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The genetic landscape of a metabolic
interaction

Thuy N. Nguyen 1,2,3,5, Christine Ingle1,2,3, Samuel Thompson4,6 &
Kimberly A. Reynolds 1,2,3

While much prior work has explored the constraints on protein sequence and
evolution induced by physical protein-protein interactions, the sequence-level
constraints emerging from non-binding functional interactions in metabolism
remain unclear. To quantify how variation in the activity of one enzyme con-
strains the biochemical parameters and sequence of another, we focus on
dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), a pair of
enzymes catalyzing consecutive reactions in folate metabolism. We use deep
mutational scanning to quantify the growth rate effect of 2696 DHFR single
mutations in 3 TYMS backgrounds under conditions selected to emphasize
biochemical epistasis. Our data are well-described by a relatively simple
enzyme velocity to growth rate model that quantifies how metabolic context
tunes enzymemutational tolerance. Together our results reveal the structural
distribution of epistasis in a metabolic enzyme and establish a foundation for
the design of multi-enzyme systems.

Enzymes function within biochemical pathways, exchanging sub-
strates and products to generate useful metabolites. This metabolic
context places constraints on enzyme velocity—the product of cat-
alytic activity and enzyme abundance. For example, the relative
velocities of some enzymes must be coordinated to avoid accumu-
lation of deleterious metabolic intermediates1–3. In other instances,
optimal enzyme abundance is set by a tradeoff between the cost of
protein synthesis and the benefit of efficient nutrient utilization4–6.
Considered at the pathway scale, metabolic enzymes are often pro-
duced in evolutionarily conserved stoichiometric ratios across
species7, providing further indication that relative—not just absolute
—enzyme velocity is under selection. More generally, the relation-
ships amongst the velocity of a given enzyme, metabolic flux
through a pathway, and cellular growth rate are non-linear and
shaped by interactions between pathway enzymes (Fig. 1a). Indeed, a
key result of metabolic control theory is that the control coefficient
of an enzyme—defined as the fractional change in pathway-level flux
given a fractional change in enzyme velocity—depends on the

starting (native) velocity of the enzyme, but also on the velocity of all
other enzymes in the pathway8,9. That is to say, given that enzymes
act sequentially to produce metabolites, the effects of mutations on
cellular phenotype can be buffered or amplified depending onwhich
enzymatic reactions control metabolic flux. As a consequence,
enzyme mutations that are neutral in one context may have pro-
found consequences for metabolic flux and growth rate in the
background of variation in another10–14. This context-dependence, or
epistasis, amongst metabolic enzymes need not be mediated by
direct physical binding, but emerges indirectly through shared
metabolite pools and a need to maintain flux while avoiding the
accumulation of deleterious intermediates6,11,15.

While prior work has explored how physical protein-protein
interactions (binding) constrain protein sequence, the constraints
on sequence and enzymatic activity emerging from these sorts of
non-binding functional interactions in metabolism remain unclear.
How is this biochemically-mediated epistasis organized in the pro-
tein structure and reflected in the sequence? A quantitative
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understanding of how pathway context shapes sequence and
activity would assist in the interpretation of disease-associated
mutations, the design of new enzymes, and directing the laboratory
evolution of metabolic pathways.

In this work, we examine the residue-level epistatic interactions
between a pair of enzymes that catalyze consecutive reactions in
folate metabolism: dihdyrofolate reductase (DHFR) and thymidy-
late synthase (TYMS). The activity of these enzymes is strongly
linked to E. coli growth rate, they are frequent targets of antibiotics
and chemotherapeutics, and they co-evolve as a module both in the
laboratory and across thousands of bacterial genomes1. Taking this
enzyme pair as a simplified model system in which to examine a
biochemically-mediated epistatic interaction, we create a mathe-
matical model relating variation in DHFR and TYMS catalytic para-
meters to growth rate using a focused set of well-characterized
point mutants. Then, to more deeply test this model and compre-
hensively map the pattern of epistasis between these two enzymes,
we measure the effect of nearly all possible DHFR single mutations
(2696 in total) in the context of three TYMS variants selected to
span a range of catalytic activities. Themodel predicts—and the data

shows—that TYMS background profoundly changes both the sign
(buffering vs. aggravating) and magnitude of DHFR epistasis. Map-
ping the epistatic effects of mutation to the DHFR tertiary structure
reveals that they are organized into distinct clusters based on epi-
static sign. Additionally, mutations with the largest magnitude
epistatic effect to TYMS center around the DHFR active site, while
more weakly epistatic positions radiate outwards. Finally, we infer
approximate values for DHFR catalytic power (kcat/Km) across all
2696 mutations by using growth rate measurements across TYMS
backgrounds to constrain the enzyme velocity to growth rate
model. The residues linked to catalysis form a structurally dis-
tributed network inside the enzyme and are highly evolutionarily
conserved. Taken together, our data demonstrates at single-residue
resolution how epistasis mediated through a biochemical interac-
tion reshapes a mutational landscape. Our results indicate that
metabolic context can strongly modulate enzyme evolution in both
the clinic and the lab by facilitating or frustrating available muta-
tional paths. More generally, our results invite one to consider new
ideas for the joint design of multi-enzyme systems that take into
account shared constraints on relative activity and sequence.
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Fig. 1 | Constructing a biochemistry-to-growth model for DHFR and TYMS.
a Schematic of metabolic control. Many enzymes show a hyperbolic relationship
between velocity and flux; the enzyme control coefficient describes the fractional
change in flux given a fractional change in velocity. Control coefficients vary with
starting enzyme velocity (purple and dark blue arrows, background A) and can
change with genetic background (violet and light blue arrows, background B).
Consequently mutations can have a strong effect on flux and growth in one back-
ground but not another.bDHFR andTYMS in folatemetabolism.Metabolites are in
gray or black italic text. Dotted lines indicate multiple intermediate reactions
summarized with a single line. c A simplified, abstracted version of the DHFR and
TYMS system. Again dotted lines indicate multiple intermediate reactions sum-
marized with a single line. d The relationship between experimentally measured
relative abundance of [10-formyl-THF] and E. coli growth rate. Each point is a par-
ticular DHFR/TYMS genotype. Red points indicate five DHFR variants in the back-
ground of TYMS R166Q and black indicates the same DHFR variants in the context

of WT TYMS. Error bars indicate the standard deviation across N = 3 replicates for
growth rate (y-axis) and 10-formyl-THF abundance (x-axis), centered at the mean.
The blue dotted line is the best fit hyperbolic model (Eq. (1)) relating THF abun-
dance to growth. e Correlation between experimentally measured log10[10-formyl-
THF] relative abundance andmodel prediction (as computedwith Eq. (3)). The gray
dotted line indicates x = y. Color coding is identical to (d). Error bars in x indicate
the standard deviation across N = 3 replicate experiments (centered at the mean),
error bars in y are standard deviation across ten fits obtained by jackknife (leave-
one-out) sub-sampling the data and refitting (centered at the mean). f Correlation
between experimentally measured and predicted growth rates for five DHFR point
mutations in two TYMS backgrounds (same mutants as d, e). The gray dotted line
indicates x = y. Color coding is identical to (d). Error bars in x indicate the standard
deviation acrossN = 3 experimental replicates, error bars in y describe the standard
deviation obtained by jackknife (leave-one-out) sub-sampling the data and refitting
the model ten times (all points centered at the mean).
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Results
An enzyme velocity to growth rate model for DHFR and TYMS
We constructed a mathematical model relating changes in DHFR and
TYMS catalytic parameters to growth rate phenotype. Our goals were
to (1) formalize our previous empirical findings describing DHFR/
TYMS biochemical coupling1, (2) quantify the absolute and relative
constraints on DHFR and TYMS catalytic activity, and (3) define the
relationship between biochemical activity and epistasis. DHFR and
TYMS play a central role in folate metabolism, a well-conserved bio-
chemical pathway involved in the synthesis of purine nucleotides,
thymidine, glycine, and methionine16 (Fig. 1b). Consequently, this
pathway is strongly linked to cell growth and a frequent target of
antibiotics and chemotherapeutics. DHFR is a 159 amino acid enzyme
that catalyzes the reductionofdihydrofolate (DHF) to tetrahydrofolate
(THF) using NADPH as a cofactor. The reduced THF then serves as a
carrier for activated one-carbon units in downstream metabolic pro-
cesses. TYMS catalyzes the oxidation of THF back to DHF during
deoxythymidine synthesis and is the sole enzyme responsible for
recycling the DHF pool17,18. Prior work by ourselves and others indi-
cates that these two enzymes are strongly functionally coupled to each
other and less coupled to the remainder of the pathway: they co-evolve
with each other in terms of synteny and gene co-occurrence across
bacterial species (while far less sowith the remainder of the pathway)1,
suppressor mutations in TYMS are sufficient to rescue inhibition of
DHFR with trimethoprim in both the lab and the clinic1,19, and reduced
expression of DHFR is uniquely rescued by reduced expression of
TYMS (and no other folatemetabolic enzyme)1,20,21. Metabolomics data
indicated that loss of DHFR function resulted in accumulation of DHF
and depletion of reduced folates, and that compensatory loss of
function mutations in TYMS help to restore DHF and THF pools to
more native-like levels1,22,23. Thus, DHFR and TYMS are a growth-linked
two-enzyme system where epistasis is driven by a biochemical inter-
action, with the added simplification that they are relatively func-
tionally decoupled from surrounding metabolic context.

