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Multiplexed representation of others in the
hippocampal CA1 subfield of female mice

Xiang Zhang 1,2,6, Qichen Cao1,2,3,6, Kai Gao1,2,3, Cong Chen1,2, Sihui Cheng1,2,3,
Ang Li 1,2,3, Yuqian Zhou 1,2, Ruojin Liu1,2,3, Jun Hao1,2,3, Emilio Kropff4,7 &
Chenglin Miao 1,2,3,5,7

Hippocampal place cells represent the position of a rodent within an envir-
onment. In addition, recent experiments show that the CA1 subfield of a pas-
sive observer also represents the position of a conspecific performing a spatial
task. However, whether this representation is allocentric, egocentric or mixed
is less clear. In this study we investigated the representation of others during
free behavior and in a task where female mice learned to follow a conspecific
for a reward.We found thatmost cells represent the position of others relative
to self-position (social-vector cells) rather than to the environment, with a
prevalence of purely egocentric coding modulated by context and mouse
identity. Learning of a pursuit task improved the tuning of social-vector cells,
but their number remained invariant. Collectively, our results suggest that the
hippocampus flexibly codes the position of others in multiple coordinate
systems, albeit favoring the self as a reference point.

The rodent cognitive map provides an internal representation of self-
positionwithin anenvironment through the activity of neurons suchas
hippocampal place cells and entorhinal grid cells1–5. In addition, evi-
dence suggests that the samenetworks encode the location of external
bodies, such as objects and conspecifics6–11. Object-vector cells in the
hippocampus encode the position of an object relative to the animal,
irrespective of the position of the objectwithin the environment12. One
synapse upstream, themedial entorhinal cortex has object-vector cells
with similar characteristics13, while the lateral entorhinal cortex has
been shown to represent the relative orientation of objects using a
purely egocentric system of coordinates that rotates with the animal’s
head14. Egocentric representations can code for goal locations in the
hippocampus15–17, and have been reported in other brain areas18–21.

Precise representation of others during social interactions poses
additional challenges since conspecifics, unlike objects, can rapidly
and unpredictably change their location. Recent groundbreakingwork
has shown that the hippocampus of a passive observer codes the
position of a conspecific performing a stereotypical task10,11. However,
since in this kind of paradigm the observer is mostly still, it is less clear

whether the location of the other is being represented relative to
the observer, to the environment, or through a combination of both
perspectives. More generally, whether and how these networks
represent the location of others during free and spontaneous social
interactions, or during social tasks in which both animals play simul-
taneously active roles, remains largely unknown. Addressing
these questions requires the systematic examination of cell activity in
multiple simultaneous reference frames, including egocentric and
allocentric perspectives.

In this work, we show single-unit calcium activity recordings taken
from theCA1 subfield ofmice foraging in open field environments in the
presence of conspecifics. Our analyses focus on four reference frames.
First, the classical allocentric representation of self-position in which
place cells were characterized. Second, the allocentric representation of
others introduced to study social spatial coding10,11. In addition, we
hypothesize the representation of the location of others relative to self-
position in either a fixed coordinate system or in one that rotates
together with the animal’s head, two possibilities that previous experi-
ments were not designed to test for. We also present recordings in a
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novel behavioral test inwhich amouse learns to chase a conspecific for a
reward. Using this task we assess how the representation of others
relates to performance in a social task with simultaneously active roles.

Results
CA1 cells represent the position of conspecifics relative to self-
position
To study social spatial representations in the hippocampus, we
recorded calcium events (binarized with a cutoff of 3 standard devia-
tions) from GCaMP6s-expressing unique CA1 neurons, using minia-
turized endoscopes, while mice foraged in a 70 cm-diameter circular
open field for 10min together with a familiar conspecific (a cagemate;
Fig. 1 a–c, Supplementary Fig. 1 and Supplementary Movies 1–2; one
session per pair of mice).

For each recorded cell we constructed four spatial maps, using
[x,y] coordinates of either the self, the other or the other relative to the
self (Fig. 1d–e and Supplementary Fig. 2).Maps for the relative position
used allocentric or egocentric coordinates, in the latter case rotating
with the head of the imaged mouse. With these definitions, the space
representing all possible relative positions (the ‘effective arena’)
exhibited dimensions twice as large as those of the physical arena
(4 times in terms of area), so spatial bins for relative position were also
twice as large (Supplementary Fig. 3a). By comparing the spatial
information content in thesemapswith the distribution resulting from
1000 temporal shuffles of the calcium events, we classified each cell as
self-place cell (selfPC), social-place cell (socialPC), allocentric social-
vector cell (alloSVC) or egocentric social-vector cell (egoSVC), allowing
for cells to be included in multiple categories simultaneously (Fig. 1e
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Fig. 1 | Multiplexed social coding in CA1 favors social-vector representations.
a Schematic of AAV2/1-EF1a-GCaMP6s virus injection, GRIN lens implantation and
miniscope imaging. b A representative example of histological slice showing
GCaMP6s expression (green), DAPI staining of nuclei (blue) and the trace of a GRIN
lens (dashed lines). Scale bar: 500μm. cDiagramof the experimental paradigm. An
imagedmouse (blue) and a social partner (orange) interacted freely in anopen field
arena (18 imaged mice, 2162 imaged cells). Scale bar: 10 cm. d Diagram of the
different reference frames leading to four cell categories. Place cells and social-
place cells respectively represent the imaged (blue) or the other (orange) mouse
relative to the environment. Allocentric and egocentric social-vector cells represent
the position of the other mouse relative to that of the imaged mouse, with coor-
dinates centered at the head of the imaged mouse, rotating with it (egoSVC) or
fixed to the arena (alloSVC). e Representative examples of the four cell types
(columns). Each subpanel shows spatial maps (left) and calcium event plots (right)
for one cell. Peak event rate (P) and spatial information (I) in the corresponding

