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Recent advancements for simultaneously profiling multi-omics modalities
within individual cells have enabled the interrogation of cellular heterogeneity
and molecular hierarchy. However, technical limitations lead to highly noisy
multi-modal data and substantial costs. Although computational methods
have been proposed to translate single-cell data across modalities, broad
applications of the methods still remain impeded by formidable challenges.
Here, we propose scButterfly, a versatile single-cell cross-modality translation
method based on dual-aligned variational autoencoders and data augmenta-
tion schemes. With comprehensive experiments on multiple datasets, we
provide compelling evidence of scButterfly’s superiority over baseline meth-
ods in preserving cellular heterogeneity while translating datasets of various

contexts and in revealing cell type-specific biological insights. Besides, we
demonstrate the extensive applications of scButterfly for integrative multi-
omics analysis of single-modality data, data enhancement of poor-quality
single-cell multi-omics, and automatic cell type annotation of scATAC-seq
data. Moreover, scButterfly can be generalized to unpaired data training,
perturbation-response analysis, and consecutive translation.

Advances in single-cell sequencing technology have enabled a myriad
of single-cell modalities, providing unprecedented opportunities to
reveal the previously unknown cell heterogeneity. For example, single-
cell RNA sequencing (scRNA-seq) can measure gene expression of
individual cells to characterize transcriptional heterogeneity, and
single-cell ATAC sequencing (scATAC-seq) can profile chromatin
accessibility to capture the chromatin regulatory landscape that gov-
erns transcription. However, such single-modality data only capture
one measurement and can lose essential information about how dif-
ferent layers of genomic regulation interact within individual cells'. To
achieve a comprehensive view of single cells, various single-cell multi-
omics protocols that can simultaneously profile multiple modalities in
the same cell have been proposed””, promoting fundamental under-
standing of the molecular hierarchy from genome to phenome®’.

Nevertheless, widespread application of joint profiling is still impeded
by the more sophisticated techniques, lower sensitivity and through-
put, and higher noise and cost than single-modality profiling"*™°. In
addition, massive single-modality data accumulated in repositories
require further integrative analysis with other modalities" ™. There-
fore, accurate single-cell cross-modality translation is in pressing need
to infer and synthesize paired multi-omics measurements, especially
when the single-modality data is economical, reliable or technically
feasible, or when the original samples of single-modality data are no
longer available, as is often the case for clinical or archival samples™.

Several computational methods have been proposed for single-
cell cross-modality translation. Typically, these methods embed the
collected single-cell multi-omics data into a shared latent space and
translate the data between different modalities in a supervised fashion.
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For example, BABEL uses two autoencoders to embed ATAC and RNA
profiles respectively, and infers RNA and ATAC profiles by simulta-
neously minimizing two reconstruction losses and two cross-
prediction losses'. Polarbear first trains a variational autoencoder
(VAE) for each data modality and then stitches the frozen encoder of
one modality with the frozen decoder of another modality via a fully
connected layer to implement translation®. JAMIE develops joint VAES
for multi-modal imputation and embedding using cross-modal
correspondence®”. UnitedNet is an autoencoder-based method
trained by alternating between joint group identification and cross-
modal prediction’®. Besides, Yang et al. proposed a cross-modal
autoencoder framework that combines the encoder and decoder of
modal-specific autoencoders and is mainly devoted to the translation
between single-cell expression and imaging data’. CLUE extends from
the multi-modal VAEs and uses the cross-encoders to construct latent
representations from modality-incomplete observations”. For the
translation from gene expression to protein expression, sCiPENN
integrates a sequence of feed-forward blocks with a recurrent neural
network and performs end-to-end training™.

However, there are still many issues and constraints affecting
single-cell cross-modality translation. First, the characteristics of most
single-cell data, including high dimensionality and technical variation,
make the modeling challenging. Besides, dropout events due to the
loss of DNA material during library preparation require tailored
denoising approaches for the large number of false zeros'®°. Second,
an effective data augmentation scheme may further improve the
translation performance, alleviate the issues of limited number of cells
measured by multi-omics protocols and uncover cell heterogeneity in
highly noisy data of complex tissues. Third, there is a prevalent chal-
lenging scenario where the single-modality data to be translated has
inter-sample variations (e.g., batch effects) and even different biolo-
gical contexts (e.g., novel cell types) compared to the data used for
training. Although many previous methods attempted to address
similar problems, this issue has not been satisfactorily resolved (Sup-
plementary Text 1). Fourth, paired multi-modal single-cell profiles may
be not available for model training, requiring diagonal strategies to
learn a competent translator based on unpaired data’. Fifth, extensive
applications of cross-modality translators have not been comprehen-
sively and systematically evaluated, such as integrative analysis of
single-modality data with its predicted profiles of other modalities,
enhancement of single-cell multi-omics data, cell type annotation of
challenging modalities such as scATAC-seq data, and consecutive
translations among multiple modalities.

To address these challenges, we developed scButterfly, a versatile
framework capable of single-cell cross-modality translation and mul-
tiple extensive applications. scButterfly first trains a masked VAE for
each modality to learn the latent factors within individual modalities,
and then dual-aligns the latent representations of different modalities
simultaneously at the semantic level to learn cross-modality relation-
ships. Moreover, we introduce a data augmentation scheme to
increase training samples, facilitate the characterization of cell-to-cell
variation, and enable diagonal training on unpaired data. Our study
centers on the translation between chromatin and transcriptome
profiles, with further investigation into the complex interplay between
transcriptome and proteome profiles. Based on comprehensive
experiments on multiple datasets, we demonstrate that scButterfly
outperforms baseline methods for cross-modality translation with cell
heterogeneity well preserved, and consistently performs well across
diverse settings, even when the sequencing protocols vary sub-
stantially across datasets, when the multi-omics data for training is
unpaired or sparse, or when the single-modality data to be translated
was derived from different batches or contains novel cell types.
Besides, scButterfly can preserve subtle cell types in the original data
and reveal valuable biological insights by cell type-specific enrichment
analysis. Furthermore, we demonstrate the extensive potential of

scButterfly to enable integrative multi-omics analysis for single-
modality data, enhance poor-quality single-cell multi-omics data,
annotate cell types for scATAC-seq data automatically, achieve con-
secutive translations from epigenome to transcriptome to proteome,
and open a possible avenue for the prediction of single-cell pertur-
bation responses.