With this information in mind we defined a mathematical model
comprised of two parts: the relationship between intracellular THF
abundance and growth rate, and the relationship between enzymatic
activity and intracellular THF. First, we considered the relationship
between intracellular THF abundance and growth rate. THF limitation
due to DHFR loss of function restricts the production of several
growth-linked factors, including thymidine, methionine, glycine, and
the purine precursors inosine and AICAR. Under the experimental
conditions of our growth rate assays—M9 minimal media with 0.4%
glucose, 0.2% amicase, and 50 µg/ml thymidine—thymidine is not
growth limiting (TYMS R166Q is rescued to WT-like growth) and ami-
case provides a source of free amino acids. These conditions—which
remove selection pressure on TYMS due to thymidine production—
emphasize coupling betweenDHFR andTYMS through the sharedTHF
pool which must be used to produce purine nucleotides. We pre-
viously observed a hyperbolic dependence of growth rate on reduced
folate abundance for many THF species in these experimental
conditions1. We selected 10-formyl THF with three glutamates as a
representative growth-linked reduced folate for parameterizing the
model given it’s clear relationship to growth and proximity to purine
biosynthesis. Following a similar approach as Rodrigues et al, we used
a single four-parameter sigmoidal function to relate growth rate to the
experimental measurements of intracellular THF concentration24.

g =
gmax � gmin

1 + ðK=½THF�Þn + gmin ð1Þ

Here, gmax represents themaximal growth rate, gmin is theminimal
growth rate, K is a constant that captures the concentration of
THF that yields 50% growth, and n is a Hill coefficient (Supplementary
Table 1).

The second piece of the model connects variation in DHFR and
TYMS enzyme velocity to intracellular THF concentrations. To simplify
our model, we reduced the pathway to a cycle in which DHFR and
TYMS catalyze opposing oxidation and reduction reactions (Fig. 1c).
This abstraction assumes that DHFR and TYMS dominate turnover of
the DHF and THF pools, and that the reduced folates are considered as
a single THF pool. We omitted downstream reactions of folate meta-
bolism that use one-carbon derivatives of THF in the production of
purine precursors, glycine, andmethionine (dashed lines in Fig. 1b), as
none of these other reactions oxidize THF back to DHF—they instead
add or subtract one-carbon units from the reduced THF. We thus
treated the intracellular concentration of total folate ([DHF] + [THF]) as
a constant, with DHFR and TYMS activity setting the balance between
the reduced and oxidized forms. This simplification formalizes the
notion that DHFR and TYMS are a two-enzymemodule tightly coupled
to each other but less so to the remainder of the pathway as indicated
by our prior comparative genomics and laboratory evolution
experiments1. Given this abstraction, we write a rate equation that
isolates the recycling of THF in terms of a small number of measurable
biochemical parameters:

d½THF�
dt

=
DHFR½ �*kDH

cat

1 + KDH
m =ð½foltot� � THF½ �Þ

� TYMS½ �*kTS
cat

1 +KTS
m =ð THF½ �Þ

ð2Þ

In this equation, DHFR and TYMS are treated as catalyzing
opposing reactions with Michaelis Menten kinetics, providing a rela-
tionship between steady state kinetics parameters (kDH

cat , K
DH
m , kTS

cat, K
TS
m )

and intracellular THF abundance. From this equation one can find an
analytical solution for the steady state concentration of THF in the
form of the Goldbeter-Koshland equation25,26.

½THFss�
½foltot�

=

V 1
V 2

* 1� K̂m2

� �
� K̂m1 � 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K̂m2

V 1
V 2

V 1
V 2

� 1
� �

+ V 1
V2

K̂m2 � 1
� �

+ K̂m1 + 1
� �2

r

2* V1
V2
� 1

� �

ð3Þ

Where:

V 1 = DHFR½ �kDH
cat K̂m1 =K

DH
m =foltot V 2 = TYMS½ �kTS

cat K̂m2 =K
TS
m =foltot

ð4Þ

To parameterize the complete model, we used a previously col-
lected set of metabolomics and growth rate data for five DHFR point
mutants in the background of both WT TYMS and TYMS R166Q
(Supplementary Table 2, Supplementary Table 3)1. The fiveDHFRpoint
mutations were selected to span a wide range of catalytic activities.
TYMS R166Q is an active site mutation with near complete loss of
catalytic activity27. The steady state catalytic parameters (kDH

cat , K
DH
m ,

kTS
cat, K

TS
m )were experimentallymeasured in vitro usingpurified samples

of all DHFR and TYMS variants, with the exception of TYMS R166Q
which is near-inactive and assigned an arbitrarily low kcat and high Km

(Supplementary Table 2, Supplementary Table 3). Additionally, the
relative abundance of 10-formyl-THF was previously measured by
liquid chromatography mass spectrometry for all ten DHFR/TYMS
combinations1. Given these data, we first fit the relationship between
relative 10-formyl-THF abundance and growth rate for these 10 gen-
otypes (Eq. 1), yielding four parameter values for gmax, gmin, K , and n
(Fig. 1d, Supplementary Table 1). Fourmorefit parameters then remain
in Eq. 3: (1) the concentration of the total folate pool (½foltot�) (2) the
intracellular concentration of DHFR ( DHFR½ �), (3) the intracellular
concentration of WT TYMS (½TYMSWT�), and (4) the intracellular con-
centration of TYMS R166Q (½TYMSR166Q�). We chose to fit the con-
centration of each TYMS variant separately, while defining a single
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global parameter for the concentration of all DHFR variants (whichwas
held constant regardless of variant identity). This means that our
model does not capture the differential impact of mutations on DHFR
intracellular abundance. Our logic was that TYMS variant concentra-
tion should be better constrained by our data, because our experi-
ments quantify the effect of relatively few TYMS variants in many
DHFR genetic backgrounds. In contrast, DHFR variant concentration
should be less well constrained as our dataset includes the effect of
each DHFR variant in only a few TYMS genetic backgrounds. This
relatively simplified model showed good correspondence to the data
when fit (R2 = 0.96, Fig. 1e, Supplementary Table 1). Equations 1 and 3
were then combined to estimate growth rate as a function of both
DHFR and TYMS activity, by linking catalytic activity to THF abun-
dance, and then THF abundance to growth rate. The complete model
worked well to predict growth rate on our initial training set (Fig. 1f).

TYMS context alters the sign and magnitude of DHFR muta-
tional effects
To more rigorously test our model and understand its predictions, we
expanded our dataset to include more DHFR and TYMS variants with
experimentally characterized activities. As our initial model was
developedusing only two extremeTYMSvariants (wild-type and a near
complete loss of function variant, R166Q), wewereparticularly curious
to evaluatemodel performance for TYMSmutations with intermediate
effects on catalysis and E. coli growth. We identified candidate TYMS
mutations by examining an earlier growth complementation study28. A
handful of these mutants were then cloned, screened for expression,
and when possible, purified and characterized. Through this mini-
screen we selected two mutations that stably expressed, purified
robustly, and yielded intermediate activities: TYMS R127A and Q33S
(Fig. 2a). The R127A mutation is located in the TYMS active site and is
one of four arginines that coordinate the substrate (dUMP) phosphate
group. The Q33S mutation is located at the TYMS dimer interface,
distal to the active site. We observed that R127A was more deleterious
to catalytic function than Q33S, but that both mutations were more
active thanR166Q (which shows almost nomeasurable activity in vitro,
Fig. 2b, Supplementary Table 3).

We measured growth rates for seven catalytically characterized
DHFR variants (a set of single and double mutants selected to span a
range of catalytic activities) in the background of these four TYMS
mutants (WT, R127A, Q33S and R166Q). The point mutants were
created in a plasmid encoding both DHFR and TYMS (see Methods
for details), and the plasmids were transformed into an E. coli
selection strain lacking the endogenous DHFR and TYMS genes
(ER2566 ΔfolA ΔthyA). Growth rates weremeasured in triplicate using
a plate-reader-based assay (28 measurements total; Fig. 2c, Supple-
mentary Fig. 1a,c). We used this focused dataset to re-parameterize
the model equations, this time fitting five total parameters
(½foltot�,½DHFR�,½TYMSWT�,½TYMSQ33S�,½TYMSR127A�,½TYMSR166Q�, Sup-
plementary Table 1). This second round of fitting tested the ability of
growth rate data alone to constrain the model—an important step
becausemetabolomics data are available for only a limitednumber of
DHFR and TYMSmutants and are inherently far lower throughput to
collect than growth rates. This iteration of parameterization also
tested the capacity of the model to capture TYMS mutations with
intermediate effects on activity. The data were again well described
by the model (Fig. 2C, Supplementary Fig. 1b–d). The best fit para-
meters result in a growth rate plateau near 0.9 for themost fit mutant
combinations (experimental growth rates between 0.7 and 1.0), but
allow resolution of growth rates amongst the least fit mutant com-
binations (growth rates less that 0.7). We observed some variation in
the fit parameters (relative to the older data in Fig. 1); this difference
might be attributed to the fact that our newer experiments used a
revised selection vector backbone.

