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Systematic investigation of chemo-
immunotherapy synergism to shift anti-PD-1
resistance in cancer

Yue Wang1,4, Dhamotharan Pattarayan 1,4, Haozhe Huang1,4, Yueshan Zhao1,
Sihan Li1, Yifei Wang 1, Min Zhang1, Song Li 1 & Da Yang 1,2,3

Chemo-immunotherapy combinations have been regarded as one of the most
practical ways to improve immunotherapy response in cancer patients. In this
study, we integrate the transcriptomics data from anti-PD-1-treated tumors
and compound-treated cancer cell lines to systematically screen for chemo-
immunotherapy synergisms in silico. Through analyzing anti-PD-1 induced
expression changes in patient tumors, we develop a shift ability score to
measure if a chemotherapy or a small molecule inhibitor treatment can shift
anti-PD-1 resistance in tumor cells. By applying shift ability analysis to 41,321
compounds and 16,853 shRNA treated cancer cell lines transcriptomic data,we
characterize the landscape of chemo-immunotherapy synergism and experi-
mentally validated a mitochondrial RNA-dependent mechanism for drug-
induced immune activation in tumor. Our study represents an effort to
mechanistically characterize chemo-immunotherapy synergism and will facil-
itate future pre-clinical and clinical studies.

Inhibitory immune checkpoints, including programmeddeath 1 (PD-1),
negatively regulate the cytolytic activities of cytotoxic T cells via
interactions with their ligands on tumor cells. Blockage of these
interactions can restore anti-tumor immune response of T cells and
prevent tumor immune surveillance1. Immunotherapy using PD-1
blockade, a.k.a. anti-PD-1, has significantly improved patient prog-
nosis in different cancer types such as melanoma2,3, lung cancer4,
colorectal cancer5, and triple-negative breast cancer6. However, anti-
PD-1 therapy is still not available for majority of cancer patients. Stu-
dies showed that the response rate of anti-PD-1 in melanoma patients
ranges from 20 to 30%2,3. In other cancer types such as breast cancer,
prostate cancer, and colorectal cancers, the anti-PD-1 response rates
range from 13 to 38%7. Even for patients who initially respond to the
therapy, the later developed drug resistance remains to be
challenging2,8. There is anurgent need to identify effective strategies to
overcome anti-PD-1 resistance and improve the overall response rate.

Emerging studies have reported that some chemo- and targeted
therapy agents can induce significant effects on immune response in

tumors9. For example, gemcitabine is a synthetic pyrimidine nucleo-
side analogwhich has beenwidely used as standard-of-care treatments
in various cancers10,11. Gemcitabine can induce immunogenic cell
death, which enhance the dendritic cell-dependent cross-presentation
of tumor antigens to cytotoxic T cells12,13. Of note, by 2023, FDA have
approved many chemo-immunotherapy regimens in diffuse large
B-cell lymphoma (Polatuzumab + bendamustine/rituximab), triple-
negative breast cancer (Atezolizumab/Pembrolizumab + taxanes),
gastric cancer and esophageal adenocarcinoma (Nivolumab + FU-/
platinum)14. As more chemo-immunotherapy combination regimens
are being investigated and validated by ongoing clinical trials15,16, they
are becoming one of the most feasible paths to obtaining durable,
long-lasting immunotherapy responses.

However, the design of the combination regimens so far is largely
relied on clinical experiences, it is very challenging to characterize new
chemo-immunotherapy synergisms14,17. The emerging large-scale
pharmacological transcriptomic datasets that profile the expression
changes after drug/immunotherapy treatment provide deeper and
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novel insights on how treatment changes biological processes in
tumor18. These data present us an excellent opportunity to computa-
tionally model the interaction between chemotherapy and
immunotherapy.

In this study, we hypothesize that the treatment-induced gene
expression changes in tumor could be utilized to determine the anti-
PD-1 therapy outcome and to reveal the underlying resistance
mechanism. Using anti-PD-1 induced expression changes, we char-
acterize gene signatures that are robustly associated with immune
checkpoint blockade responses in patients. Importantly, we demon-
strate that genetic inhibition of these signature genes can shift the anti-
PD-1 response phenotypes. With these observations, we develop the
shift ability score toquantify a treatment’s capability of improving anti-
PD-1 response. Through in silico screening on 41,321 compound-
treated and 16,853 shRNA-treated cell line expression profiles, we
identify treatments that can potentially shift anti-PD-1 resistance.
Finally, we reveal that a mitochondrial RNA-dependent activation of
type I interferon signaling may be a promising mechanism for chemo-
immunotherapy synergism.

Results
Robust treatment-induced expression changes associated with
patient anti-PD-1 response
To identify genes associated with acquired anti-PD-1 resistance in
patients, we obtained pre-post-treatment paired transcriptomic data
of tumor biopsies from melanoma patients who received anti-PD-1
therapy (GSE91061)19 (Supplementary Fig. 1a and Supplementary
Data 1). Through principal component analysis (PCA), we observed
that most of the variances between anti-PD-1 responders and non-
responders can be explained by treatment-induced expression
(AUC=0.77) but not treatment-naïve expression (AUC =0.55) (Fig. 1a).
It appears to us that treatment-induced expression changes can better
characterize the underlying mechanisms of anti-PD-1 resistance in
patients.

In this regard, we sought to identify treatment-induced expres-
sion changes that robustly associate with anti-PD-1 response. We
implemented a bootstrapping and cross-validation feature selection
procedure, leading to the identification of 419 genes for anti-PD-1
resistance (R) signature and 366 genes for anti-PD-1 sensitivity (S)
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Fig. 1 | Robust treatment-induced expression changes associated with anti-PD-
1 response in melanoma patients. a Receiver operating characteristic (ROC)
curve showing the performance of using treatment-naïve (gray) or treatment-
induced (red) expression to classify anti-PD-1 responders and non-responders.
The kernel density estimation plot shows the distribution of patient response
groups on the first principal component of treatment-naïve expression (upper) or
treatment-induced expression (lower) (n = 42). Source Data are provided as
Supplementary Data 1. b Expression correlation between 419 Resistance signature
genes and 366 Sensitivity signature genes in melanoma patients (n = 42). Color-
map represents the correlation coefficient given by Pearson’s correlation. Source
Data are provided as Supplementary Data 1. c Integrating R and S signature to
classify anti-PD-1 responders and non-responders in training cohort (GSE91061).
Patients are ranked in descending order based on signature score, which is given
by the difference of enrichment score between S signature and R signature.
Colors of the bar indicate the anti-PD-1 response group. Source Data are provided

as Supplementary Data 1. d Validation of R and S signature in two independent
validation cohorts. Patients are ranked in descending order based on signature
score, which is given by the difference of enrichment score between S signature
and R signature. Colors of the bar indicate the anti-PD-1 response group. Source
Data are provided as Supplementary Data 1. e Receiver operating characteristic
(ROC) curve summarizing the performance of using R and S signatures to classify
anti-PD-1 responders and non-responders. Training set, n = 31; Leave-out valida-
tion set, n = 11; MGH cohort, n = 14; PRJEB23709 cohort, n = 17. Source Data are
provided as Supplementary Data 1. f GO Biological Process: Pathway enrichment
of genes involved in S signature. X-axis represents adjusted P value derived from
gene set enrichment analysis. The enrichment P value is given by the “enrichr”
function in GSEA. g GO Biological Process: Pathway enrichment of genes involved
in R signature. X-axis represents adjusted P value derived from gene set enrich-
ment analysis. The enrichment P value is given by the “enrichr” function in GSEA.
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signature (see Methods; Supplementary Fig. 1b, c and Supplementary
Data 1).Genes involved inR signature are generally anti-correlatedwith
genes in S signature (Fig. 1b). Combining the treatment-induced
expression changes of R and S signature can precisely recapitulate
patient responses to anti-PD-1 treatment (cross-validation AUC=0.94,
leave-out validation AUC=0.8; Fig. 1c, e). The performance of R and S
signature is further validated by two independent melanoma cohorts
who received anti-PD-1 treatment and had paired pre-post-treatment
samples available (PRJEB23709 AUC=0.74, MGH cohort AUC=0.7)20

(Fig. 1d, e). For patients from study which does not have paired pre-
post-treatment samples (PHS001919)21, the R and S signature achieved
better performance in classifying anti-PD-1 responses in post-
treatment cohorts (AUC=0.74) than in pre-treatment cohorts
(AUC=0.44) (Supplementary Fig. 1d and Supplementary Data 1).