Results

Overview of the scButterfly model

scButterfly is a generative adversarial model based on dual-aligned
variational autoencoders. Taking the translation between scRNA-seq
and scATAC-seq data as an example for illustration, the primary
workflow of scButterfly encompasses data pre-processing, parameter
pretraining, and model training (Fig. 1a). Regarding each of the dif-
ferent omics, we perform customary data pre-processing strategies
accordingly (Methods), pre-train the parameters of encoder and
decoder via an omics-specific VAE which has the same hyperpara-
meters as that in scButterfly, and finally train scButterfly with paired
multi-omics data based on the pre-trained parameters. As shown in
Fig. 1b, the basic scButterfly model (scButterfly-B) consists of seven
major modules, including two encoders, two decoders, a translator
and two discriminators. Specifically, the encoders project scRNA-seq
and scATAC-seq data into modality-specific spaces for cross-modality
translation, a different problem from typical multi-omics data
integration’, while the decoders map the translated latent repre-
sentations back to the original feature space. We introduce a masking
strategy for the encoders to alleviate the noise influence of dropout
events and prune the inter-chromosomal connections for the encoder
and decoder of scATAC-seq data to substantially reduce parameter
space and focus on intra-chromosomal biological patterns (Methods),
inspired by the insight that most chromatin accessibility interactions
occur at an intra-chromosomal level”. The translator functions as a
generator that generates the translated representations utilizing the
learned multivariate Gaussian distributions in the latent space and
feeds the generated results into decoders to fit true profiles via a
supervised fashion (Methods). The two discriminators are employed to
ensure proper alignment of the inputs and outputs of the translator in
an omics-specific manner, competing in an adversarial scheme with
the training of the translator (Methods).

To address the issue of limited number of cells with multi-omics
for model training and to capture cell heterogeneity in the exceedingly
noisy single-cell multi-omics data, we further propose a data aug-
mentation scheme capable of catering to diverse application scenar-
ios. The fundamental concept behind this scheme is that two cells of
the same category possess similar biological characteristics, thus
enabling the different omics of the two cells to match each other. For
the scenario that the training set is equipped with cell-type labels, we
generate samples by randomly pairing the transcriptome profile of a
cell with the chromatin profile of another cell of the same type (Fig. 1c,
Methods), and obtain the variant regarded as scButterfly-T (Type). For
the more general scenario that the training set is devoid of annota-
tions, we first perform integrative analysis for the training set and
cluster cells in an unsupervised manner?, then generate samples by
randomly pairing the transcriptome profile of a cell with the chromatin
profile of another cell of the same cluster (Fig. 1d, Methods), and
obtain the variant regarded as scButterfly-C (Cluster). In addition to
performing cross-modality translation with biological implications,
scButterfly can also be generalized to facilitate integrative multi-omics
analysis, enhance single-cell multi-omics data, annotate cell types for
scATAC-seq data, and predict single-cell perturbation responses.

scButterfly enables cross-modality translation while preserving
cell heterogeneity

We first use an extensive paired RNA and ATAC-seq data of bone
marrow mononuclear cells (referred as the BMMC dataset) as a proof
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Fig. 1| Overview of scButterfly. We take the translation between transcriptome
and chromatin profiles as an example for illustration. a scButterfly pre-processes
the data of each modality using the corresponding customary strategies, pretrains
the encoders and decoders in a modality-specific manner, and performs model
training with paired multi-modal data based on the pretrained parameters. b The
basic scButterfly model (scButterfly-B) includes two encoders to project the pre-
processed data into modality-specific latent spaces, a translator to translate
between different modalities and map within each modality utilizing the multi-
variate Gaussian distributions in latent space, two modality-specific discriminators
to distinguish the latent cell embeddings before and after translation and enable
adversarial training, and two decoders to reconstruct the original high-dimensional
cell representations of each of the two modalities using the embeddings translated
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or mapped by the translator. We introduce a masking strategy for the encoders to
alleviate the noise influence of dropout events and prune the inter-chromosomal
connections for the encoder and decoder of chromatin profiles to alleviate the
computational burden and focus on intra-chromosomal biological patterns. ¢ The
data augmentation strategy of scButterfly for the scenario that cell-type labels of
the training set are available. We generate samples by randomly pairing the tran-
scriptome profile of a cell with the chromatin profile of another cell of the same
type, resulting the variant regarded as scButterfly-T (Type). d The data augmen-
tation strategy of scButterfly for the more general scenario that the training set is
devoid of annotations. We perform integrative analysis to cluster the cells in
training set and generate samples by randomly pairing according to the cluster
labels, resulting the variant regarded as scButterfly-C (Cluster).

of concept to demonstrate the efficacy of scButterfly. The BMMC
dataset, as a comprehensive multi-modal benchmark dataset, contains
over 69,000 cells of 13 samples derived from 4 generation sites and 10
different donors”. We conducted five-fold cross-validation experi-
ments by randomly splitting all cells into five folds and iteratively
translating the chromatin profiles of cells in each fold to transcriptome
profiles, and vice-versa, using the model trained with the remaining
four folds. To test if the translated profiles contain biologically inter-
pretable cell heterogeneity, we evaluated the translation performance
by various downstream analysis tasks (that is, dimensionality reduc-
tion, cell clustering, differential expression and accessibility analysis,
etc.)’. We compared the performance of scButterfly to BABEL, Polar-
bear, and JAMIE with default settings (Methods). Taking the first test

fold as an example, the RNA profiles translated from ATAC profiles by
scButterfly can effectively dissect cellular heterogeneity as shown in
the t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization
(Fig. 2a). Specifically, all the three variants of scButterfly, including the
basic model (scButterfly-B), as well as those based on data augmen-
tation by integrative clustering (scButterfly-C) or cell-type labels
(scButterfly-T) in the training set, were capable of distinguishing the
stages of erythropoiesis, i.e., proerythroblasts, normoblasts and ery-
throblasts (marked with red boxes), while BABEL and Polarbear, two
state-of-the-art methods for the translation between transcriptome
and chromatin profiles, failed to characterize these three important
cell types. Note that JAMIE encountered an error on the BMMC dataset
due to exceeding the GPU memory limit (48GB, NVIDIA RTX A6000).
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Fig. 2 | Cross-modality translation performance between epigenome and
transcriptome. a t-SNE visualization of cells in the first test fold of five-fold cross-
validation by cell on the BMMC dataset, using the raw profiles and the profiles
translated by different methods. b Quantitative evaluation of the translated profiles
for preserving cell heterogeneity. We evaluated the cross-validation performance
on the seven datasets (BMMC, MB, CL, MCC, MK, MDS, and PBMC) (n =35 cross-
validations on seven datasets) via cell clustering with metrics of AMI, ARI, HOM, and
NML. In the boxplots, the center lines, box limits, whiskers and notches denote the
median, upper and lower quartiles, 1.5% interquartile range and 95% confidence
interval calculated using a Gaussian-based asymptotic approximation, respectively.
Note that the boxes of JAMIE only contain 30 data points from six datasets since
JAMIE encountered GPU memory errors on the BMMC dataset. ¢ Heatmap of p-

