparse“ and “INCHING-JDM-Half-
Sparse“ share very similar peak memory requirement. c Benchmark on residual
error rj jj j2, defined as the 2-norm of residual vector r The error bar presented is
the 95% confidence interval (n = 64) calculated from the residual error of all the
eigenvalues of a macromolecular structure in the benchmark dataset. Note that
for “ProDy-LAPACK-FullDense”, the second macromolecular structure (PDBID:
1A8L) were not able to converge within 10�10 likely due to severe fill-ins. All
programs were stopped if run time exceeds 48 h. All INCHING programs were
stopped if number of restarts exceeded 15000 rounds. Source data are provided
as a Source Data file.
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in heterogeneous complexes comprised of protein, nucleic acid, lipid
membranes, and sugars. The coarse-grained particle motions must be
broadcasted into an all-atom construct if an atomic-scale under-
standing of the system is desired. In this respect, the implementation
of an all-atom NMA, faithful to the formulation of Tirion15, is a direct
response to this shortcoming as all the atoms are now included in the

system without neglecting each of their degrees of freedom (DOF).
Several recent approaches to reduce DOF of atomic systems are
interesting and indispensable to further scale up though. One of the
first and the most popular approaches is the Anisotropic Network
Model (ANM), which consider a subset of nb atoms from the all-atom
system, usually only the phosphorus P in nucleic acids and/or the

c

d

a b

e

Fig. 3 | Scaling in number of eigenmodes in Chebyshev-filtered thick restart
Lanczosmethod.Up to 1000or slightlymore eigenpairswere calculated using our
INCHING-CTRLM-HalfSparse implementation of the Chebyshev-filtered Thick
Restart Lanczos Method with radius of interaction RC = 8Å. The coloring of the
lines, as shown in the color bar, refers to the number of atoms in the system. a Run
time to complete until the indexed eigenvalue (b) optimized polynomial degrees
involved in calculating the indexed eigenvalue. c Peak memory consumed when

calculating the spectrum slice containing the indexed eigenvalue. d Residual error
in eachof the eigenvalues. eMapping of the lowest 224 eigenvalues in batches of 28
eigenvectors when low- and band-pass Chebyshev filters were applied to the HIV
capsid system (PDBID: 3J3Q) without coarse-graining. Colors of the points indicate
eigenvalues resolved in different batches. Source data are provided as a Source
Data file.
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backbone carbonCα of the proteins15,25, thus effectively reducingN for
8-10 times. Agreement of ANM with experimental data18,25 is satisfac-
tory, though the displacement information of the discounted atoms is
lost. This issue was alleviated by the rotation-translation block (RTB)
method26, where a projection operator was developed to coarse-grain
the atomic system into a system of nb rigid blocks, each with its own
translational and rotational DOF, hence effectively reducing the
3N ×3N Hessian matrix to a 6nb ×6nb RTB matrix. Further refinement
along this line is the Block Normal Mode (BNM)27 method, which sur-
rogates the initial realization of the peak-memory-consuming 3N ×3N
Hessian matrix; this was done by exploiting the block structure of the
projection operator and by constructing only part of the sparse full
atomic Hessian on-the-fly. Very recently, it was also shown that an
extrapolation of RTBmodes can effectively predict nonlinear motions
at large amplitudes69. Depending on the granularity of the system,
more than tenfold reduction in the size of the Hessian matrix can be
achieved. However, the cost of diagonalization can still be very
prohibitive.

In this respect, parallel computing on GPU, as we implemented in
this work, is an effective way to amortize the cost at a fundamental
level, without compromising accuracy or atomistic detail. We also
expect that advances in GPU hardware70 in memory and processing

rate, integrated with techniques in solving large-scale eigenproblems,
in particular recent trends in spectrum slicing34,52–57,71, would eventually
allow even faster NMA calculations on systems exceeding 20 million
atoms, such as structure of a Faustovirus68 available in low resolution
(PDBID: 5J7V, 15.5 Å). Nonetheless, given the applicability of NMA in
biological systems, we believe our framework will be useful in the
exploration of megascale structural dynamics. The growing complex-
ity of the megacomplexes resolved by Cryo-EM and/or cryo-ET now
calls for methods that can rapidly capture conformational and func-
tional plasticity, potentially as an intrinsic part of the refinement
pipeline. Such methods will play a crucial role in advancing our
understanding of these macromolecular machines.

Methods
Normal mode analysis of an elastic network model
The Normal Mode Analysis (NMA) is a classic approach to derive
motions from static structures at local minima of a potential energy
surface. The potential energy V is dependent on the conformation
X 2 R3N for a structure with N atoms at time t. Without loss of gen-
erality, we begin with a particular conformation Xð0Þ 2 R3N . For small
displacements, wemay then tolerate a second-order Taylor expansion,

V XjXð0Þ
� �

=V Xð0ÞjXð0Þ
� �

+∇V Xð0ÞjXð0Þ
� �

X� Xð0Þ
� �

+
1
2

X� Xð0Þ
� �T

∇2V Xð0ÞjXð0Þ
� �

X� Xð0Þ
� �

+ . . .
ð1Þ

By choosing the energy level V ðXð0ÞjXð0ÞÞ=0 and assuming local
minimum ∇V ðXð0ÞjXð0ÞÞT =0, we are left with the quadratic form,

VNMA =
1
2
ΔXTHΔX ð2Þ

where H= : ∇2V ðXð0ÞjXð0ÞÞT 2 R3N × 3N is the Hessian matrix and
ΔX= :ðX�Xð0ÞÞ 2 R3N is the deviation from theminimum.Wewill defer
the layout ofH to the next sectionwhen the formofpotential energyV
is defined andproceed todiscuss the outcomeof anNMA. Substituting
VNMA into the equations of motion gives a partial differential system