reference frame is indicated. Scale bars: 20 cm. f Representative example of the
spatial distribution of cells of each type in the field of view (color coded). g Left:
Venn diagram representing the distribution of cells across categories. Right: Similar
information in terms of percentage of cells in different combinations of categories.
h–i Density of field peaks (left axis; bars) and coverage (right axis; line, mean±
s.e.m.) inside rings of increasing radii around the imagedmouse normalized by the
area of the ring for alloSVCs (h) and egoSVCs (i). Note that around 70 cm, the
maximum possible distance between mice, field density and coverage decay
because conditions for animals to be at exactly 70 cm from each other are rarely
met. j Cross-validated decoding error in each reference frame compared with
shuffling (one dot per session;mean± s.e.m., two-tailedMann–Whitney test p-value
indicated. From left to right, session number: 321, 182, 295, 338; Mann–Whitney U:
1779716, 1137944, 2432712, 3255215; Cliff’s Delta:−0.65, −0.31, −0.44,−0.43). Source
data are provided as a Source Data file.
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and Supplementary Fig. 3b; cutoff value for classification: 95th per-
centile of the shuffled distribution for information). The classification
was similar for a variety of modifications in selection criteria (Sup-
plementary Figs. 4–5).

We found no signs of topographical organization of cell cate-
gories along the field of view (Fig. 1f and Supplementary Fig. 3c). The
category with the highest percentage of cells was selfPC (42.7%), fol-
lowed by egoSVC (13.1%) and alloSVC (11.1%, but see Supplementary
Fig. 6) (Fig. 1g). In contrast, only a marginal number of cells was clas-
sified as socialPC (2.3%), suggesting that during free interactions
social-vector coding is a preferred strategy among CA1 neurons. The
density of peaks of social-vector fields was homogeneous across most
of the effective arena and only decayed close to the edges, where
coverage also decreased (Fig. 1h–i). In contrast, socialPCs were found
to peak more often close to the borders, a characteristic previously
described in selfPCs (Supplementary Fig. 3d–g).

We next asked whether cells were grouped into mutually exclu-
sive subpopulations or instead expressed conjunctive coding. The
percentage of cells within a category that were not conjunctive
was higher for selfPC (69.1%) and egoSVC (45.1%), and lower for
alloSVC (18.8%) and socialPC (22.0%) (Fig. 1g). We used an overlap
index to assess whether pairs of cell categories tended to group
the same cells or, in contrast, overlaps between them were of a
random nature (see Methods). We observed that the overlap was high
between alloSVC and other categories, as well as between selfPC and
socialPC (Supplementary Fig. 3h). For the rest of cell type pairs, con-
junctive coding occurred at a rate expected by chance, indicative of
independence between mechanisms of cell specialization. In parti-
cular, chance-level overlap between the selfPC and egoSVC sub-
populations made it unlikely that the firing of the latter could
be explained by the position of the observer relative to the arena.
Furthermore, percentages of cell types did not vary substantially after
removing episodes during which the movement of both animals was
correlated (Supplementary Fig. 4a). In contrast, the high overlap
between selfPC and alloSVC, together with geometrical considera-
tions, suggests that a fraction of cells classified as alloSVC are false
positives (Supplementary Fig. 6). The observations above led us to
focus for the remaining part of this work on egoSVC rather than
alloSVC, because they represented both an overall larger and more
independent subpopulation.

Our results point to relative rather than absolute position as a
prevailing CA1 strategy to represent conspecifics at the single cell level
inmice. Tounderstand if this is also the case at the population level,we
implemented a naïve Bayesian decoder22 to predict the position of the
self or the other in each reference frame based on the activity of cells
belonging to the corresponding category (Fig. 1j and Supplementary
Fig. 7). To estimate baseline accuracy levels, we trained the same
decoder with shuffled data (100 shuffles for each session). We found
that session-averaged cross-validated decoding error was lower than
baseline for all cell categories, although the size and significance of the
difference was higher for selfPCs, followed in order by egoSVCs,
alloSVCs and socialPCs (note that higher absolute observed and
shuffled errors for social-vector cells relate to a larger effective arena;
Supplementary Fig. 3a).

Collectively, these results suggest that CA1 implements a multi-
plexed representation of the position of conspecifics during free
interactions, favoring social-vector coding over other strategies.
Among social-vector cells, egoSVCs stand out as a larger and more
specialized population.