values of one-sided paired Wilcoxon signed-rank tests. Each value in the heatmap
indicates the significance of the advantage of a method (row) over another method
(column) (n =140 evaluations on seven datasets via four metrics). For the tests
associated with JAMIE, we only considered the six datasets where JAMIE performed
successfully. d Evaluation of the cross-modality translation performance on dataset
with different rate of random down sampling for cells, including five-fold cross-
validation on the MCC dataset (n =5 cross-validations on 9190 cells), via cell clus-
tering with metrics of AMI, ARI, HOM and NML. In the boxplots, the center lines, box
limits, whiskers and notches denote the median, upper and lower quartiles, 1.5x
interquartile range and 95% confidence interval calculated using a Gaussian-based
asymptotic approximation, respectively. Source data are provided as a Source
Data file.

Besides, we note that all the three variants of scButterfly successfully
identified CD14+ Mono and CD16+ Mono (marked with blue boxes),
which can be hardly dissected via the raw scATAC-seq data, indicating
that scButterfly can fully leverage the information from multiple
modalities in the training set while translating the test data from one
modality to another. Analogously, the ATAC profiles translated from
RNA profiles by scButterfly also preserved cell heterogeneity well
(Fig. 2a). For instance, using the ATAC profiles predicted by scButter-
fly, we can effectively capture the cell types of Transitional B, Lymph
prog, Naive CD20 + B, and B1 B (marked with purple boxes), whereas
the ATAC profiles predicted by BABEL and even the raw chromatin
profiles can hardly distinguish B1 B from Naive CD20 + B, and Polarbear

exhibited insufficient translation capacity in this scenario. Collectively,
the profiles translated by scButterfly can proficiently characterize cell-
to-cell variation and have the potential to mitigate noise present in the
original modality to facilitate the identification of cell types.

To quantitatively demonstrate the advantage of scButterfly for
cross-modality translation, we further performed cell clustering based
on dimensionality reduction results of the translated profiles, and
assessed the performance by adjusted mutual information (AMI),
adjusted Rand index (ARI), homogeneity score (HOM), and normalized
mutual information (NMI) as suggested in refs. 24-26 (Methods) for
both directions of translation to reveal more biological insights (Sup-
plementary Text 2). The clustering performance on each fold in the
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cross-validation experiments again indicated that scButterfly sig-
nificantly outperformed the baseline methods for cross-modality
translation while preserving cell heterogeneity (Supplementary Figs. 1,
2). Moreover, we collected six additional datasets with jointly profiled
RNA and ATAC data, including the MCC dataset profiled from adult
mouse cerebral cortex using SNARE-seq*, the MB dataset profiled from
adult mouse brain using SHARE-seq?, the PBMC dataset of peripheral
blood mononuclear cells profiled by 10x-Multiome, the MK dataset
profiled from adult mouse kidney using sci-CAR®, the CL dataset pro-
filed from multiple cell lines using scCAT-seq’, and the MDS dataset
profiled from adult mouse dorsal skin using SHARE-seq?, to further
comprehensively evaluate the performance of scButterfly (Supple-
mentary Fig. 3). As shown in Fig. 2b and Supplementary Fig. 4,
scButterfly-B achieved better performance than the baseline methods
in both directions of cross-modality translation and efficiently char-
acterize cellular heterogeneity, especially for the translation from
transcriptome to epigenome (Supplementary Text 3). One-sided
paired Wilcoxon signed-rank tests also demonstrated the significant
advantages of scButterfly-B for translation while preserving cell het-
erogeneity (Fig. 2c). Besides, we noticed that scButterfly-C yielded
slightly better performance than scButterfly-B. Although data aug-
mentation with scButterfly-T may bring some additional noise (Sup-
plementary Text 4), it further improved the performance. The results
were as expected, since scButterfly-C utilized integrative clustering for
data augmentation, while scButterfly-T further expanded upon this by
leveraging cell-type labels in the training set for data augmentation,
suggesting that we can perform diverse data augmentation strategies
to enhance the translation performance according to practical cir-
cumstances, namely, whether or not the training set was labeled.

Given that single-cell multi-omics data usually contains a limited
number of cells, computational methods need to be capable of
learning from a small number of samples. To demonstrate the con-
tribution of data augmentation in addressing this issue, we took the
MCC dataset as an example, randomly selected 20-100% of cells from
the original data, and compared the performance of three variants of
scButterfly. As shown in Fig. 2d and Supplementary Fig. 5, both
scButterfly-C and scButterfly-T exhibited improvement compared to
scButterfly-B, especially for the scenarios with limited number of cells,
indicating the effectiveness of data augmentation strategies in miti-
gating the limitations of restricted sample size in multi-omics data.
Furthermore, we conducted analyses to investigate the impact of the
augmented sample counts on the translation performance. scButterfly
could achieve the best performance when augmenting the dataset to
three times the original dataset size, indicating this choice is suitable
and robust (Supplementary Text 5).

In addition, multi-omics data often exhibits varieties in feature
dimensions and sequencing techniques, which means that keeping
strong robustness to feature selection and hyperparameters is crucial
in cross-modality translation. To mimic the protocols with different
counts of features, we took the CL dataset as an example, randomly
selected 20%, 40%, 60%, 80%, and 100% of the features in the original
data for both two omics, and conducted five-fold cross-validation. We
compared three variants of scButterfly with other baseline methods.
As shown in Supplementary Fig. 6, scButterfly achieved optimal per-
formance under almost all settings of feature counts, underscoring its
superior capability in handling multi-omics data at various dimensions.
Additionally, scButterfly also demonstrated satisfactory robustness to
high-level noise (Supplementary Text 6) and model hyperparameters,
including the training epochs, patience of early stop, and the loss
weights (Supplementary Text 7). These results imply that scButterfly
could consistently achieve outstanding performance under dimen-
sional diversity and technical variation.

