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Integrated proteogenomic andmetabolomic
characterization of papillary thyroid cancer
with different recurrence risks

Ning Qu1,2,10, Di Chen3,10, Ben Ma1,2,10, Lijun Zhang4,5, Qiuping Wang3,
Yuting Wang1,2, Hongping Wang6, Zhaoxian Ni1,2, Wen Wang 3, Tian Liao1,2,
Jun Xiang1,2, Yulong Wang 1,2, Shi Jin7, Dixin Xue8, Weili Wu8, Yu Wang1,2 ,
Qinghai Ji1,2 , Hui He1,2,7 , Hai-long Piao 3,9 & Rongliang Shi1,2

Although papillary thyroid cancer (PTC) has a good prognosis, its recurrence
rate is high and remains a core concern in the clinic. Molecular factors con-
tributing to different recurrence risks (RRs) remain poorly defined. Here, we
perform an integrative proteogenomic and metabolomic characterization of
102 Chinese PTC patients with different RRs. Genomic profiling reveals that
mutations in MUC16 and TERT promoter as well as multiple gene fusions like
NCOA4-RET are enriched by the high RR. Integrative multi-omics analyses
further describe the multi-dimensional characteristics of PTC, especially in
metabolism pathways, and delineate dominated molecular patterns of differ-
ent RRs. Moreover, the PTC patients are clustered into four subtypes (CS1: low
RR and BRAF-like; CS2: high RR and metabolism type, worst prognosis; CS3:
high RR and immune type, better prognosis; CS4: high RR and BRAF-like)
based on the omics data. Notably, the subtypes display significant differences
considering BRAF and TERT promoter mutations, metabolism and immune
pathway profiles, epithelial cell compositions, and various clinical factors
(especially RRs and prognosis) as well as druggable targets. This study can
provide insights into the complex molecular characteristics of PTC recur-
rences and help promote early diagnosis and precision treatment of recur-
rent PTC.

Thyroid cancer (TC) is the most common malignant tumor of the
endocrine system, and papillary thyroid cancer (PTC) is the most
common type of thyroid malignancy. Although PTC is in general with
low-grade malignancy and favorable long-term prognosis, the

recurrence rate is relatively highwith up to 20% of PTC patients having
recurrences1,2. The American Thyroid Association (ATA) risk stratifi-
cation system categorizes the recurrence risks (RRs) into low, inter-
mediate, and high levels based on several recurrence-relevant clinical
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factors1. Uncovering molecular factors associated with PTC RR may
promote early detection of PTC recurrences and better treatment. The
elevated serum levels of thyroglobulin (Tg) were found to be asso-
ciated with PTC recurrence and have been applied for recurrence
surveillance in clinical use3. Some recurrence-relevant genes and
microRNAs were identified based on the transcriptomics data4,5.
However, themolecularbasis underlyingdifferentRRs are still not fully
revealed.

High-throughput omics methods have been applied to explore
the molecular atlas of PTC4,6–10. Accordingly, the molecular landscape
of PTC has been described. The high mutation frequencies in BRAF,
RAS, TERT promoter, and gene fusions involving RET have been widely
observed10,11. Proteomics and metabolomics studies described the
remarkably altered protein and metabolite profiles in PTC7,9.
Transcriptomics-based analysis also identified various metabolic
enzymes that play key roles in PTC12–15. Existing omics-based studies
manifest that PTC is molecularly complex, and the molecular char-
acteristics underlying PTC recurrence require further, more in-depth
integrative investigations.

Here, we aim to obtain a more comprehensive perspective on the
molecular landscape of PTCwith different RRs. To do this, we perform
an integrated proteogenomic and metabolomic investigation of PTC
of 102 Chinese PTC patients. Our integrated analysis describe the
complicated anddistinctivemolecular features of the PTCpatients and
identify the RR-relevant molecular landscape from the genomic,
transcriptional, proteomic and metabolism perspectives. We also
redefine four molecular subtypes of PTC which not only possess dis-
tinctive molecular characteristics but also show significant differences
in clinical and pathological scales, especially for RR patterns and
recurrence-free prognosis. This multi-omics study holds immense
potential in offering valuable data resources for unraveling the intri-
cate molecular mechanisms of PTC recurrences, and the redefined
molecular subtypes can significantly contribute to enhancing preci-
sion diagnosis and treatment of recurrent PTCs, thus leading to
improved long-term survival rates.

Results
Overview of the multi-omics study of PTC
A total of 102 PTCpatients were collected (Supplementary Data 1). The
average age at diagnosis was 42 years (range, 15–77), with 63.73%
females (n = 65). There were respectively 47.06% high RR (n = 48),
27.45% intermediate RR (n = 28) and 25.49% low RR (n = 26) patients.
The clinicopathological characteristics were summarized in Table 1
(see also Supplementary Data 1).

To describe the molecular landscape of PTC, multi-omics data,
including genomics, transcriptomics, metabolomics, proteomics, and
phosphorylated (phospho)-proteomics, were performed (Supple-
mentary Fig. S1a). Whole exome sequencing (WES)-based genomics
data were from 97 tumor tissue samples and 33 paired normal tissues,
the RNA-sequencing (RNA-seq)-based transcriptomics data (16,925
genes)were from92 tumor tissue samples and 34 paired normal tissue
samples,metabolomicsprofiling (503metabolites) were conductedon
102 tumor tissue samples and 37 paired normal tissue samples, and
proteomics (3147 proteins) and phospho-proteomics (652 phospho-
proteins) profiling were performed on 37 paired tumor-normal tissues
(Supplementary Fig. S1a and Supplementary Data 1).

Genomic profiling of the PTC patients
An average of 74 nonsynonymous somatic point mutations and 2
indels were identified in the 97 Chinese PTC patients. Consistent with
most genome studies about PTC10,16, the most frequent somatic
mutation gene was BRAF (47%, all belong to V600E mutation, Fig. 1a).
In addition, frequently mutated cancer-associated genes also included
MUC16 (36%), RNF213 (8%), and MSH6 (7%) (Fig. 1a), showing higher
mutation frequencies than the cancer genome atlas (TCGA) PTC

dataset10 (Supplementary Fig. S1b). Here, the MUC16 mutations were
specifically enriched in the PTCpatients with high RR (Fig. 1b), and also
associated with multiple pathological factors, including high RR
(P = 0.027), recurrence (P = 0.010), metastatic lymph node size larger
than 3 cm (LNM.3cm) (P =0.018), T3 stage (P =0.032), N1b stage
(P = 0.0061) and M1 stage (P = 0.021) (Fig. 2c, examined by hypergeo-
metric distribution). Meanwhile, this Chinese PTC cohort did not
containmutations in RAS which wasmutated in 13% of samples for the
TCGA-PTC cohort10, but themutation frequencywas about 4.1–6.0% in
the other Chinese cohorts16,17.

There were also frequent TERT promoter mutations (C228T, 14%)
in the PTC patients. The mutations were also significantly enriched in
the high RR patients (Fig. 1b, d), and frequently overlap with certain
pathological or clinical factors including high RR (P =0.0026), recur-
rence (P = 0.0030), LNM.3cm (P =0.011), extrathyroidal extension
(ETE) (P = 0.0013), lymph nodemetastasis (LNM) (P = 0), or extranodal
extension (ENE) (P =0.0077) (Fig. 1d, examined by hypergeometric
distribution).

Gene rearrangements in RET, NTRK and BRAF have been fre-
quently identified in PTC18. Here, RET fusions (CCDC6-RET 8%, NCOA4-
RET 5%) were the most frequent fusions, and multiple NTRK fusions
(NTRK3-ETV6, TPR-NTRK1, ETV6-NTRK3) were also identified (Fig. 1a
and Supplementary Fig. S1c). In addition, several other gene fusions
(FBXO25-SEPTIN14, TLK2-FAM157A, ZNF33B-NCOA4) showing rare

Table 1 | Clinicopathological characteristics of the collected
samples (n = 102)

Feature Statistics

Age (year) 41.48 (±15.11)

Gender Female 65 (63.73%)

Male 37 (36.27%)

RR High 48 (47.06%)

Intermediate 28 (27.45%)

Low 26 (25.49%)

Tumor size (cm) 3.254 (±1.872)

ETE TRUE 32 (31.37%)

FALSE 70 (68.63%)

ENE TRUE 32 (31.37%)

FALSE 70 (68.63%)

LNM TRUE 88 (86.27%)

FALSE 14 (13.73%)

LNM.No 8.931 (±7.669)

LNM.3cm TRUE 85 (83.33%)

FALSE 17 (16.67%)

T stage T1 28 (27.45%)

T2 33 (32.35%)

T3 29 (28.43%)

T4 12 (11.76%)

TNM stage I 74 (72.55%)

II 19 (18.63%)

III 1 (0.9804%)

IV 8 (7.843%)

N stage N0 14 (13.73%)

N1a 19 (18.63%)

N1b 69 (67.65%)

M stage M0 87 (85.29%)

M1 15 (14.71%)

ETE extrathyroidal extension, ENE extranodal extension, LNM lymph node metastasis, LNM.No
number of metastatic lymph nodes, LNM.3cm metastatic lymph node size larger than 3 cm.
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frequencies in previous PTC studies were also identified (Fig. 1a).
Interestingly, several gene fusions (NCOA4-RET, TLK2-FAM157A,
ZNF33B-NCOA4, TPR-NTRK1) also showed specific enrichment in the
high RR (Fig. 1b).