We noticed that S signature genes are highly enriched in path-
ways related to anti-cancer immunity (Fig. 1f and Supplementary
Fig. 1f), while R signature genes aremore enriched in immune evasion
and cancer progression (Fig. 1g and Supplementary Fig. 1f). We fur-
ther observed that the anti-correlation between R and S genes not
only shows in anti-PD-1 treated patients (R = −0.56, P = 0.0, Pearson’s
correlation) but also shows in tumors fromTheCancer Genome Atlas
(TCGA) patient cohorts (R = −0.53, P = 0.0; Supplementary Fig. 1g, h).
When looking into the correlation between the expression of R and S
signatures with immune cell infiltration in TCGA patients (see Meth-
ods), we observed that S signature is strongly correlated with
immune-hot phenotypes in multiple cancer types in addition to
melanoma (Supplementary Fig. 1i and Supplementary Data 2),
whereas increased expression of R signature is generally correlated
with immune-suppressive microenvironment (Supplementary Fig. 1j
and Supplementary Data 2). In a cohort of anti-PD-1 treated patients
from multiple cancer types, these two signatures still show classifi-
cation capability for patient response in squamous lung cancer
(AUC = 0.72) and non-squamous lung cancer (AUC = 0.68) evenwhen
only pre-treatment expression is available (Supplementary Fig. 1k).

Genetic inhibitionof genes inRandS signature can shift anti-PD-
1 response phenotypes
Given the robust association between anti-PD-1 response and the
expression of signatures genes in patient samples, we wondered if
some of the signature genes can regulate anti-cancer immune
response. In this regard, we integrated the post-shRNA-treatment
transcriptomes of 10 cancer cell lines across 6 cancer types from
Connectivity Map 2020 (CMAP2020)18(Fig. 2a). Of 3488 shRNA tar-
geted genes, 257 of them are involved in R or S signature (Fig. 2b,
Supplementary Fig. 2a, b and Supplementary Data 3). We designed a
metric named “shift ability score” to quantify if an shRNA treatment
can simultaneously suppress R signature genes and induce S signature
genes, and vice versa (Fig. 2c; see Methods).

Interestingly, we found R-targeted shRNAs (shRs) and S-targeted
shRNAs (shSs) showed an opposite direction of shift ability (Fig. 2c).
Among the shRs that can successfully inhibit target gene expression,
73% can suppress the overall R signature expression in the same cell
line. Surprisingly, 90% of these shRs can upregulate the S signature
expression at the same time, indicating a resistant-to-sensitive (R-to-
S) shifting (Fig. 2c, d and Supplementary Fig. 2c). On the other hand,
68% of the shSs can successfully inhibit target gene expression, of
which 51% can suppress the overall S signature expression in the same
cell line. Similar to the observations in shRs, 75% of these shSs can
simultaneously increase the overall expression of R signature, indi-
cating a sensitive-to-resistant (S-to-R) shifting (Fig. 2c, d and Sup-
plementary Fig. 2d). Notably, among the R genes whose genetic
inhibition resulted in R-to-S shifting, many of them have been
reported as master regulators of tumor immune response, including
MYC22, PTK223, BIRC524 and CDK225 (Fig. 2e). These observations
strongly suggest an underlying causal and functional relationship,

rather than simple correlations, between the signature genes and
immunotherapy response.

Building upon these findings, we performed an in silico screening
using the entire shRNA libraries (Fig. 2f) and identified 546 potential
geneswhose genetic inhibitionwould induce significant R-to-S shifting
in at least one tested cell line (Fig. 2g, h). The identified genes recapi-
tulated several promising targets that have been established to help
overcome anti-PD-1 resistance. Knockdown of these genes showed a
significant suppression of R signature and increase of S signature
(Supplementary Fig. 2e). These genes also showed a higher treatment-
induced expression changes in anti-PD-1 resistant patients (Fig. 2i). For
instance, studies have reported increased VDAC1 expressionmaydrive
dysregulated anti-tumor immunity, and silencing of VDAC could help
reprogramming tumor microenvironment26–28. RRM1, the target of
ribonucleotide reductase inhibitors, also exhibited significant R-to-S
shifting potential inmultiple cell lines after being genetically inhibited.
This is consistent with the clinical application that ribonucleotide
reductase inhibitors, e.g., gemcitabine and fludarabine, can effectively
synergize with PD-1 blockade and reverse anti-PD-1 resistance29–31.
Taken together, shift ability analysis, which is based on treatment-
induced changes onR signature and S signature, can be used to screen
treatment that will potentially synergize with anti-PD-1 therapy and
shift anti-PD-1 resistance.

Shift ability analysis on post-compound-treatment tran-
scriptomes characterized chemo-immunotherapy synergism
Next, we sought to apply shift ability analysis to characterize com-
pounds that can synergize with anti-PD-1 treatment. We collected
41,321 post-treatment transcriptome profiles across 64 cell lines from
CMAP2020 database. These cell lines were treated by 4264 com-
pounds targeting 392 pathways at different dosages. By evaluating the
shift ability of each treatment experiment, we finally identified 948 R-
to-S shifting compounds who showed significant R-to-S shift in at least
one experiment across cell lines (seeMethods; Supplementary Data 4).

Among the identified compounds, we found some of them
exhibited a cancer-specific enrichmentmechanism of actions (Fig. 3a, b
and Supplementary Fig. 3a). For example, MEK inhibitors are ranked
high for R-to-S shifting ability in A375, A549, HCC515, HELA and YAPC
cells. This is consistent with the clinical indication that MEK signaling is
activated in melanoma, colorectal cancer, non-small cell lung cancer,
ovarian cancer, and pancreatic cancer32–34. The Estrogen receptor
antagonist, on the other hand, showed significant R-to-S shifting ability
exclusively in ER+ cell lines (MCF7andVCAP), indicating its shift ability is
relieduponcell lines’expressionof estrogen receptor. Another example
is EGFR inhibitors, who showed significantly higher R-to-S shifting in
EGFR expressing HCC515 compared to other cell lines35. These results
suggest that, for those smallmolecule inhibitors, the induction of the R-
to-S shift partially depends on the accessibility of drug targets.

Interestingly, we also observed thatmany drugs can induce R-to-S
shifting in “pan-cancer”manner (Fig. 3c). For example,mitoxantrone, a
topoisomerase inhibitor, showed significant R-to-S shifting ability in 11
cell lines across multiple cancer types (Fig. 3c, d and Supplementary
Fig. 3b). This observation is consistent with previous findings that, in
many cancer types, mitoxantrone can induce immunogenic cell death,
which will activate type I interferon signaling and facilitate theMHC-II-
mediated antigen presentation through dendritic cells36–38. Other
topoisomerase inhibitors, including DXR (Supplementary Data 4), also
showed R-to-S shifting potential in multiple cell lines.

We next validated the synergism between DXR, and anti-PD-1
therapy in melanoma (B16), prostate cancer (MyC-CaP) and colorectal
cancer (CT26) syngeneic mouse model in vivo (Fig. 3e, f). Further
flow cytometry analysis of tumor-infiltrating lymphocytes revealed
significantly altered tumor microenvironment after treatment
(Fig. 3g, h and Supplementary Fig. 3d–h). Particularly, combination
treatment of DXR and anti-PD-1 treatment significantly increased CD4+
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IFN-γ+ and significantly decreased M2 macrophage populations in the
tumor microenvironment (Fig. 3g, h and Supplementary Fig. 3d–h).
These results demonstrated that DXR treatment can active tumor
immune response and is synergistic with anti-PD-1.