Besides, scButterfly also demonstrated promising translation
performance in terms of numerical accuracy evaluated by several
correlation metrics (Supplementary Text 8). Taken together, these

results indicate that scButterfly is applicable for cross-modality
translation on datasets generated from different species and proto-
cols, and with various sizes, dimensions, numbers of batches or cell
types, proportions of the major type, degrees of cell-type imbalance,
and levels of sparsity (Supplementary Fig. 3). Moreover, the inferred
profiles can effectively dissect cellular heterogeneity to facilitate
downstream cell type identification.

scButterfly effectively translates data of novel contexts and
reveals biological insights

Considering that the profiles to be translated may originate from
biological contexts different from the training set and contain novel
cell types, we further assess the performance of various methods for
cross-modality translation of novel cell types by randomly splitting
cells into three folds by cell type to implement cross-validation
experiments. That is to say, there is no intersection between the cell
types in the testing set and the cell types in the training set. We used
the four single-batch datasets (MB, MCC, MK, and PBMC) for the
assessment. As shown in Fig. 3a, under this challenging out-of-sample
translation, the overall performance of all methods has dramatically
decreased compared to that of the conventional experiments of cross-
validation by cell (Fig. 2b), which was as excepted considering the
limitation shared by most machine learning approaches, i.e., test
samples deviating too far from the training set often demonstrate poor
predictive performance. Even that, for the cross-modality translation
of unseed cell types, all the three variants of scButterfly outperformed
other methods for characterizing cellular heterogeneity in either
inferring RNA expression from ATAC profiles or vice versa (Fig. 3a and
Supplementary Figs. 7, 8, 9a), suggesting that scButterfly can effec-
tively recognize the complex relationships between cells in different
biological contexts rather than simply memorizing a similar cell seen
during training.

Given that technical variations such as inter-sample variations of
batch/donor effects can constitute hindrances to cross-modality
translation, we next considered a more prevalent challenge that
translates profiles of different batches from the similar biological
system as the training set. Using three multi-batch datasets (BMMC,
CL, and MDS), we performed four-fold cross-validation by randomly
grouping cells by batch. To be specific, we performed translation on
the data from one batch (the MDS and CL datasets) or site (the BMMC
dataset) while training the model on the remaining batches or sites to
ensure that the training and test datasets included completely differ-
ent batches or sites. As shown in Fig. 3b and Supplementary Figs. 9b,
10, 11, scButterfly achieved better performance than baseline methods.
Note that JAMIE again encountered a memory error on the BMMC
dataset. Moreover, the results again illustrated the overall utility of
exploiting data augmentation to aid in predicting cross-modality
profiles. Taking the first test fold in the BMMC dataset as an example
again, scButterfly can not only preserve subtle cell types in the data to
be translated, but also leverage the learned biological relationships
between modalities to mitigate the impact of noise and identify the cell
types that can be hardly separated via the raw data before translation
(Fig. 3¢). For instance, using the transcriptome profiles translated from
chromatin profiles, all the three variants of scButterfly successfully
distinguished the stages of erythropoiesis (marked with red boxes),
and identified CD14+ Mono and CD16+ Mono (marked with blue
boxes) that can be hardly dissected via the raw scATAC-seq data, while
BABEL and Polarbear only separated these cell types moderately, again
indicating the advantages of scButterfly in this general cross-modality
translation scenario.

Interestingly, we noticed that the RNA profiles predicted by
scButterfly-C have the potential to identify cell subtypes and provide
functional insights into the identified cell subpopulations. Specifically,
on the MDS dataset, we performed four-fold cross-validation by batch
and illustrated with the cells in the first test fold as an example, which
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Fig. 3 | Translation performance for data of novel contexts and biological

insights revealed by scButterfly. Quantitative evaluation of the translated profiles
for preserving cell heterogeneity in three-fold cross-validation by cell type on the
MB, MCC, MK and PBMC datasets (n =12 cross-validations on four datasets) (a) and
four-fold cross-validation by batch on e BMMC, CL and MDS datasets (n =12 cross-
validations on three datasets) (b), via cell clustering with metrics of AMI, ARI, HOM
and NML. In the boxplots, the center lines, box limits, whiskers and notches denote
the median, upper and lower quartiles, 1.5 interquartile range and 95% confidence
interval calculated using a Gaussian-based asymptotic approximation, respectively.
For cross-validation by batch, the boxes of JAMIE only contain 8 data points from
two datasets since JAMIE encountered GPU memory errors on the BMMC dataset.
¢ t-SNE visualization of cells in the first test fold of cross-validation by batch on the
BMMC dataset, using the raw profiles and the profiles translated by different

methods. d t-SNE visualization of cells in the first test fold of cross-validation by
batch on the MDS dataset, using the scButterfly-C-predicted (left) and raw RNA
profiles (right), as well as illustration of the two subgroups of basal cells identified
based on the scButterfly-C-predicted RNA profiles (left-bottom). e Chord diagram
of the overlapping relationship between the two subgroups of basal cells identified
based on the scButterfly-C-predicted RNA profiles and the two subgroups identified
based on the raw RNA profiles. f Biology process terms enriched by the top 40
differentially expressed genes (DEGs) between the two subgroups identified based
on the raw (left) or scButterfly-C-predicted (right) RNA profiles, respectively. The
height of each bar denotes the fold enrichment and the color indicates the corre-
lation between the item and basal cells according to the literature (dark colors
indicate high correlation, light colors indicate relatively weak correlation, and gray
indicates no correlation). Source data are provided as a Source Data file.

solely comes from a single batch (Supplementary Fig. 12). The pre-
dicted RNA profiles separated the basal cells into two groups, while it
was hard to dissect the basal cells on the t-SNE visualization using the
raw RNA profiles (Fig. 3d). We then performed Leiden clustering with
default resolution” on the predicted RNA profiles and identified two
subgroups of basal cells (Predicted Basal 1 and 2) based on the

clustering results and the patterns of expression (Supplementary
Fig. 13a, c). Using the same approach, we also identified two subgroups
of basal cells on the raw RNA profiles (Raw Basal 1 and 2) based on the
clustering results (Supplementary Fig. 13b), and 56.850% of cells
between these two subgroups and the two of the predicted RNA pro-
files mapped one-to-one (Fig. 3e). We next used one-sided Wilcoxon
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rank-sum test in Scanpy? to find the top 40 differentially expressed
genes (DEGs) between the two subgroups of the raw or predicted RNA
profiles, respectively, and performed gene ontology enrichment?**
using the identified DEGs. As shown in Fig. 3f, the DEGs of the raw data
were insufficient in revealing basal cell-associated biological pro-
cesses, suggesting that the two subgroups identified in the raw RNA
data can reveal only limited biological insights. However, based on the
DEGs of scButterfly-C, seven out of the top ten significantly enriched
biological processes were related to basal cells, especially for mor-
phogenesis, development, and cell cycle. Previous studies indicated
that basal cells may contain a subtype named proliferative basal cells
(PBC), which usually highly express the genes associated with the
positive regulation of the cell cycle®*?. In non-proliferative basal cells,
Krti4 is usually highly expressed, while PBC often shows higher
expression of Mki67 and Top2a. As shown in Supplementary Fig. 14, in
the scButterfly-C translated profiles, Mki67 and Top2a were higher
expressed in Predicted Basal 2 compared to Predicted Basal 1, and
contrarily, Krtl4 was higher expressed in Predicted Basal 1. This
observation indicted that scButterfly holds great potential in the
identification of cell subtypes, as well as in providing functional
insights into the identified cell subpopulations.