Multi-omics-based comparison of tumor and normal tissues of
PTC patients
In addition to the genomic alterations, differentially expressed mole-
cules (DEMs) were recognized by comparing between tumor and
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Fig. 1 | Genetic profile of the PTC patients with different RRs. a Genetic profile
and associated clinical information of 97 PTC patients. bMutations with significant
enrichment in one type of RR. *P <0.05, examined by hypergeometric distribution,
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Source data are provided as a Source Data file.
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matched normal samples based on the multi-omics profiling data
(Supplementary Fig. S2). As a result, four types ofDEMs, including 1674
genes (P <0.01, DeSeq219), 1864 proteins (P <0.01,Wilcox test, paired),
391 phosphoproteins (P < 0.01, Wilcox test, paired) and 334 metabo-
lites (P <0.01, Wilcox test, paired) were recognized (Fig. 2a). Increased

FFAs in PTC tumors have also been identified by other metabolomics
studies20. Proteins like tenascin (TNC), fibronectin 1 (FN1), dipeptidyl
peptidase4 (DPP4), andphosphoproteins ofmajor vaultprotein (MVP)
and FN1 showed remarkable upregulation in the PTC tumor tissues,
while proteins thyroid peroxidase (TPO), desmin (DES) and fatty acid

Transcriptome MetabolismProteome Phosphproteome
Metabolism
Genetic Information Processing
Environmental Information Processing
Cellular Processes
Organismal Systems

Pathway category enriched by the DEMs

20 4 22

1 4 20
4

Transcriptome Proteome

Phosphproteome

0 1 2 3 4 0.0 1.0 2.0 0 2 4 60.0 5.0 10.0

Apoptosis
Arginine and proline metabolism

Carbon metabolism
Cholesterol metabolism

Citrate cycle (TCA cycle)
Glycolysis / Gluconeogenesis

Glyoxylate and dicarboxylate metabolism
Necroptosis

Oxidative phosphorylation
Pyruvate metabolism

Valine, leucine and isoleucine degradation

−log10(pvalue)

Metabolism Transcriptome PhosphproteomeProteome
Count

10
20
30
40

Valine, leucine and isoleucine degradation
Pyruvate metabolism
Glycolysis / Gluconeogenesis
Arginine and proline metabolismO

ve
rla

p

1674 genes 1864 proteins 391 phosph proteins 334 metabolites

Type
gene
metabolite

phosph protein
protein

a

b

c d

e
FFA
GGTLC3
C1QL1
GRM4
PRSS1
TMEM215
SPH
PG
Acylcarnitine
N−Acetylaspartic acid
POSTN Phos
TNC Pro
COL12A1 Pro
MVP Phos
DPP4 Pro
ANXA1 Phos
LGALS3 Phos
EPPK1 Pro
FN1 Pro
FN1 Phos
PRKAR2B
TMEM132C
LGALS12
LVRN
PRG4
Serine
Citric acid
NUDCD1 Pro
TPO Pro
Tg Phos
TG
Coenzyme Q10
Carnosine
DES Pro
DES Phos
FABP4 Pro
HBD Phos
HBB Phos
SPTB Pro
SPTA1 PhosType

−2

0

2

4
Tumor Normal Expression

Fig. 2 | Multi-omics-based profiling of the tumor and normal thyroid samples.
a Pathway categories enriched by the DEMs. b Heatmap showing the top-rank
DEMs. Only molecules with the top-10 significant P values for each omics type are
listed. The metabolite levels for TG, FFA, PG, and SPH were the summarized
abundances of different kinds of TG, FFA, PG, and SPH. The suffix Pro and Phos,
respectively, represent proteins and phosphoproteins. DESeq2 (two-sided) was
applied to find the differentially expressed genes, and theWilcox test (paired, two-
sided) was applied to find the differentially expressed metabolites, proteins and

phosphoproteins. P values were adjusted by Benjamini–Hochberg method. c Venn
diagram of the pathways respectively enriched by the DEMs determined by tran-
scriptomics, proteomics and phospho-proteomics. d Pathway enrichment results.
Only pathways showing significance in at least three types of omics are shown.
Enrichment was examined by hypergeometric distribution, one-sided, and P values
were adjusted by the Benjamini–Hochbergmethod. e Themulti-omics differences
between tumor and normal samples considering the glycolysis pathway. Source
data are provided as a Source Data file.
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binding protein 4 (FABP4), and phosphoproteins of thyroglobulin
(Tg), DES, hemoglobin subunit delta (HBD) and hemoglobin subunit
beta (HBB) were downregulated in the PTC tumors (Fig. 2b). TNC was
reported to show remarkably high expressions inmedullary TC21, here,
we found it was also upregulated in the PTC tumors. The upregulation
of FN1 was observed in all types of TC22. TPO, an essential enzyme for
the production of thyroid hormones, is expressed mainly in normal
thyroid cells23. The expression levels of TPOweredecreased in the PTC
tumors when compared to the normal ones.

Pathways enriched by the four types of DEMs were identified
respectively (P < 0.05, Hypergeometric Distribution). A large fraction
of the enriched pathways were metabolism pathways even for the
DEMs in terms of genes, proteins and phosphoproteins (Fig. 2a), and
the pathways enriched by genes, proteins and phosphoproteins
simultaneously all fell in metabolism pathways including valine, leu-
cine, and isoleucine degradation, pyruvate metabolism, glycolysis/
gluconeogenesis, as well as arginine and proline metabolism (Fig. 2c),
where glycolysis and pyruvate metabolism were also enriched by the
differentially expressed metabolites (Fig. 2d). Meanwhile, multiple
metabolism pathways like oxidative phosphorylation and citrate cycle
were enriched by at least three types of DEMs (Fig. 2d). These together
suggest the remarkable metabolic alterations in PTC tumor tissues.

The multi-omics-based pathway analysis enable a comprehensive
description of the pathway alteration. Taken glycolysis as one example
(Fig. 2e), we observed that although most enzymes were down-
regulated considering the mRNA expressions (e.g., HK1, PGM1), some
of them were upregulated in the protein or phospho-protein levels
(e.g., ENO1, PCK1, PDHA1). Meanwhile, the metabolite changes were
mainly reflected in the reduced levelsof glucose, fructose, glycerate-3P
and pyruvate and increased levels of lactate (i.e., L-Lactate) (Fig. 2e).
Increased levels of lactate in TC and many other cancer types have
been widely reported8. The multi-omics-based pathway alteration
patterns help further explain potential mechanisms, including altera-
tion of the direct enzyme LDHA (in bothmRNA and protein levels) and
associated up-/downstream changes (e.g., ENO1, PKM, and PDHA1).

In addition to the metabolism pathways, two cell death-relevant
pathways, necroptosis and apoptosis, were also significantly enriched
by the DEMs in terms of metabolites, proteins and phosphoproteins
(Fig. 2d). Most of the DEMs in the necroptosis and apoptosis pathways
were upregulated in the PTC tumor tissues than the normal tissues
(Supplementary Fig. S3a, b).

Based on these multi-omics data, we also observed the potential
impacts of the three most frequent mutations BRAF,MUC16, and TERT
promoter on the multi-omics profiles (Supplementary Fig. S4a, b).
Enrichment analyses showed these mutations were also related with
alterations in multiple metabolism pathways, especially for BRAF
(Supplementary Fig. S4c). For example, the differentially expressed
mRNAs between PTC samples with and without BRAF mutations were
significantly enriched by glycerolipid metabolism and biosynthesis of
amino acid pathways (Supplementary Fig. S4c).

Multi-omics-based molecular features of PTC with different RRs
The molecular expression features underlying different RRs of PTC
were also characterized (Fig. 3a). The high RR PTC patients showed
higher expression levels in multiple lipids like TGs, FFAs and the
other metabolites like histamine and kynurenine. The high RR also
displayed higher expressions in genes like MMP13, CST1, COL11A1,
proteins like Tg, PTRRG, VWA1 and phosphoproteins like EPPK1,
ALDH1A1, and LAMC1. The intermediate RR PTC patients showed
higher expressions in metabolites like several FFAs and kynurenine,
genes like IGFN1, LOC391322, and ZNRD1, proteins like FTL, FABP5,
and APOB, and phosphoproteins like C1QB, HBB, and HBD. The low
RR patients showed higher expressions in metabolites like PG
(18:2_18:2) and OAHFA (18:2_18:1), genes like JSRP1, TCAP, and TNNI2,
proteins like ACADL, ABHD11 and FN1 and phosphoproteins like TNC,

FN1, and POSTN. Compared to the alterations between tumor and
normal samples, the high RR PTC tumor samples showed reversed
alterations compared to intermediate or low RR ones considering
various molecules (Fig. 3a and Supplementary Fig. S5a–d). For
instance, although the PTC tumor samples showed significantly
reduced protein levels in Tg compared to the normal samples
(Supplementary Fig. S5c), the high RR PTC samples were with higher
protein expressions of Tg compared to other tumor sam-
ples (Fig. 3a).