As a control for overfitting, we tested the ability of the model to
predict growth rates for arbitrary catalytic data. We randomly shuffled
the catalytic parameters (kcat and Km) amongmutations for bothDHFR
and TYMS, refit all free model parameters, and calculated the RMSD
and R2 values between the best fit model and the shuffled data.
Importantly, the model was generally unable to describe the experi-
mental growth rate data when catalytic parameters were shuffled
across both DHFR and TYMS (Supplementary Fig. 1e, f). This indicated
that the model provided a specific description of our experiment and
was not trivially overfit. Themodel was less sensitive to shuffling TYMS
catalytic parameters (presumably because we included fit parameters
describing the abundance of each TYMS mutation that can compen-
sate for this shuffling, Supplementary Fig. 1h). However, it was strongly
sensitive to shuffling DHFR parameters (Supplementary Fig. 1g). Taken
together, this analysis indicated that the model provides a good
description of the enzyme-velocity-to-growth-rate relationship and
can be used to predict and interpret how molecular changes in DHFR
and TYMS activity modulate growth rate phenotype.

To examine the model more closely, we considered the relation-
ship between TYMS catalytic activity and DHFR mutational sensitivity.
As in previous work, we observed that loss-of-function mutations in
DHFR can be partly or even entirely rescued by the loss-of-function
mutation TYMS R166Q in the presence of thymidine (Supplementary
Fig. 1a–c). TYMSR127A, a less severe loss of functionmutation, showed
a similar albeit more modest trend—this mutation was able to partly
rescue growth for some (though not all) DHFR mutations. A central
factor behind DHFR and TYMS biochemical coupling is that loss-of-
function mutations in TYMS help to preserve reduced folate pools,
allowing THF to shuttle one-carbon units in downstream biochemical
processes like purine biosynthesis even when DHFR activity is low.
Moreover, loss of TYMS activity reduces accumulation of DHF, which
can inhibit upstream reactions1,23. Thus, the TYMS R166Q and R127A
variants show positive (buffering) epistasis to low-activity DHFR
mutations.

In contrast to our expectation that a more intermediate mutation
would also demonstrate intermediate levels of positive (buffering)
epistasis, TYMS Q33S showed negative epistasis to some DHFR
mutations (Supplementary Fig. 1c). This means that these DHFR
mutations aremore deleterious in the background of TYMSQ33S than
in the native TYMScontext. To account for this observation, themodel
predicted that the intracellular concentration of TYMS Q33S is
increased relative to wildtype by about three fold (a fit parameter,
Supplementary Table 1) such that the Vmax of TYMS Q33S becomes
greater than wildtype (½TYMSQ33S�kTYMS Q

cat 33S>½TYMSWT�kTYMS WT
cat ).

This in turn increased the intracellular requirement for DHFR activity,
resulting in negative epistasis. To test theprediction thatTYMSQ33S is
more highly expressed and thus attains a higher intracellular velocity
even though less catalytically active, we conducted a series of enzyme
kinetics assays using cell lysates24. In these experiments we monitored
the accumulation of DHF spectrophotometrically in cell lysates
(extracted from early log phase cells grown in conditions identical to
our selection) following addition of saturating amounts of the TYMS
substrates deoxyuridine monophosphate (dUMP) and N5,N10-methy-
lene tetrahydrofolate (MTHF) (see also Methods). DHF accumulation
over time was compared for WT ER2566 lysates, the ER2566 DHFR/
TYMS double knockout strain (ER2566 ΔfolA ΔthyA), and strains car-
rying selection plasmids encoding TYMS Q33S, TYMS R127A, and
TYMS R166Q (Fig. 2d). Importantly, as our plasmid system encodes
both DHFR and TYMS, we mutated the DHFR of these plasmids to the
near-catalytically-inactive variant D27N. This prevents DHF from being
recycled back toTHFbyDHFR (whichwould confoundour estimations
of intracellular TYMS concentration). In these experiments, we
observed that all plasmid-containing strains exhibited TYMS activity
on par with or less than the native ER2566 strain, indicating that our
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TYMS enzyme is not strongly overexpressed. Moreover, these data
showed that the TYMS activity of Q33S-containing lysates is indeed
modestly higher thanWT TYMS-containing lysates as predicted by our
model. By dividing the measured lysate velocity (in Fig. 2d), by the kcat
(fromFig. 2b),weobtain estimates of intracellularTYMSconcentration
and find that these are well-correlated to our model predic-
tions (Fig. 2e).

To further explore the pattern of epistasis across TYMS back-
grounds, we simulated growth rates over a range of DHFR kcat and Km

values in each TYMS background (Fig. 2f). This provided a compre-
hensive prediction of the TYMS-induced constraints on DHFR activity.
In particular, we obtained a regime of DHFR kcat and Km values that is
sufficient to support growth for each TYMSmutation. From these data
we computed epistasis as the difference in growth rates between a
given TYMS background and theWT (see also methods). We observed
that TYMS Q33S has negative epistasis to DHFR variants spanning a
well-defined band of catalytic parameters. This ridge of negative
epistasis (green band in Fig. 2f) describes a range of catalytic
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parameters that are sufficient to rescue growth in the context of WT
TYMS, but which are deleterious in the context of TYMS Q33S. DHFR
variants below this band (with increased kcat) grow well in both con-
texts, while DHFR variants above this band (with decreased kcat) grow
poorly in both contexts. The simulations also indicated that R127A has
weak positive epistasis over a regime of moderately impaired DHFR
variants, but R127A is insufficient to rescue growth for the strongest
loss of function variants. Finally, TYMS R166Q was observed to be
broadly rescuing; DHFR variants need only a negligible amount of
activity to support growth in this context. Together, our simulations
showed that the sign and magnitude of DHFR epistasis are strongly
tuned by TYMS background, and provided quantitative predictions of
the catalytic regimes where epistasis is most apparent.

The single-mutant landscape of DHFR is strongly modulated
by TYMS
Nextwe examined the structuralpatternofbiochemical epistasis at the
residue level across DHFR. This also provided an opportunity to see if
the model predictions—negative epistasis for Q33S and broadly posi-
tive epistasis for R166Q—held true across a larger dataset. To accom-
plish this, we created a plasmid-based saturation mutagenesis library
of DHFR containing all possible single mutations at every position
(3002 total). This library was subcloned into all three TYMS back-
grounds. Sequencing showed that these libraries are well-distributed
and approach full coverage of all single mutations (97.1%—WT TYMS,
94.6%—TYMS Q33S, 99.3%—TYMS R166Q) (Supplementary Fig. 2). We
transformed these libraries into the E. coli selection strain (ER2566
ΔfolA ΔthyA). Transformants for each library were then grown as a
mixed population in selective media in a turbidostat to ensure main-
tenance of exponential growth and constancy of media conditions. By
quantifying the change in the relative frequency of individual mutants
over time with next generation sequencing, we obtained a growth rate
difference relative to WT DHFR for nearly all mutations in the library
(Fig. 3a, Supplementary Data 1, see methods for details). All relative
growth rate measurements were made in triplicate, with good con-
cordance among replicates (Supplementary Fig. 3).

The entire dataset showed that the DHFR mutational landscape
was strongly dependent on TYMS background (Fig. 3b–e). In all three
TYMS backgrounds, the distribution of growth rate effects was bi-
modal and reasonably well-described by a double gaussian containing
one peak of near-neutral mutations and another (far smaller) peak of
mutations with highly deleterious growth rate effects. This is the
expected result for an enzyme that shows a sigmoidal relationship
between activity and growth. In the native TYMS context, the vast
majority ofmutations fall into the near-neutral peak. However, there is
a substantial fraction (12%, 343 total) that display growth rates at or
below that of inactive, where inactive was defined as the average
growth rate across nonsense mutations in the first 120 residues of
DHFR. Consistent with expectation, mutations at known positions of
functional importance tended to be deleterious in the WT TYMS
context (W22, D27, F31, T35, L54, R57, T113, G121, and D122)29. For
example, both W22 and D27 are directly in the active site and serve to
coordinate substrate through a hydrogenbonding network30, G121 and
D122 are part of the βf-βg loop and stabilize conformational changes
associated to catalysis31,32, and F31 contacts the substrate and is asso-
ciated to the network of promoting motions33,34. In the TYMS Q33S
context, many of these deleterious mutations had even more severe
effects or were classified as Null. Null mutations disappeared from our
sequencing counts within the first three time points (8 h) of the
selection experiment, preventing accurate inference of growth rate.
For example, mutations at position 22 are deleterious in theWT TYMS
context, and appear as Null or very deleterious in the Q33S context.
The same pattern can be readily observed for positions 7,14,15, 22, 27,
31, 35, and 121. In contrast, multiple observations are consistent with
TYMS R166Q broadly buffering DHFR variation. First, in the TYMS

R166Q context, there are very few deleterious mutations. Nearly all
mutations are contained in the near-neutral peak, includingmutations
at highly conserved active site positions like M20, W22, and L28. Stop
codons and mutations at the active site residue D27 continued to be
deleterious, indicating that DHFR activity was still under (very weak)
selection in the TYMS R166Q background. Second, we observed an
average of 41 null mutations per experimental replicate in the WT
TYMS context, 82 null mutations in the TYMSQ33S context, but only 7
null mutations per experimental replicate in the R166Q TYMS context.
Third, for the TYMSQ33S context aswithWTTYMS,we saw that 12%of
mutations have growth rates at or below that of inactive variants while
only 5% of mutations displayed growth rates at or below those of
inactive mutations in the TYMS R166Q context.