Integrating shRNAandcompoundscreening identifiesPAK4as a
potent target for chemo-immunotherapy synergism
To further characterize targets for chemo-immunotherapy syner-
gisms, we integrated the compound (Supplementary Data 4) and

shRNA (Supplementary Data 5) screening result and identified 14
potent synergism targets. The genetic and pharmacological inhibition
of these genes can induce consistent R-to-S shifting in the same cell
lines. Their expression is also strongly associatedwith suppressed anti-
tumor immunity in patient tumors across 32 TCGA cancer types
(Fig. 4a and Supplementary Data 5).

Of note, the prioritized drug targets not only included previously
reported chemoimmunotherapy synergisms, such as BRAF39, RRM112,13,
CDK140, CDK241, HDAC242, but also a couple of targets whose capability
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of regulating immune response have not been studied until recent. For
example, both genetic knockdown and pharmacological inhibition of
PAK4 showed drastic R-to-S shift ability in A375 (melanoma)
(Fig. 4b, c). For cell lines inwhichonly PAK inhibitor (i.e., PF-03758309)
data are available, we also observed significant R-to-S shift ability
induced by PAKi in MCF7 (breast cancer), PC3 (prostate cancer) and
HCC515 (lung cancer) (Supplementary Fig. 4a–e).

In patient tumor samples, PAK4’s inhibition is positively corre-
lated with immune-hot tumor microenvironment in 22 cancer types.
Among which breast cancer, kidney cancer, prostate cancer, mela-
noma, and colorectal cancer showed the most significant correlation
(Fig. 4d and Supplementary Fig. 4f–h). In three independent cohorts of
patients treated by anti-PD-1 therapy, PAK4 shows higher treatment-
induced expression changes in non-responders than in responders
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(Fig. 4e). These observations reinforce the importance of including
both pre- and post-treatment profiling in identifying key regulators of
anti-PD-1 response.

Indeed, recent studies have shown that pharmacological inhibi-
tion of PAK4 is a very promising therapy to be combined with immu-
notherapies. This includes compound PF-03758309, which can
reprogramvascularmicroenvironments and improveCAR-T therapy in
glioblastoma43, as well as compound KPT-9274, which can increase T
cell infiltration and improve anti-PD-1 response in melanoma21. How-
ever, it is not clear how targeting PAK4 can boost chemo-
immunotherapy synergism.

The treatment-induced mitochondria damage may be a
mechanism for chemo-immunotherapy synergism
We next sought to systematically characterize the potential mechan-
ism(s) for the synergism between anti-PD-1 and R-to-S shifting com-
pounds. Overall, 948 R-to-S shifting compounds can be clustered into
two groups based on treatment-induced changes of different mole-
cular processes (Fig. 5a). The most common activated molecular pro-
cesses from each cluster revealed that onemajor cluster (“C-immune”)
showed a direct induction of immune response (NES = 2.25, FDR < 1e-
3). The compound in this cluster appears tobe able todirect induce the
genes involved in antigen presentation and immune cell recruitment44.
In contrast, the other major cluster (“C-stimulus”) exhibited a sig-
nificant induction of type I interferon (NES = 2.25, FDR < 1e-4), sug-
gesting the compounds triggered some stimulus, which further
activate the interferon pathways (Fig. 5a and Supplementary Data 6).

Most compounds in cluster “C-stimulus” seems to induce mito-
chondria damage related processes, including mitophagy (autophagy
of mitochondrion, NES = 2.17, FDR < 1e-2). Mitophagy is an essential
cellular process that tumor cells rely on to deal with the damaged
mitochondria and protect themselves from chemotherapy-induced
cell death45. Recently, mitochondrial DNA (mtDNA) and RNA (mtRNA)
released from damaged mitochondria have been characterized as
triggers of tumor-intrinsic immune response46–48. For example, DXR,
which has been demonstrated to cause mitochondrial damage49, is
clustered as a “C-stimulus” drug (Fig. 5a and Supplementary Data 6).
Using a specific mitophagy detection assay (see Methods), we have
shown that DXR treatment can increasemitophagy activation in MCF7
and A549 cancer cells in a dose-dependent manner (Supplementary
Fig. 5a–c). This observation suggests DXR induced mitochondria
damage may be a mechanism for its synergy with anti-PD-1 treatment.

Notably, PF-03758309 (PAKi) is also categorized to be one of “C-
stimulus” drugs. Although PAKi have been shown to have strong
synergism with anti-PD-1 in previous studies21,43, the underlying
mechanism remains elusive. Our analysis revealed that PAKi can
strongly activate pathways relevant to mitochondrial instability (Sup-
plementary Fig. 5d). To validate our computational analysis, we treated
various cancer cells with PAKi and observed that PAKi treatment

increases LC3-I and LC3-II protein levels (Fig. 5b and Supplementary
Fig. 5e) and mitophagy50,51 (Fig. 5c, d and Supplementary Fig. 5f).

PAKi treatment activates type I interferon signaling through
increasing cytosolic presence of mtRNAs
Increasedmitophagy activation is a strong indication ofmitochondrial
damage caused by PAKi treatment. Mitochondrial damage results in
effluxofmtRNAandmtDNA into cytoplasm52, which canactivateMAVS
or cGAS-STING mediated immune responses46,53,54. Both tran-
scriptomics analysis and qPCR validation reveal that PAKi treatment
induces a dose-dependent upregulation of antigen presentation genes
in multiple cancer cell lines (Fig. 5a, e, f, Supplementary Fig. 5g and
Supplementary Tables 1, 2). Furthermore, PAKi treatment can upre-
gulate type I interferon genes, downstream targets of interferon sti-
mulated genes (Fig. 5g, Supplementary Fig. 5d, g, h and Supplementary
Tables 3, 4), CXCL10 (Fig. 5h, i), and PD-L1 expression in multiple
cancer cells in a dose-dependent manner (Fig. 5j).

We first investigated if PAKi treatment’s impact ismediated by the
mtDNA-STING pathway. Interestingly, PAKi treatment did not lead to
STING activation (i.e., phosphorylated STING) or expression (i.e., total
STING) (Supplementary Fig. 6a). Moreover, enzymatic DNA depletion
cannot abolish PAKi-induced activation of type I interferon signaling
(Supplementary Fig. 6b–d). These observations suggest that PAKi-
induced interferon signaling is not mediated by mtDNA-STING
signaling.

We next sought to determine if the cytosolic presence of
mtRNAsmediates the immune response52,54 (Fig. 6a). qPCR analysis of
the cytosolic cell fractions reveals that PAKi treatment significantly
increases the cytosolic concentration of mtRNAs (e.g., MT-CO1, MT-
ND5, MT-ND6, and MT-CYB) (Fig. 6b, c and Supplementary Fig. 6e).
Because of the bidirectional transcriptional activity of mitochondria,
cytosolic mtRNAs can be immunogenic via forming double-stranded
RNA (dsRNA)54. Indeed, immunofluorescence and flow cytometry
analyzes using a dsRNA-specificmonoclonal antibody (J2) shows that
PAKi treatment increased cytosolic accumulationof dsRNA (Fig. 6d, e
and Supplementary Fig. 6f, g). The aberrant cytosolic presence of
dsRNA can be immunogenic through MAVS-dependent type I inter-
feron pathway activation53. To further determine if PAKi-induced
immune response depends on the dsRNA, we knocked out cytosolic
dsRNA signaling protein MAVS and observed that the MAVS knock-
out (sgMAVS) significantly abolished type I interferon signaling,
CXCL10, antigen presenting genes, and PD-L1 expression induced by
PAKi (Fig. 6f–h and Supplementary Fig. 6h). Notably, PAKi treatment
consistently induced LC3 protein activation in both wild-type and
MAVS knockout cells (Fig. 5f), suggesting the mitophagy itself on
upstream of dsRNA-MAVS activation. Collectively, our results sug-
gest that PAKi induces immune response in cancer cells through
increasing cytosolic dsRNA that are released from mitochondria
damage.