The expression profiles of the RR-relevant molecules, especially
for the FFAs (FFA 26:2, FFA 24:2, FFA 26:4) and several proteins or
phosphoproteins were highly associated (Fig. 3b, spearman correla-
tion >0.65 or Spearman correlation <−0.65). The FFA 26:2, Tg, FN1, and
5-Lipoxygenase (ALOX5), phospho-FN1, and phospho-TNC harbored a
relative hub position in the correlation network, suggesting their
crucial roles in interactive regulations or signaling communications.
ALOX5, as a non-heme iron-containing enzyme, can catalyze the per-
oxidation of polyunsaturated fatty acids24. Aberrant expression of
ALOX5 has been observed in various types of cancers, including PTC25.
Here, we also foundALOX5 showed specific low expressions inhigh RR
PTC patients, and its alterations were associated with changes inmany
FFAs (Fig. 3b–d).

The different RRs also displayed remarkable differences in the
pathway profiles. For high RR, the metabolites in various metabolism
pathways, e.g., biosynthesis of amino acids and glycolysis, were
upregulated, while the protein levels of metabolic enzymes were
mainly downregulated (Fig. 3c). Except of the direct metabolism
enzymes, there were other proteins showing remarkable associations
with metabolite changes in PTC (Fig. 3f), e.g., protein Tg, phospho-
protein MSN (Fig. 3g–h). For the other pathways, the high RR showed
upregulations in PI3K-AKT and TGF-beta signaling pathways (based on
the mRNA expressions) and thyroid hormone synthesis (based on the
protein expressions) (Supplementary Fig. S5e).

Integrative correlation analysis of the multi-omics data
The correlations between different types of omics data were eval-
uated based on a supervisedmulti-omics integrative analysis method
called DIABLO (Data Integration Analysis for Biomarker discovery
using Latent cOmponents)26 which can simultaneously maximize the
correlations among different types of omics and identify key mole-
cules which can discriminate different sample groups (i.e., high,
intermediate and low RR groups and the normal sample group). As a
result, the general correlations between metabolism, proteomics,
and phospho-proteomics were high (no less than 0.88), suggesting
common information among metabolism, proteomics and phospho-
proteomics. The proteomics are expected to be highly correlated
with the transcriptomics, according to the central dogma that the
information pasts from DNA to RNA to protein. However, relatively
low correlations were observed between transcriptomics and pro-
teomics or phospho-proteomics (Fig. 4a). From the basis, the
mRNA–protein correlations were low, with the sample-wise and
gene-wise median mRNA–protein Spearman correlation coefficients,
respectively, 0.29 and 0.086 (Supplementary Fig. S6a, b). From the
perspective of pathways, the genes/proteins ofmetabolismpathways
showed a relatively higher correlation (but still around 0.25–0.5)
than other pathways, while the genes/proteins involved in pathways
with large protein complexes like ribosome, spliceosome, mRNA
surveillance, and autophagy, displayed low or even opposite corre-
lations (around −0.25 to 0) (Supplementary Fig. S6c, Supplementary
Data 2, Kolmogorov–Smirnov test, one-sided). Similar results were
also reported by previous studies21,27,28. Besides, dysregulation in
post-transcriptional modifications, like ubiquitination enzymes
(HUWE1, CUL4A, TRIM25, etc.) and deubiquitination enzymes (USP7,
USP10, USP24, etc.) in these PTC tumor samples (Supplementary
Fig. S6d) may also lead to the low consistency.
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The key molecules were further clustered into four network
modules based on their expression profiles and inter-correlations,
and different modules showed distinctive expression profiles
(Fig. 4b) and interaction patterns (Fig. 4c). The molecules in the first
module (M1) were mainly composed of extracellular matrix (ECM)
relevant proteins including FBLN5, NID1, NID2, COL4A2, TINAGL1,
VWA1, and different chains of the laminin proteins (LAMA4, LAMB1,

LAMC1)29, they showed high inter-correlations and possessed higher
expression levels in the high RR groups than the other tumor samples
(Fig. 4b, c), highlighting the key role of ECM interactions in PTC
recurrence. The second module (M2) was composed of multiple
metabolism-relevant phosphoproteins like PGK1, PSMF1, PRDX1, and
TOM1, they showed lower expressions in the tumor tissues, espe-
cially the high RR tumor tissues (Fig. 4b). Their expressions were also
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associated with the proteins IGKV3-15, RPS27A, genes MYH11, and
HTR2A (Fig. 4c). The third module (M3) was the largest module, and
molecules in M3 mainly showed higher expressions in the tumor
tissues (regardless of the RRs) than the matched normal tissues
(Fig. 4b). There were three sub-modules in M3 which were aggre-
gated by metabolites, genes and proteins/phosphoproteins (Fig. 4c,
M3). The inter-correlated metabolites in M3 were mainly lipids,
including phosphatidylcholines (PCs), phosphatidylethanolamines
(PEs) and sphingomyelins (SMs). A large fraction of the proteins/
phosph-proteins were involved in autophagy (STAT3/ATP6V1B2/
ATP6V1C1/HGS/LAMTOR2/VPS13C/HSP90AA1)30. The genes were
involved in glutathione metabolism (GGTLC3/GGT2)30, immune
response (IFNE/PRSS2)30 and exocytosis secretion of thyroid-
stimulating hormone (TRHR). Meanwhile, TRHR, C1QL4 and AMY1B
possessed inter-connection positions in the network of M3. Mole-
cules in the fourthmodule (M4)mainly showed higher expressions in
the intermediate and low RR groups (Fig. 4b). Metabolites including
FFAs, Diacylglycerols (DGs) and Phosphatidylglycerols (PGs) and the
fatty acid binding protein FABP5 formed an intermediated layer
linking the genes and proteins or phosphoproteins in the network of
M4, and multiple proteins and phosphoproteins (ERAP2/CYBB/
CD74/DYNC1H1/RAB7A) in M4 were involved in antigen processing
and presenting30 (Fig. 4c), indicating the potential interactions
between fatty acid metabolism and adaptive immune functions
in PTC.

Integrative stratification of PTC patients into four subtypes
based on transcriptomics and metabolomics
Notably, although most high RR samples showed low expressions of
molecules in M4, part of them also show similar expression profiles
with the intermediate and low RR samples (Fig. 4b), implying alter-
native molecule subtypes different from the ATA risk classification
may exist. We re-stratified the PTC patients into four subtypes based
on a consensus integrative clustering analysis (see “Methods”, Sup-
plementary Fig. S7a) of the transcriptomics and metabolomics data
(proteomics and phospho-proteomics were not considered here since
the two types of omics were highly associated with metabolomics).

The four redefined subtypes showed significant differences in
the transcriptional and metabolism profiles (Fig. 5a) as well as mul-
tiple clinical and mutation features, including RR (P = 1.61 × 10−5, Chi-
square test), T stage (P = 4.17 × 10−2, Chi-square test), N stage
(P = 2.45 × 10−3, Chi-square test), BRAF mutation (P = 5.67 × 10−3, Chi-
square test), TERT promoter mutation (P = 3.49 × 10−3 for overlap
between CS4 and TERT promoter mutation, examined by hyper-
geometric distribution) (Fig. 5a, b) and ENE (P = 6.95 × 10−3, Chi-
square test, Supplementary Fig. S7b). The subtype CS1 contained
more low RR patients, while the other three subtypes CS2 to CS4 had
more high RR patients (Fig. 5b). The subtype CS2 and CS3 had more
T3 stage, N1b stage patients but had less BRAF and TERT promoter
mutations (Fig. 5b). The subtype CS4 was significantly enriched by
BRAF and TERT promoter mutations (P = 0.007227 for BRAF,
P = 0.02937 for TERT, Chi-squared test, Fig. 5b). Moreover, the four
subtypes possessed different prognosis outcomes in terms of
recurrence-free survival (Fig. 5c), where the subtype CS2 and CS3
respectively showed the worst and best prognosis among the three

high RR-enriched subtypes (Fig. 5d, e). By contrast, the prognosis
differences based only on the RRs were not significant (Supplemen-
tary Fig. S7c). Taken together, the transcriptomics andmetabolomics
data help redefine four meaningful PTC subtypes.