To quantify the context dependence of mutational effects, we
computed epistasis relative to WT TYMS for all DHFR mutations with
measurable relative growth rates in each of the three TYMS back-
grounds (2696 in total, see alsomethods) (Fig. 4, Supplementary Fig. 4,
Supplementary Data 2). We assessed the statistical significance of
epistasis by unequal variance t-test under the null hypothesis that the
mutations have equal mean growth rates in both TYMS backgrounds.
These p values were compared to a multiple-hypothesis testing
adjusted p-value determined by Sequential Goodness of Fit (P =0.035
for TYMS Q33S and P =0.029 for TYMS R166Q, Fig. 4a, b)35. In the
TYMS Q33S background, 95 mutations (3%) showed significant nega-
tive epistasis and 280 mutations (9%) showed significant positive
epistasis. Many of the DHFR mutations with positive epistasis to Q33S
were near-neutral in the WT context, and displayed small improve-
ments in growth rate that were highly significant due to the low
experimental error for the best-growing mutations (Fig. 4c). In con-
trast, themutationswith negative epistasis exhibited a range of growth
rate effects in the WT context. For the TYMS R166Q background the
overall proportion of significant epistatic mutations was larger: while
only 41 mutations (1%) showed significant negative epistasis, 851
mutations (28%) showed significant positive epistasis. A smaller num-
ber of deleterious mutations in the WT context were not rescued by
R166Q (gray points with relative growth rates near 0.25). One possi-
bility is that these mutations are deleterious for reasons beyond dis-
rupting metabolic flux; for example they may result in protein
aggregation or off-target physical interactions. Regardless, direct
comparison of the relative growth rates of mutations across the WT,
Q33S, and R166QTYMSbackgroundsmakes it very obvious that TYMS
R166Q was broadly rescuing, while TYMS Q33S had a more subtle
effect that sometimes yielded negative epistasis (Fig. 4c, d).

The velocity-to-growth model captures observed fitness
landscapes
Next we sought to further test our enzyme velocity to growth-rate
model using the deep mutational scanning data. We refit the model a
third time, in order to include all available experimental information in
parameterizing themodel for this larger set ofmutants. This included a
larger dataset of 34 DHFR singlemutants with previously reported kcat
and Km values. We additionally characterized kcat and Km for four new
DHFRmutations (I5K, V13H, E17V andM20Q) that exhibited strong sign
epistasis to TYMS to more completely test our ability to predict epis-
tasis. Together this yielded a set of 114 growth ratemeasurements with
matched kcat andKm values forDHFR andTYMS (38DHFRmutations in
3 TYMS backgrounds, Supplementary Table 2). We used these data to
perform a bootstrap analysis; iteratively subsampling the data and
refitting the model 1000 times to obtain standard deviations in our
model fit and the eight associated parameters (Fig. 5a). The inferred
parameters for this large set of sequencing-based growth rate mea-
surements were qualitatively similar to those obtained for the smaller
set of 28 plate-reader based growth rate measurements (7 DHFR
mutants in 4 TYMS backgrounds, Fig. 2), but we observed some dis-
crepancy in the estimated total folate pool and intracellular
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Fig. 3 | The effects of DHFR mutation on growth rate in three TYMS back-
grounds. a Sequencing-based growth rate measurements for DHFR F31V in three
TYMS backgrounds: R166Q (red), Q33S (cyan), and WT (black). Each point repre-
sents one triplicate experimental measurement. Dotted lines indicate linear
regression fits to each replicate, the slope of each line is the inferred growth rate
(relative to WT) for that DHFR/TYMS mutant combination. b Heatmaps of the
growth rate effect for all DHFR single mutations. DHFR positions are along the
horizontal axis; amino acid residues (along the vertical axis) are organized by
physiochemical similarity. The displayed relative growth rate is an average across
three replicates, and is normalized such that the WT DHFR is equal to one. Red
indicatesmutations that increase growth rate, white indicates mutations with wild-

type like growth, and blue indicates mutations that decrease growth rate. Null
mutations (black squares) were not observed by sequencing after the first two time
points, and thus there was insufficient data for growth rate inference. Small dots
mark the WT residue identity in each column. c The distribution of DHFR muta-
tional effects in the WT TYMS background. The red line indicates a best-fit double
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relative growth rate for nonsensemutations (stop codons) in the first 120 positions
of DHFR. The WT DHFR growth rate is equal to one. d The distribution of DHFR
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e The distribution of DHFR mutational effects in the TYMS R166Q background,
color coding identical to (c). Note that the y-axis for (e) is distinct from (c) and (d).
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concentrations of TYMS (Supplementary Table 1). In general, the total
folate pool and concentration of TYMS R166Q were more variable
across the bootstrap analysis, indicating that these two parameters are
less well constrained by our data (as indicated by the estimated var-
iances in Supplementary Table 1). Nevertheless, the inferred para-
meters in both the plate reader and sequencing-based experiments
suggested similar relative expression levels for DHFR and the three
TYMS point mutants, with Q33S being roughly 2–3 times more abun-
dant than WT TYMS. These model-fit concentrations of TYMS corre-
lated with the estimates of intracellular concentration from our lysate
assay experiments (Fig. 2e), though they are roughly two orders of
magnitude higher. Thismay reflect potential noise in themodel or true
biological variation, as the deep mutational scanning experiment was
performed in a turbidostatmaintained at low optical density and rapid
exponential growth rather than in small-volume batch cultures. Again,
we computed epistasis of each DHFRmutation in the Q33S and R166Q
TYMS contexts relative to theWT TYMS background. Overall both the
predicted growth rates and pattern of epistasis showed good

agreement to our experimental observations (Fig. 5a, b). The strong
correlation (R2 = 0.84) between the experimental growth rate data and
the model across hundreds of in vitro characterized DHFR/TYMS
genotypes indicated that our relatively simple two-equation model—
which fits only a single parameter for DHFR enzyme abundance across
all mutant variants—allows for reasonable growth rate predictions.

Having established model performance on this subset of 114
biochemically characterized DHFR and TYMS sequences, we next
examined consistency of the model with all growth rate measure-
ments (the total model fit). However the effect of most mutations on
catalysis is unknown. Thus, for each DHFR point mutant we used
Monte Carlo sampling to identify a space of kcat and Km values
consistent with the three growth rate measurements (in the three
TYMS backgrounds). While three growth rate measurements were
insufficient to uniquely constrain both kcat and Km (the solution
space is degenerate), this process did permit estimation of log10
catalytic power (kcat/Km) for all 2696 characterized point mutants.
For the subset of biochemically characterized DHFR mutants we
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observed reasonable agreement between the in vitro measurements
and those inferred from our experimental growth rate data
(R2 = 0.74, Fig. 5c). In the current version of our model, mutant-
specific changes in DHFR abundance will be collapsed into the kcat
parameter. This results in an effective measure of kcat that captures
both changes in catalytic activity and abundance, introducing one
potential source of inaccuracy in the inference of catalytic power.
Nonetheless, we find our relatively few-parameter model allows for
reasonable inference of fold changes in catalytic power.

Once catalytic parameters were estimated across all point
mutants, we put them back into the model to assess the corre-
spondence between the predicted (modeled) growth rates, pre-
dicted epistasis, and our experimental observations, yielding a
global picture of model fit quality. Overall, we observed that the
model well-described the data with two exceptions. First, there was a

small proportion of DHFR mutations that were predicted to be res-
cued by TYMS R166Q but in actuality were not (70 total, 2% of all
DHFR mutations, the horizontal stripe of red dots in Fig. 5d). It is
possible that these mutations caused a growth rate defect through
toxicity linked to DHFR mis-folding and aggregation, a mechanism
not captured by our model. Alternatively, these mutations may have
had differential effects on protein abundance. Second, there was a
proportion of DHFR mutations predicted to have negative epistasis
to TYMS R166Q but observed to exhibit mild positive epistasis
(Fig. 5e). Again, these differences may be related to the fact that
DHFR abundance is modeled with a single parameter across all
mutants. These discrepancies between true and effective kcat could
be addressed in future work by including additional high-
throughput assay data on stability or abundance to tease apart
mutational effects on catalysis from stability and abundance36.
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Nevertheless, the data indicated that our model can globally
describe growth rate phenotypes given variation in enzyme velocity.

The resultingmodel and inferred catalytic parameters nowpermit
estimation of DHFR singlemutant fitness in any TYMSbackground.We
computed the fractionof DHFRpointmutants that are neutral (growth
rate above 0.9) as a function of variation in TYMS kcat and Km. These
calculations highlighted that selection on DHFR activity is strongly
shaped by TYMS background, with low-activity TYMS variants
increasing the mutational tolerance of DHFR (Fig. 5f, g). This suggests
that TYMS inhibition or loss of function could promote the evolvability
of DHFR both in the clinic and laboratory settings.