Fig. 3 | Shift ability analysis on compound-treated transcriptomes identified
the landscape of chemo-immunotherapy synergism. a Stacked density plot of
top R-to-S shifting drug targets in A375 melanoma cell line. X-axis indicates shift
ability. The Y-axis indicates density. Red-highlighted text indicates the major drug
targets in significant R-to-S shifting range (shift ability >= 3.5). Source Data are
provided as Supplementary Data 4. b Stacked density plot of top R-to-S shifting
drug targets in HT29 colorectal cell line. X-axis indicates shift ability. The Y-axis
indicates density. Red-highlighted text indicates the major drug targets in sig-
nificant R-to-S shifting range (shift ability >= 3.5). Source Data are provided as
Supplementary Data 4. c Compounds that showed R-to-S shifting in multiple cell
lines. Pie charts in each cell indicate the percentage of experiments showed a R-to-S
shift ability. The bar plot on the right side of the piematrix indicates the number of
cell lines where the compounds showed R-to-S shifting in at least one experiment.
Untested cell lines are shaded by gray. Source Data are provided as Supplementary

Data 4. d Enrichment curves of R signature and S signature in vorinostat, gemci-
tabine, mitoxantrone or doxorubicin treated cell lines. e CT26 tumor volume (n = 5
mice) changes and tumor volume on Day 9 in mice following treatment with anti-
PD-1, doxorubicin (DXR) and combination of anti-PD-1 with DXR. f B16 tumor
volume (n = 5 mice) changes and tumor volume on Day 9 in mice following treat-
ment with anti-PD-1, DXR and combination of anti-PD-1 with DXR. g Single-cell
suspensionswereprepared fromB16melanoma samples (n = 5mice) and subjected
to flow cytometry analysis including CD4+ PD-1+ T cells (left panel) and CD4+ IFNγ+

T cells (right panel). h MyC-CaP prostate cancer samples (n = 6 mice) infiltrated
immune cells analysis including CD4+ PD-1+ T cells (left panel), CD206+ macro-
phages (middle panel) and CD163+ macrophages (right panel). Data in (e–h) are
presented as mean± SEM, P values were generated using one-way ANOVA with
Tukey’s post hoc test for comparison.
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Discussion
In this study, we have established the signatures of treatment-induced
gene expression changes that are robustly associated with anti-PD-1
response. The association between the R and S signatures with patient
response has been validated by multiple independent patient cohorts.
Further functional analysis showed genes in these two signatures are
highly associated with anti-tumor immune response in various cancer
types. Notably, unlike other signature identification studies, which
focused onpredicting individual patient response in clinical situations,

our signatures are built to screen for promising chemo-drugs that can
reverse anti-PD-1 resistance. Our analyses on shRNA-treated tran-
scriptomic data demonstrated that a significant number of genes
involved R and S signatures can functionally regulate anti-PD-1
response. These discoveries enlightened us to conceptualize the
shift ability score and screen 4264 chemo-/targeted therapy com-
pounds in multiple cancer types. By further integrating with the
genetic knockdown screening, we identified gene targets whose
pharmacological and genetic inhibition exhibit consistent
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immunotherapy shift ability. We experimentally validated one FDA
approved cancer drug, doxorubicin to be synergistic with the anti-PD-1
therapy inmultiplemousemodels.We expect these discoveries can be
translated to patient care and have an impact on cancer therapy in the
near future.

In addition to addressing the challenge of chemo-immunotherapy
synergism, our shift ability analysis, grounded in treatment-induced
expression changes, is also adaptable to various scenarios to eliminate
unwanted consequences of treatment. For instance, with the avail-
ability of paired pre- and post-treatment transcriptomes, our signature
construction procedure can be seamlessly applied to identify gene
expression changes robustly associated with acquired resistance to
chemo- or targeted therapies, drug-induced toxicity, or side effects
such as aging55. The resulting signatures can then be applied to shift
ability analysis, enabling a rapid in silico screening of compounds with
the potential to reverse or eliminate the targeted condition.

On topof identifying chemo-immunotherapy synergism, the focus
of drug-induced cancer cell transcriptomic data has also helped us to
build a landscape on how drugs/compounds regulate cell-intrinsic
mechanisms and eventually influence immunotherapy response. The
tumor cell-intrinsic mechanisms are important to immunotherapy
resistance56. Most of drugs that are FDA-proved to be combined with
immunotherapy act through tumor-intrinsic immune activation, such
as increasing tumor antigen presentation, immunogenetic cell death,
and secretion of the cytokine57. Our study revealed two major
mechanisms for the established chemo-immunotherapy synergisms.
We found that some drugs, including FDA approved CDK inhibitors,
can inducegenes involved in thedirect regulationof immune response.
Other drugs, such gemcitabine, topoisomerase inhibitors, and MEK
inhibitors, induce genes related to interferon response via activate
some intrinsic stimuli, such as mitochondrial damage. We experimen-
tally validated the PAK inhibitor PF-03758309 who can induce type I
interferon through activating mtRNA-MAVS signaling in tumor. While
drug-induced mitochondrial damage has been extensively studied to
overcome chemo-resistance in cancer45, its role in anti-tumor immunity
has not been fully appreciateduntil recently58–60. Release ofmtDNAand
mtRNAs activates the anti-viral signaling, which will initiate the innate
immune response48,61. Future in vitro and in vivo studies are warranted
to determine whether drug-induced mitochondrial damage can be
exploited to synergize immunotherapy.

The current study has limitations. Given the limited data avail-
ability of paired transcriptomes before and after anti-PD-1 therapy
from other cancer types, the anti-PD-1 response signatures established
in this study arebasedonmelanomapatients.Althoughwehave shown
that our signatures are stable across various cancer types, the het-
erogeneity between cancer types should not be neglected for chemo-
immunotherapy synergism identification. Therefore, we would like to
emphasize that our in-silico shift ability screening may only serve as a
pilot analysis, and experimental validation is strongly suggested for
further synergism and mechanism investigation. In the future, when
more paired data (pre- and post-treatment) are available for patients
from other cancer types, we will be able to deliver cancer-specific
signatures and design cancer-specific synergy screening procedures.

Collectively, our study has characterized a landscape for chemo-
anti-PD-1 therapy synergism, which will facilitate the ongoing efforts
on designing chemo-immunotherapy combinations to improve overall
treatment outcomes in cancer patients.

Methods
Data collection and preprocessing
Post-perturbation cell line transcriptome data, including shRNA and
compound treatment, were collected from the ExpandedConnectivity
Map (CMAP) LINCS Resource 2020 (complete version, 11/23/2021)
through the CLUE portal (http://clue.io). The analyses were based on
CMap level 5 signaturematrices, with 238,351 × 12,328 in dimension for
shRNA perturbation and 720,216 × 12,328 for compound treatment.
Since the level 5 signatures were constructed based on replicates, only
signatures with sufficient transcriptional activity score (>= 0.4) were
retained for further analyses to reduce the false signals introduced by
low reproducibility. Since CMap is based on L1000 panel which
detected 978 landmark genes and then inferred the rest ten thousand
genes based on the landmarks, we only utilized the expression infor-
mation of 9196 best-inferred genes together with the landmark genes
(10,174 genes in total). Thesefilteringprocedures led to thefinalmatrix
of 16,853 × 10,174 for shRNA perturbation and 41,321 × 10,174 for
compound treatment.

Gene expression and clinical data of patients treatedwith immune
checkpoint blockade were collected from Gene Expression Omnibus
(GEO) with accession number GSE9106162, GSE16820462, GSE11582163

and GSE9315764, from European Nucleotide Archive (ENA) with acces-
sion number PRJEB2370920, and from MTA transfer with University of
California, Los Angeles (UCLA) with accession ID PHS00191921.