Social-vector maps are modulated by identity
Wenext askedwhether or not social spatial representations dependon
the identity of the conspecific. To answer this question, we imaged
from a mouse free foraging in an open field arena together with two
cage mates (Fig. 2a). To differentiate them, we attached a LED to the

head of one of them (mouse 1). We found that a substantial number of
egoSVCs only represented the relative position of one mouse
(Fig. 2b–d), with similar levels of information rate for the subpopula-
tions of cells specialized in each one (Fig. 2e). The overlap index
between these two subpopulations indicated that the conjunctive
representation of both animals occurred at a rate higher thanexpected
by chance, hinting to the possibility of some level of generalization
across animals. To characterize it, we divided every session in two
halves, obtained maps for each half and assessed their similarity
through the Pearson correlation. Themaps for the two halves could be
constructed using coordinates of either the same or the other con-
specific sharing the arena together with the imaged mouse. We
observed that the correlationwashigherwhenboth social-vectormaps
of a given cell referred to the same mouse, indicating that egoSVCs
encode mouse identity (Fig. 2f). However, we also found that the
correlation between maps referring to different mice was higher for
cells that were classified as egoSVC for both mice than for cells spe-
cialized in one mouse. This observation suggests incomplete remap-
ping, or some degree of generalization across individuals in social-
vector representations.

We next asked if similar observations could be made at the
population level. To address this question, we trained a decoder with
the relative position of one mouse and used it to decode the relative
position of either the sameor the othermouse, using all cells classified
as egoSVC for at least one of them (Fig. 2g). We observed that both
decoders performed better than one trained with shuffled data, and
that same-mouse decoding produced lower errors than cross-mouse
decoding. These results, compatible with observations at the single-
cell level, suggest that egoSVCs represent the identity of conspecifics,
while exhibiting some limited level of generalization across indivi-
duals. Similar conclusions were obtained when performing these
analyses on alloSVCs (Supplementary Fig. 8).

Modulation by familiarity
Since social interactions are modulated by familiarity, we also asked if
social representations were similar for cage mates vs. other con-
specifics. For up to 10 consecutive days, we trained a mouse to free
forage in an open field environment in two sessions, the first one
sharing the arena with a cage mate and the second one with an unfa-
miliar mouse (Fig. 3a). Familiar sessions came always first to avoid loss
of interest primedby prior interactionwith the unfamiliarmouse. Even
with this bias, overall interaction time (including chasing, mounting,
etc.) was significantly higher for the unfamiliar mouse, with no signs of
adaptation after 10 days of daily exposure (Fig. 3b–c and Supple-
mentary Fig. 9a, b).

To understand if this behavioral difference was associated with
distinct egoSVC representations, we next compared egoSVCs specia-
lized in the familiar vs. the unfamiliar mouse (Fig. 3d and Supple-
mentary Fig. 9c).We observed that both subpopulations represented a
similar proportion of cells, with overlaps higher than expected by
chance and evidence for some level of generalization across indivi-
duals (Fig. 3e–g). This is compatible with our findings in the three-
mouse experiment. We also found that information content was
slightly higher for familiar egoSVCs (Fig. 3h), suggesting that coding of
conspecifics could be influenced by prior experience and does not
improve with the amount of interaction within the environment.
Similar analyses on alloSVCs exhibited the same trend but were bor-
derline on the significance of modulation by familiarity (Supplemen-
tary Fig. 9c–j).

We next asked if the increased information content for familiar
mice allowed for better decoding at the population level when all
egoSVCs were used (Fig. 3i). We observed that, in contrast with our
expectations, decoding error was slightly lower for the unfamiliar
mouse. To understand this apparent contradiction between informa-
tion content of individual cells and population decoding, we examined
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Black dots mark outliers. Source data are provided as a Source Data file.
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the error within sessions as a function of different key variables:
familiarity (whether the session included a familiar or unfamiliar
mouse), interaction (whether or not at a given point in time animals
were interacting) and distance between mice. We found that, rather
than familiarity or interaction, the difference in decoding error was
explained by the higher amount of time spent at a close distance,
which in the egoSVC reference frame is biased toward smaller errors
(Supplementary Fig. 10).

Together, these results suggest that although mice interact more
with unfamiliar conspecifics, egoSVCs represent more accurately the
position of familiar ones, although this difference is small.

Remapping of social-vector representations across contexts
Given that hippocampal place cells remap across environments, we
also asked if context modulates the social representation of
egoSVCs. We imaged from a mouse while it foraged freely
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accompanied by the same conspecific during three consecutive
sessions in different familiar environments: a small 50 cm side square
box, a large 70 cm side square box and a 70 cm diameter circular box
(Fig. 4a). Comparisons between consecutive sessions thus addressed
the questions of environment size (1 vs. 2) and shape (2 vs. 3). We
found that both types of contextual change produced remapping in
social-vector representations, so that many cells were classified as
egoSVCs only in one of the environments (Fig. 4b, c and Supple-
mentary Fig. 11a). Furthermore, overlap indexes were not sig-
nificantly higher than 1, suggesting that, unlike the modest
generalization across individuals we found previously, egoSVCs
exhibit no generalization across contexts (Fig. 4d, e). Since maps
were different in shape and size, we could not assess their similarity
through spatial correlation. Instead, we compared the activity of a
cell across sessions using the dot product of the mean event rate23.
We found that dot products between halves of the same context
were significantly higher than those between halves of different
contexts (Fig. 4f, g). The analysis of alloSVCs showed very similar
results (Supplementary Fig. 11).

Collectively, these results suggest that CA1 social-vector repre-
sentations are modulated by context, identity and familiarity of the
conspecific sharing the behavioral arena. Importantly, this character-
ization contrasts with that of object-vector cells, which tend to gen-
eralize across objects and environments13.