DHFR/TYMS epistasis is organized into structurally
localized groups
Next, we examined the structural pattern of DHFR positions with
epistasis to TYMS Q33S and TYMS R166Q. Given that mutations tend
to have similar epistatic effects at a particular DHFR position in our
data set (Supplementary Fig. 4), we used k-means clustering to sort

positions into four categories according to their pattern of epistasis:
negative, insignificant, positive, and strong positive (Fig. 6a, Sup-
plementary Table 4). The strong positive category solely contained
DHFRmutations in the TYMS R166Q background, while the negative
epistasis category was predominantly occupied by DHFR mutations
in the TYMS Q33S background. Based on our mathematical model,
we expect that positions with strong positive epistasis to TYMS
R166Q will have large deleterious effects on both kcat and/or Km.
Likewise, we expect that mutations with negative epistasis to TYMS
Q33S should reduce kcat and/or increase Km. Consistent with
expectation, mapping the strongly epistatic positions to the DHFR
structure showed that epistasis is organized into spatially distinct
regions of the tertiary structure known to play a key role in catalytic
function (Fig. 6b, c). Mutations with negative epistasis to Q33S ten-
ded to be proximal to the DHFR active site, particularly the folate
binding pocket. The negative epistasis cluster included several key
positions near or in the Met-20 loop, which is known to undergo
conformational fluctuations associated with catalysis (residues A9,
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V13, E17 andM20)29,32. It also encompassed positions I5, L24, L28, and
F31 which surround the folate substrate. Several of these positions
have known roles in catalysis; mutations at position 31 promoted
product release (while slowing hydride transfer), and dynamics of
the M20 loop (which includes V13,E17) are associated with substrate
binding and product release33,37. Additionally, specific mutations at
positions 5, 20, and 28 result in trimethoprim resistance by altering
trimethoprim affinity37. These structural and biochemical observa-
tions are consistent with the finding that mutations with negative
epistasis tended to yield moderate to severe growth rate defects.
Given their structural location near the folate binding pocket, it is
possible that some of these negatively epistatic mutations reduce
affinity (and increase Km) for dihydrofolate substrate. For example,
prior work has shown that mutations at position 28 increase Km

38. In
contrast, positions with positive epistasis to Q33S often had very
little (or sometimes a beneficial) effect on growth rate, and were
distributed around the DHFR surface (Fig. 4c, Fig. 6b). In the context
of TYMSR166Qonly one position—C85—was included in the negative
epistasis cluster (Fig. 6c). A large fraction of DHFR positions (53%, 84
total) displayed positive epistasis to TYMS R166Q; these positions
were distributed throughout the DHFR structure. The positions in
the strong positive epistasis cluster includedmutations with some of
the most severe effects on growth rate in the WT TYMS context. A
number of these positions were previously established as important
toDHFR catalysis, including residues F31, L54, G121, D122, and S14829.
Mutations at these sites can be detrimental to kcat, Km, or both. The
finding that highly epistatic mutations are concentrated at positions
associated with DHFR catalysis provides additional support for the
model that DHFR/TYMS coupling is mediated by a shared constraint
on relative enzymatic activity.

Epistasis and the structural encoding of DHFR catalysis
When the epistatic clusters are viewed together on the structure, one
sees that they formapproximate distance-dependent shells around the
active site (Fig. 7a–d). Considering the pattern of epistasis to TYMS
Q33S, positions with negative epistasis were closest to the active site,
surrounded by positions with insignificant epistasis, and finally posi-
tions in the positive epistasis cluster forman outer shell (Fig. 7a, b). For
TYMS R166Q, positions in the strong positive epistasis cluster were
closest to the active site, followed by positive epistasis positions, and
finally thosewith insignificant epistasis (Fig. 7c, d). For comparison, we
also mapped the model-predicted catalytic power averaged across all
mutations at a position to the structure (Fig. 7e). Together, these
structural images paint a picture of themolecular encoding of catalysis
and epistasis. Mutations with predicted intermediate-to-large effects
on catalysis were nestled near the active site and showed negative
epistasis to Q33S and strong positive to positive epistasis to R166Q.
Mutations with more mild effects on catalysis showed weaker positive
to insignificant epistasis to R166Q and Q33S. Though catalysis and
epistasis showed an approximate distance-dependent relationship to
the DHFR active site, there a number of key positions distal to the
active site that exhibited large growth rate effects, strong positive
epistasis to TYMS R166Q, and likely act allosterically to tune catalytic
activity (e.g. L110, G121, D122,W133, S148, and Y151). The positionswith
the largest estimated effects on catalysis were highly evolutionarily
conserved (P < 10−10 by Fisher’s exact test, Supplementary Table 5,
Fig. 7f), indicating that ourmodel and experimental data are capturing
features relevant to the fitness of DHFR. Together, these data show
that TYMS metabolic context strongly modulates the constraints on
DHFR activity and catalysis.

Discussion
It is well-appreciated that physical protein interactions place con-
straints on the individual interacting monomers. Protein interfaces
are organized to bind with appropriate affinity and avoid non-

specific interactions39,40. The individual components of physical
complexes tend to be expressed in similar ratios to avoid dosage
related toxicity and aggregation41,42. However the extent to which
interactions mediated by biochemistry (rather than binding) con-
strain the function and sequence of individual monomers has
remained less clear. We have explicitly revealed these interactions
at single-residue resolution for onemodel system and coupled them
with a mathematical model to quantify the intracellular constraints
on DHFR and TYMS relative catalytic activities. While this study
focuses on all possible DHFR single mutations in the context of a
few TYMS variants, it would be reasonably straightforward to design
analogous experiments that more densely sample TYMS variation,
or quantify amino acid resolution epistasis to other folatemetabolic
enzymes. While practical constraints on sequencing depth make it
difficult to imagine extending these experiments to cover all pos-
sible DHFR/TYMS double mutations, one could design targeted
libraries that sample variation at evolutionarily conserved and/or
catalytically important positions.

Our mutagenesis data and modeling show that TYMS activity
strongly modifies the constraints on DHFR catalytic parameters;
shaping both the range and relative importance of kcat and Km in
modulating growth. This biochemical interaction results in an
approximately shell-like pattern of mutational sensitivity to TYMS
background (epistasis) in the DHFR tertiary structure. Extreme loss-
of-TYMS function rescued strongly deleterious mutations in some
of the most conserved DHFR active site positions, while moderate
TYMS loss-of-function rescued moderately deleterious or weakly
deleterious mutations at more peripheral solvent exposed sites.
Given these data, we anticipate that inhibition or loss-of-function in
TYMS could promote the evolvability of DHFR in nutrient rich
environments by reducing the constraints on DHFR sequence and
activity, a hypothesis with consequences for both laboratory and
clinical evolution. For example, inhibiting TYMS activity in the clinic
may promote the evolution of drug resistance in DHFR, while acti-
vating TYMS may restrict evolutionary accessible paths. We note
that TYMS loss-of-function variants seem to be viable in some nat-
ural contexts, as prior work has identified trimethoprim-resistant
clinical isolates with thymidine auxotrophy19. In the laboratory,
strains with reduced TYMS activity could provide a less stringent
context for testing designed sequences or evolving new DHFR
function.

The existence of an enzyme velocity to growth-rate mapping—
by definition—allows us to relate variation in DHFR and TYMS cata-
lytic parameters to growth rate. It also allows one (in principle) to do
the inverse: infer in vitro catalytic parameters from growth rate
measurements. The intuition follows from classic steady-state
Michaelis Menten experiments: to quantify steady state kinetics
in vitro one measures enzyme initial velocity as a function of sub-
strate concentration. In our sequencing-based experiments, varia-
tion in TYMS background effectively titrates intracellular
concentrations of DHF (substrate) while growth rate provides an
estimate of velocity. Though our current dataset of three TYMS
backgrounds is insufficient to uniquely constrain precise fits for kcat
and Km, we anticipate that the addition of a few additional TYMS
backgrounds and/or the use of more sophisticated fitting approa-
ches will permit more accurate biochemical parameter inference.
Indeed, recent work on the small peptide binding proteins (the PDZ
and SH3 domains) has shown how measuring the growth rate effect
of mutations in different genetic backgrounds and assay conditions
can well-constrain biophysical parameters for binding affinity and
protein stability36,43. Onemight follow a conceptually similar strategy
to learn quantitative biochemical parameters from high throughput
growth rate data. New microfluidics-based approaches for high-
throughput biochemistry could play a key role in refining and testing
such methodology44.
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Together our findings shape how we think about designing
enzymes and metabolic systems. Typical strategies for designing
enzymes do not explicitly consider cellular context45. As a result, a
significant fraction of designs could fail simply because they are not
properly matched in terms of velocity to the surrounding pathway.
The limited ability of homologs to complement growth in another
species has been observed for a number of enzymes46–50, including
DHFR51,52. Thus, even a well-designed catalytically active synthetic
enzyme could fail to rescue growth if placed in the wrong cellular
context. Just as computational protein design considers entire
physical complexes to create binding interactions with altered affi-
nity and specificity, one might consider the joint design of
biochemically-interacting enzymes to alter metabolic efficiency and
growth. Further study of enzyme rates and abundance across spe-
cies, as well as characterizations of enzyme velocity to growth rate
mappings, will help shape our understanding of the system level
constraints placed on metabolic enzymes.

Methods
Escherichia coli expression and selection strains
ER2566ΔfolAΔthyAE. coliwereused for all growth ratemeasurements;
this strain was a kind gift from Dr. Steven Benkovic and is the same
used in Reynolds et al. 2011 and Thompson et al.38,53. XL1-Blue E. coli
(genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB
lacIqZΔM15 Tn10(Tetr)]) from Agilent Technologies were used for
cloning, mutagenesis, and plasmid propagation. BL21(DE3) E. coli
(genotype: fhuA2 [lon] ompT gal (λDE3) [dcm]ΔhsdS. λDE3 = λ sBamHIo
ΔEcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 Δnin5) from New England
Biolabs were used for protein expression.