Multi-dimensional characterization of the four PTC subtypes
The four subtypes werewith remarkably distinctivemolecular profiles,
and each subtype possessed various specifically up- or downregulated
genes (Fig. 6a) and metabolites (Fig. 6b). Plasminogen (PLG) was
reported to show significantly lower expressions in serum samples of
PTC patients than the nodular goiter patients31. Here, the mRNA
expression levels of PLGwere higher in the low RR-dominated subtype
CS1 than the other subtypes (Fig. 6a). HSP6A was found to be a
potential biomarker to predict the prognosis of TC32. ECM1 is asso-
ciated with tumor invasiveness and poor prognosis in various cancer
types33. BothHSP6A and ECM1 showed CS2-specific higher expressions
(Fig. 6a). Consideringmetabolites, the subtype CS1 had higher levels in
FFAs, PGs, Fructose 1,6-diphosphate, etc.; the subtype CS2 had higher
levels in stachydrine; the subtype CS3 had higher levels in TGs, citric
acid, etc.; while the subtype CS4 showed higher levels in acyl-carni-
tines, adenosine, histamine, etc. (Fig. 6b).

In addition to the molecular features, the four subtypes also
showed differences in the other key aspects, including tumor sizes,
number of metastatic lymph nodes, tumor differentiation scores
(TDSs)34, BRAF-scores and RAS-scores. The subtype CS2 and
CS3 showed larger tumor sizes than the subtype CS1 (Fig. 6c). The
subtype CS1 had less number of metastatic lymph nodes than the
other subtypes (Fig. 6d). The subtype CS2 showed higher TDSs than
the subtype CS1 and CS4, and the subtype CS3 had higher TDSs than
the subtype CS1 (Fig. 6e). Moreover, both subtype CS2 and
CS3 showed higher RAS scores and lower BRAF scores comparing to
the subtype CS1 and CS4 (Fig. 6f, g). Correspondingly, the subtypes
CS2 and CS3 had lower BRAF mutation frequencies than CS1 and
CS4 (Fig. 5b).

Furthermore, the pathway profiles for the four subtypes were also
identified. Although no significant differences in terms of the tumor
sizes, number of metastatic lymph nodes, TDSs, BRAF and RAS scores
were observed between the subtype CS2 and CS3 (Fig. 6c–g and
Supplementary Fig. S8a), they displayed noteworthy opposite trends
in the pathway profiles (Fig. 6h, i). For the metabolism pathways, the
mRNA expressions of enzymes in various metabolism pathways were
upregulated for CS2 and downregulated for CS3 (Fig. 6h). Reversely,
most immune-relevant pathways were upregulated for CS3 but
downregulated for CS2 (Fig. 6i). The upregulation in various metabo-
lism enzymes in CS2 imply a high metabolite consumption and can
partly explain why few metabolites show higher levels in the
CS2 subtype (Fig. 6b).

Single-cell RNA-seq (scRNA-seq) analysis has been performed to
illustrate the tumor microenvironment heterogeneity of the PTC
samples35. We used a deconvolution method to predict the tumor
microenvironment compositions of the PTC tumor samples based on
the bulk sample RNA-seq data in our study and a previously reported
scRNA-seq dataset of PTC35 (see also “Methods”). As a result, the four
subtypes also displayed distinctive cell compositions, especially for
the epithelium sub-populations (Fig. 6j and Supplementary Fig. S8b),

Fig. 3 | Multi-omics landscape of different recurrent risk. a Molecules with sig-
nificant differential expressions in patients with different RR. H high RR, M inter-
mediate RR, L lowRR. The differencewas examined by theWilcox test, two-sided. P
values were adjusted by the Benjamini– Hochberg method. b Correlation network
of the molecules showed significant differential expressions among different RRs.
c, d Scatter plot showing the correlations (Spearman correlation, two-sided)
betweenprotein ALOX5 andmetabolite FFA 26:2 (c) and FFA 24:2 (d). eMetabolism
pathway enrichment results of the RR-relevant molecules. NES normalized

enrichment scores. *P <0.05, by gene set enrichment analysis (GSEA,
Kolmogorov–Smirnov test, one-sided). f Correlation network of the molecules.
Only metabolites in the downregulated metabolism pathways for the high-risk
samples concerning proteomics were shown. The displayed edges are with corre-
lation coefficients larger than 0.5. g, h Scatter plot showing the correlations
(Spearman correlation, two-sided) between metabolite citric acid and protein TG
(g), metabolite PS (18:1_22:6), and phospho-protein MSN (h). Source data are pro-
vided as a Source Data file.
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implying the different subtypes are oriented from different types of
malignant thyrocytes (Fig. 6j).

According to the clinical, molecular and pathway features of the
four subtypes, we summarized the four subtypes as low RR and BRAF-
like (CS1), high RR and metabolism type (CS2), high RR and immune
type (CS3), and high RR and BRAF-like (CS4). Candidate druggable
targets for each subtype were identified (Supplementary Fig. S9a, b).
These distinctive expression profiles of the four subtypes in the
druggable targets, suggesting that different therapeutic strategies

should be applied to different subtypes in PTC (Supplementary
Fig. S9b).

Validation of BRAF-status relevant subtype characters in
PTC cells
The BRAF-status was highly correlated to different subtypes of PTC
(Figs. 5a, b and 6g). Meanwhile, for the two subtypes CS2 and CS3 that
with fewer BRAF mutations but high recurrence rates, our investiga-
tion found that they showed opposed alterations in some
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BRAF-mutation relevant genes, such as LY6K (Fig. 7a and Supple-
mentary Fig. S10a, b). To further validate these correlations, we initially
examined the BRAF and its mutant form, BRAFV600E, in different PTC
cells (Supplementary Fig. S10c). Notably, IHH4 cells exhibited abun-
dant expression of both BRAF and BRAFV600E in comparison to other
PTC cells, and LY6K highly expressed in PTC cells. (Supplementary
Fig. S10c, d). To interfere with both BRAF and BRAFV600E expression,
we introduced two independent BRAF short-hairpin RNAs (shRNA)
into IHH4 cells, resulting in a simultaneous reduction in the expression
of BRAF and BRAFV600E, along with a decrease in the downstream
factor pMEK1/2 (Fig. 7b and Supplementary Fig. S10e). We observed
that LY6K expression decreased alongside BRAF/BRAFV600E down-
regulation, indicating a potential reliance on BRAF (Fig. 7c). Further
exploration revealed that the restoration of LY6K significantly
reversed cell proliferation and tumorigenesis in BRAF knockdown cells
(Fig. 7d–f and Supplementary Fig. S10f). These results suggest that the
BRAF-status may interact with other factors, such as metabolic

signaling, within PTC, thus cooperatively contributing to the four
distinctive subtypes to a certain degree.

Next, to validate the correlation between BRAF-status and meta-
bolic signaling, we conducted metabolomics and transcriptomics
analyses using the aforementioned cell lines. Consistent with the
observation that multiple metabolites showed increased levels in
BRAF-mutant PTC tumor samples (Supplementary Fig. S4b), the con-
trolled IHH4 cells also showed improved levels in a series of metabo-
lites, especially PE and PC species, compared to the BRAF knockdown
cells (Supplementary Fig. S10g). The restoration of LY6K lead to sig-
nificantly decreased levels in multiple metabolites (Fig. 7g) and upre-
gulations of genes in somemetabolismpathways like drugmetabolism
and pentose and glucuronate interconversions (Fig. 7h), in agreement
with the reduction of most metabolites and upregulation of genes
involved in various metabolism pathways for the LY6K-high subtype
CS2 (Fig. 6b, h). Meanwhile, the restoration of LY6K also reversed the
pathway impacts generated by BRAF knockdown (Fig. 7h).
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Fig. 6 | Characterization of the four PTC subtypes. a, b Significantly upregulated
genes (a) and metabolites (b) in different clusters based on transcriptomics
(examined by Deseq2) and metabolomics (examined by Wilcox test, two-sided).
Only the top-10 significant items for each subtype are displayed. c–g Boxplot of
tumor size (c), number of metastatic lymph nodes (LNM.No) (d), tumor difference
scores (TDS) (e), RAS scores (f) and BRAF scores (g) across the four clusters (CS1:
n = 26; CS2: n = 15; CS3: n = 34; CS4: n = 17). T test, two-sided, *P <0.05, **P <0.01,
***P <0.001, ****P <0.0001. In the boxplots, the central line represents median, the

bounds of boxes represent the first and third quartiles, and the upper and lower
whiskers extend to the highest or the smallest value within 1.5 interquartile range.
h, i The metabolism (h) and immune pathway (i) enrichment results for the four
clusters. *P <0.05, by GSEA (Kolmogorov–Smirnov test, one-sided). j Heatmap
showing different cell compositions of different clusters. Epi epithelium. Only cell
types showing significant differences (Kruskal test, two-sided, P <0.05) for at least
one subtype is displayed. Source data are provided as a Source Data file.
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Validation of the subtypes by machine-learning models
To validate the four PTC subtypes in silico, we split the PTC data into
training and testing datasets, and constructed a subtype predictor
based on the expression levels of the top-30 ranked genes and meta-
bolites in the training dataset (Supplementary Fig. S10h, i). The pre-
dictor can classify the four subtypes accurately in the testing dataset,
with the areasunder the receiver operator characteristic curves (AUCs)

1, 0.97, 0.97, 0.99 for CS1 to CS4 on the testing dataset (Fig. 7i).
Meanwhile, the predicted probabilities of being the subtype CS2 were
associated with recurrence-free survival where high CS2 probabilities
were associatedwith unfavorable prognosis (Supplementary Fig. S10j).
Moreover, to validate the subtype by external cohorts where only
transcriptomics were available, we also trained a subtype predictor
based on the top-300 mRNA expressions (mean accuracy across
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tenfold cross-over validations: 0.8234), and utilized it to find the four
subtypes in the TCGA-PTC cohort (see “Methods”). Subtypes with
similar prognosis patterns can still be recognized (Fig. 7j), where the
subtype CS2 was also with the worst prognosis (Supplementary
Fig. S10k) as well as fewer BRAF mutations (Supplementary Fig. S10l).