Learning of a pursuit task improves social-vector coding
We next asked if social-vector representations are associated to per-
formance in social tasks. To answer this question, we designed a
behavioral paradigm in which a mouse learned to closely follow a
conspecific (different across days) in a circular track to obtain a reward

(Fig. 5a and Supplementary Fig. 12). It took a variable number of ses-
sions for mice to understand the aim of the task and associate it to the
reward, after which the latency to reach the target decreased sharply
(Fig. 5b, c). This allowed the classification of sessions as naïve (all initial
sessions with a given imagedmouse) and trained (all sessions after the
latency dropped to less than 30% relative to the previous day).

Imaging throughout the learning process allowed us to compare
egoSVC representations in naïve and trained mice (Fig. 5d). We
observed that learning did not affect the proportion of cells classified
as egoSVCs or their mean calcium event rate. However, egoSVCs in
trained mice had higher levels of spatial information content, related
to both a lower number of fields and a smaller field size, hinting to a
role of plasticity in sharpening their place fields through competitive
learning (Fig. 5e and Supplementary Fig. 13b-c).

Wenext asked if thesedifferences had an impact at thepopulation
level, affecting the capacity to decode the position of the chased
mouse.Weobserved that cross-validateddecoding errorswere smaller
for trained animals than for naïve ones (Fig. 5f). These results suggest
that egoSVC representations improve when animals are engaged in a
social task. We found that most of these conclusions apply also to
alloSVCs (Supplementary Fig. 14).

Next, we asked what kind of changes in egoSVC representations
took place due to learning. The geometry of the task, with head
directionmostly aligned to the track (Supplementary Fig. 13a), allowed
us to examine the activity of egoSVCs along a single dimension,
represented by the angle α, measuring the relative position from the
center of the annular track (Fig. 6a). For each cell, we constructed two
maps of activity as a function of the angle, one for clockwise trajec-
tories of the imaged mouse (−360° ≤ α ≤0°, conspecific on the right
side) and one for counter-clockwise trajectories (0° ≤ α ≤ 360°,
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aDiagramof the experimental paradigm. An imagedmouse (blue) interacted freely
with a partner in three different contexts. Scale bar: 10 cm. Representative exam-
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conspecific on the left side), where values close to 0° indicate that the
conspecific is right in front of the imaged mouse and absolute values
close to 360° indicate that the conspecific is right behind (Fig. 5d).

We compared the collection of anglemaps obtained for naïve and
trained mice, sorting them according to the value of α where the
maximum calcium event rate was observed (Fig. 6b). For both condi-
tions we observed a clear diagonal band, which indicated on one hand
that all angles are homogeneously represented and on the other

that cells tend to specialize in clockwise or counterclockwise trajec-
tories, consistent with observations in the open field (Supplementary
Fig. 3e, g). However, the band looked sharper in trained animals. To
quantify this, we obtained the information content for anglemaps, and
observed that it was higher for trained animals (Fig. 6c). We also
computed the population autocorrelogram by correlating the collec-
tion ofmaps (population vector) with rotations toward the front or the
back of the imaged mouse (Fig. 6d). We observed that the population

10 trials
chase interaction

a b

Naïve Trained

0 10 20
0

50

100

150

Session

Ti
m

e
(s

)

c

Naïve Trained
0

100

200

300

Ti
m

e
(s

)

P = 2.8×10-27

d

Naïve Trained

0

MAX

Ev
en

t r
at

e

15
02

9_
10

06
8

20
21

05
11

_9
5 P: 1.16, I: 0.89*

15
02

9_
10

06
8

20
21

05
01

_1
22

P: 0.54, I: 0.55

15
02

9_
15

03
6

20
21

05
12

_3
7 P: 1.68, I: 1.21*

15
02

9_
10

06
8

20
21

05
20

_5
4 P: 1.11, I: 0.63*

15
02

9_
15

03
6

20
21

05
25

_2
0 P: 1.02, I: 1.19*

15
03

0_
10

07
4

20
21

05
25

_6
0 P: 1.93, I: 0.55*

15
03

0_
15

03
7

20
21

04
29

_2
1 P: 0.90, I: 0.27 

15
02

9_
15

03
8

20
21

05
02

_8
2 P: 0.74, I: 0.24

15
02

9_
15

03
8

20
21

05
02

_7
9 P: 0.65, I: 0.35

15
02

9_
10

07
5

20
21

04
30

_7
7 P: 0.51, I: 0.40

15
02

9_
15

03
8

20
21

05
14

_8
9 P: 1.24, I: 0.64*

15
02

9_
10

07
5

20
21

04
30

_1
08

P: 0.81, I: 0.29

-360 0 360
0

1

2

-360 0 360
0

0.4
0.8
1.2

-360 0 360
0

0.4
0.8
1.2

-360 0 360
0

0.4
0.8
1.2

-360 0 360
0

0.6
1.2
1.8

-360 0 360
0
1
2
3

-360 0 360
0.2
0.4
0.6
0.8

-360 0 360
0

0.2
0.4
0.6

-360 0 360
0.2
0.4
0.6
0.8

-360 0 360
0

0.3
0.6
0.9

-360 0 360
0

0.2
0.4
0.6
0.8

-360 0 360
0.1

0.5

0.9

e

Naïve Trained
0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

P = 0.16

Naïve Trained
0.0

0.5

1.0

1.5

2.0

2.5

In
fo

rm
at

io
n

co
nt

en
t(

bi
ts

/e
ve

nt
) P = 8.0×10-4

Naïve Trained
0.0

0.2

0.4

0.6

0.8

M
ea

n
ra

te
(H

z)