Among them, GSE91061 has 43 unique pairs of melanoma samples
(n = 86) pre- and on-treatment. According to the original publication, 18
pairs with progressive disease (PD) were considered as non-responders;
15 pairs with stable disease (SD) and 9 pairs with partial/complete
response (PRCR) were considered as responders; 1 pair of samples with
unknown (UNK) response was excluded from the analysis. GSE168204
and GSE115821 refers to the “MGH cohort” in themain text. There are in
total 14 unique paired melanoma samples (n = 28) pre- and post-treat-
ment, of which 10 are non-responders and 4 are responders. GSE93157
has 65 pre-treatment samples from melanoma (n = 25), lung non-
squamous cancer (n = 22), lung squamous lung cancer (n = 13) and head
and neck cancer (n = 5). Using the same response criteria, these samples
are further grouped into non-responders (n = 29) and responders
(n = 36). PRJEB23709 has 17 unique pairs of melanoma samples (n = 34)
pre- and on-treatment, of which 7 are non-responders and 13 are
responders. The UCLA cohort (PHS001919) has 60 unpaired pre-
(n = 27) and post-treatment (n = 33) samples from melanoma. All these
three data weremapped to the same gene space as CMAP2020, leading
to the final dimension of 84 × 10,157 for GSE91061, for 14 × 10,059 for
MGH cohort, 65 × 766 for GSE93157, 17 × 9974 for PRJEB23709, and
60× 10,059 for UCLA cohort. Multiple biopsies from the same samples
are grouped as one sample by taking the average during the analysis.

Gene expression and clinical data of TCGA patients were obtained
from the GDC data portal (http://portal.gdc.cancer.gov). The analyses

Fig. 4 | Integrating shift ability analysis on genetic and pharmacological inhi-
bition identified drug targets for chemo-immunotherapy synergism.
a Prioritized drug targets for chemo-immunotherapy synergism. Drug names
showed beside the gene targets are their corresponding pharmacological inhibi-
tors. Circles indicate the shift ability of shRNAs. Triangles indicate the shift ability of
compound treatment. Bar plots on the right side of the strip plot showed the
number of TCGA cancer types where the corresponding genes have significantly
positive (red) or negative (blue) correlation (Pearson’s) with different anti-tumor
immunity signatures. Source Data are provided as Supplementary Data 5. Enrich-
ment curves of R signature and S signature in PAK4 knockdown (b) and PAK4
inhibitor treated (c) cell lines (A375). d Pearson’s correlation between PAK4

expression and immune cell infiltration in TCGA samples (ACC, n = 79; BLCA,
n = 411; BRCA, n = 1097; CESO, n = 304; COAD, n = 467; DLBC, n = 48; GBM, n = 154;
HNSC, n = 500; KICH, n = 65; KIRP, n = 288; LGG, n = 510; LIHC, n = 371; LUAD,
n = 524; LUSC, n = 501; OV, n = 374; PRAD, n = 498; READ, n = 166; SKCM, n = 367;
STAD, n = 375; THCA, n = 502; UCEC, n = 547; UCS, n = 56). e Treatment-induced
expression changes of PAK4 in patients before and after anti-PD-1 therapy
(GSE91061, non-responders, n = 18, responders, n = 24; MGH cohort, non-respon-
ders, n = 10, responders, n = 4; PRJEB23709 cohort, non-responders, n = 7, respon-
ders, n = 10). Center lines represent median treatment-induced expression
changes, the box limit indicates the lower quantile and upper quantile, and whis-
kers represent the minimal and maximal treatment-induced expression changes.
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in this study were restricted to primary tumors except for melanoma
wheremetastatic samples were focused, resulting in a total number of
10,004 bulk tumor samples. To evaluate the immunity contents, we
used TIMER65 to estimate the infiltration abundance of cytotoxic
T cells, B cells, dendritic cells, macrophages, and nature killer cells in
each bulk tumor sample.

Classifying anti-PD-1 response using patient gene expression
profiles
To evaluate the ability of using different gene expression profiles to
classify anti-PD-1 response in patients, we applied PCA on treatment-
naïve expression and treatment-induced expression of nivolumab-
treated patients from GSE91061, respectively. For each patient,
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we defined the response score as the first principal component of
treatment-naïve/-induced expression profile, based on which patients
are classified as non-responders and responders to nivolumab treat-
ment. The classification performance was evaluated through receiver
operating characteristic curve by comparing to the response groups
defined in the original publication.

Construction of anti-PD-1 response signature based on
treatment-induced expression
To identify treatment-induced expression changes that robustly
associate with anti-PD-1 response, we used GSE91061 as the main
training set (n = 42), whereas PRJEB23709 (n = 17) and MGH cohort

(n = 14) are used as independent validation set (Supplementary Fig. 1b).
For each paired sample in these three cohorts, the treatment-induced
expression change of a gene is defined as the log2-transformed fold
change between on-treatment and pre-treatment expression.

Within the major training set, we randomly chose 11 samples as
leave-out validation set. The remaining 31 samples would undergo a
training processwith 3-fold cross-validation.Within each fold, samples
will undergo 100 times of bootstrapping resampling with response-
based stratification. Each bootstrapping will generate a resampled set
BSt,t2½1,100�.of non-responders and responders. Differential expressed
gene (DEG) analysis using student’s t test will be applied to the
resampled set. Genes with a p value less than 0.05 will be considered a

Fig. 5 | PAK inhibitor can induce mitophagy and immune response in
cancer cells. a Treatment induced expression analyses reveal mechanisms of
chemo-immunotherapy synergisms. Source Data are provided as Supplementary
Data 6. b Immunoblotting analysis of LC3 protein in cancer cells after 48h of PF-
03758309 (PAKi) treatment. The heat map (Right) indicates fold change of LC3-I
and LC3-II band intensity, normalized to respective β-actin, DMSO served as a no-
treatment control (NT). Experiments were repeated twice and obtained similar
results. c, d PAKi treatment induces mitophagy in MCF7 cells. c Representative
florescence microscopic images of MCF7 cells (24 h) labeled with mitophagy and
lysosome dye, scale bar: 20 µm. Two independent experiments were performed
and obtained similar results. d Flow cytometry detection of mitophagy in MCF7
cells, n = 5 biologically independent samples. e Pearson’s correlation between

dosage and immunity signatures induction of PAK4 inhibitor PF-03758309 in
multiple cancer cell lines. f, g qPCR validation of antigen presenting, processing
genes (f), and interferon stimulated genes (g) in MCF7 cells after 48h of PAKi
treatment (200 nM). 0 nM or vehicle served as control, n = 3 technical replicates.
Two independent experiments were performed and obtained similar
results. h, i CXCL10 expression detected by qPCR (h) and ELISA (i) in cancer cells
after 48h of PAKi treatment. n = 3 technical replicates (h), biologically independent
samples (i). j PAKi treatment induces PD-L1 expression in cancer cells (48h). n = 3
technical replicates. Concentration of PAKi used in (h–j): 0, 50, 200and 500nM for
MCF7, MDA-MB-468, A549, PC3, and HT-29; 0, 2, 50 and 500nM for MEL-526 cells.
Data in (d) and (f–j) are presented as mean± SD, P values in (d, i) were generated
using a two-tailed Student’s t test. Source data are provided as a Source Data file.