Discussion
In this study, we performed an integrative investigation of 102 Chinese
PTC patients based on multi-omics profiling, including WES, tran-
scriptomics, metabolomics, proteomics and phospho-proteomics. We
identified the molecular and pathway characteristics of these Chinese
PTC patients frommulti-omics perspectives. Consistent with previous
reports, common mutations in PTC like BRAF, TERT promoter and
gene fusions involved in RET were also revealed. RAS mutations in
Chinese PTC cohorts16,17 weremuch less than that reported by TCGA10.
Here, no RAS mutation was identified, probably also due to the geo-
graphical as well as sample limitation. The prevalence of TERT C228T
promoter mutations in Chinese PTC varied between 4.1 and 9.6%
according to previous studies17,36,37. The high TERT C228T mutation
(14%) frequency here may be related with the large proportion of high
RR patients (n = 48, 47.06%) in the cohort, since the TERT C228T
mutation was found significantly associated with high RR in PTC. In
addition, frequent mutations in MUC16 (36%) were also observed.
Although few MUC16 mutation was reported in PTC studies, MUC16
showed high mutation frequencies and was associated with prognosis
in various types of cancers like gastric cancer38, glioma39, and
melanoma40, and MUC16 mutation was found to be associated with
better response to immune checkpoint inhibitors in solid tumors41.
Notably, the discrepancy of the identified mutations compared to
TCGA and other cohorts may also probably due to the different
mutation filtering strategies. Molecular characters in terms of meta-
bolites, genes, proteins and phosphoproteins were described, these
molecular alterations especially focused on themetabolismprocesses,
especially for the glycolysis andpyruvatemetabolism. Previous studies
have also identified metabolism factors involved in glucose uptake,
glycolysis, and lipid metabolism showing significant associations with
PTC prognosis12,13,42 or therapeutic responses43.

Meanwhile, the molecular differences of PTC with different levels
of recurrence risks were also portrayed. Mutations in MUC16, TERT
promoter, and various gene fusions were specifically enriched in the
high RR PTC patients. The multi-omics-based molecular expressional
patterns of different RRs were comprehensively described. It has been
reported that elevated post lobectomy serum Tg can be used to pre-
dict high recurrence risk3. However, the other information about the
molecular characteristics of different RRs in PTC was limited. Here, we
found the high RR was associated with elevated levels in triglycerides,
genes MMP13 and CST1, proteins Tg, PTPRG and VWA1 and phos-
phorylated EPPK1, ALDH1A1, andLAMC1, etc. ExpressionofMMP13was
reported to be associated with PTC invasion and metastasis44. CST1
upregulation was found to facilitate cell proliferation, motility,
epithelial–mesenchymal transition and stemness in PTC45. LAMC1 was

reported to show a higher level in samples from PTC patients with
metastasis46. The specific molecular features of intermediate and low
recurrence risks were also described (Fig. 4). The complicated corre-
lations between molecules were also investigated. Interestingly, the
high RR showed specific high expressions in the ECM relevant protein
dominant correlation network and low expressions in the FFA-
centered correlation network. Moreover, the metabolites showed
high correlations with proteins and phosphoproteins in general. These
findings therefore add to the atlas of biomarkers or targets thatmaybe
applied in the diagnosis and treatment of recurrent PTC.

PTC patients were usually stratified into high, intermediate, and
low RR according to the ATA recommendations. In this study, we re-
stratified the PTC patients into four molecular subtypes based on an
integrative clustering analysis using both transcriptomics and meta-
bolomics. The four subtypes were different from the original RR
groups, where the first subtype was featured by low RR patients while
the other subtypes were mainly composed of the high and inter-
mediate RRs. Biologically, these four subtypes showed remarkable
differences in terms of hallmark mutations, PTC-relevant gene and
metabolite expressions, epithelial cell compositions, as well as meta-
bolism and immune pathway profiles. Clinically, the subtypes were
also enriched by different pathological factors including the disease
stages, lymph nodemetastasis and tumor invasion states. Importantly,
the four subtypes showed a significant difference in prognosis, where
the subtype CS2 (high RR, less BRAF mutations, upregulation in
metabolism) showed the most unfavorable recurrence-free prognosis
outcomes, and the subtype CS3 (high RR, less BRAF mutations, upre-
gulations in immune pathways) showed a relatively good prognosis
among the three high RR subtypes, highlighting the important roles of
metabolism and immune pathways in PTC recurrence. Moreover, the
expressional patterns of druggable targets for the four subtypes were
distinctive, suggesting subtype-specific treatmentmaybe needed. The
redefined subtypes suggest ATA risk stratification should not be used
as one single predictor, other molecular profiles should be taken into
consideration as well to do better and precision management of PTC
recurrences.

Overall, we revealed themolecular basis of PTCwith different RRs
and proposed an effective molecular stratification strategy. We also
illustrated the PTC subtypes relevant molecular characteristics, iden-
tified potential drug targets, constructed subtype predictors and
highlighted the important role ofmetabolism in PTC, thus can provide
guidance for PTC stratification and promoting precision diagnosis and
treatment.

Methods
Clinical sample collection
All procedures performed in our study were in accordance with the
ethical standards of our institutional research committee and with the
1964 Helsinki declaration and its later amendments or comparable
ethical standards. The consecutive samples used for this study were
selected frompatients diagnosedwith PTC fromOct 2014 to Jul 2021 at

Fig. 7 | Validation of the subtypes by both experimental and computational
methods. a Scatter plot of the differential expressions of BRAF-relevant genes in
CS2 and CS3 subtypes. The x and y axes respectively represent the significant
Log2FC calculated for comparing CS2 or CS3 to the other clusters, and only genes
showed significant differential expression between PTC tumor tissue samples with
andwithout BRAFmutations were considered. Significance:Wilcox test, two-sided,
P <0.05. b Immunoblotting analysis with indicated antibodies in IHH4 cells trans-
ducedwith two independent BRAF shRNAs. c Immunoblotting analysis of indicated
proteins in BRAF knockdown IHH4 and LY6K transduced cells.d Proliferation assay
of indicated cell lines (n = 5). e, fXenograft tumor progression (e) and tumorweight
(f). Mice were injected subcutaneously with IHH4 cells transduced with BRAF
shRNA alone or in combination with LY6K (n = 5). g Bar plot of the top-10

differentially expressed metabolites between shBRAF2 + LY6K and shBRAF2 cells
(n = 5). T test, P <0.01, rank by P. h KEGG-based GSEA results for comparing the
transcriptomics between different cell lines (n = 5). Only pathways with the top-10
NES (P <0.05, Kolmogorov–Smirnov test, one-sided) for comparing shBRAF2 +
LY6K VS shBRAF2 are shown. meta. metabolism, inter. interconversions. i Receiver
operator characteristic (ROC) curve for predictions of CS1 to CS4 subtypes in the
testing dataset. j KM-plot of the over all survival curves of the four predicted
subtypes in the TCGA-PTC dataset. P: Log-rank test. Results (d–f) are the mean of
biological replicates from a representative experiment, and error bars indicate
s.e.m. Statistical significance was determined by T test (NS not significant). The
experiments were repeated at least three times. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-024-47581-1

Nature Communications |         (2024) 15:3175 12



Fudan University Shanghai Cancer Center (FUSCC) in China. The
sample collection, store, and quality control were in accordance with
the standard operation procedures of the Institutional Tissue Bank
(ITB) of FUSCC. The samples were detached from the humanbody and
stored in liquid nitrogen within 30min, and they were made into fro-
zen sections and paraffin-embedded sections at the same time, which
were then stained by hematoxylin and eosin. All hematoxylin and eosin
slides of the samples were subjected to evaluation for histopatholo-
gical morphology and tumor components by expert pathologists. The
samples enrolled in this study should meet the following criteria: (1)
the percentage of tumor cell nuclear (tumor cell nuclear/total cell
nuclear) ≥80%, (2) the percentage of total cells ≥80% (cell area/ total
tissue section area) and (3) the percentage of necrosis ≤20% (necrotic
tissue area/total tissue section area). The clinical information of the
enrolled PTC patients were also recorded, including age, gender, sex,
tumor size, lymph node metastasis (LNM), extrathyroidal extension
(ETE), extranodal extension (ENE), number of metastatic lymph nodes
(LNM.No), TNM staging (AJCC cancer staging system 8th edition) and
RR stratification (2015 ATA guideline47). Each patient provided a writ-
ten informed consent for his/her specimens and information to be
used for research and stored in the hospital database, and this study
was approved by the Ethical Committee of the FUSCC.