Selection vector for DHFR constructs
DHFR variants were cloned into amodified version of the pACYC-Duet
1 vector (Novagen), whichwe refer to as pTet-Duet. pTet-Duet is a low-
copy number vector containing two multiple cloning sites; the first is
under control of the T7 promoter and the second was modified to be
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regulated by the tetracycline repressor (TetR). DHFR (folA) is cloned
into the first MCS; TYMS (thyA) is cloned into the secondMCS. During
selections we do not induce expression of either gene but instead rely
on leaky expression in ER2566 ΔfolA ΔthyA E. coli. We have deposited
all of these constructs with Addgene alongside plasmid maps [https://
www.addgene.org/browse/article/28229429/].

Expression vector for DHFR constructs
E.coli folA (the gene encoding DHFR) was cloned into the pHis8-3
expression vector using restriction sites NcoI and XhoI. DHFR was
tagged in-frame with an N-terminal 8X-Histidine tag separated from
the folA reading frame by a thrombin cleavage site. Individual point
mutant clones were constructed using the Quikchange II site-directed
mutagenesis kit (Agilent).

Expression vector for TYMS constructs
The thyA gene (encoding TYMS) was amplified by PCR from E. coli
MG1655 and cloned into the vector pET24A using XbaI/Xho restriction
sites. The point mutants of TYMS (Q33S, R127A, and Q33S) were made
using the Agilent QuikChange II site-directed mutagenesis kit. These
constructs are available on AddGene [https://www.addgene.org/
browse/article/28229429/].

Plate-reader based growth rate assays
We constructed a plasmid-based series of DHFR point mutants
(spanning a range of catalytic activities) in four TYMS backgrounds by
quickchange mutagenesis. The sequence-verified mutants were
deposited with Addgene ([https://www.addgene.org/browse/article/
28229429/]). DHFR and TYMS point mutant combinations in the
selection vectorwere transformed into ER2566ΔfolAΔthyA chemically
competent cells by heat shock. The cells were recovered for 60min at
37 °C with shaking at 220 rpm, spread on agar plates (Luria Broth (LB)
containing 30 µg/ml chloramphenicol and 50 µg/ml thymidine), and
grown at 37 °C overnight. The next day, liquid overnight cultures were
inoculated from a streak over multiple colonies and grown overnight
at 37 °C in LB supplementedwith 30 µg/ml chloramphenicol and 50 µg/
ml thymidine. These overnight cultures were pelleted andwashedwith
M9 minimal media, then resuspended in pre-warmed M9 media sup-
plemented with 0.4% glucose, 0.2% amicase, 2mM MgSO4, 0.1 µM
CaCl2, 30 µg/ml chloramphenicol (henceforth referred to as
M9 selection media). Next, OD600 for all resuspended cultures was
measured in a Perkin Elmer Victor X3 plate reader. Cultures were then
diluted to OD600 = 0.1 in prewarmedM9 selectionmedia with 50 µg/ml
thymidine and incubated for 4 h at 30 °C, shaking at 220 rpm.After this
period of adaptation and regrowth, cultures were back-diluted to
OD600 = 0.1 in 1ml prewarmed M9 selection media with 50 µg/ml thy-
midine. These cells were inoculated into 96-well culture plate at
OD600 = 0.005 (10 µl cells into 200 µl total well volume) containing
prewarmed M9 selection media with 50 µg/ml thymidine; plates were
sealedwith EasySeal permeable covers (SigmaAldrich). All growth rate
measurements were made in triplicate. Plates were shaken for 10 sec-
onds before reading, and Readings of OD600 were taken every 6min
over 24 h using a BioTek Synergy Neo2 plate reader in a 30 °C climate-
controlled room.

DHFR saturation mutagenesis library construction
The DHFR saturation mutagenesis library was constructed as four
sublibraries in the pTet-Duet selection vector (see above for
selection vector details). Each sublibrary combines mutations
within 40 contiguous amino acid positions to ensure that the
mutated region can be completely covered with short read
sequencing (a 300 cycle v2 Illumina sequencing kit). The regions
spanned by each sublibrary were as follows: amino acid positions
1-40 (sublibrary 1, SL1), 41-80 (sublibrary 2, SL2), 81-120 (sublibrary
3, SL3), and 121-159 (sublibrary 4, SL4). ‘Round the Horn’ or inverse

PCR (iPCR) with mutagenic NNS primers (N = A/T/G/C, S = G/C) was
used to introduce all 20 amino acid substitutions at a single amino
acid position as described in Thompson et al.38 (see Appendix 1 of
Thompson et al for a complete list of primers). Library complete-
ness was verified by deep sequencing. In our initial validation
sequencing run we found that mutations at positions W22 and L104
were systematically under-represented; iPCR was repeated for
these positions and they were supplemented into their respective
assembled sublibraries.

After sub-library assembly, restriction digest and ligation were
used to subclone each sublibrary into pTet-Duet plasmids containing
the three different TYMS backgrounds (WT, R166Q, or Q33S). The
entire DHFR coding region containing restriction sites (NotI and
EcoNI) was amplified by PCR. PCR reaction was size-verified with
agarose gel electrophoresis with an expected band size of 627 bp. The
library PCR products and target plasmids were double digested with
NotI and EcoNI for 3 h at 37 °C. To prevent re-circularization, the
digested plasmid was treated with Antarctic phosphatase for 1 h at
37 °C. The DHFR insert and treated plasmid were ligated with T4 DNA
ligase overnight at 16 °C. The concentrated ligation product was then
transformed into E. coli XL1-blue by electroporation, and recovered in
SOB for 1 h at 37 °C. 20 µL of the recovery culture was serially diluted
and plated on LB-agar with 50 µg/mL thymidine and 30 µg/mL chlor-
amphenicol, to permit quantification of transformants and estimate
library coverage following ligation into the alternate TYMS back-
grounds. The minimum library coverage was 1000 colony forming
units (CFU) per mutation. The remaining recovery culture was grown
in a flask containing 12ml LB with 30 µg/mL chloramphenicol and
50 µg/mL thymidine at 37 °C, with 220 rpm shaking overnight. 10ml of
the overnight culture wasminiprepped with the Gene-Jet Mini-prep kit
(Fisher Scientific, K0503) to obtain the plasmid library. TheDHFRdeep
mutational scanning libraries (in all three TYMS backgrounds) have
been deposited at Addgene ([https://www.addgene.org/pooled-
library/reynolds-dhfr-mutagenesis], under Addgene IDs 1000000194,
1000000195,1000000196).

Growth Rate Measurements in the Turbidostat for all DHFR
mutant libraries
All sublibraries were inoculated, grown, and sampled in triplicate. Each
plasmid sublibrary was transformed into the E. coli double knockout
strain ER2566ΔfolAΔthyAby electroporation and recovered inSOB for
one hour at 37 °C. At this transformation step we again estimated
library coverage to ensure the complete library was transformed into
our selection strain. To estimate library coverage, 20 µLof the recovery
culture was serial diluted with SOB and plated on LB agar plates con-
taining 30 µg/mL chloramphenicol and 50 µg/mL of thymidine. The
remainder of the recovery culture was inoculated into M9 selection
media supplementedwith 50 µg/mL thymidine and grownovernight at
37 °C. All selection experiments in this work had an estimated library
coverage of 1000 CFU/mutant or greater. The overnight liquid culture
was washed and back-diluted to OD600 = 0.1 in M9 selection media
supplemented with 50 µg/mL thymidine, and incubated for four hours
at 30 °C to allow adaptation to selection temperature and to return the
culture to log-phase growth. Following adaptation, selection was
initiated by back-diluting these cultures to an OD600 of 0.1 into 17mL
of pre-warmed M9 selection media supplemented with 50 µg/mL thy-
midine in continuous culture vials. These vials were then incubated in a
turbidostat with a target OD600 of 0.15 at a temperature of 30 °C. The
turbidostatmaintained a set optical density by adding 2.8mLdilutions
of M9 selection media supplemented with 50 µg/mL thymidine in
response to OD detection, and was built according to the design of
Toprak et al.54 Culture samples (1mL each)were taken at the beginning
of selection (t = 0 hours) and at 4, 8, 12, 20, and 24 h into selection.
Immediately after each time point, these 1mL samples were pelleted
by centrifugation, supernatant removed, and stored at −20 °C.
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Next generation sequencing amplicon sample preparation
Each turbidostat selection sample (representing a particular time-
point for a sublibrary and replicate) was prepared for sequencing as
a PCR amplicon using Illumina TruSeq-HT i5 and i7 indexing bar-
codes. To generate these amplicons, each cell pellet from the growth
rate assay was thawed and lysed by resuspending the cells with
100 µL dH2O and incubation at 95 °C for 5min. Lysates were then
clarified by centrifugation at maximum speed for 10min in a room
temperature bench top microcentrifuge. Supernatants containing
plasmids were isolated from the pellet. 1 µL of each supernatant was
used as the template for an initial round of PCR with Q5-Hot Start
Polymerase (NEB) that amplified the DHFR coding region of the
sublibrary (10 PCR cycles total, standard Q5 reaction conditions).
From this first PCR reaction, 1 µL was used in a second round of PCR
(22 cycles of denaturation/anneal/elongation) with primers that
added Illumina sequencing adaptors. The sequencing primers are
specified in Supplementary Table 6. Together, these two rounds of
PCR yielded a final product of size: 315 bp (SL1), 308 bp (SL2), 298 bp
(SL3), 304 bp (SL4). The amplicons were size verified using 1%
agarose gel electrophoresis. In the case where a sample did not
produce an amplicon, the first round PCR was repeated with 2 µL of
the supernatant rather than 1 µL, with the remaining preparation
identical. All amplicons were individually quantified using with
Quant-iT™ PicoGreen™ dsDNA Assay Kit (ThermoFisher Scientific)
andmixed in equimolar ratio, with a final target amount greater than
or equal to 2000 ng. Errors in pipetting volume were minimized by
ensuring that more than 2 µL was taken from each amplicon. This
mixture was gel-purified and then cleaned and concentrated using
the Zymo Research DNA Clean & Concentrator-5 kit. Purity was
assessed by A260/A80 and A260/A230 nm absorbance ratios. The
sample library DNA concentration was measured using a Qubit
dsDNA HS Assay in a Qubit 3 Fluorometer (Invitrogen by Thermo-
Fisher Scientific). The sample library was diluted to 30 nM in a
volume of 50 µL of TE buffer (1 mM Tris-HCl (pH 8.5), 10mM EDTA
(pH 4)). This mixed and quantified library was sequenced on an
Illumina HiSeq (150 cycle x 2 paired-end) by GeneWiz. The NGS
sequencing run resulted in 252 GB of data, consisting of 337,353,664
reads. The raw data have been deposited with the NCBI sequencing
read archive under project identifier PRJNA791680.