M
d2ΔX
dt2

= �HΔX ð3Þ

And, the general solutionΔX =Qe�iωt gives a generalized eigenproblem

HQ =MQΩ ð4Þ

Where the eigenvector matrix Q 2 R3N × 3N can be viewed as an

eigentensorQ 2 R3N ×N × 3. The physicalmeaning of this eigentensorQ
is that each of its atom slice (the second index) gives a displacement
vector, hence 3N linearized mode shapes, i.e., the collective motions,

of the static structure Xð0Þ can be obtained. In NMA, the first 6 modes
will always have zero eigenvalues corresponding to rigid translational
and rotational displacements. The eigentensor Q is also the best dis-

placement under orthonormality constraint min
Q

VNMAs:t:Q
TQ = I.

Eigenfrequency
ffiffiffiffiffi
ωi

p
is the square root of the eigenvalue ωi.

A variety ofV exists. In the standardNMA, potential energies from
a detailed all-atom forcefield can be used. However, this approach
suffers from the tedious, and sometimes virtually unachievable,
requirement of energy minimization10. This requirement was surro-
gated in the work of Tirion15, where the potential energy of an atomic
system was considered as an elastic network model (ENM) connecting

a

b

Scaled Magnitude

1.00.0

(a)

Fig. 4 | Vibrations of thematureHIV-1 capsid structure (PDBID: 3J3Q). aThe first
non-zero mode of the capsid. The black arrows are the displacement field of 1000
atoms randomly chosen from those in the top 90% quantile of vibrationmagnitude
in the eigenvector. The arrow in magenta indicates an average direction for local
clusters of the displacement field. Color scale in the cartoon from blue to red
indicates increasingmagnitude of vibration. Note that a logistic kernel is applied to
the eigenvector to control the magnitude in visualization. (See Methods). The top-
right inset is a clipped view of the capsid. The bottom-right inset indicates the
locations of the pentamers (Gray opaque surface).b The first 64 eigenfrequency of
the macromolecule, the eigenfrequency is the square root of eigenvalue ω. The
black arrow indicates the first non-zero eigenmode displayed in (a). Source data are
provided as a Source Data file.
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atoms i and j

V Xð Þ= :
X
ij

1
2
kij rij � r 0ð Þ

ij

� �2
ð5Þ

Where rij is the variable Euclidean distance between atom pairs; rð0Þij is
the equilibrium Euclidean distance from X ð0Þ. Importantly, a Heaviside
function kij , parameterized on rð0Þij , was used to eliminate the long-
range interactions beyond the threshold RC . This can also be
considered as applying an adjacency matrix kij 2 K to the network.

kij rð0Þij

� �
=

1, rð0Þij ≤ RC

0, rð0Þij >RC

8<: ð6Þ

As in the formulation of Tirion, a unified mass M= I were taken,
hence reducing the generalized eigenproblem to a standard eigen-
problem.

HQ =QΩ ð7Þ

Permuting the Hessian to produce graph isomorphs
In our later exposition, we will permute the Hessianmatrix such that the
resultantmatrix is locally dense. Observe that a similarity transform ofH
with permutation matrix P 2 R3N × 3N preserves the eigenvalues Ω as

ðPHPTÞðPQÞ= ðPQÞΩ ð8Þ

a b

c

d e

(a)

(b)

(c,d)

Scaled Magnitude

1.00.0

Fig. 5 | Vibrations of the dilated human Nuclear Pore Complex (NPC).Overview
of motions in several representative non-zero modes. a The first non-zero normal
mode (indexed as Mode 0) (b) the third non-zero normal mode (indexed as Mode 2)
(c) clipped view of the fifteenth non-zero normalmode (indexed asMode 14) (d) bird-
eye view of the fifteenth non-zero normal mode (indexed as Mode 14) The arrows in
magenta indicate an average directions for the local clusters of the displacement field,
while the tiny black arrows show more detailed displacement fields of 10,000 atoms

randomly chosen from those in the top 80% quantile of vibration magnitude in the
eigenvector. Color scale in the cartoon from blue to red indicates increasing magni-
tudeof vibration.Note that a logistic kernel is applied to the eigenvector to control the
magnitude in visualization. (See “Methods”). e The first 30 non-zero eigenfrequencies
of the macromolecule, the eigenfrequency is the square root of eigenvalue ω. The
black arrows indicate the first non-zero eigenmode displayed in (a), (b), (c) and (d).
Source data are provided as a Source Data file.
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and the eigenvector PTPQ of the original problem can be recovered
by simply applying inverse of the unitary permutationmatrix, which
is its transpose. Importantly, if we restrict the permutation to atom
ordering, i.e., permuting every 3 consecutive indices as an immu-
table group in the 3N indices, then the resultant Hessian is a
representation of a graph isomorph of the original elastic network,
where the bijection is provided by correspondence between the
original atom ordering and the permuted atom ordering. This
property means that the similarity transform can be computed by
simply initiating with a permuted coordinate and similarly Q can be
recovered by permuting the atom slice of PQ using the same
bijection with linear cost.

Constructing the Hessian using batched tensor products and
broadcasts
We begin with the following un-vectorized notation, where the
superscript (0) is dropped for readability.