In addition, we noticed that the translated ATAC profiles of
scButterfly could be used to identify cell type-specific peaks and reveal
transcription factors (TFs) regulatory relationships. Specifically, on the
PBMC dataset, we used EpiScanpy* to identify cell type-specific dif-
ferentially accessible peaks (DAPs) and background peaks in the
scButterfly-C translated profiles. We then performed single-nucleotide
polymorphisms (SNPs) enrichment analysis using SNPsea®* to obtain
tissues explicitly affected by identified DAPs. As shown in Supple-
mentary Fig. 15, DAPs associated significantly with their cell types
among the three subgroups of CD4 +T cells, three different subtypes
of B cells, nature killer (NK) cells, and plasmacytoid dendritic cells
(pDC). In contrast, background peaks exhibited less significant
enrichment, indicating that scButterfly-C translated ATAC profiles
could be used to effectively identify cell type-specific peaks and pro-
vide insights into cellular heterogeneity in related tissues. Further-
more, we performed TF regulatory network inference using
DeepTFni** on the translated profiles and identified cell type-specific
TFs. The scButterfly-C translated profiles accurately enriched RARy and
FOXP3 as specific TFs separately for CD8 Naive®* and CD4 Naive®,
Additionally, MEF2D and SPI were also identified in the TF-TF adja-
cency matrix of CD14_Mono, where MEF2D has been shown to syner-
gistically interact with SPI to activate the CDI4 promoter”. These
results suggest scButterfly could help reveal cell type-specific tran-
scription factor regulatory relationships and further provide biological
insights into the transcription landscape.

scButterfly facilitates integrative analysis, data enhancement,
and cell type annotation

We next demonstrate the advantage of scButterfly for more extensive
applications. Given that the integrative analysis of different modalities
is critical for studying cellular heterogeneity from comprehensive
perspectives®’*?, we tested the performance of scButterfly for facil-
itating multi-omics analysis by computationally synthesizing the
missing modalities. Taking the BMMC dataset as an example again, we
randomly selected three sites for model training and translated the
RNA and ATAC profiles, respectively, in the remaining site that con-
tains batches independent of the batches for training. For the
remaining site, we used the integration of raw RNA and ATAC profiles
as the baseline, and evaluated the integration of raw RNA with pre-
dicted ATAC profiles as well as the integration of raw ATAC with pre-
dicted RNA profiles. We adopted scButterfly-C for translation to ensure
the generality since it does not require additional cell annotations.
Based on the widely-used MultiVl method for multi-modal data
integration®, either the integration of raw RNA with predicted ATAC or

the integration of raw ATAC with predicted RNA can effectively dissect
cellular heterogeneity and was competitive with the integration of raw
RNA and raw ATAC (Fig. 4a). We also quantitatively assessed the per-
formance of scButterfly-C for integrative analysis by cell clustering,
and no matter which modality is available, scButterfly-C achieved
comparable and even slightly better cell type identification perfor-
mance than using the raw multi-omics data (Fig. 4b). The results sug-
gest that scButterfly offers valuable insights when only one modality is
experimentally available, making it possible to reanalyze the massive
single-modality data generated by cell atlas consortiums"™ in an
integrative manner.

Considering the additional precautions required by single-cell
multi-omics approaches can lead to increased noise and dropout and
make data analysis challenging’, we further investigate the potential of
scButterfly to enhance the existing single-cell multi-omics data. We
took the MK and MB datasets as examples, since MK exhibits the
highest transcriptome data sparsity and MB exhibits the highest
chromatin data sparsity among the collected datasets (Supplementary
Fig. 3). For each of the datasets, we used the entire raw data to train
scButterfly-C and then used the trained model to predict RNA and
ATAC profiles based on the raw data, i.e., we utilized the same dataset
for both training and testing to obtain the enhanced data. As shown in
Fig. 4c, compared to using the raw data, utilizing the enhanced data
can better characterize cell subpopulations and achieve superior cell
clustering performance on both of the two datasets. The results indi-
cate that scButterfly can extract reliable insights from highly noisy
single-cell multi-omics data, suggesting a new perspective to data
enhancement for the emerging area of multi-modal profiling in an
unsupervised manner.

Given that the limited guideposts and assay-specific challenges
are still substantial hurdles in cell type annotation of scATAC-seq data
although several methods have been proposed®**, we delve deeper
into the capabilities of scButterfly in aiding automatic annotation of
cell types in scATAC-seq data. Following the studies of EpiAnno*® and
Cellcano®, we also took the PBMC dataset as an example and con-
ducted cross-validation by randomly splitting all cells into five folds
and iteratively typing the cells in each fold using the model trained
with the remaining four folds. To better simulate the general scenario
for ATAC data automatic annotation, we split the datasets into three
parts: multi-omics profiles without labels, labeled RNA-only profiles
and ATAC-only profiles to be annotated. We trained scButterfly-C
using the multi-omics training set, translated the ATAC-only profiles in
the test set into RNA profiles via the trained scButterfly-C, trained a
classifier using the RNA-only training set, and finally annotated the
predicted RNA profiles of the test set via the trained classifier. We
adopted the support vector machine (SVM) suggested by the bench-
mark study* as the classifier, and obtained scButterfly-C + SVM. As
shown in Fig. 4d, e and Supplementary Figs. 16, 17, our method can
accurately annotate cell types, especially subtypes, and achieve higher
accuracy, Cohen’s kappa, macro and weighted F1 scores (Methods)
compared with state-of-the-art methods. Besides, we noticed Cellcano
also uses gene-level summaries as inputs of their proposed classifier,
we thus further replaced SVM with the Cellcano classifier and the
results demonstrate that the combination of scButterfly with the
advanced classifier can further promote the annotation performance
(Fig. 4d, e and Supplementary Figs. 16, 17), highlighting the remarkable
potential of scButterfly to annotate cell types in challenging modalities
such as scATAC-seq data.

scButterfly can be generalized to unpaired data training and
perturbational analysis