P = 0.08

Naïve Trained
0

2

4

6

8

10

Fi
el

d
nu

m
be

r

P = 9.6×10-7

Naïve Trained
0

1000

2000

3000

4000

Fi
el

d
si

ze
(c

m
²)

P = 4.2×10-8 f

0

10

20

30

40

D
ec

od
in

g
m

.a
.e

. (
cm

)

P = 6.0×10-6

Naïve Trained
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mean ± s.e.m.), centered around the transition between naïve and trained (day 0).
c Distribution of latency for naïve and trained sessions (n (naïve) = 35 sessions, n
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vector autocorrelation for trained animals exhibited a sharper
decrease to overall lower levels. In consequence, the difference in area
under the autocorrelation curvewas significantly higher thanexpected
by chance, as represented by the distribution obtained from shuffling
the naïve/trained label of cells. We also defined for each map a signal
region, including the peak event rate bin and the collection of bins
around it defined by half-decay in event rate, and the complementary
noise region. We observed that the signal region was smaller for
trained animals, although it concentrated a higher fraction of the
overall cell activity (Fig. 6c). These observations suggest that as ani-
mals learn the task egoSVCs become sharper and more selective.

To visualize the learning dynamics associated to the task, we
pooled all maps and tagged them according to the experience of
the animal in the task (sessions 1 to more than 30). We then obtained
the autocorrelogram for all cells in non-overlapping groups of
5 consecutive sessions (Fig. 6e).A progressive reduction in thewidthof

the autocorrelation was observed, even after all transitions from naïve
to trained had taken place. We quantified this overall reduction using
the normalized area under the curve for each group of sessions, which
exhibited a significantly negative correlation with experience (Fig. 6f).

Put together, these results suggest that plasticity plays a major
role in shaping social vector representations in CA1when animals learn
a social task. While the number of egoSVCs does not change and fields
remain homogeneously distributed across space, they become shar-
per, more specialized on a single location of the effective space, and
allow for a better decoding of the relative position of the other.

Discussion
In this study, we examined social-spatial coding in the hippocampus
during free or trained social behaviors. Our main result is that
the representation of others in CA1 is multiplexed, but mostly done
through egocentric social-vector coding, implying that neurons code
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the position of a conspecific relative to self-position. Previous studies
in rats and bats examined this question in experiments where a passive
observer watched a conspecific do a task for imitation purposes10,11.
This kind of setup allowed for the groundbreaking discovery that CA1
is involved in social-spatial representations. However, the ambiguity
intrinsic to the paradigm did not allow to dissect whether this coding
used the environment or self-position as a reference frame, since the
observer hadonlymarginal displacements relative to the environment.
Our experiments, while fully compatible with these results, provide
evidence against the interpretation of a purely allocentric coding of
others in CA1. We show that in freely interacting mice, the position of
the other relative to the environment is coded by a marginal popula-
tion of cells. Instead, a greater subpopulation of cells represents the
relative position of conspecifics in either allocentric or egocentric
coordinates. These results point to a strong asymmetry in the way in
which the hippocampus treats the self and others, differentiating it
from a mirror-like system24, although potential differences between
species in this aspect of CA1 coding require further assessment.

While previous results have shown that the collective dynamics of
CA1 can simultaneously represent the position in space of multiple
bodies (e.g., the self and a conspecific), a less explored idea is whether
or not it can represent a single external body from multiple perspec-
tives. Our results indicate that, although not all representations are
equally predominant, this is indeed the case. During free social inter-
actions, the position of conspecifics is represented relative to self-
position in at least two coordinate systems: one in which the direction
of the axis is fixed to the environment (allocentric social-vector cells)
and one that rotates with self-head direction (egocentric social-vector
cells). The first group, which proved hard to assess from free
exploration experiments given a bias toward false positive classifica-
tion from place cells firing close to the border of the environment,
could be related to object-coding cells in the medial entorhinal
cortex13. The second, and the widely dominant one in terms of number
of dedicated cells, recalls egocentric coding of objects in the lateral
entorhinal cortex14. It is possible that diverse perspectives of the
relative location of a single conspecific converge into the hippo-
campus through these separate pathways.

Thehippocampus is known to encodenon-spatial information in a
spatial context4,25–27. For example, a hippocampal cell can be activated
by the combination of a specific odor at a preferred location within a
given environment28. During social behavior, animals receive spatial
and non-spatial cues from conspecifics, many of which are relevant to
assess potential interactions. Our findings indicate that social-spatial
representations remap across conspecifics and environments. Similar
to what has been found for other types of non-spatial information, this
is evidence supporting a combinatorial strategy to deal with the con-
vergence of multiple independent sources of information. Somewhat
contrasting this general notion, we found some traces of a limited
degree of generalization across individuals. We also found that the
position of familiar conspecifics is slightly more accurately coded in
CA1 than that of unfamiliar ones, pointing to a modulation by accu-
mulated prior experience in other environments. The processing
pathway of this information could involve CA2, which has been shown
to code familiarity with low spatial specificity29. This modest level of
generalization across individuals and lack of generalization across
contexts differentiates social-vector coding from object-vector
responses found in the entorhinal cortex and to a lower degree in
the hippocampus6,8,9,12,13.