Xð0Þ = : X 0ð Þ
1 , . . . ,X 0ð Þ

n

h i
;VecðXð0ÞÞ= : x1,y1,z1, . . . ,xn,yn,zn

� � ð9Þ

Applying differentiations, the off-diagonal force constant block is
specified by

Hij = � kij

rð0Þij

� �2 X 0ð Þ
i �X 0ð Þ

j

� �
X 0ð Þ

i �X 0ð Þ
j

� �T

= � kij

rð0Þij

� �2
xi � xj

� �2
ðxi � xjÞðyi � yjÞ ðxi � xjÞðzi � zjÞ

ðyi � yjÞðxi � xjÞ yi � yj
� �2

ðyi � yjÞðzi � zjÞ

ðzi � zjÞðxi � xjÞ ðzi � zjÞðyi � yjÞ zi � zj
� �2

2666664

3777775
Hii = �

X
j

Hij

ð10Þ

For any matrix A with n rows, we can define for a row in it,

βi = :
���i�min

j
j
��aij ≠0

� ���� ð11Þ

a

(a)
(b)

b

dc

Scaled Magnitude

1.00.0

Fig. 6 | Vibrations of a DNA origami airplane. Overview of motions in the first
two non-zero modes of the airplane. a The first non-zero eigenmode. b The
second non-zero eigenmode; the square border indicates the stabilizer, which is
also shown in (c). Color scale in the cartoon from blue to red indicates
increasing magnitude of vibration. Note that a logistic kernel is applied to the
eigenvector to control the magnitude in visualization. (See “Methods”). The
bottom inset show the airplane along its apparent bilateral symmetry axis. c A
zoom into the motion of the stabilizer in the second non-zero mode. The black

arrows are the displacement field of 1000 atoms randomly chosen from those in
the top 90% quantile of vibration magnitude in the eigenvector. The arrow in
magenta indicates an average direction for local clusters of the displacement
field, which also correspond to (a). d The first 10 non-zero eigenfrequencies of
themacromolecule, the eigenfrequency is the square root of eigenvalueω. Note
that explicit external deflation was applied to remove the rigid modes. Source
data are provided as a Source Data file.
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Then the bandwidth of the matrix is max
i

βi

� 	
and the profile

of the matrix is
P

iβi, the mean bandwidth is
P

i
βi

n . Clearly, due to

the cutoff RC , the layout of the Hessian tensor H 2 RN × 3×N × 3,
viewing from the atom slices, will have the same bandwidth as the
adjacency matrix K of the macromolecule. The tensor is globally
sparse in most cases. This observation also applies to standard
NMA as long range cut-offs were used for van der Waals, elec-
trostatic, and hydrogen-bonding interactions12. In general, it is
not advisable to construct a dense Hessian matrix that contains a
large number of zero entries due to the quadratic storage con-
sumption and the resultant increase in fill-ins. To construct a
sparse Hessian matrix, we find the tensorial layout by Koehl30 a
good starting notation. In which, he defined the following N ×3
matrix, which can also be vectorized as 3N elements.

Uij Xð0Þ
� �

= : 0, . . . ,0,
X 0ð Þ
i � X 0ð Þ

j

rð0Þij

,0, . . . ,0,
X 0ð Þ
j � X 0ð Þ

i

rð0Þij

,0, . . . ,0

 !
ð12Þ

The distance rð0Þij can be precomputed and filtered by kijðrð0Þij Þ for
pairs within RC . Then, the off-diagonal block of the entire Hessian
tensor is given as a sum of Kronecker products.

Hij =
X
i

X
j

kijUij � UT
ij ð13Þ

More importantly, when Hessian-vector multiplication Hw is
accessed in eigensolvers, the following canbedone separately for each
ði,jÞ pairs.

Hw=
X
ij

kij Uij � UT
ij

� �
w=

X
ij

kijðUijwÞUij ð14Þ

Given explicit indexing for locations of the non-zeros kij , the
above Hessian-vector product can be effectively parallelized on a
hyperthreaded computer.

In our implementation, the tensorial representation above was
refined to fully exploit on-chip parallelismonGPU and to avoid explicit
index loading which tends to thread divergence on GPU. To facilitate
discussion, we define a difference matrix Gij 2 RN × 3

Gj Xð0Þ
� �

= : 0, . . . ,0,X 0ð Þ
b3

� X 0ð Þ
j , . . . ,X 0ð Þ

i � X 0ð Þ
j , . . . ,X 0ð Þ

b4
� X 0ð Þ

j ,0, . . . ,0
� �

ð15Þ

Supposed, we know jb3 � b4j is the bandwidth of an off-diagonal
batch of H, then, for two contiguous atom indices ðb1,b2� and ðb3,b4�,
the batchG 2 R3 b1�b2j j× 3jb3�b4 j can be given by the four index corners
(b1,b2,b3,b4).

Gðb1 ,b2 ,b3 ,b4Þ =
X

i2ðb1 ,b2 �

X
j2ðb3 ,b4 �

Gi � GT
j ð16Þ

In practice, ðb3,b4� could include intervals that lack neighboring
atoms for the range ðb1,b2�, but the indexing slice ðb3,b4� can be further
refined into multiple contiguous indexing slices to eliminate unne-
cessary calculations. Nevertheless, filtering for non-zero elements in
the batch can be done by observing Eq. (10) in that the squared
interatomic distance is given by the trace of each block ðrð0Þij Þ2 = trðGijÞ,
then we can consider the following block-wise operations, readily

parallelizable on GPU by in-place tensorial broadcasts.