The majority of effort has been focused on cross-modality translation
with an assumption that the training samples in each modality are
sufficient and complete. In prevalent applications, however, this
assumption does not always hold and the diagonal analysis of unpaired
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data, which are not jointly profiled in the same cells, is regarded as a
more challenging task than the analysis of paired data’. We collected
eight unpaired datasets of transcriptome and chromatin, including the
UP_HK dataset profiled from adult human kidney*, the UP.MPMC
dataset profiled from mouse primary motor cortex*’, and six datasets
(UP_eye, UP_muscle, UP_pancreas, UP_spleen, UP_stomach, UP_thy-
mus) profiled from different human fetal organs***. We performed
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five-fold cross-validation to test the generality of scButterfly to the
diagonal analysis of unpaired data. Specifically, we constructed paired
training samples by randomly pairing the RNA profile of a cell with the
ATAC profile of another cell of the same type in the training set
(Methods). For the multi-batch datasets, we directly paired the profiles
from different batches without batch correction (Supplementary
Text 9) and obtained models of BABEL-T, Polarbear-T, JAMIE-T, and
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Fig. 4 | Extensive applications of scButterfly. a t-SNE visualization of cells in an
independent site of the BMMC dataset, via multi-modal data integration based on
the raw data (left), the raw RNA and scButterfly-C-predicted ATAC data (middle),
and the scButterfly-C-predicted RNA and raw ATAC data (right). Quantitative eva-
luation of multi-modal data integration (b) and data enhancement (c) performance
via cell clustering with metrics of AMI, ARI, HOM, and NMI, based on different multi-
modal data in a, i.e., the complete raw multi-modal data or the multi-modal data
with computationally synthesized missing modalities (b), and the raw and pre-
dicted multi-modal data, on the MK and MB datasets (c), respectively. d lllustration
of the cell type annotation results for scATAC-seq data of the first fold in PBMC
dataset by the well-tailored methods and the combinations of scButterfly-C with
different classifiers. e Cell type annotation performance evaluated by Acc, Kappa,
F1-macro, and F1-weighted in five-fold cross-validation experiments for scATAC-seq
data of the PBMC dataset. f Evaluation of the cross-modality translation perfor-
mance for unpaired data, including five-fold cross-validation experiments in eight

unpaired datasets (n =40 cross-validations on eight datasets), via cell clustering
with metrics of AMI, ARI, HOM and NMI. Note that JAMIE encountered GPU memory
errors on all the datasets except the UP_HK dataset. In the boxplots, the center
lines, box limits, whiskers and notches denote the median, upper and lower quar-
tiles, 1.5 interquartile range and 95% confidence interval calculated using a
Gaussian-based asymptotic approximation, respectively. g Quantitative evaluation
of cross-organ translation performance from the UP_stomach dataset to the
UP_pancreas or UP_spleen dataset, as well as the median performance of the within-
organ translation for the UP_pancreas or UP_spleen dataset in f. h Performance of
single-cell perturbation-response prediction on the PT_PBMC dataset, evaluated by
the number of common DEGs and the squared Pearson correlation (R?) for mean
gene expression of the top 100 real DEGs (Methods). Each bar in the subplot of R?
contains 100 data points of R? values estimated using random subsampling at 80%.
The center values and error bars denote the mean and standard deviation,
respectively. Source data are provided as a Source Data file.

scButterfly-T by training the methods with the pseudo-paired samples.
Note that JAMIE encountered GPU memory errors on all the datasets
except the UP_HK dataset. As shown in Fig. 4f and Supplementary
Figs. 18, 19, regardless of whether based on the predicted tran-
scriptome profiles or the predicted chromatin profiles, scButterfly
achieved a significantly higher cell population identification accuracy
than other methods, indicating the advantages of scButterfly on
unpaired data even other methods also use the same training strategy.

We next test if scButterfly can be generalized to cross-organ
translation. We adopted the entire unpaired UP_stomach dataset as the
training set, used the same training strategy as above, and assessed the
performance on the entire UP_pancreas and UP_spleen datasets,
respectively. As shown in Fig. 4g, the performance of cross-organ
translation exhibits a pronounced disadvantage in comparison to the
median performance of the above within-organ five-fold cross-
validation (the striped bars), which can be attributed to the notable
variations in the biological context across different organs*>**. Not-
withstanding, we note that scButterfly again consistently out-
performed the baseline methods in the profoundly demanding task,
further underscoring the potential and generality of scButterfly for
cross-organ translation.

We further study the potential of scButterfly for single-cell per-
turbation-response prediction. Single-cell perturbation-response
screens enable the exploration of molecular and phenotypic responses
to different perturbations, elucidating the fundamental mechanisms
governing biological processes*. Nonetheless, acquiring perturbed
cells often poses a significant challenge in numerous scenarios*.
Generative modeling of perturbation response can therefore expand
the capabilities of in silico experimentation. As cells are commonly
destroyed during the measurement process, it leads to the generation
of unpaired distributions encompassing perturbed and non-perturbed
cells and the task of single-cell perturbation-response prediction thus
requires unpaired data training. We used the PT_PBMC dataset that has
been used by both scGen® and scPreGAN*, two state-of-the-art
methods, as a proof of concept to demonstrate the effectiveness of
scButterfly for perturbational analysis. The PT_PBMC dataset includes
seven cell types of control and interferon-beta-stimulated human
peripheral blood mononuclear cells’. We regarded the transcriptome
profiles of control and stimulated cells as two modalities, and pro-
posed a strategy based on optimal transport*® to match the two groups
of cells for generating paired training samples since these two mod-
alities typically exhibit substantial biological differences, which are
absent in the aforementioned unpaired single-cell multi-omics data. To
be specific, we used optimal transport to obtain the optimal coupling
matrix by minimizing the Wasserstein distance between the control
and stimulated cells for each cell type, selected the stimulated cell with
the largest weight for each control cell, and finally matched these two
cells as a paired training sample (Methods). Following the existing
studies*>*, we evaluated the performance for the challenging out-of-

sample prediction that uses the data of a cell type for testing and uses
the data of remaining cell types for training, similar to the aforemen-
tioned cross-modality translation of novel cell types. We adopted the
two metrics universally used in existing studies to assess the perfor-
mance (Methods)**°. As shown in Fig. 4h, the number of common
DEGs of the top 100 (real) DEGs between the control data and the real
stimulated data versus the top 100 (predicted) DEGs between the
control data and the stimulated data predicted by scButterfly excee-
ded significantly that of the state-of-art methods. Moreover, we ran-
domly sampled 80% of the test data with replacement 100 times*, and
computed the squared Pearson correlation (R?) for mean gene
expression of the top 100 (real) DEGs between predicted and real
stimulated data. The results illustrated that the transcriptome profiles
predicted by scButterfly-B correlated well with the ground truth across
different cell types (the mean R? of each cell type consistently sur-
passed 0.85) and scButterfly-B achieved the overall best performance
(Fig. 4h), elucidating the promising potential of scButterfly in single-
cell perturbational investigations.