Social-spatial representations were originally characterized in a
trained behavior10,11. Our findings of analogous coding during sponta-
neous behavior raise the question of whether learning of a social task
only utilizes or instead modifies pre-existent CA1 representations. To
address this point, we trainedmice in a new pursuit task where a clear-
cut division between trained and naïve animals was possible. Our
results show that learning to closely follow a conspecific modifies

representations, improving social-spatial coding. This is achieved by
improving the tuning of individual social-vector cells rather than by
recruiting a greater number of them. This result goes in the same
direction of our observation of improved social-spatial coding of
familiar relative to unfamiliar conspecifics at the single cell level,
hinting to the possibility of a common mechanism underlying both
phenomena.

Taken together, our results show that, in a social setting, multiple
representations of self and others coexist in the hippocampus, which
could perhaps maximize available information about all potential
interactions within an environment. Whether or not this multiplexed
strategy responds to different pathways of information reaching the
hippocampus needs to be clarified by exploring upstream social-
spatial coding, both within and outside of the hippocampus.

Methods
Mice
All procedures for animals were approved by Animal Care & Use
Committees at PekingUniversity. A total number of 48C57BL/6Nmice
(about 12 weeks old; including imaged and not imaged) were used. In
order tominimizebehaviors related to sex or dominance, allmicewere
female. All micewere group-housed with a 12h-12h light-dark cycle in a
temperature controlled (20 °C), 50% humidity and air-circulating
cabinet and provided with food and water as libitum. Behavioral
experiments were conducted during the dark phase.

Surgery
Viral injection. Mice were anaesthetized with isoflurane and placed in
a stereotaxic instrument (KOPF). In each mouse, two injections of
200nL of AAV2-1-Ef1a-GCaMP6s (titer: 7.6 × 1012 vg/mL) were injected
into theCA1 subfield of the hippocampus at a rate of 100nL/min in two
sets of injections. The two injection coordinates were −1.5mmML,
−1.82mm AP, −1.4 to −1.2mm DV and −2.28mmML, −2.5mm AP, −1.4
to −1.2mm DV relative to bregma. Animals recovered for at least
2 weeks before GRIN lens implantation.

GRIN lens implantation and fixation of baseplate. After a 2mm
diameter craniotomy was opened around injection coordinates, and
the dura, cortex and portion of corpus callosum were aspirated with
saline, the 1.8mmGRIN lenswas implanted aimeddirectly to thedorsal
hippocampus CA1 (Edmund Optics, 670 nm, 0mmworking distance).
The GRIN lens was secured to the skull with glue and dental cement.
After a 2 weeks recovery period, a third surgery was performed to
position the baseplate optimally and cement it to the skull. A minis-
cope was used to find the position in which the largest number of cells
appeared clear in the confocal plane.

Behavior assay
Free social interaction in the open field. Two or three mice were
simultaneously placed in a round open field (diameter 70 cm) for free
social interaction in sessions lasting 10min each. In all experiments
mice were cage mates, with the exception of tests for the representa-
tion of unfamiliar conspecifics. During each session, behavior was
filmed with a camera positioned in the lab ceiling. Calcium imaging
videos were also obtained from one animal in each session using a
miniscope. The miniscope was connected to a digital acquisition box
(DAQ) through a long and flexible cable. Each animalwas habituated to
the open field and to wearing the miniscope for at least one week
before social experiments. For two-mouse interactions, 12 imaged
mice and 11 non-imaged mice were used, including 14 pairs of unfa-
miliar interactions and 14 pairs of familiar interactions. For three-
mouse interactions, 7 groups of mice were used. Two control imaged
animals (Supplementary Fig. 5a, b) were trained in two consecutive
sessions with the same conspecific and in two consecutive sessions
with an object that was displaced in between sessions.
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Social interaction across contexts. An imaged mouse and its social
partner were placed into a 50 × 50cm square box, a 70 × 70 cm square
box, and a 70 cm (diameter) round box in 3 consecutive 10-min ses-
sions, with 5–10min rest sessions in between. Four groups of mice
were used.

Pursuit training in the annular maze. All animals were habituated to a
reward during three days before training started. They were also
familiarized individually with the arena, consisting of an annular maze
(external diameter: 70 cm, internal diameter: 50 cm). In days prior to
the social task, mice selected for the role of chasers (A) where famil-
iarized with the presence of a reward every time a paperboard barrier
was inserted inside the maze. In each session of the social task, mouse
A was placed inside the annular maze and was left free to explore the
maze for a variable number of seconds. After this, a second mouse (B)
was place inside the maze at a random position. Whenever mouse A
started following closely mouse B, the paperboard barrier was inser-
ted, separating both mice. Mouse A went to find the reward while
mouse B was removed from themaze, placed in a pedestal and given a
reward. 10–15 trails were performed in each pair for each single day.
During each session, calcium imaging videos from mouse A and
behavior videos were simultaneously recorded and the time spent in
each trial quantified.Mouse Awaswearing aminiscope connected to a
DAQbox through a long and flexible cable. In a few cases,mouse Bwas
wearing a wireless miniscope, but the data collected from it was not
used in this work. After each experiment, animals were fed ad-libitum
for 6 h. Elapsed time to reach the targetwas used to classifymouseA as
naïve or trained. Allmicewere initially naïve and theywere classified as
trained on session 0, defined as the first session in which median
elapsed time fell below 30% of to the highest latency observed on the
previous day. 5 mice were used as mouse A, and 9 mice were used as
mouse B.

Data analysis and statistics
Data were analyzed using MATLAB (2020b) and GraphPad Prism 9.
Figures were plotted using MATLAB (2020b) and GraphPad Prism 9
and arranged in Adobe Illustrator 2022.