Y ij = trðGijÞ

Kij =
1, Y ij ≤ R2

C

0, Y ij >R
2
C

(

Y ij =
Y�1
ij , 8i≠ j

0, 8i= j

(
Hðb1 ,b2 ,b3 ,b4Þ = K b1 ,b2 ,b3 ,b4ð Þ � Y b1 ,b2 ,b3 ,b4ð Þ

� �
� 13×3

� �
� G

ð17Þ

The � is the Hadamard product operator; 13× 3 is the all-ones
matrix presenting the broadcast. This is followed by row-sum in the
diagonal Hii =�

P
j2ðb3 ,b4 �Hij accordingly. Only the lower triangle is

incrementally stored in the Column-Sparse-Row (CSR) format for
subsequent calculation, hence consuming Oð9pÞ memory for the data
content; p is the number of non-zero pairwise interaction for i≥ j. The
dense batch Gðb1 ,b2 ,b3 ,b4Þ presented above will require
Oð9 b1 � b2

�� �� b3 � b4

�� ��Þ erasablememory, butwewill show later that the
local bandwidth b3 � b4

�� �� can be reduced.

Bandwidth and layout of the Hessian
Obviously, the cost of the parallel computation will depend on the
local bandwidth b3 � b4

�� �� of the batch ðb1,b2�. The Hessian obtained
with the default ordering of atoms can result in very large bandwidths
with non-uniform patterns meaning interactions among sequentially
distal parts within the tertiary structure or individual chains within a
quaternary structure. A hypothetical minimal example is a macro-
molecule with 3 peptide chains α, β and γ, where only α-γ and β-γ
interactions were found, but not α-β; in this case, the order α-β-γ will
have a much larger bandwidth than α-γ-β. Many reasons can attribute
to this observation. An example found in the benchmark set is a chi-
meric Sesbaniamosaic virus coat protein72(PDBID: 4Y5Z) composed of
12 sets of pentamers arranged on the vertices of an icosahedron, where
eachprotein chain in the pentamer interacts with 7 other chains within
8 Å. (See Supplementary Fig. 1) A systematic order to build up this
icosahedron, as done by the authors, is to place a pentamer on each of
the four corners of the three orthogonal golden rectangles, done one
rectangle after another starting at the shorter sides of the golden
rectangles. (See Supplementary Fig. 1a) In this case, pentamers on the
shorter sides interact within 8 Å among each other, but pentamers on
the long sides of the same rectangle do not. This creates exactly the
situation where the aforementioned α-β-γ order arises. Indeed, the
vertices on a icosahedron can never be clustered satisfactorily and
there are specialized algorithm to calculate their vibrational
dyanmics73. Besides, due to the inconsistent presence of water mole-
cules, the exact symmetry is destroyed in the crystal structure, which is
commonly encountered. Nevertheless, the degeneracies inmodes due
to the apparent symmetry of this macromolecule is captured in our
program. (See Supplementary Fig. 1d) There are also cases where no
meaningful sequential ordering is possible when intact chemical
structures (e.g. cofactors, ions, water, lipids) are intercalated between
sequentially distal parts of the polymer. A practical example in the
benchmark set is a PsbM-deletion mutant of photosystem II74 (PDBID:
5H2F), where elongated lipids and cofactors are integral part of the
macromolecule complex surrounded by several protein chains. In this
case, it is not obvious as for how to rearrange the atoms to reduce the
bandwidth, but we can show that the Hessian can always be permuted
to reduce bandwidth by the algorithm described in the next section.
(See Supplementary Fig. 2)

Bandwidth reduction of the Hessian matrix
Finding a permutation to minimize the bandwidth is NP-complete41,
but a reduction of bandwidth and its overall profile can be approxi-
mated by algorithms such as the Reverse Cuthill McKee (RCM)
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algorithm. The RCM is a greedy approximation with a breadth-first
level structure. The input of a standard RCM algorithm is an adjacency
graph, and its outputs is a permuted node ordering. In RCM, starting
from a peripheral nodewith the lowest degree of connection, adjacent
unvisited nodes are collected as a level structure and re-ordered by
their degree of connection. Provided that an adjacency matrix K is
precomputed, the time complexity of the RCM is bounded by
Oð4 Ej j+2cm Ej j+NÞ, where m= : max

i

P
jKij is the maximum degree

among all nodes and 2 Ej j is the number of edges inK. A detail proof is
in reference43. The term 4jEj is referring to 2jEj operations to deter-
mine the degree of each node plus another 2jEj operations to sweep
through the adjacencymatrix to locate theneighbors.The term 2cm Ej j
refers to the insertion sorting of the degree in retrieved neighbors.
The last term N is due to reversal of order. The input of RCM is an
adjacency matrix K. For 3-D coordinates, this may be obtained by a
cell-linked list data structure in O 27Nnc

� 	
where nc is the average

number of particles per cell in volume R3
c or simply an all-to-all cal-

culation as done in ProDy2.4 for small-sized systems. Therefore, a
standard RCM algorithm operating on 3-D coordinate data will
require a total time complexity of Oð27Nnc +4 Ej j+2cm Ej j+NÞ and
ideally a OðmNÞ memory to operate due to the adjacency matrix. To
surrogate the storage of the adjacency matrix, we supplemented the
RCMwith a k-D tree data structure47, which takes the coordinate data
Xð0Þ directly as input. The algorithm is labeled as 3DRCM to avoid
confusion with the standard RCM. A pseudocode of our 3DRCM
implementation is provided in the Supplementary Information as
Algorithm 1. A 3-D tree is a balanced space-partitioning binary tree,
which can be constructed and stored by finding and storing hyper-
planes that split the number of points in halves. As such, the con-
struction of a 3-D tree takes OðN logNÞ time and O 3Nð Þ space. On a
3-D tree, each range search for adjacent neighbors within threshold
distance takes Oð3N2=3Þ75. At this stage, the total time complexity of
3DRCM appears to be Oð2*3N5