Fig. 6 | PAK inhibitor-induced immune responses are mediated by mtRNA-
dsRNA-MAVS. a Schematic of PAKi induced mtRNA release and dsRNA-MAVS
pathway. b Immunoblots express the purity of fractions from MCF7 cells treated
with PAKi for 48 h. Cytosolic protein markers: GAPDH, LC3-I; organelle bound
proteinmarkers:MAVS, LC3-II. c qPCR analysis ofmtRNAs in cytosol fractions from
MCF7 cells treated with PAKi for 48h. n = 3 biologically independent samples.
d PAKi treatment induces dsRNA accumulation inMCF7 cells. Immunofluorescence
analysis in 24h DMSO or PF-03758309 treated MCF7 cells, Scale bar: 20 µm. e PAKi
treatment induces dose-depended dsRNA expression in MCF7 cells (24 h). n = 8
biologically independent samples. f Immunoblotting analysis in MCF7 sgControl

and sgMAVS cells after 48h of PAKi treatment. g qPCR analysis of IFNB1 and
interferon stimulated genes inMCF7 sgControl and sgMAVS cells after 48h of PAKi
treatment, n = 3 technical replicates. h CXCL10 expression detected by qPCR (top)
and ELISA (bottom) in MCF7 sgControl and sgMAVS after 48h of PAKi treatment.
n = 3 technical replicates (top), biologically independent samples (bottom). Three
(b, c) and two (d–h) independent experiments were performed and obtained
similar results. Data in (c, e, g, h) are presented as mean ± SD, P values in (c, e, h)
were generated using a two-tailed Student’s t test. Source data are provided as a
Source Data file.
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hit. Geneswith higher expression in non-responderswill be considered
as a resistance (R) hit, whereas genes with higher expression in
responders will be considered as a sensitivity (S) hit. After repeating
this procedure 100 times, a hit frequency, named DEG selection score,
will be generated for each gene.

DEGselectionRðsÞ =
X100

t = 1

hitRðsÞ,t=100,hitR Sð Þ,t =
0,p>0:05 in BSt
1,p<0:05 in BSt

�
ð1Þ

The candidate R signature Ri and S signature Sj will then be given
by top i percentage and top j percentage of the DEG selection score on
R hits and S hits. Using signature Ri and Sj, an RS score RSi,j (difference
between the enrichment of signature Ri and Sj) will be calculated for
each sample in the test set via GSEA pre-rank to evaluate if genes in Ri

or Sj signature are enriched at the top or the bottom in ranked gene
expression. The cross-validationperformanceof eachpair of i,j is given
by the average AUC using RSi,j to classify patient response. The core-R
or core-S signature will be then derived by overlapping the genes in Ri

or Sj signatures from all three folds. We selected the final i,j with an
intention to keep a balanced number of genes involved in core sig-
natures and to achieve a robust performance in cross-validation and
leave-out validation set. The ability of final R and S signatures in
recapitulating anti-PD-1 responses of patients from independent
datasets are being validated in two independent validation cohorts,
MGH and PRJEB23709.

We also validated our signatures in independent studies where
sample-pairing is not available: GSE93157 andUCLA cohort. Since both
of the datasets were not available for pre-on paired assessment, we
used relative expressions differing from the cohort population base-
line as a surrogate measurement of treatment-induced expression for
each gene. The RS scores and the classification performance were
obtained through the same aforementioned method.

Particularly, for genes in R signature, we observed thatmore than
74% of them are expressed in tumor cells, and approximately 50% of
them also show expression in cancer-associated fibroblast, endothelial
cells, as well as macrophages. For genes in S signature, we found quite
some of them showed expression inmacrophages, followed by T cells
NK cells and tumor cells.

Pathway and immunity assessment of R and S signature genes
To functionally annotate R and S signature, pathway enrichment ana-
lysis on cancer hallmarks is conducted by Gene Set Enrichment Ana-
lysis (GSEA). To demonstrate the immunity relevance of R and S
signature genes in a broader range of cancers, we investigated how R
and S signature genes can indicate immune cell infiltration in TCGA
patient samples. Although TCGA patients did not receive immu-
notherapy, they have undergone intrinsic immune response processes
which lead to the infiltration of immune cells into the tumor micro-
environments. To this end, for patients fromeach cancer type, we used
relative gene expressions differing from the population baseline as a
surrogate measurement of expression changes. Average expression
changes of genes from R/S signature were then compared to the
TIMER estimation of immune cell fractions for each cancer type.

Enrichment assessment of R and S signature and the calculation
of shift ability score
To assesswhether expression ofR or S signaturegenes can be changed
by a given perturbation p (p ϵ {shRNA, compound}), we utilized the
enrichment score calculation by pre-rank GSEA66 with the weighting
parameter set to 1. Specifically, for each perturbation p, a descending
ranked gene list of size N, which contains treatment-induced expres-
sion changes of N genes {g1, g2, …, gN}, is constructed according to
CMAP level 5 signature. Normalized enrichment score of R signature
and S signature will then be calculated through pre-rank GSEA and
termed as NESR and NESS, respectively.

To evaluate the potential a given perturbation p (p ϵ {shRNA,
compound}) can shift a cell line to an anti-PD-1 sensitive state, we
created the concept of “shift ability”. Briefly, the shift ability analysis
will quantify the ability of a given perturbation in suppressing the R
signature and inducing the S signature in a cell line. The shift ability
score is thus given by the deviation from NESS of NESR:

shif tabilityp =4NES=NESS � NESR ð2Þ

A high, positive shift ability means the perturbagen p is able to
suppress theR signature and at the same timepromote the S signature,
shifting the cell line to an immune-active and anti-PD-1 sensitive state.
In contrast, a negative shift ability means perturbation will potentially
cause immune suppression and anti-PD-1 resistance. Shift ability close
to zero indicates the perturbagen might not be able to induce con-
siderable shifting in immune response or have less effect on the
immunotherapy efficacy.

Immunity association of potent synergy targets
To evaluate the association between potent synergy targets and anti-
tumor immunity in patients, we first collected 68 immune response
gene signatures from previous studies67. An enrichment score was
calculated for each signature using the single-sample gene set
enrichment analysis68 for eachpatient fromTCGA cohorts. Enrichment
scores of immune response signatures from the same immunity class
would be averaged. Pearson’s correlation was used to assess the
association between patient immune response and potent synergy
targets across different cancer types. An association with a p value less
than 0.05 would be considered as a significant correlation.

Characterization of mechanism of chemo-immunotherapy
synergism
Post-perturbation expression profiles (level 5 signature) of 948 R-to-S
shifting compounds across different cell lines were extracted. For each
compound, a consensus gene expression change signature will be
calculated using the following method: for each gene across the
samples from the experiments of the same drug, if its treatment-
induced expression is higher than 1, the expression indicator will set as
1; if its treatment-induced expression is lower than −1, the expression
indicator will set as −1; otherwise, the expression indicator will set as 0.
For each compound, the sum of expression indicators across the
samples will be used as its consensus expression change level. Pearson
correlations were calculated and were utilized as distance metric
between compounds in the gene space of 9196 best-inferred genes
together with the landmark genes (10,174 genes in total). Based on the
correlation matrix, hierarchical clustering analysis was performed
using Ward method. Two major clusters were identified through the
dendrogram cutoff at 12. The median value of the 10,174 genes’ con-
sensus expression changes will be ranked by descending and used as
the consensus gene expression change signature of that correspond-
ing cluster. For mechanism annotation of the major clusters, pre-rank
GSEA was performed to assess the pathway enrichment in consensus
gene expression change vectors using 3019 GO terms with 1000 times
of permutation.

General statistical analyses
For difference comparison, if not being particularly specified, Wil-
coxon rank-sum test was applied to compare the differences between
two unpaired groups; Wilcoxon signed rank test was applied to com-
pare the differences between two paired groups; one-way ANOVA was
applied to compare the differences between three or more groups;
Kolmogorov–Smirnov test was applied to compare the differences
between two continuous distributions. For correlation analysis, both
Pearson and Spearman’s correlation were applied in order to avoid the
potential conflicts on linearity assumption. For enrichment and
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exclusiveness, pre-rank GSEA was applied to assess the enrichment of
specific features in single samples; hypergeometric test was applied
for between-group comparison. For survival analysis, both Cox Pro-
portional Hazard model and log rank test were utilized to compare
prognosis between groups. All the computational and statistical ana-
lyses presented in this study were implemented by Python (version
3.8.0) in local or on the cluster of University of Pittsburgh Center for
Research Computing.