Statistics were performed by GraphPad Prism 9 andMATLAB, and
for effect sizes we used function meanEffectSize from MATLAB.

Calcium imaging signals
Calcium imaging data were recorded using a miniscope (UCLA V3)
through Miniscope DAQ Software (https://github.com/Aharoni-Lab/
Miniscope-DAQ-QT-Software/releases/tag/v1.10). In two animals we
found signs of spread depression, in the form of a slowly evolving
calcium wave. These animals and their data were excluded from
this work.

To extract calcium traces for individual cells, an open-source ana-
lysis pipeline (https://github.com/etterguillaume/MiniscopeAnalysis)
was applied. Raw videos from each sessionwere first processed by using
the NoRMCorre algorithm for motion correction30 (https://github.com/
flatironinstitute/NoRMCorre), followed by CNMFe (constrained non-
negative matrix factorization for microendoscopic data)31,32 (https://
github.com/zhoupc/CNMF_E) to extract the raw calcium signals,
deconvoluted calcium activity and the binarized neural activity for each
of the cells. Calcium events were defined as time frames when the
deconvolved calcium signal surpassed three standard deviations.

Same cell registration across sessions
We used CellReg33 (https://github.com/zivlab/CellReg) to identify the
same cell across sessions. The alignment type of registrationwithin the
same day was ‘Non-rigid’, while the alignment type of registration
across the day was ‘Translations and Rotations’. The cells identified as
being the same by CellReg were used for further analysis. Tracking of
cell identity across sessions was used in Figs. 3 and 4.

Position and social behavior
Behavioral videos obtained at 30 frames per second were analyzed
based on the tracking of mouse body or miniscope LED using
DeepLabCut34,35 (https://github.com/DeepLabCut/DeepLabCut). Dee-
pLabCut was also used to extract head direction from the location of
two LEDs attached to the miniscope, that rotated with the head of the
mouse. Positions that were out of the open field or incorrectwere then
removed and a 15 point mean filter was applied to smooth trajectories.

For social interaction experiments, behaviors were annotated
manually frame by frame to identify the onset and offset time by using
the Boris software36. Both social and non-social behaviors were anno-
tated. Social behaviors included chasing, being chased, mounting,
being mounted and other social interaction behaviors that involved
mutual approach. Non-social behaviors included freemoving, jumping
and staying still. The level of social interaction was measured by using
the percentage of time spent in social behaviors.

For pursuit experiments, we used the Boris software to annotate
different periods of each trial, including free moving, chase and
reward. The data from Boris was then processed by MATLAB using
custom scripts.

Rate maps, firing fields and spatial information
Codes for analyzing spatial maps were adapted from the Behavioral
Neurology Toolbox, (c) Vadim Frolov 2018 (https://bitbucket.org/cnc-
ntnu/bnt/src/master).

For each cell, we constructed four spatial maps using i) the posi-
tion of the imaged mouse relative to the environment (selfPC), ii) the
position of a conspecific relative to the environment (socialPC), iii) the
position of a conspecific relative to the imaged mouse with coordi-
nates that did not rotate (alloSVC) and iv) the position of a conspecific
relative to the imaged mouse with coordinates that rotated together
with the head of the imaged mouse (egoSVC).

To obtain event rate maps, the calcium transients and position
data were sorted into bins of 2 × 2 cm. For social vector maps in the
effective arena (Supplementary Fig. 3a) we used bins of 4 × 4 cm. The
event rate in each bin was calculated by dividing the number of cal-
cium transients by the amount of time spent in the bin. A 2D Gaussian
kernel with standard deviation of 2 bins was used to smooth the rate
map. The mean rate of each cell was calculated as the total number of
calcium transients divided by the total duration of the session.

Placefieldsweredetected aspeaks in the smoothedevent ratemap
higher than0.5Hz. The areaof theplacefieldwasdefinedbycontiguous
pixels around the peak with an event rate above 60% of the peak value.

For each cell, the spatial information content37 was calculated as

I =
X
i

pi
λi
λ
log2

λi
λ

� �
ð1Þ

where λi is themean event rate in the ith bin, λ is the overallmean event
rate, and pi is the amount of time spent by the animal in the ith bin
normalized to 1.

To establish a cutoff value of information rate for a given cell and
category, we obtained the corresponding information rate for
1000 shuffles. For each shuffle, the information rate was calculated
after displacing the calcium trace in time and wrapping it around the
total duration of the session. The cutoff value for cell classification was
set as the 95th percentile of the shuffled distribution for each cell.
Additionally, to be included in a cell category, cells had to have maps
with a stability greater than 0.3. Stability was defined as the Pearson
correlation between maps for the first and second half of the session.

Overlap index
The overlap index between two cell subpopulations was defined as the
number of cells belonging to both subpopulations divided by its
expectation if the two subpopulations were independent. This
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expectation was obtained as the overall number of cells multiplied by
P, defined as the product of expectations of a cell falling into each
category. Values of the overlap index significantly greater (lower) than
1 indicate an overlap higher (lower) than expected by chance. This was
tested using the Binomial test with probability P.