3 + 2cm Ej j+NÞ, where the first term
2*3N

5
3 is due to the collection of degree in each node and the search

for neighbor, but wewill show that in both 3DRCMand RCM the term
Oð2cm Ej jÞ is dominating. A tighter bound onOð2cm Ej jÞ in the context
of NMA can be obtained as follows. For a stable macromolecule
without atomic clashes, the shortest interatomic distance is due to
covalent bonds at around 1Å. The Kepler’s conjecture proven by
Hales76 states that the maximum volume ratio occupied by equidi-
stant sphere packing is π

3
ffiffi
2

p <0:7405. Hence, themaximumnumber of
atoms allowable without clashes within radius RC is ρ = : R3

C
π

3
ffiffi
2

p ≥m.
This packing density ρ presents an upper bound to the numberm of
non-zero entries in a row on the adjacency matrix. This bounds the
total number of edges as

ρN ≥mN > 2jEj ð18Þ

For an8Å radius, there canonly be less than380 atoms in absence
of clash. Therefore, the time complexity of 3DRCM and RCM in the
context of NMA are bounded by Oð6N5

3 + cρ2N +NÞ and
Oð27Nρ+2ρN + cρ2N +NÞ respectively. Taking c= 1, the 3DRCM is
dominated by the pseudolinear term Oðρ2NÞ unless N is beyond 3.7
million atoms. From experience, for a system containing 2.4 million
atoms, computing the permutation ordering with 3DRCM and the
calculation of the Hessian took only 5.2min and 6.9min in wall-clock
time respectively. See Supplementary Fig. 4. Hence, for most practical
purpose, the trade-offs in time complexity in 3DRCM compared to
RCM is negligible.

Low-complexity Krylov-subspace eigensolvers
In this work we have implemented several iterative methods31,32,49,58 to
solve large eigenvalue problems on the GPU. Specifically, in NMA, we
are mostly interested in the smallest non-zero eigenpairs. The Hessian

matrix of concern is a sparse positive semidefinite real symmetric
matrix without weak diagonal dominance. To facilitate communica-
tion, we adopt more generic notations here. The matrix of concern is
notated as A 2 Rn×n; the exact and the approximate eigenpairs
are Λ 2 Rm×m,U 2 Rn×m� 	

and eΛ 2 Rm×m,eU 2 Rn×m
� �

respectively; n
andm denotes the dimension of the basis set and the number of basis
respectively. The standard eigenproblem is thus AU=UΛ and we
assumed orthonormality among the exact eigenvectors. The approx-
imate eλ 2 eΛ can be obtained from the Rayleigh quotient eλ= euTAeu and
the residual r= : Aeu�eλeu can always be evaluated by its 2-norm, the
residual error rj jj j2.

In the following paragraphs, we will progressively introduce two
branches of iterative methods implemented, namely the Hermitian
Lanczos Methods followed by the Jacobi-Davidson Method. Only
rationales and key equationswere presented. A commoncentral idea is
to find eu by refining an initial guess v0 2 Rn to build up an ortho-
normal basis V 2 Rn×m in the Krylov subspace

Kk A,v0

� 	
= : spanfv0,A1v0,A

2v0, . . . ,A
k�1v0g ð19Þ

The residual is minimized when the Galerkin condition

Vej
� �T

Aeu� eλeu� �
=08j 2 ð0, . . . ,m� 1Þ ð20Þ

is satisfied, where eu = :Vy. The y 2 Rm× 1 is an unknown component to
combine V, but if V 2 Kk has its orthonormality maintained satisfac-
torily, for example by incorporating the Modified Gram Schmidt
algorithm (MGS), then y is the eigenvector of a symmetric tridiagonal
eigenproblem77 of a much smaller size m×m

VTAV
� �

y=eλy, ð21Þ

and eu 2 Rn can be recovered by definition. This orthogonal projection
technique, an example of Rayleigh-Ritz process, is common to all three
methods implemented.

Technical remarks. Given the recurring application of certain tech-
niques in the implemented methods, an assortment of technical
remarks is presented here before progressing further. TheMGS can be
applied more than once to prevent loss of orthogonality due to float
point roundoffs and the procedure is called a full reorthogonalization
(FRO). A pseudocode of orthogonalizing a vector against a basis with
MGS, and similarly with an Iterative Classical Gram-Schmidt (ICGS)
algorithm is provided in the Supplementary Information as Algorithm
2 and Algorithm 3. The low-complexityOðn3Þ cost of the matrix-vector
multiplications in producing Kk can be amortized by parallelisms in
GPU.Whenonly the lower triangleL ofA is available, themultiplication
with an arbitrary vector x can be done as a sum decomposition
Lx+LTx�Dx, where D= :diagðAÞ. In our implementation, a custom
kernel that utilizes the SpMV algorithm in CuSPARSE is written to
accommodate the availability of the lower triangle, halving the mem-
ory requirement to access the Hessian. In all cases, the convergence
rate of the i-th eigenpair is dictated by the ratio of adjacent exact
eigenvalues λi

λi+ 1

��� ���≤ 1, the smaller the better. Note that A was shifted
upward as A+ I to avoid poor condition number. Several strategies to
improve the convergence rate for the smallest eigenpairs includes
(1) the Shift-and-Inverse technique, where the Ritz pairs of A� σIð Þ�1

closest to σ was sought instead and the inverse is incorporated into the
matrix-vector product by solving for vðk + 1Þ in A� σIð Þvðk + 1Þ =vðkÞ,
(2) the implicitly shifted QR algorithm by Francis78, where multiple
shifts were applied to the subspace iteration problem typically con-
cerning a small eigenproblem (See part b of Algorithm 5) and (3) filter
diagonalization33,34,57 that magnifies convergence rate for regions of a
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spectrum (See Algorithm 4,8 and 9 and later sections). Finally, the six
exact eigenvectors U6 corresponding to the rigid modes can be
removed from Kk by an explicit external deflation36; the dense
deflated matrix A� σHU6I6U

T
6, with eigenvalues corresponding to U6

raised to σH , is not stored but incorporated into the matrix-vector
multiplications; the sparse U6 is stored in CSR format. This is imple-
mented in all three methods and can be optionally called.