DNA library preparation and WES
The exome DNA sequences were enriched from 0.4μg genomic DNA
using Agilent SureSelect Human All Exon V6 kit according to the
manufacturer’s protocol. DNA fragments were end-repaired and
phosphorylated, followed by A-tailing and ligation at the 3’ ends with
paired-end adaptors. DNA fragments with ligated adapter molecules
on both ends were selectively enriched in a PCR reaction. Then,
libraries hybridize with liquid phase with biotin-labeled probe, and use
magnetic beads with streptomycin to capture the exons of genes.
Captured libraries were enriched in a PCR reaction to add index tags to
prepare for sequencing. Products were purified using the AMPure XP
system (Beckman Coulter, Beverly, USA), DNA concentration was
measured by Qubit®3.0 Flurometer (Invitrogen, USA), libraries were
analyzed for size distribution by NGS3K/Caliper and quantified by real-
time PCR (3 nM). At last, DNA library were sequenced on Illumina for
paired-end 150 bp reads. The clustering of the index-coded samples
was performed on a cBot Cluster Generation System using Illumina PE
Cluster Kit (Illumina, USA) according to the manufacturer’s instruc-
tions. After that, the DNA libraries were sequenced on the Illumina
platform and 150bp paired-end reads were generated.

RNA library preparation and RNA-seq for human samples
Briefly, mRNA was extracted and purified from the total RNA of the
fresh frozen tissues using poly-T oligo-attached magnetic beads. RNA
integrity was measured using the RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Fragmen-
tation was carried out using divalent cations under elevated tem-
perature in the First Strand Synthesis Reaction Buffer (5X). First-strand
cDNA was synthesized using random hexamer primer and M-MuLV
ReverseTranscriptase (RNaseH). Second strand cDNAwas synthesized
by DNA Polymerase I and RNase H. Remaining overhangs were con-
verted into blunt ends via exonuclease/polymerase activities. After
adenylation of 3’ ends of DNA fragments, Adaptor with hairpin loop
structure were ligated to prepare for hybridization. To select cDNA
fragments of preferentially 370–420 bp n length, the library fragments
were purified with the AMPure XP system (Beckman Coulter, Beverly,
USA). Then PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers, and Index (X) Primer. At last, PCR
products were purified (AMPure XP system) and library quality was
assessed on the Agilent Bioanalyzer 2100 system. The library pre-
parations were sequenced on an Illumina Novaseq platform, and
150 bp paired-end reads were generated.

RNA library preparation and RNA-seq for cell lines
Total RNA was isolated from cells/tissues using the Magzol Reagent
(Magen, China) according to the manufacturer’s protocol. The quan-
tity and integrity of RNA yield was assessed by using the K5500(Beijing
Kaiao, China) and the Agilent 2200TapeStation (Agilent Technologies,
USA) separately. Briefly, themRNAwas enriched by oligodT according
to instructions of NEBNext® Poly(A) mRNAMagnetic Isolation Module
(NEB, USA). And then fragmented to approximately 200bp. Subse-
quently, the RNA fragments were subjected to first-strand and second-
strand cDNA synthesis followed by adaptor ligation and enrichment
with a low-cycle according to instructions of NEBNext® Ultra™ RNA
Library Prep Kit for Illumina. The purified library products were eval-
uated using the Agilent 2200 TapeStation and Qubit (Thermo Fisher
Scientific, USA). The libraries were sequenced by Illumina (Illumina,
USA) with paired-end 150bp at Ribobio Co. Ltd (Ribobio, China).

Metabolomics profiling
Sample preparation. Samples were prepared by extracting meta-
bolites through a chloroform/methanol/water system. In brief,
sheared tissues were weighed and then 500 μL methanol with
internal standards (including 50 μM L-methionine sulfone and
50 μM D-camphor-10-sulfonic acid for capillary electrophoresis-
mass spectrometry [CE–MS] analysis; carnitine C2:0_d3 at 0.8 μg/
mL, carnitine C8:0_d3 at 0.8 μg/mL, carnitine C16:0_d3 at 0.5 μg/
mL, palmitic acid-d3 at 0.8 μg/mL, ceramide d18:1-d7/18:0 at
0.8 μg/mL, lyso-phospatidylcholine (LPC) 17:0-d5 at 0.8 μg/mL,
phosphatidylcholine (PC) 17:0/22:4-d5 at 0.8 μg/mL, and tria-
cylglycerol (TAG) 15:0/18:1/15:0-d5 at 0.8 μg/mL for liquid
chromatography-mass spectrometry [LC–MS] analysis) were
added. Mixed grinding apparatus (Scientz-48) was used for
homogenization (35 Hz, 2 min) followed by the addition of 500 μL
chloroform and vortex for 30 s. After phase breaking using
200 μL water and centrifugation (13,000 × g, 4 °C, 15 min), the
resulting extract was divided into three fractions: one for CE–MS,
one for carnitine and acyl-carnitines analysis by LC–MS, and one
sample was used for LC–MS-based lipidomics. In total, 300 μL
hydrophilic layer was transferred for ultrafiltration through a
5-kDa cutoff filter (Millipore, cat. UFC3LCCNB-HMT). Simulta-
neously, the quality control sample was prepared by combining
the aqueous phase from each sample and then filtered. Then
samples were vacuum-dried and stored at −80 °C until CE–MS
analysis. For carnitine and acyl-carnitines analysis, 150 μL hydro-
philic layer and 100 μL hydrophobic layer were freeze-dried. The
quality control sample was also prepared by combining the aqu-
eous phase and then vacuum-dried to evaluate the analytical
quality. Overall, 300 μL hydrophobic layer was collected and
freeze-dried for lipidomics analysis. At the same time, the quality
control sample was prepared by combining the hydrophobic layer
from each sample and then vacuum-dried. For cell samples, after
gently rinsed in 5% mannitol solution and instantly frozen in
liquid nitrogen, cells were lysed with 700 μL methanol containing
internal standards and were scraped off from the dish, mixed with
700 μL chloroform. Subsequently, 280 μL water was added. After
centrifugation at 13,000 × g for 15 min at 4 °C, 380 μL of aqueous
phase was filtrated and freeze-dried for CE–MS analysis and
380 μL hydrophobic layer was collected and freeze-dried for
lipidomics analysis. The quality control sample was also prepared
and then vacuum-dried.

Mass spectrometry. CE–MS analysis was conducted on CE (G7100A,
Agilent) couple to time of flight (TOF) mass spectrometry (G6224A,
Agilent)48. The fused silica capillary (50 µm i.d. × 80 cm, Human
Metabolome Technologies (HMT), Japan) was used for sample
separation and the temperature of the capillary was at 20 °C. Two
analysis modes were performed. For cation mode, a positive voltage
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of 27 kVwas applied during the CE separation. OneM formic acid was
used as the background electrolyte and renewed after each ten
injections. For TOF/MS, the electrospray (ESI) was performed in the
positive ion mode. Parameters were set as follows: nebulizer pres-
sure, 5 psig; dry gas temperature, 300 °C; nitrogen flow, 7 L/min;
capillary voltage, 4 kV; fragmentor, 105 V; skimmer, 50 V; Oct RFV,
650 V; acquisition rate, 1.5 spectra/s; mass range, 60–1000Da. For
anion mode, fifty mM ammonium acetate (pH= 8.5) was used as the
running electrolyte. During the CE separation, a positive voltage of
30 kV was used. To assist the electroosmotic flow (EOF), an internal
pressure of 17mbar was also applied to the inlet capillary. For TOF/
MS, most parameters were identical to those used in the cation
mode, except that the electrospray (ESI) was performed in the
negative ionmodewith a scanning range of 50–1000Da. Besides, the
voltage of the capillary and fragmentor were reset at 3.5 kV and 125 V,
respectively. LC–MS analysis was performed by an ACQUITY UPLC
system (Waters) coupled with a tripleTOF™ 5600 plus mass spec-
trometer (AB SCIEX). For acyl-carnitines analysis, the mobile phases
consisted of phase A = water + 0.1% formic acid and phase B =
acetonitrile + 0.1% formic acid. Lipidomics analysis was conducted
through the C8 AQUITY column (2.1mm × 100mm× 1.7 µm, Waters,
Milford, MA) and liquid chromatography was performed with phase
A = 40:60 water: acetonitrile + 10mM ammonium acetate and phase
B = 90:10 2-propanol: acetonitrile + 10mM ammonium acetate49.
Briefly, lyophilized samples were reconstituted in chloroform/
methanol (2:1, v/v) and diluted threefold in ACN/IPA/H2O (65:30:5, v/
v/v/) containing 5mM ammonium acetate. The flow rate was set as
0.26mL/min and the column temperature was 55 °C. The elution
gradient started at 32% B, was held at this concentration for 1.5min,
was linearly increased to 85% B at 15.5min, reached 97% B at 15.6min,
and was held at this concentration for 2.4min. Finally, the column
was returned to 32% B within 0.1min and held at this concentration
for 1.9min for equilibration. The total run time was 20min. In both
ESI (+) and ESI (−) modes, TOF MS full-scan and information-
dependent acquisition (IDA) were performed in parallel to acquire
high-resolution MS and tandem-MS data simultaneously. In
the positive mode, ion source gas 1 and gas 2 were set to 50 psi,
curtain gas to 35 psi, temperature to 500 °C, ion spray voltage
floating (ISVF) to 5500 V, and collision energy (CE) to 30 V with a
collision energy spread (CES) of ±15 V. In the negative mode, ion
source gas 1 and gas 2 were set to 55 psi, curtain gas to 35 psi, tem-
perature to 550 °C, ISVF to −4500V, and CE to −30V with CES of
±10 V. In the IDA setting, candidate ions with top five intensity were
selected and subjected to high-resolution tandem-MS analysis. All
samples were randomized with respect to run order to avoid batch
effects. In addition, the quality control samples were identically
inserted into the analytical sequence to monitor the reproducibility
of the analytical method.