Position decoding
We used a Naïve Bayes decoder to decode the position of the self, the
other, or the other relative to the self in the corresponding reference
frame from neural activity22. All decoding was done using 5-fold cross
validation. To do this, rather than randomly selecting data, sessions
were divided into 5 consecutive segments, so that segment 1 corre-
sponded to the initial part of the session and segment 5 to the final
part. Sessions with no cells of the category being tested were dis-
carded, which mainly influenced the number of available sessions in
the socialPC category. We assumed that events from different cells
followed independent Poisson processes. For each frame, the prob-
ability (P) of the animal being in a given position bin was calculated as

P X jnð Þ=CP Xð Þ
YN
i= 1

f i Xð Þni

 !
e
�τ
PN
i= 1

f i Xð Þ ð2Þ

where X is the spatial bin, the element ni of vector n= ðn1,n2, . . . ,nNÞ is
the number of calciumevents for neuron iwithin the timewindow,C is
a normalization factor, PðX Þ indicates the overall probability of the
animal occupying spatial bin X , f i Xð Þ is the mean event rate of cell i in
spatial bin X , and τ is the length of time window. While the vector n
referred to testing data, other relevant variables referred to training
data. The position with the maximum likelihood was taken as the
decoded position of the animal on that frame. Shuffled decoding error
was obtained from shuffled data, generated by displacing the position
of animals in time and wrapping it around the length of the session.
Decoding error for test data in each cross-validation step was defined
as the mean absolute error (m.a.e.) between the true position and
decoded position.

Shuffling-in-place
To understand if selfPC activity could generate alloSVC or egoSVC
false postives, we shuffled cell activity in a way that it did not affect
selfPCmaps.We first divided the physical arena in 10 cmwide bins. For
each bin, we selected and stitched together the episodes during which
the mouse occupied the bin. We shuffled the resulting array using a
random shift that ensured that the shuffled arraywas at a distance of at
least 5 s relative to the original one. For some bins with lower coverage
this was not possible, and the shift resulting in the maximum distance
was used. The 10 cm size of the bins was a compromise to reduce the
number of such cases while not affecting shuffled selfPC maps. An
instanceof shuffling-in-placewas the result for applying this procedure
to all bins. After this, cell activity was reconstructed by re-placing all
episodes in their original temporal order. After this, maps for all
coordinates were calculated as in the rest of this work.

For classification of cells, only 10 shuffles-in-place were used,
given that each newmap required 1000 additional shuffles for proper
classification. For comparisons of information content, 1000 shuffles
were used for each cell.

Cell activity across different environments
To compare the activity of cells across contexts of different size and
shape, we used the normalized dot product of mean event rates23. We
calculated the mean event rate of each cell in each condition divided
by the maximal mean rate of that cell in all conditions. The values for
eachcell were grouped into ameanactivity vector,with length equal to
the number of cells. Vectors for each session were normalized by their
Euclidean norm. To quantify similarity in cell activity across sessions,

the dot product between the corresponding normalized vectors was
obtained, which is equal to the cosine of the angle between them. To
compare the activity of cells withinor across sessions, all sessionswere
divided into halves and the dot product computed between first and
second halves of either the same or different sessions.

Angle maps
The geometry of egoSVCs in the annular maze allowed us to reduce
maps to a single dimension. The position of two mice relative to the
center of the annularmazewasdefinedby two [X, Y] vectors, andαwas
defined as the angle between both vectors. This reduction assumes
that animals mostly look to the front while navigating, while regular
two-dimensional egoSVC maps do not make this assumption. To dif-
ferentiate clockwise (conspecific to the right of the imaged mouse)
from counterclockwise (conspecific to the left of the imaged mouse)
trajectories, we introduced a negative sign to the former, which thus
spanned from −360° to 0°. With this definition, angles close to 0°
represented a situation in which the conspecific was closely ahead of
the imaged mouse, while angles with absolute value close to 360°
represented situations where the conspecific was close but to the back
of the imagedmouse. For each cell, we constructed angle maps of cell
activity as the number of calcium events divided by the time spent in
each 15°wide anglebin.Weused circular smoothing on eachhalf of the
map using a Gaussian kernel with standard deviation of 1 bin.

Autocorrelogram
We used population autocorrelation to compare angle maps in naïve
and trained animals.We correlated the collection of originalmapswith
circularly shifted versions of them, from −180° to 180°. Each half of the
anglemapwas shifted independently, but the correlationwasobtained
fromboth halves together. Positive (negative) shifts represented shifts
toward the front (back) of the animal.

Histology
After imaging and social interaction experiments, mice were trans-
cardially perfused with saline and then 4% paraformaldehyde (PFA).
After postfixed in PFA for 24 h, the brain was cryoprotected by 30%
sucrose for another 24 h. 20-μm coronal section were obtained by
using a cryostat (Leica).

Immunostaining
Sections were rinsed by PBS and blocked by 2% Albumin Bovine –0.3%
Triton – PBS for 1 h. Then, slices were incubated with 1:500 chicken
anti-GFP antibody (Invitrogen, A10262) overnight and followed by 1-h
incubation with 1:500 Alexa Fluor 488 goat anti-chicken (Invitrogen,
A11039) secondary antibody andDAPI. Sliceswerewashed by PBS after
incubation with antibodies. Finally, slices were mounted on slides and
covered with mounting medium.

Microscopy imaging
Images were acquired by Zeiss Axio Scan Z1 to confirm the position of
lens implantation and the expression of GCaMP6s.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting this work are available in https://github.com/
SherlockX-hub/SocialVectorCell-Public. Source data are provided
with this paper.

Code availability
Scripts supporting this work are available in https://github.com/
SherlockX-hub/SocialVectorCell-Public.
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