Hermitian Lanczos method (HLM). The V 2 Kk described earlier can
be obtained iteratively as vk+ 1 by projecting away components of
previously obtained vi8i 2 0 . . . k from the current matrix-vector pro-
duct Avk. In the passing, the smaller eigenproblem T= :VTAV is also
produced. Importantly, for a symmetric matrixA and V 2 Kk , the T is
symmetric tridiagonal. Therefore, the recursion to obtain vk+ 1 sim-
plifies to three terms

vk + 1 =Avk � βkvk�1 � αkvk ð22Þ

Where αk = : vTkAvk and βk = : vTk�1Avk are the main diagonal and the
first subdiagonal of T. This is the essence of the HLM proposed by
Lanczos79. Collecting the recursion and a rearrangement reveals the
Lanczos factorization stopping at the k-th step.

AVk =VkTk +βkvk + 1e
T
k ð23Þ

A pseudocode of a p-step Lanczos Factorization is provided in the
Supplementary Information asAlgorithm4.Note that the approximate
eigenvectors obtained from the HLM will converge to those with
extremal eigenvalues, i.e., both the largest and the smallest eigenpairs,
but only the smallest eigenpairs are wanted in our problem setting.
Further, while the basis Vk builds up in each iterative step, eventually
we will experience overflow in storage, likely before convergence. To
address these concerns, two practical variants of the HLM with dif-
ferent restarting techniques were proposed.

• Implicitly Restarted Lanczos Method (IRLM). The IRLM algo-
rithm was proposed by Lehoucq and Sorensen49. In IRLM, the
Lanczos factorization is supplemented with an implicitly shifted
QR algorithm by Francis78. The purpose is to shift the smaller
eigensystem Tðj�1Þ at each restart round j by the current approx-
imation of the m� k unwanted eigenvalues such that the con-
vergence rate of the k wanted smallest eigenvalues is improved.
The only information we need to determine these shifts is the
sorted approximated eigenvalues and the number of wanted
eigenvalues we desired. As a result, after obtaining each QR fac-
torization QðjÞRðjÞ =Tðj�1Þ � eλjI, the Lanczos factorization in Eq.
(23) is modified as

AbVk = bVk
bTk +vk + 1

bb ð24Þ

where bb =Q jð ÞTek and bT=RðjÞQðjÞ +eλkI and the first k ortho-
normal basis is updated as bVk =VkQ

ðjÞ. This is equivalent to
performing m� k simple polynomial filterings80. In our imple-
mentation, to promote parallelism, the m� k QR factorizations
was performed before a cumulative update of the matrices; this
is followed by a full reorthogonalization of the updated basisVk.
Note that in IRLM the residual error rj jj j2 is bounded by the βk + 1,
a result due to Paige81 such that rj jj j2 needs not be computed. A
pseudocode of our IRLM implementation is provided in the
Supplementary Information as Algorithm 5.

• Thick-Restart Lanczos Method (TRLM). The TRLM algorithm
was proposed by Wu and Simon58. In TRLM, the smaller eigen-
problem T is again solved with its eigenpairs sorted, but rather
than performing implicit shift, the T is projected onto its wanted
eigenvectors Yk as bT=YT

kTYk and the basis updated to bV=VYk

accordingly. As a result, the Lanczos factorization (in Eq. (23)) is
modified as

AbVk = bVk
bTk +βkvk + 1e

T
kY ð25Þ

When we want to find the next vk+ 1 by orthogonalizing Avk
against the previous bVk, these transforms allow us to compute it with
βk�1ðYTek�1Þ known from the restart

bvk+ 1 =Abvk � bαbvk � bVk�1βk�1ðYTek�1Þ ð26Þ

Full reorthogonalization was done in the basis bVk. A pseudocode
of our TRLM implementation is provided in the Supplementary
Information as Algorithm 6.

Jacobi-Davidsonmethod (JDM). The JDM algorithmwas proposed by
Fokkema, Sleijpen and Van der Vorst32. Similar to the HLM, the JDM
also considers approximations in the Krylov subspace, but rather than
refining the approximations with a Lanczos factorization, it attempts
to solve the following equation

A eu+ z
� 	

= eλ+η� �
ðeu+ zÞ ð27Þ

where an approximate solution pair (η,z) to correct the approximate
eigenpair ðeλ,euÞ can be obtained by incorporating the Galerkin condi-
tion eu+ z

� 	Tz=0 into projectors resulting in the following correction
equation

I� eueuT
� �

A� eλI� �
I� eueuT
� �

z= � r ð28Þ

The correction equation does not need to be solved exactly such
that A in this equation can be replaced by a preconditioner of A or by
simply finding a solution of z to certain extent of precision. For the
NMA eigenproblems, we cannot find a satisfactory preconditioner that
is not dense such that GPU memory is not overflowed. Therefore, in
our implementation, the latter strategy was adopted by restricting the
number of steps or precision in the solution in the generalizedminimal
residual iteration (GMRES), which is also a Shift-and-Inverse example.
An implementation of the GMRES taking a sparse matrix input was
modified from the CuPy package. A pseudocode of our JDM imple-
mentation is provided in the Supplementary Information as
Algorithm 7.