Metabolite identification, quantification, and data normalization.
For CE–MS-basedmetabolites, the qualitative analysis of metabolites
was performed using the pre-analyzed metabolite standard library
(HMT), and internal standards were used to adjust themigration time
and standardize the metabolite intensity. Peak extraction and iden-
tification were carried out with Quantitative Analysis Software (Agi-
lent). Acyl-carnitines identification was based on the mass-to-charge
ratio (m/z), retention time and MS/MS pattern. Lipid identification
was based on exact mass and MS/MS pattern. The applied database
search engines were HMDB, Metlin (https://metlin.scripps.edu), and
LIPIDMAPS. Peakview workstation (AB SCIEX) was used to checkMS/
MS information of metabolites and Multiquant (AB SCIEX) was used
to obtain the peak areas of identified metabolites. The raw data from
CE–MS and LC–MS were normalized by corresponding internal
standards and tissue weight to minimize errors arising from the
sample pretreatment and analysis procedures as much as possible.

Proteomics and phospho-proteomics profiling
Sample preparation. The samples were homogenized in lysis buffer
consisting of 2.5% SDS/100mM Tris-HCl (pH 8.0). Then the samples
were subjected to treatmentwith ultrasonication. After centrifugation,
proteins in the supernatant were precipitated by adding four times of
pre-cooled acetone. The protein pellet was dissolved in 8M Urea/
100mMTris-Cl. After centrifugation, the supernatant was used for the
reduction reaction (10mM DTT, 37 °C for 1 h), followed by an alkyla-
tion reaction (40mM iodoacetamide, room temperature/dark place
for 30min). Protein concentration was measured by the Bradford
method. Urea was diluted below 2M using 100mM Tris-HCl (pH 8.0).
Trypsin was added at a ratio of 1:50 (enzyme: protein, w/w) for over-
night digestion at 37 °C. The next day, TFA was used to bring the pH
down to 6.0 to end the digestion. After centrifugation (12,000× g,
15min), the supernatant was subjected to peptide purification using
Sep-Pak C18 desalting column. The peptide eluate was vacuum-dried
and stored at −20 °C for later use. Phosphopeptide enrichment was
performed totally according to a previous study50.

LC–MS/MS analysis. LC–MS/MS data acquisition was carried out on
anOrbitrap Exploris 480mass spectrometer coupledwith an Easy-nLC
1200 system. Peptides were loaded through auto-sampler and sepa-
rated in a C18 analytical column (75μm×25 cm, C18, 1.9μm, 100Å).
Mobile phase A (0.1% formic acid) andmobile phase B (80% ACN, 0.1%
formic acid) were used to establish the separation gradient. A constant
flow rate was set at 300 nL/min. For DDA mode analysis, each scan
cycle consists of one full-scan mass spectrum (R = 60K, AGC = 300%,
max IT = 20ms, scan range = 350–1500m/z) followed by 20 MS/MS
events (R = 15 K, AGC = 100%, max IT = auto, cycle time= 2 s). HCD
collision energywas set to 30. Isolationwindow for precursor selection
was set to 1.6 Da. The former target ion exclusion was set for 35 s.

Database search. MS raw data were analyzed with MaxQuant v1.6.6
using the Andromeda database search algorithm. Spectra files were
searched against the UniProt Human proteome database using the
following parameters: LFQ mode was checked for quantification;
Variable modifications, Oxidation (M), Acetyl (Protein N-term) & Dea-
midation (NQ); Fixed modifications, Carbamidomethyl (C); Digestion,
Trypsin/P; The MS1 match tolerance was set as 20 ppm for the first
search and 4.5 ppm for the main search; the MS2 tolerance was set as
20 ppm; Match between runs was used for identification transfer.
Search results were filtered with 1% FDR at both protein and peptide
levels. Proteins denoted as decoy hits, contaminants, or only identified
by sites were removed, and the remaining identificationswere used for
further quantification analysis.

WES data analysis
Adaptors and low-quality reads of the WES sequencing data were
removed byTrimmatic (v 0.39)51, and the data qualitywas examinedby
fastqc (v 0.11.9)52. Then, the sequencing data were aligned to the
human genome reference (GRCh38/hg38) using BWA (v 0.7.17)53 and
samtools (v 1.8)54. The somatic gene mutations of tumor samples with
matched normal samples sequenced were called by the function of
VarScan2 (v 2.4.4)55, and the variants of tumor-only samples were
called based on the function mpileup2cns of VarScan2 and stringent
downstream filters. The called variants were annotated with Annovar56

(version updated in 2020-06-08) according to multiple databases
including refGene, knownGene, Exome Aggregation Consortium
(ExAC03), Catalogue Of Somatic Mutations In Cancer (cosmic70),
avsnp147, 1000 Genomes Project (2015_08), exome sequencing pro-
ject (esp6500siv2_all) and clinvar_20220320.

To obtain high-quality somatic variants for the tumor-only sam-
ples, stringent downstream filters were used. These filters included a
base coverage of a minimum of 200 read depth and variant allele
fraction (VAF) of 20 % in tumor, and the variants should be at a
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frequency higher than 1% in the 1000 Genomes Project, ESP6500 or
ExAC database, or present in the COSMIC with two or more
occurrences.

TERT promoter mutation
The telomerase reverse transcriptase (TERT) promoter mutation
(C228T/C250T) is determined using amplification-refractory mutation
system quantitative polymerase chain reaction (ARMS-qPCR) as
reported in the previous study57.

RNA-seq data quantification
RNA-seq reads were aligned to the genome reference (GRCh38/hg38
for human samples and mm10 for cell lines) using HISAT2 (v2.0.5)58.
HTseq (v 2.0.2)59 was utilized to count the read numbers of each gene.
Normalized gene expressionmatrix was obtained based on the counts
function of DESeq219 (v 1.26.0) with parameter normalized = TRUE.

Gene fusion
Gene fusions were detected from the RNA-seq data using arriba
(v 2.3.0)60 and STAR-fusion (v 1.4.0, https://github.com/STAR-Fusion/
STAR-Fusion/wiki). The results from the two methods were further
annotated and filtered base on annoFuseData (https://github.com/
d3b-center/annoFuseData) and annoFuse (V0.90.0)61, andonly fusions
with JunctionReadCount >3 and evaluated as high or median con-
fidence were retained.

Differential expression analysis
For the RNA-seq data, DESeq219 (v 1.26.0) was applied to find the dif-
ferentially expressed genes. For themetabolism/proteomics/phospho-
proteomics data of PTCpatient samples, thedifferential expressions of
each molecule was examined by Wilcox test (paired, two-sided).
Log2FCs between the samples were also calculated. P values were
adjusted by the Benjamini– Hochberg method.

Multi-omics characterization of PTCs with different RRs
For each RR type, we recognized the RR type associated molecules by
comparing the expressions of molecules (metabolites, mRNAs, pro-
teins, phosph-proteins) between this RR type and the other two RR
types using Wilcox test (unpaired, two sides) and corresponding
Log2FCs were calculated.

Integrative correlation analysis
The DIABLO26 method (mixOmics R package, v 6.10.9) was applied to
the four types of omics data (transcriptomics, metabolomics, pro-
teomics, phosph-proteomics, and only molecules showed significant
differences between tumor and normal tissues or specific type of RR
were taken into account), with the samples covered by all four types of
omics and labeled as high RR, intermediate RR, low RR and normal
tissue. The DIABLO method aims to obtain the common information
across multi-omics data by selecting a subset of molecules which not
only maximize the inter-correlations among omics but also dis-
criminate between different phenotypic labels. The expressional
matrixes and the labels were taken as the input of DIABLO, the latent
component number was set as 3, and the number of representative
molecules to select for each latent component considering each type
of input omics data was set as 20.

Integrative clustering of PTC patients
First, we tried to cluster the PTC patients based on both tran-
scriptomics and metabolomics profiles. Here, ten different multi-
omics clustering methods, including SNF, PINSPlus, NEMO, COCA,
LRAcluster, ConsensusClustering, CIMLR, MoCluster, iClusterBayes,
IntNMF were performed on our data using the MOVICS62 R package (v
0.99.17). These methods generated ten clustering records, and a
similarity matrix describing to what extant different samples were

grouped into the same clusters in terms of the ten clustering records
was obtained. Then, a hierarchical clustering algorithmwas applied on
the consensus similaritymatrix, and thenumber of clusterswas set as 4
(to ensure each cluster with was with more than ten samples).