scButterfly enables consecutive translation from epigenome to
transcriptome to proteome

In addition to epigenome and transcriptome, proteome provides
valuable insights into various aspects of cellular function and regula-
tion, such as protein interactions and cellular signaling*’. Although the
advanced cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq) allows simultaneous profiling of RNA gene
expression along with cell surface proteins®, it remains expensive to
generate such data, and methods like sciPENN have thus been pro-
posed to make protein predictions for scRNA-seq data'®. Besides, the
background signal, acting as a major component of noise in proteome
profiles®®, poses a challenge different from the translation between
transcriptome and epigenome (Supplementary Text 10). scButterfly,
as a flexible and extensive framework, can be generalized to translate
between transcriptome and proteome (Methods). We collected a
CITE_.BMMC dataset that consists of 90,261 human bone marrow
mononuclear cells with joint profiles of gene expression and 134 sur-
face proteins using antibody-derived tags (ADT)* and a CITE_BM
dataset that consists of 30,672 scRNA-seq profiles measured alongside
a panel of 25 antibodies from human bone marrow®’. We again con-
ducted five-fold cross-validation experiments on each of the datasets,
and evaluated the translation performance by cell clustering accuracy
and by numerical accuracy of ADT data based on Pearson and Spear-
man correlation coefficients due to the low dimensionality and dense
nature of ADT data. As shown in Fig. 5a and Supplementary Fig. 20a, all
the three variants of scButterfly achieved comparable and slightly
better performance than the state-of-the-art sciPENN method and
significantly outperformed JAMIE. As shown in Supplementary Fig. 21,
the three variants of scButterfly accurately preserved the cell type-
specific patterns in the original ADT data. Besides, scButterfly also
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Fig. 5 | Consecutive translation from epigenome to transcriptome to pro-
teome. Quantitative evaluation of the translation performance between tran-
scriptome and proteome profiles in five-fold cross-validation by cell on the
CITE_BMMC dataset (n =5 cross-validations on 90261 cells) (a) and two-fold cross-
validation by batch on the CITE_BM dataset (n =2 cross-validations on 30672 cells)
(b), via cell clustering with metrics of AMI, ARI, HOM and NMI. The height of each
bar denotes the median value of each metric and the error bars show 95% con-
fidence interval. Note that JAMIE encountered GPU memory errors on the
CITE_BMMC dataset. c Differentially expressed proteins (DEPs) of different cell
types in the proteome profiles that were consecutively translated from epigenome
to transcriptome and then to proteome based on the BMMC and CITE.BMMC

datasets. The DEPs were obtained via one-sided Wilcoxon rank-sum tests. d t-SNE
visualization of cells in the first test fold (with batches independent with the bat-
ches for training) of BMMC dataset based on the proteome profiles consecutively
translated by scButterfly-C. The scButterfly-C-predicted expression levels of the top
DEP of each cell type are projected onto the t-SNE visualization. e t-SNE visualiza-
tion (colored by cell type) of cells in the first test fold of BMMC dataset based on the
proteome profiles consecutively translated by scButterfly-C. f Quantitative eva-
luation of the consecutive translation performance from epigenome to tran-
scriptome to proteome, via cell clustering with metrics of AMI, ARI, HOM and NMI.
Note that JAMIE failed to perform consecutive translation due to GPU memory
errors. Source data are provided as a Source Data file.
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enabled the translation from proteome to transcriptome and yielded
satisfactory performance. We also considered the more prevalent
challenge that translating profiles from different batches, and per-
formed cross-validation by randomly splitting the cells by batch
(Methods). As shown in Fig. 5b and Supplementary Fig. 20b, all the
three variants of scButterfly again demonstrated comparable perfor-
mance and the general scButterfly-C method, which augments data by
unsupervised cell clustering, showcased slight improvements over
sciPENN and obvious improvements over JAMIE, underscoring the
versatility of scButterfly in facilitating the translation between tran-
scriptome and proteome.

We next investigate the capacity of scButterfly in consecutive
translation from epigenome to transcriptome to proteome. Taking the
BMMC and CITE_ BMMC datasets as an example, we randomly split
cells in the BMMC dataset into four folds by batch, trained translators
from epigenome to transcriptome using the last three folds, trained
translators from transcriptome to proteome using the entire
CITE_LBMMC dataset, and finally translated the chromatin profiles of
the first test fold in the BMMC dataset to RNA and then to ADT via the
trained translators. Based on the ADT profiles predicted by the general
scButterfly-C method, we conducted one-sided Wilcoxon rank-sum
tests to find differentially expressed proteins (DEPs) of each type?”. As
shown in Fig. 5¢ and Supplementary Fig. 22, most of the top five DEPs
have good agreement with previous studies. On average, 2.4 and 1.05
out of the top five DEPs can be directly (marked as red) and mediately
(marked as yellow) corroborated by the literature. For instance, CD112
has been confirmed to play a crucial role in inducing epigenetic
changes and defining an alternative state of human long term hema-
topoietic stem cell (LT-HSC)*?, while CD194 (CCR4) is discovered to
express in the CD45SRA"CD4" memory or activated T cells®. The
expression of DEPs also showed cell type-specific and compact pat-
terns on t-SNE visualizations (Fig. 5d, e and Supplementary Figs. 23,
24), suggesting that scButterfly can effectively recover expression
trends of specific protein biomarkers. Moreover, the top DEPs that
currently lack literature support also exhibited pronounced cell type-
specific expression patterns, such as CD93 of CD14" monocyte and
CD105 of proerythroblast (Fig. 5c-e), indicating the potential of
scButterfly to decipher unexplored markers. Due to the absence of a
direct approach for accomplishing the consecutive translation from
epigenome to transcriptome to proteome, we quantitatively com-
pared the performance of scButterfly against a combination of state-
of-the-art methods of the two translation tasks, namely BABEL + sci-
PENN and Polarbear + sciPENN. As shown in Fig. 5e, f, the ADT profiles
predicted by scButterfly gave a clear elucidation of nuanced differ-
ences among cells and provided overall superior cell clustering per-
formance than baselines methods (ARI scores may be biased given the
imbalanced nature of cell types®**). Taken together, the consecutive
translation capability of scButterfly not only empowers the translation
between two modalities that are inherently difficult to profile simul-
taneously, but also offers remarkable biological implications.