Animals
Allmouse-related experimentswere performed in full compliancewith
institutional guidelines and approved by the Animal Use and Care
Administrative Advisory Committee at the University of Pittsburgh
under Protocol #: 21099779. Female BALB/c mice, C57BL/6 mice, and
FVB/NJ mice aged between 4 and 6 weeks were purchased from The
Jackson Laboratories (CT, USA). Female mice were exclusively used
because their more reliable behavior is expected to reduce overall
variation in the data under various circumstances69. Mice were housed
under pathogen-free conditions according to AAALAC (Association for
Assessment and Accreditation of Laboratory Animal Care) guidelines.
Mice were housed at an ambient temperature of 22 °C (22–24 °C) and
humidity of 45%, with a 14/10 day/night cycle (on at 6:00, off at 20:00),
and allowed access to food ad libitum.

In vivo antitumor efficacy was tested in syngeneic mouse colon
(CT26) cancer models and mouse melanoma (B16) model. Female
BALB/c mice or C57BL/6 mice were subcutaneously (s.c.) inoculated
with CT26 cells (5 × 105 cells per mouse) or B16 cells (5 × 105 cells per
mouse), respectively. When the tumor volume reached ~50mm3, mice
were randomly divided into four groups (n = 5) and treated with PBS
(control), anti-PD-1 (5mg/kg), Doxorubicin (2.5mg/kg), and combina-
tion of anti-PD-1 (5mg/kg) with Doxorubicin (2.5mg/kg), respectively,
every three days for a total of three times. Tumor sizesweremonitored
every three days following the initiation of the treatment and calcu-
lated by the formula: (Length ×Width2)/2.

To evaluate the tumor infiltrated lymphocytes after treatment
with anti-PD-1 and Doxorubicin, a syngeneic B16melanomamodel and
MyC-CaP prostate cancer model were established by inoculating
5 × 105 B16 cells or 1 × 106 MyC-CaP into the flank of C57BL/6 mice or
FVB/NJ mice, respectively. When the tumor volume reached ~50mm3,
mice were randomly grouped (n = 5), and treated with PBS (control),
anti-PD-1 antibody (5mg/kg), Doxorubicin (2.5mg/kg), and combina-
tion of anti-PD-1 (5mg/kg) with Doxorubicin (2.5mg/kg), respectively,
every three days for a total of three times. Tumor tissues were col-
lected 1 day after the last treatment for further evaluation. The tumor
growth in the study did not exceed the maximum size (2000mm3)
allowed by our institutional ethics committee.

Cell lines and reagents
Human breast cancer cell lines MCF7 and MDA-MB-468, human mel-
anoma cancer cell lines MEL-526 andMEL-888, human lung carcinoma
cell line A549, human prostate cancer cell line PC3, and human col-
orectal adenocarcinoma cell line HT-29 were purchased from Amer-
ican Type Culture Collection (ATCC).MEL-526, MEL-888, and PC3 cells
were cultured in RPMI-1640 (Hyclone). MCF7, MDA-MB-468, and A549
cells were cultured in Dulbecco’s Modified Eagle Medium (Hyclone).
HT-29 was cultured in McCoy’s 5A Medium (Gibco). All cells were
cultured with presence of 1X penicillin-streptomycin and supple-
mented with 10% heat-inactivated fetal bovine serum (Gibco) during
normal growth conditions. Cells were cultured with antibiotic-free
growth medium during drug treatment. Doxorubicin purchased from
LC laboratories (#D-4000), anti-mouse PD-1 (#BE0033-2) and mouse
IgG isotype control (#BE0086) from BioXCell. The PAK inhibitor PF-
03758309 (PAKi) purchased from Selleckchem (#S7094). In nucleic
acid depletion assay cells were treated with 10 µ/mL of DNase or 10 µ/
mL of RNase (Invitrogen).

Flow cytometry analysis of TIL
Flowcytometrywasperformedwith LSRII (BDBiosciences) andAurora
(Cytek Biosciences) instruments and analyzed by FlowJo (BD Bios-
ciences). B16 and MyC-CaP tumors were prepared for single cell sus-
pensions. Briefly, tumors were dissected and transferred into RPMI-
1640. Tumors were disrupted mechanically using scissors, digested
with a mixture of deoxyribonuclease I (0.3mg/ml, Sigma-Aldrich) and
TL Liberase (0.25mg/ml, Roche) in serum-free RPMI-1640 at 37 °C for
30min, and dispersed through a 40μm cell strainer (BD Biosciences).
After red blood cell lysis, live/dead cell discrimination was performed
using a Zombie NIR Fixable Viability Kit (BioLegend, dilution: 1/1000)
at 4 °C for 30min in PBS. Surface staining was performed at 4 °C for
30min in FACS staining buffer (1× phosphate-buffered saline/5% FBS/
0.5% sodium azide) containing designated antibody cocktails (PerCP
anti-mouse CD45 antibody, Brilliant Violet 737 anti-mouse CD4 anti-
body, Brilliant Violet 615 anti-mouse PD-1 antibody, APC anti-mouse
CD11b antibody, Brilliant Violet 510 anti-mouse Gr-1 antibody, APC/
Cyanine7 anti-mouse F4/80 antibody, Pacific Blue anti-mouse MHC II
antibody and PE anti-mouse CD163 antibody; dilution: 1/200 for all
antibodies). For intracellular protein staining (FITC anti-mouse CD206
antibody; dilution: 1/200 for antibody), cells were fixed and permea-
bilized using the BD Cytofix/Cytoperm kit, following the manu-
facturer’s instructions. For intracellular cytokine staining (PE-Cy7 anti-
mouse IFN-γ antibody; dilution: 1/200 for antibody), cells were sti-
mulated with phorbol 12-myristate-13-acetate (100 ng/mL) and iono-
mycin (500 ng/mL) for 6 h in the presence of Monensin. Cells were
fixed/permeabilized using the BD Cytofix/Cytoperm kit before cell
staining.

Mitophagy assay
Mitophagy detection kit was purchased from Dojindo (Rockvile, MD)
and used to detect mitophagy in PAKi and DXR treated cells according
to the manufacturer’s protocol. Cells were seeded on 96 well clear
bottom black wall tissue culture plate. After 24h, cells were washed
twice with Hanks’ Balanced Salt Solution (HBSS) followed by incuba-
tion with Mitophagy Dye at 37 °C for 30min. After two washes cells,
cells were incubated with or without drugs for 24 h. Cells then washed
twice with HBSS and incubatedwith Lyso dye at 37 °C for 30min. After
two washes images were obtained using KEYENCE BZ-X800 fluores-
cence microscope.

For flow cytometry detection of mitophagy, cancer cells cultured
in 6 well plates and washed two times with HBSS and incubated with
Mitophagy dye at 37 °C for 30min. After two washes cells, cells were
incubated with or without drugs for 24 h. Then cells were collected by
trypsinization, washed twicewithHBSS and incubatedwith Lysodye at
37 °C for 30min. After two washes cells were suspended in HBSS and
analyzed using MACSQuant analyzer (Miltenyi Biotec). Blue
655–730 nm (corresponds to PerCP-Cy5.5) and violet 525/50 nm (cor-
responds to VioGreen) fluorescence filters were used for Mitophagy
dye and Lyso dye, respectively. Centrifugation steps were performed
at 200 × g in RT. Data were analyzed using FlowJo Software (10.9.0).