TDS, BRAF scores, and RAS scores
We calculated the mean log2-transformed expression levels of 16
thyroid function-relevant genes defined by the TCGA-PTC study34 as
the TDS scores. Similarly, the BRAF and RAS scores were calculated
based on the mean expression of the upregulated signature genes in
the BRAFV600E-mutated and RAS-mutated samples from the TCGA-
PTC mRNA expressions.

The scRNA-seq-based prediction of cell compositions in bulk
samples
The single-cell RNA-seq data of PTC samples as well as the annotated
cell types were utilized as the input of dampened weighted least
squares (DWLS R package, v 0.1.0, https://CRAN.R-project.org/
package=DWLS) to train a cell decovolution model. Then, the trained
DWLS model was applied on the transcriptomics data of the PTC bulk
tissue samples to estimate the potential cell compositions of each
tissue sample, and a cell-type composition matrix was obtained.

Identification of druggable targets
For each subtype, the subtype-associated genes and metabolites were
recognized by examining the differential expressions between one
subtype and the other three subtypes using DESeq2 for tran-
scriptomics and limma for metabolomics. Then, the top-10 significant
and specifically highly expressed genes for each subtype was recog-
nized using the runMarker function of the MOVICS package. Then,
druggable targets among the top-ranked subtype-associated genes
were selected based on the DGIdb database63.

Subtype prediction
The transcriptomics and metabolomics data of the 97 PTCs were
partitioned into training (60%) and testing datasets (40%). The
importance of the metabolites and genes in predicting the subtypes
were estimated based on random forest (RF)64 method using the ran-
domForest R package (v 4.6-14). Then, a subtype predictor was trained
based on the expressional profiles of the top-30 metabolites and top-
30 genes using the RF method. The model was applied on the testing
dataset, and the prediction performancewas evaluated byROCcurves.

Since the TCGA-PTC cohort only had the transcriptomics data.We
trained another subtype predictor based only the transcriptomics
data. The importanceof the genes in predicting the subtypeswere also
estimated based on RF method. The subtype predictor was trained
based on the expressional profiles of the intersection of the top-300
genes in our data set and the genes covered by the TCGA-PTC tran-
scriptomics data using the linear discriminant analysis. Themodel was
applied on the TCGA-PTC cohort to predict the subtype for each
sample.

Cell culture, shRNA transduction and cell growth measurement
Human IHH4 (sex: male) was purchased from JCRB Cell Bank (Catalog:
JCRB1079). Human TPC1 (sex: female) was purchased from Sigma-
Aldrich (Catalog: SCC147). Human BCPAP(sex: female) was purchased
from Cell Bank (Chinese Academy of Sciences, Catalog: SCSP-543).
Human HEK293T (sex: female) was purchased from ATCC (ATCC
Number: CRL-3216). IHH4, TPC1, BCPAP, and HEK293T cells were cul-
tured in DMEM with 10% FBS. Lentiviral shRNAs were cloned into
pLKO.1, the targeted sequences were: shBRAF1- GTTACCTGGCTCAC-
TAACTAA; shBRAF2-GAACATATAGAGGCCCTATTG. HEK293T cells
were transfected using polyethylenimine (PEI). The transfection mass
ratio of plasmids to PEI was 1:3. Lentivirus production was performed
using two systems. For the two-plasmidpackaging system, psPAX2 and
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pVSVg, together with targeting plasmids were co-transfected into
HEK293T cells for 48 h to harvest the supernatant of lentivirus. IHH4
cells were incubated with the medium mixed with the indicated
supernatant of lentivirus for 24 h. Next, the cells were kept in the
normal culture medium and used for further treatment.

Cell proliferation was performed using cell counting Kit 8
according to the manufacturer’s requirement. Briefly, indicated cells
(1000–2000 per well) were seeded in a 96-well plate. At different time
points (24 h for a timepoint, a total 5 timepoints), cells were incubated
with 100μl relative culture medium containing 10% CCK-8 assay
solution. After 2 hof incubation, platesweremeasured at450nmusing
a plate reader (Cytation5, Biotech).

In vivo animal studies
Male BALB/c nudemice (6–8weeks old) were obtained from the China
Medical University and maintained under specific pathogen-free (SPF)
conditions. For tumor growth assay, IHH4 cells (2 × 106 per mice) in
100μl of cells suspension (mixed with Matrigel at a 1:1 ratio) were
injected subcutaneously. All experiments were carried out according
to the regulations set by the Ethics Committee of China Medical Uni-
versity. All animal experiments were performed in accordance with a
protocol approved by the Institutional Animal Care and Treatment in
Biomedical Research of China Medical University. When used in a
power calculation, our sample size predetermination experiments
indicate that 5 mice per group can identify the tumor size and weight
(P < 0.05 with 100% power). Animals were randomly assigned to dif-
ferent groups. Six- to 8-week-old male nude mice were used for sub-
cutaneous injection of human thyroid cancer cells. Tumor cells in 30μl
of growth medium (mixed with Matrigel at a 1:1 ratio) were injected
subcutaneously using a 100-μl HamiltonMicroliter syringe. Tumor size
was measured once a week using a caliper, and tumor volume was
calculated using the standard formula 0.5 × L ×W2, where L is the
longest diameter and W is the shortest diameter. The maximal tumor
burden permitted by the ethics committee is nomore than 1500mm3.
When the tumor burden reached 1500mm3, mice were euthanized,
and the tumorsweredissected for further analysis. All the tumors were
removed, photographed and weighed.

Immunoblotting
Cells were harvested and extracted proteins using ice-cold lysis buffer
(150mM NaCl, 1% Triton X-100, 1mM EDTA, 1mM EGTA, 2.5mM
sodium pyrophosphate, 1mM β-glycerolphosphate, 20mM Tris-HCl,
pH 7.5, with protease inhibitor cocktail). After denaturation, samples
were subjected to SDS-PAGE electrophoresis and immune-blotting
assay. Primary antibodies against BRAFV600E was purchased from
Abcam, Inc. (Cam, UK) (Catalog: ab228461, dilution 1:500), and BRAF
was from Santa Cruz Biotechnology, Inc. (DAL, USA) (Catalog: sc-5284,
dilution 1:1000). Primary antibodies against LY6K were purchased
fromBeyotimeBiotechnology, Inc. (SH, CN) (Catalog: AG5061, dilution
1:1000), and Actin was purchased from Proteintech Group, Inc. (IL,
USA) (Catalog: 81115-1-RR, dilution 1:2000). Vinculin was purchased
from Santa Cruz Biotechnology, Inc. (Texas, USA) (Catalog:sc-73614,
dilution 1:2000). Primary antibodies pMEK1/2 (ser 217/221) andMEK1/2
were purchased from Cell Signaling Technology, Inc. (MA, USA) (Cat-
alog: 8727T, dilution 1:2000 and Catalog: 9154T, dilution 1:1000).

Statistical analysis
Detailed computational and statistical methods are reported in
“Methods” or figure legends. All statistical analyses were performed by
R (v 3.6.3 and v 4.0.4). Survival analysis were performed by survival (v
3.2-7) and survminer (v0.4.9) packages. Pathway enrichment analyses
were performed by clusterProfiler65 (v 3.18.1) package. The statistical
tests were two-sided and unpaired by default, and one-sided or paired
tests were specifically stated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw WES and RNA-seq data of the PTC samples have been
deposited in the Genome Sequence Archive66 in National Genomics
Data Center67, China National Center for Bioinformation/Beijing Insti-
tute of Genomics, Chinese Academy of Sciences (GSA-Human) under
accession code HRA005293 and HRA005382. The raw WES and RNA-
seq data are available under restricted access for research purposes
only, access can be obtained by the DAC (Data Access Committees) of
the GSA-human database. According to the guidelines of GSA-human,
all non-profit researchers can obtain access to the data, and the prin-
cipal investigator of any research group is allowed to apply the data.
The access authority can be obtained for Research Use Only. The user
can also contact the corresponding author directly. Once access has
been approved, the data will be available to download for 2 months.
The mass spectrometry proteomics and phospho-proteomics data
have been deposited to the ProteomeXchange Consortium via the
PRIDE68 with the dataset identifier PXD044900 and PXD045017. The
metabolomics data have been deposited to MetaboLights69 [www.ebi.
ac.uk/metabolights/MTBLS3339]. Transcriptomics and survival data of
TCGA-PTC samples were obtained from Genomic Data Commons
[https://portal.gdc.cancer.gov/projects/TCGA-THCA]. The scRNA-seq
data used in this study are available in the Gene Expression Omnibus
repository under accession codeGSE184362. Source data are provided
with this paper.

Code availability
The codes are available at https://github.com/diChen310/PTC_
multi_omics.
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