Filter diagonalization
TheLanczosandDavidsonmethods canbe adjustedbyfilters to isolate
certain eigenvalues. The motivation of this Filter Diagonalization (FD)
approach is to transform the spectrum such that eigenvalues from
wanted intervals become dominant33,82. (See Fig. 6e for an illustration.)
For example, to obtain the lower spectrum, the Chebyshev-Davidson
Method35 (CDM) removed the Jacobi correction in JDM (which
approximates a moving rational filter) and applied a moving low-pass,
fixed-degree, Chebyshev polynomial of the first kind to the input
matrix. (Algorithm 8) FD can also be applied to solve for the interior
rather than the extremal eigenpairs34,57. This can be useful when we are
extracting a large amount of eigenpairs from the lower end of the
spectrum, as then the interior slices of the spectrum can be obtained
without storing andorthogonalizing against thefiltered subspace from
the very lowest end. To achieve this, a band-pass filter, which is an
M-degree Chebyshev expansion of a Dirac-delta-like function damped
by a Jackson kernel33,83, was developed in the EVSL library34,57 and
incorporated into our INCHING-CTRLM protocol (Algorithm 6, shared
with INCHING-TRLMprotocol). The band-passfilter pðtÞwere obtained
following the three-term recurrence of Tj, the j-th degree Chebyshev
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polynomial of the first kind.

Tj + 2 tð Þ=2tTj + 1 tð Þ � Tj tð Þ;To tð Þ= 1;T 1 tð Þ= t;

p tð Þ=
Xj =M
j =0

gðMÞ
j μjT jðtÞ=

Xj =M
j =0

gðMÞ
j μjT jðcosðθÞÞ

ð29Þ

The coefficients μj in the expansion and the damping kernel g Mð Þ
j

were precalculated with the following equations, where δj0 is the
Kronecker delta and eπ = : π=ðM +2Þ and θ is the adjusted center of the
arccosine of the corresponding transformed wanted interval ½αs,βs �
within ½�1,1�: (See reference34,57 for further details.)

gðMÞ
j = :

sin j + 1ð Þeπ� 	
M + 2ð Þ sinðeπÞ + 1� j + 1

M +2


 �
cosðjeπÞ

μj = � 1
2
δj0 + cosðjθÞ

ð30Þ

The filter was applied during matrix-vector multiplication (Algo-
rithm 9), where the spectrum of Awere scaled and shifted to the range
of cosine ½�1,1� using spectral bounds from the Lanczos process (i.e.
Algorithm 4) following reference35.

Implementation notes
In many parts of the algorithms presented above, matrix-vector mul-
tiplication, whether dense or sparse, is often the calculation bottle-
neck. In our implementations, this shortcoming is amortized by
capitalizing on the high degree of parallelism in GPU and existing
techniques built around NVIDIA® GPUs, including CUDA61 (v. 11.6.2),
cuBLAS62, and cuSPARSE63. To facilitate installation, code readability
and version control, the CuPy package (v. 11.5) was used as an appli-
cation programming interface to access these technologies. In all the
algorithms implemented, only the lower triangle of the Hessianmatrix
was required as input in CSR format. Our INCHING-JDM and INCHING-
IRLM implementations were written with reference to the thesis of
Geus84 and the ARPACK package50 respectively. Our INCHING-TRLM
implementation is modified from the CuPy library’s default, where
memory footprint was optimized by exploiting sum decomposition of
the lower triangle; further speedup was achieved by reducing the
number of transposes done to the basis set. Where a smaller projected
eigenproblem has to be solved, the calculation was done on CPU by
calling ‘numpy.linalg.eigh’ from the NumPy (v. 1.23.5) package85. For
methods with Chebyshev filter, the implementations in the EVSL
library57 and the Chebyshev-Davidson method35 were referenced.
When a band-pass Chebyshev filter is invoked, the converged eigen-
vectors are sorted again before off-loading for storage. For bench-
marks with ProDy, the ProDy (v.2.4) package48 was installed with the
NumPy (v. 1.23.5) package85 and the SciPy (v.1.8.0) package86. Dense
eigenproblems in ProDy are solved using a LAPACK backend called
through NumPy. Sparse eigenproblems in ProDy are solved using a
ARPACK backend called through SciPy ‘scipy.sparse.linalg.eigsh’.
Benchmarks on correctness, memory and speed were conducted on a
single pieceof A100NVIDIA®GPUwith tensor core activated and80GB
GPU memory capacity and the AMD EPYCTM 7513 processor with 64
threads. For systems withmore than 2.1 billion non-zero entries, 64-bit
integers were used for indexing in the CSR format, otherwise 32-bit
integerswere usedbydefault.Methodswerealso testedon aRTX4090
NVIDIA® GPU with 24GB memory and 64-bit indexing used
throughout.

Hyperparameters in calculations
In all cases, the following hyperparameterswere used unless otherwise
stated. We followed the work of Koehl30 taking the neighborhood
cutoff thresholdRC = 8Å for atomic systems. After performing 3DRCM,
the indexing slice for each batch of atomwas analyzed for presence of