DHFR expression and purification
DHFR mutant variants were expressed in BL21(DE3) E. coli grown at
30 °C in 50ml Terrific Broth (TB) with 35 µg/ml Kanamycin (Kan) for
selection. Expression was induced at an OD600 = 0.6–0.8 with 250 uM
IPTG, and cells were grown at 18 °C for 16–18 h. Cultures were pelleted
by centrifugation for 10min at 5000× g, 4 °C and supernatant
removed; cell pellets were stored at −80 °C. Thawed cell pellets were
lysed by sonication in 10ml lysis buffer (50mM Tris, 500mM NaCl,
10mMimidazole, pH8.0buffer containing0.1mMPMSF, 0.001mg/ml
pepstatin, 0.01mg/ml leupeptin, 20 µg/ml DNAseI and 5 µg/mL lyso-
zyme). The resulting lysate was clarified by centrifugation and incu-
bated with 0.1ml Ni-NTA agarose (Qiagen) slurry (0.05ml column
volume) equilibrated in Nickel Binding Buffer (NiBB, 50mM Tris pH
8.0, 500mM NaCl, 10mM imidazole) for 15min on a tube rocker at
4 °C. The slurry was then transferred to a disposable polypropylene
column (BioRad). After washing with 10 column volumes (CV) of NiBB,
DHFR was eluted with 0.5mL 50mM Tris pH 8.0, 500mM NaCl,
400mM imidazole. The eluted protein was concentrated and buffer-
exchanged to 50mM Tris, pH 8.0 in a 10 kDa Amicon centrifugal
concentrator (Millipore) and centrifuged 15min at 21,000 × g, 4 °C to
pellet any precipitates. Following buffer exchange, the protein was
purified by anion exchange chromatography (using a BioRad HiTrapQ
HP column on a BioRad NGC Quest FPLC). A linear gradient was run
from 0 to 1M NaCl in 50mM Tris pH 8.0 over 30ml (30 column
volumes, CV) while collecting 0.5ml fractions. Fractions containing

DHFR were combined, concentrated, flash-frozen in liquid nitrogen,
and stored at −80 °C.

TYMS expression and purification
Individual TYMS mutants were expressed in BL21(DE3) E. coli grown
at 37 °C in 50ml Terrific Broth (TB) with 35 µg/ml Kanamycin (Kan)
for selection. Expression was induced with 1mM IPTG when the cells
reached an OD600 = 0.6–0.8, and the cells were then grown at 18 °C
for 16–18 h before harvesting pellets for storage at −80 °C. TYMSwas
purified from the frozen pellets following a protocol adapted from
Changchien et al.55 Cell pellets were thawed and resuspended in
TYMS lysis buffer (20mMTris, 10mMMgCl2, 0.1% deoxycholic acid,
pH 7.5 with 5mM DTT, 0.2mg/ml lysozyme, 5 µg/ml DNAse I) and
incubated at room temperature while rocking for 15min. The
resulting supernatant was clarified by centrifugation. Next, strepto-
mycin sulfate was added to a final concentration of 0.75% to separate
nucleic acids. The cells were incubated rocking at 4 °C for 10min and
the supernatant was retained following centrifugation for 10min at
>10,000 × g. Ammonium sulfate was then added at 50% saturation
(0.3 g/ml), mixed for 10min at 4 °C, then centrifuged as above,
retaining supernatant. Additional ammonium sulfatewas then added
to the supernatant at 80% saturation (an additional 0.2 g/ml), mixed
for 10min at 4 °C, and centrifuged as above, retaining the pellet. The
pellet was dissolved in 25mM potassium phosphate pH 6.5 and
dialyzed overnight at 4 °C against 1 L 25mM potassium phosphate
pH6.5. Following dialysis the proteinwas purified by anion exchange
(HiTrap Q HP column, Cytiva) with a 25 CV linear gradient from 0M
NaCl to 1M NaCl in 25mM potassium phosphate pH 6.5. FPLC frac-
tions containing TYMS were combined and concentrated using a
10 kDa Amicon concentrator (Millipore) and stored at 4 °C for up
to a week.

DHFR steady-state Michaelis Menten kinetics
DHFR kcat and Km were determined under Michaelis-Menten condi-
tions with saturating concentrations of NADPH as in prior work53,56.
Briefly, DHFR protein concentration was determined by measuring
A280 (extinction coefficient = 33500M−1cm−1). DHF (Sigma Aldrich)
was prepared in MTEN buffer (50mM MES, 25mM Tris base, 25mM
Ethanolamine, 100mM NaCl, pH 7.0) containing 5mM DTT (Sigma
Aldrich). 100 nM DHFR protein and 100 µM NADPH (Sigma Aldrich)
were combined in MTEN buffer with 5mM DTT and pre-incubated
for 1 h at 25 °C prior to measurement. To initiate the reaction, the
protein-NADPH solution was mixed with DHF in a quartz cuvette
(sampling DHF over a range of concentrations, tuned to the Km of
the mutant). The initial velocity of DHFR was measured spectro-
photometrically bymonitoring the consumption of NADPH and DHF
(decrease in absorbance at 340 nm, Δε340 = 13.2mM−1 cm−1). All
measurements weremade in triplicate; analysis was performedusing
the Michaelis-Menten nonlinear regression function of Graph
Pad Prism.

Preparation of TYMS substrate for assaying enzyme activity and
steady state kinetics
(6 R)-methylenetetrahydrofolic acid (MTHF, CH2H4fol) was purchased
from Merck & Cie (Switzerland) and dissolved to 100mM in nitrogen-
sparged citrate-ascorbate buffer (10mMascorbic acid, 8.5mM sodium
citrate, pH 8.0). 30 µL aliquots weremade in light-safemicrocentrifuge
tubes, flash-frozen in liquid nitrogen, and stored at −80C. Before use,
the stock was thawed and diluted to 10mM in TYMS kinetic reaction
buffer (100mM Tris base, 5mM Formaldehyde, 1mM EDTA, pH 7.5)
and quantified in an enzymatic assay: 50 µMMTHF, 200 µMdUMP and
1 µM TYMS protein were combined and A340 measured until steady-
state reached. Actual concentration was then calculated from the dif-
ference in A340 before and after the reaction using Beer’s Law (MTHF
extinction coefficient: 6.4mM−1cm−1).
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TYMS lysate assays for estimation of intracellular protein
abundance
Wemeasured the TYMS activity in crude lysates of six E. coli strains: (1)
WTER2566, (2) ER2566ΔfolAΔthyA, and the ER2566ΔfolAΔthyA strain
transformed with a pTet-Duet selection vector harboring DHFR D27N
matchedwith either (3) TYMSR166Q, (4) TYMSR127A, (5) TYMSQ33S,
or (6) TYMS WT. Cultures of each were grown to mid-log phase
(OD600 = 0.4–0.6) under media conditions identical to our selection
(M9 selection media supplemented with 50 µg/mL thymidine). The
resulting culture was pelleted for 10min at 5000 x g, liquid media was
decanted, and pellets were weighed and frozen at −80 °C. We found
that pellets from 250ml of culture were sufficient for triplicate assays.
Pellets were thawed and lysed with B-PERII reagent (Thermo Fisher)
supplemented with 50mM MgCl2, 5mM DTT, 0.2mg/mL lysozyme,
and0.005mg/mLDNAseI. The lysis volumewas normalized to 1ml per
0.1mg of pellet weight. Once resuspended, all pellets were incubated
in lysis reagent for 15min at room temperature on a tube rotator, then
pelleted at 21,000× g at 4 °C. The soluble fraction resulting from lysis
was used for lysate based enzyme activity measurements.