Immunoblotting
Total proteins from specified cells extracted using RIPA lysis buffer
contains 1X protease andphosphatase inhibitor. Protein concentration
of each sample measured using BCA protein assay kit (ThermoFisher,
#23227) as per the manufacturer’s instructions. Then, equal con-
centration of proteins from each sample were taken and mixed
appropriate volume of 5X protein sample buffer supplemented with
reducing agent. Subsequent incubation at 98 °C for 10min, equal
amount of each protein sample was subjected to SDS-polyacrylamide
gel electrophoresis using 4–12% gel and transferred to polyvinylidene
difluoride membrane (Bio-Rad, #162-0177). The protein transferred
membraneswere immunoblottedwith appropriate primary antibodies
for overnight at 4 °C followed by appropriate horseradish peroxidase
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(HRP) conjugated secondary antibodies at room temperature (RT) for
1 h. Signal was visualized by enhanced chemiluminescence substrate
(ThermoFisher, #F32106) and exposed using iBright CL1500 imaging
system (Invitrogen). Band intensities were quantified using ImageJ
software and normalized to β-actin, heatmaps were generated using
GraphPad Prism 9.5.1.

The following antibodies were used for immunoblotting analysis:
rabbit anti-LC3A/B (CST, #12741, 1:1000), rabbit anti-STAT1 (CST,
#14994, 1:1000), rabbit anti-phospho-STAT1 (CST, #7649, 1:1000),
rabbit anti-STING (CST, #13647, 1:1000), rabbit anti-phospho-STING
(CST, #50907, 1:1000), rabbit anti-MAVS (CST, #3993, 1:1000), mouse
anti-GAPDH (Sigma-Aldrich, MAB374, 1:1000), and mouse anti-β-actin
(Sigma-Aldrich, #A5441, 1:20,000). Goat anti-mouse and Goat anti-
mouse IgG HRP conjugated secondary antibodies (SCBT, #SC-2005,
#SC-2004).

RNA isolation and quantitative real-time polymerase chain
reaction (qPCR) assay
Total RNA from cells were isolated using TRIzol (ThermoFisher,
#15596018) as per the manufacturer’s instructions. Following RNA
isolation, 1–2 µg of total RNAs used to synthesize cDNAs using High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
#4368813). qPCR analyses were performed using Power SYBR™ Green
PCRMasterMix (Applied Biosystems, #4367659) in QuantStudio 6 Pro
Real-Time PCR System (Applied Biosystems). Relative mRNA expres-
sions were determined by calculating ΔΔCt values normalized to
GAPDH, two-tailed Student’s t test used to calculate statistical values.
Sequences of primers used for qPCR are given in Supplementary
Table 5.

Enzyme-linked immunosorbent assay (ELISA)
Cell culture supernatants after treatment were used for the quantifi-
cation of cancer cells secreted CXCL10 using ELISA. The human
CXCL10/IP-10 ELISA kit was purchased from R&D Systems (#DY266).
After the removal of cell debris by centrifugation, ELISA was per-
formed according to the manufacturer’s protocol. The optical density
was determined using a Bio-Rad xMark™ Microplate Absorbance
Spectrophotometer.

Cloning, sgRNA construction and lentiviral transduction
We designed three guide RNA (gRNA) for MAVS and one scrambled
gRNA as a control and used lentiCRISPRv2 vector. Lentiviral particles
were prepared after transfection of plasmids into HEK-293T cells using
Lipofectamine 2000™ (Invitrogen, #11668019). Targeted cells were
infected with the lentivirus packaged by Cas9 and single-guide RNA
(sgRNA) expression plasmid encoding puromycin resistance (Addgene
plasmid, #52961). The knockout efficiencyofMAVSwas determinedby
the immunoblotting and qPCR analysis after selection of puromycin
resistance cells. gMAVS_F3/R3 exhibited the maximum knockout effi-
ciency of MAVS gene in MCF7 cells and were used for subsequent
experiments. Guide RNA sequences used to generate MAVS knockout:

gMAVS_F1: caccgCTTCCGGTCGGCTTGTGGCC;
gMAVS_R1: aaacGGCCACAAGCCGACCGGAAGc;
gMAVS_F2: caccgAGGTGGCCCGCAGTCGATCC;
gMAVS_R2: aaacGGATCGACTGCGGGCCACCTc;
gMAVS_F3: caccgGTGTCTTCCAGGATCGACTG;
gMAVS_R3: aaacCAGTCGATCCTGGAAGACACc

Immunofluorescence analysis of dsRNA
For immunocytochemical analysis, the cells were cultured in 8-well
chambered slides (Thermo Scientific, #154534) and treated as pre-
viously described. After threewasheswith PBS, cells werefixedwith 4%
formaldehyde for 20min at RT. After two washes cells were incubated

with a blocking-permeabilization buffer (5% goat serum and 0.3% Tri-
ton X-100 in PBS) for 1 h. Then cells were incubated with anti-dsRNA
(J2) antibody diluted (2.5μg/mL) in antibody diluent buffer (1% BSA in
PBS) overnight at 4 °C in a humidified chamber. After three 5min
washes with PBS, the cells were incubated with Alexa Fluor 488 con-
jugated goat anti-mouse IgG H&L antibody (2μg/mL) (abcam,
#ab150113) at RT for 1 h in the dark. After three 5min washes, the cells
weremounted using the ProLong™Gold AntifadeMountant with DAPI
(Invitrogen, #P36935) and coverslips. Slides were imaged using a
KEYENCE BZ-X800 fluorescence microscope.

Flow cytometry analysis of dsRNA
After 24 h treatment, cellswere collected by trypsinization andwashed
twice with PBS. Cells were fixed with 4% formaldehyde for 20min at
RT. After two washes with PBS, cells were permeabilized for 15min at
RTusing0.1% TritonX-100 inPBS. Cells then incubatedwith 1%BSA for
at RT for 1 h followed by incubation with 2.5μg/mL of anti-dsRNA (J2)
antibody (CST, #76651) at RT for 1 h. After three washes cells were
incubated with 2.2μg/mL of Alexa Fluor 488 (AF488) conjugated goat
anti-mouse IgG H&L antibody (abcam, #ab150113) at RT for 1 h. Cells
then washed three times with PBS and suspended in 0.5% BSA, 2 mM
EDTA in PBS. Centrifugation steps were performed at 300 × g in 4 °C.
Cells were analyzed usingMACSQuant analyzer (Miltenyi Biotec). Data
were analyzed using FlowJo Software (10.9.0).

Cell fractionalization and mtRNA detection
Cytosolic and organelle fraction were prepared as previously
described70. 25μg/mL of digitonin (Millipore, #300410) was used to
isolate cytosolic and organelle fractions. Following isolation of the
cytosolic fractions, the remaining crude fractions were washed 3 times
using PBS and served as organelle fraction containing the nucleus,
mitochondria, etc. Putity of fractions were analyzed using immuno-
blotting and qPCR analysis. Total RNA from cytosolic and organelle
extracts after treatment were isolated using TRIzol. Following cDNA
synthesis, qPCR analyses were performed with mitochondria gene
specific primers as previously described54 and normalized to GAPDH.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The shift ability score and the experiment data generated in this study
are present in the paper and/or Supplementary Information. The
publicly available post-treatment cell line transcriptome data used in
this study, including shRNA and compound treatment, are available at
the Expanded Connectivity Map (CMAP) LINCS Resource 2020 (com-
plete version, 11/23/2021) through the CLUE portal (http://clue.io). The
publicly available gene expression and clinical data of melanoma
patients used in this study are available in the Gene Expression
Omnibus (GEO) with accession number GSE91061, GSE168204,
GSE115821 and GSE93157 and in the European Nucleotide Archive
(ENA) with accession number PRJEB23709. The publicly available gene
expression and clinical data of The Cancer Genome Atlas (TCGA)
patients can be obtained from the GDC data portal [http://portal.gdc.
cancer.gov]. All the remaining data are available within the Article,
Supplementary Information or Source Data file. Source data are pro-
vided with this paper.

Code availability
Thecode for anti-PD-1 response signature constructionand shift ability
calculation in this study has been deposited at https://github.com/
DaYangLab2015/ChemoImmunoSyng71.
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