gaps, i.e., regions where no neighbor of the batch is present. The
indexing slice was then split into multiple contiguous indexing slices
by removing gaps that extend for more than 100 atoms. For INCHING-
IRLM, the tolerance of error bound is set to 10�10. For both INCHING-
TRLM and INCHING-JDM, the tolerance of residual error is 10�12. The
correction equation in INCHING-JDM was solved using the GMRES
algorithm, where only 20 steps of minimization at max were allowed.
The default maximum allowed number of restarts for INCHING-IRLM,
INCHING-TRLM and INCHING-JDM is 15000 steps, but for RC = 6Å
benchmarks, at max 30000 steps were allowed to accommodate dif-
ficult convergence in some cases. The maximum allowed basis in the
Krylov subspace is three times the desired number of output eigen-
pairs, i.e. which is 64× 3 = 192 vectors in the benchmark. The 1000
modes presented in Fig. 6 (200modes in Supplementary Fig. 10) were
calculated using INCHING-CTRLM in batches of 64 modes with 128
basis (28 modes with 56 basis) for all structures, though larger basis
were affordable; external explicit deflation of the free modes were
applied when low-pass filter is used. To scan through the lower end of
the spectrum using INCHING-CTRLM, we begin by applying the low-
pass filter to obtain the largest of the smallestm eigenvalues αs and set
αs � 10�10 as the left bound of the next interior wanted interval ½αs,βs�;
the process continues with the band-pass filter until a desired number
of eigenpairs are obtained. Note that a binary search was performed to
locate βs such that ½αs,βs� contains <m eigenvalues for the band-pass
case and <5m eigenvalues for the low-pass case. The polynomial
degrees were also maximized to maintain the smallest transformed
eigenvalues in ½αs,βs� as 0.7 for both filters such that convergence rate
remained constant. (See Fig. 6e.). All programs were stopped if con-
vergence was not achieved within 48 h, wall-clock time. All INCHING
programs were stopped if the maximum number of restarts were
exceeded. For all benchmarks with RC = 14Å, 64-bit integers indexing
were used for consistency.

Benchmark coordinates
While ideally all the structures on the Protein Data Bank can be con-
sidered, we randomly selected structures at an increasing interval. For
systems with less than 100 thousand atoms, structures were down-
loaded in the PDB format; the interval of increase is around 1 thousand
atoms. For systems with more than 100 thousand atoms, structures
were downloaded as mmCIF format; the interval of increase is around
10 thousand atoms. Note that while the iterativemethods all work very
well, some structures can contain components not connected within 8
Å threshold, resulting in more than 6 rigid modes. This happens in a
small portion of PDB structures when crystallographic water(s) or
protein chain(s) with no neighbor within 8 Å were scrupulously put
into the crystallographic map. These structures were removed from
consideration to avoid confusion. Overall, 85 structures with less than
100 thousand atoms and 31 structures with more than 100 thousand
atoms were tested. This benchmark set contains 116 structures in total
with number of atoms ranging from around 1 thousand atoms to 2.4
million atoms.

Megascale atomic structures
Weapplied ourmethod to someof the largest atomicobjects available.
ThematureHIV-1 capsid structure (PDBID:3J3Q) containing around 2.4
million atoms was obtained from the Protein Data Bank37 without any
modification. The human Nuclear Pore Complex structure (EMDB:
EMD14321, PDBID: 7R5J) was downloaded as a bioassembly from the
Protein Data Bank37 and chains LA,MA,NA,OA with clashing linkers
were removed; the final structure contains 4.8 million atoms. The
atomic structure of the 26 million atoms Faustovirus capsid
(PDBID:5J7V) was downloaded from the Protein Data Bank; Cα were
extracted from the structure resulting in a 5 million pseudo-atom
coarse-grained representation; NMAwithRC = 14Åwas performedwith
INCHING-CTRLM-HalfSparse with external explicit deflation of the 6
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free modes; the first 64 non-zero modes were obtained. The atomic
structure of the DNA airplane67 was obtained fromNanobase.org87 and
the atomic coordinates were reconstructed using TacoxDNA88; the
final structure includes hydrogens and contains 1.8 million atoms. The
NMA of HIV-1 capsid structure were calculated using INCHING-JDM-
HalfSparse and the same hyperparameters of numerical methods
outlined above. For the DNA airplane and the NPC complex, the NMA
was calculated using INCHING-JDM-HalfSparse with external explicit
deflation of the 6 free modes, the number of modes to resolve, the
maximumallowed basis in the Krylov subspace, themaximumnumber
of allowed steps in GMRES and the maximum number of restarts
allowed were revised to the first 30 non-zero normal modes, 120 vec-
tors, 150 GMRES steps and 550000 restarts respectively, otherwise all
other hyperparameters are the same. The megascale structures and
two movies corresponding to a mature HIV-1 capsid structure
(PDBID:3J3Q, Supplementary Movie 1) and a ribosome bound to
elongation factor G (PDBID:4V9H, Supplementary Movie 2) were dis-
played using PyMOL (v2.4.1).

A logistic kernel to visualize atomic motion
In all the iterative methods, the resultant eigenvector matrix is
orthonormalized, which means as size of the system increases a
decreasing magnitude of atomic displacement vector will be experi-
enced. In our visualization module, to avoid this scaling problem, a
logistic kernel is applied to fine-tune the atomic magnitude xi of the
eigentensor. First, to avoid eccentricity in the atomicmagnitudes, they
are clipped between (0.025, 0.975) quantile of the magnitudes. Sec-
ond, a logistic kernel is applied on the clippedmagnitude xi for the i-th
atom

yi =G xijϑ
� 	

=
1

1 + ϑe�xið Þ < 1 ð31Þ

where ϑ=0:05. To remove the effect of scaling on the normalized
eigenvector as the number of atom increase, the output magnitudes
are further centered at eyi = : yi�y�

y+�y� ≤ 1, where ðy�,y+ Þ are the minimum
and maximum of yi8i.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study, including the atomic coordinates and
benchmarks, have been deposited in the Zenodo database under
accession code 808781789. Source data are provided with this paper.

Code availability
The INCHING source code is available onGitHub90 https://github.com/
jhmlam/Inching. Jupyter notebooks and Python scripts for the
experiments and analyses presented in the paper are available. Frozen
versions of the software and associated code for analysis are also
available in the Zenodo database under accession code 1064560191. All
source codes are provided under an Apache License 2.0 license.
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