To measure enzyme velocity, 720 µL of soluble cell lysate was
combined with 80 µl of the TYMS substrates at saturating concentra-
tion (150 µM CH2H4fol and 100 µM dUMP in TYMS assay buffer with
5mM DTT) in a cuvette. Immediately following substrate addition,
DHF accumulation was monitored spectrophotometrically by absor-
bance at 340 nM for 900 seconds. All measurements were referenced
to a blank cuvette containing lysate with no addition of substrates.
DHF concentration was calculated from A340 using the DHF extinction
coefficient (Δε340 = 6.4mM−1 cm−1) and Beer-Lambert equation. The
resulting DHF concentration measurements over time were entered
into GraphPad Prism and background-subtracted to zero for the initial
time point across all samples. Enzyme velocity was estimated by linear
fit of the first 200 seconds of data. Dividing this velocity by the kcat
values for TYMS (as previously measured in our lab) yielded an esti-
mate of intracellular TYMS concentration for each variant.

TYMS steady-state Michaelis Menten kinetics
TYMS kcat and Km were determined for both dUMP and MTHF under
Michaelis-Menten conditions by varying one substrate and holding the
other saturating as in prior work57,58. Briefly, TYMS protein concentra-
tion was determined by measuring A280 (extinction coefficient =
53400M−1cm−1). TYMS protein was prepared in TYMS assay buffer
(100mM Tris base, 5mM Formaldehyde, 1mM EDTA, pH 7.5) contain-
ing 50mMDTT (SigmaAldrich). 50 nMTYMSprotein andeither 100 µM
dUMP (Sigma Aldrich) or 150 µM MTHF (Merck & Cie) were combined
with varying concentrations of the other substrate to initiate the reac-
tion. The production of DHF was monitored spectrophotometrically
(increase in absorbance at 340 nm, Δε340 = 6.4mM−1cm−1) for 2min per
reaction. All measurements were made in triplicate; analysis was per-
formed using the Michaelis-Menten nonlinear regression function of
Graph Pad Prism.

Enzyme velocity to growth rate model construction and
parameterization
For the purposes of modeling, we approximated DHFR and TYMS as a
two-enzyme cycle in which DHFR produces THF and consumes DHF,
and TYMS produces DHF and consumes THF. This abstraction ignores
the different carbon-carrying THF species, instead collapsing them
into a single reduced folate pool. This simplification allows us to
construct an analytically solvable model for steady state THF con-
centration that we can then relate to growth (Eq. 3).

First, we fit the free parameters in the Goldbeter-Koshland equa-
tion ([DHFR], [TYMSWT], [TYMSR166Q], foltot) using a set of ten meta-
bolomicsmeasurements for the relative abundance of the 3-glutamate
form of formyl THF as obtained in prior work1. These measurements
were made for DHFR mutations G121V, F31Y/L54I, M42F/G121V, F31Y/

G121V and theWT in the backgroundofWTTYMSandTYMSR166Q. So
why this particular folate species? We noticed that the relative abun-
dance of many of the reduced THF species in our data set was corre-
lated, and chose formyl THF to model because the experimental data
were less variable and showed a strong, monotonic relationship with
cell growth. Then, we fit the free parameters in equation two (gmax,
gmin, K, n) using a set of ten growth rate measurements for the same
DHFR/TYMSmutation pairs. This process gave rise to the fits shown in
Fig. 1. When assessing model performance against the larger set of
TYMS variants (as in Fig. 2) we refit all parameters (gmax, gmin, K , n,
[DHFR], [TYMSWT], [TYMSR166Q], [TYMSQ33S], [TYMSR127A], foltot) to the
growth rate data only sincewe did not havemetabolomics data for this
larger set. All parameter fits were made in python using the least_s-
quares fitting function of the scipy.optimize module59; the complete
fitting process is documented in Jupyter notebook 1_KGmodel.ipynb in
the associated github repository.

We assessed the model sensitivity to shuffling the data (Supple-
mentary Fig. 1e-h) by randomly shuffling all catalytic parameters (kcat,
Km) 50 times across DHFR and TYMS and computing an R2 value and
RMSD. We also assessed model sensitivity to subsampling the data;
error bars in Figs. 1, 2, and Supplementary Fig. 1g,h correspond to SEM
across jackknife re-samplings of the data wherein one DHFR/TYMS
combination was left out for each re-sampling. Finally, to assess the
global model fit to the data (as in Fig. 5) we first fit the 9 model para-
meters (gmax, gmin, K, n, [DHFR], [TYMSWT], [TYMSR166Q], [TYMSQ33S],
foltot) using the growth rate measurements of 16 DHFR mutations for
which experimental kcat and Km were known (48 total observations
given the three TYMSbackgrounds). Then, fixing these parameters, we
fit kcat and Km values for all 2696 mutations with growth rate mea-
surements in all three TYMS backgrounds to the complete data set of
8088 sequencing-based growth rate observations. This process is
documented in Jupyter notebook 4_ModelAndDMSData.ipynb in the
associated github repository.

Next generation sequencing data processing and read counting
All PCR amplicons (corresponding to individual replicates, timepoints
and sublibraries) were sequenced on an Illumina HiSeq using 2 × 150
paired end reads. The resulting fastq files were processed and filtered
prior to read counting. Briefly, the forward and reverse reads
were merged using USEARCH. Each read was quality score filtered
(Q-Score ≥20) and identified as a WT or mutant of DHFR using a cus-
tom python script. This python script filtered for full length reads and
base call quality scores greater than 20 (error rate ≤1:100). The reads
passing these quality control criteria were compared against the wild-
type reference sequence to determine mutation identify. Reads that
contained multiple point mutations or mutations outside the sub-
library of interestwere removed fromanalysis. This process resulted in
counts for the WT and each mutant at each time point and replicate.
These counts were further corrected given the expected error in the
data (q-score) and Hamming distance from the WT codon to account
for potential hopping of WT reads to mutations; a process that was
detailed in McCormick et al.56.

Relative growth rate calculations
We calculated relative growth rates for individual mutations and the
WT over time from the sequencing-based counts (Nmut

t ,NWT
t ). Mutants

with fewer than 10 counts were considered absent from the data set
and were set to zero to reduce noise. From these thresholded counts,
we calculated a log normalized relative frequency of each mutation
over time:

log2 f tð Þð Þ= log2 Nmut
t =NWT

t

� �
� log2 Nmut

t =0=N
WT
t=0

� �
ð5Þ

We then calculated relative growth rate (mTS
DHmut) as the slope of

the log relative frequency over time by linear regression. Linear
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regression was performed using scikit Learn, and individual points
were weighted by the number of counts (in order to down weight less-
sampledmutants at later timepoints). Relative growth rate of amutant
was only calculated if the mutant was present over at least the first
three time points, otherwise it was classified as a Null mutant. Finally,
all relative growth rates were normalized such that WT has a relative
growth rate of 1. Growth rateswere additionallynormalizedby thebulk
culture growth rate (estimated from the turbidostat, in units of gen-
erations per hour) to account for small vial-to-vial variations culture
doublings across the experiment. The standard error in growth rate
was computed across triplicate measurements. All calculations are
shown in Jupyter notebook2_DMSGrowthRates.ipynb in the associated
github repository.

Epistasis analysis
Epistasis was calculated according to an additive model:

εDHmut,TSmut =m
TS mut
DHmut �mTSWT

DHmut ð6Þ

In our experiments TYMSR127A, Q33S and R166Qhave no growth
rate effect in theWTDHFR context due to thymidine supplementation.
Under this formalism, mutations that show improved growth in the
mutated TYMS background have positive epistasis, while mutations
with reduced growth in the mutated TYMS background have negative
epistasis. We assessed the statistical significance of epistasis by
unequal variance t test under the null hypothesis that the mutations
have equal mean growth rates in both TYMS backgrounds (across
three replicate measurements). These p values were compared to a
multiple-hypothesis testing adjusted p value determined bySequential
Goodness of Fit (P =0.035 for TYMS Q33S and P =0.029 for TYMS
R166Q)35. K-means clustering of epistatic positions was performed
using a custom script based on that described in Thompson et al. 38 All
epistasis calculations are shown in Jupyter notebook 3_Epistasis.ipynb
in the associated github repository.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study were deposited in
FASTQ format in the NCBI sequencing read archive, under BioProject
ID PRJNA791680 [https://www.ncbi.nlm.nih.gov/bioproject/791680].
The processed growth rates and epistasis measurements (as inferred
from the sequencing data) are available as SupplementaryData 1 and 2.
All code used to process these data are available in github [release
v1.0.0: https://doi.org/10.5281/zenodo.10845716]. The processed
growth rates and epistasis measurements are also available in github
(see Output directory) as tab-delimited text and python-importable
pickle files. Metabolomics data for formyl THF and DHF used inmodel
fitting were previously described1 and are specified in the github
python notebook 1_KGModel. Biochemical rate constants for DHFR
and TYMS (compiled from both this study and other published works)
used in model fitting can be found in Supplementary Tables 2 and 3.
Parameter fits from all described iterations of model fitting are in
Supplementary Table 1. The structural data for TYMS (1BID [https://
doi.org/10.2210/pdb1BID/pdb]) and DHFR (1RX2 [https://doi.org/10.
2210/pdb1RX2/pdb]) used in this study are available from the PDB.

Code availability
Code for the enzyme velocity to growth rate model, and analysis of all
deep mutational scanning data is available on github: https://github.
com/reynoldsk/dhfr-tyms-epistasis. The stable DOI for the code
release associated with this publication is: https://doi.org/10.5281/
zenodo.10845716.
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