Discussion

scButterfly is a versatile single-cell cross-modality translation method
based on dual-aligned variational autoencoders and data augmentation
schemes. Through comprehensive experiments on multiple datasets
generated with different protocols, and of divergent sizes, dimensions
and qualities, we validated the superior performance of scButterfly over
baseline methods in preserving cell heterogeneity during cross-
modality translation, and demonstrated the advantages of scButterfly
for translating datasets with novel cell types or inter-sample variations
while revealing biological insights. Besides, we showed the extensive
applications of scButterfly for integrative multi-omics analysis of single-
modality data, data enhancement of poor-quality single-cell multi-
omics, and automatic cell type annotation of scATAC-seq data. Addi-
tionally, our innovative data augmentation and optimal transport

strategies further enable diagonal model training on unpaired multi-
omics data and facilitate the analysis of single-cell perturbation
responses, respectively. Moreover, we demonstrated the capacity of
scButterfly in consecutive translation from epigenome to transcriptome
to proteome and the potential of scButterfly to decipher cell type-
specific biomarkers. We envision our proposed method will facilitate
more comprehensive and cost-effective single-cell multi-modalities
analysis.

Certainly, improvements may be explored in the future. We
provide several directions for further improving scButterfly. Firstly,
we can incorporate the cell heterogeneity information derived from
public bulk omics data and/or annotated cell atlas to facilitate the
characterization of cell-to-cell variation. Besides, we can also
incorporate prior knowledge of gene regulatory mechanisms to
bridge different modalities. Secondly, given the extensive applica-
tions of scButterfly, we can extend it to flexibly accommodate
additional modalities, such as spatial transcriptomics® and single-
cell Hi-C data*®, since more single-cell modalities become available
and scButterfly is designed as a generalizable framework for quick
adoption to particular scenarios in a modular manner. Thirdly,
advanced machine learning techniques with adaptive and inter-
pretable model parameters can be considered to explore novel
avenues for boosting the performance of scButterfly, especially for
the cross-cell-type and cross-organ translation.

Methods

The basic model of scButterfly

The basic model of scButterfly (scButterfly-B) is based on a dual-
aligned variational autoencoder framework. Taking the translation
between scRNA-seq and scATAC-seq data as an example, scButterfly-B
consists of seven primary components (Fig. 1b): RNA encoder and
ATAC encoder networks denoted as En, and En,, RNA decoder and
ATAC decoder networks denoted as De, and De,, a translator T and two
discriminators Dis, and Dis,. Given pre-processed paired training data
of scRNA-seq X, € R"*"r and scATAC-seq X, € R"*», where n denotes
the number of cells and /,/I, denotes the feature dimensions of RNA/
ATAC data, scButterfly-B translates the input X, to chromatin profiles
by De, (T,_,.(En,(X;))), and translates the input X, to transcriptome
profiles by De, (T, (En,(X,))). Details of each component in
scButterfly-B is as follows.

Encoders of En, and En, are responsible for embedding RNA and
ATAC inputs into low-dimensional representations, respectively. In
En,, we utilize fully connected layers with the LeakyReLU activation
function to map the input gene expression vector X’f of the k-th cell
(k<n) to 256 dimensions and subsequently to 128 dimensions. The
activation function is defined as LeakyReLU(x) =xl/, , o + ax/,.q, where
a is set to 0.01 to address the vanishing gradient problem. In En,,
inspired by the insight that most chromatin accessibility interactions
occur at an intra-chromosomal level” and to alleviate the computa-
tional burden, we prune the inter-chromosomal connections and focus
on intra-chromosomal biological patterns by mapping the profiles of
each chromosome in the input X’; to a 32-dimensional space and then
projecting the concatenation results onto a 128-dimensional latent
space using fully connected layers with LeakyReLU. Both En, and En,
use a drop-out mechanism with a probability of 0.1 for all latent layers.
Additionally, we adopt a masking strategy for the input data by ran-
domly setting 50% of the elements in X, and 30% of the elements in X,
to zero, inspired by the advanced masked autoencoders (MAE)*.

The translator T in latent space facilitates the translation between
different modalities and the end-to-end mapping within each of the
individual modalities (Fig. 1b). We first map the input En.(X;) from the
RNA encoder into 128-dimensional mean vector X[ .., and log-variance
vector X, with two blocks of fully connected layer and LeakyReLU,
respectively. Then, based on the assumption of variational auto-
encoders, the translator T obtains the latent embedding by sampling
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and X{

from the multivariate Gaussian distribution with X var

mean
follows:

"
Xembed = Xnean €2 X €ps ~ .A7(0,]). @

Ultimately, 128-dimensional T,_,, (En,(X,)) and T,_, , (En, (X;)), namely
the translated ATAC embeddings and the mapped RNA embeddings,
are generated from Xempeq With two blocks of fully connected layer and
LeakyReLU, respectively. These translated/mapped embeddings are
treated as the input for decoders. Analogously, we use another two
blocks to map the input En,(X,) from the ATAC encoder into 128-
dimensional mean vector X,.,, and log-variance vector XZ,,, respec-
tively, and generate the 128-dimensional translated RNA embeddings
T._.(En,(X,)) and mapped ATAC embeddings T,_,,(En,(X;)) using
the same blocks of RNA-to-RNA mapping and RNA-to-ATAC transla-
tion, respectively (Fig. 1b).

Discriminators of Dis, and Dis, aim to distinguish between the
original embeddings and the translated embeddings, enabling adver-
sarial training to improve the similarity between the translated
embeddings and the original embeddings®*. Demonstrating with the
discriminator for RNA embeddings as a specific instance, Dis, accepts
original RNA embeddings En,(X,) and translated embeddings
T._..(En,(X,)) with equal probability during the scButterfly-B training,
expected to provide judgement based on the following equation:

{ Dis ( aar(

Dis, (En

a(X,))) =
(X)) =1

Similarly, the discriminator Dis, for ATAC embeddings is designed
to differentiate En, (X,) and T,_,, (En, (X, )). For the network structures
of Dis, and Dis,, we separately employ a two-layer network: a 128-
dimensional latent block of fully connected layer with LeakyReLU and
an output Sigmoid layer (Fig. 1b).

Decoders of De, and De, are responsible for reconstructing the
original high-dimensional representations of transcriptome and
chromatin profiles, respectively, based on the mapped and trans-
lated embeddings in latent space (Fig. 1b). De, follows an inverse
process of En, by decoding the embeddings from 128 dimensions to
256 dimensions and to the original space of transcriptome profiles
with fully connected layers and LeakyReLU. Similarly, De, inverts
the process of En, but adopts a Sigmoid activation in the output
layer given the near-binary nature of chromatin profiles. We also
adopt a drop-out mechanism with a probability of 0.1 for all the
latent layers of De, and De,.

2

The training procedure of scButterfly

Based on the architecture of the scButterfly-B model, we propose the
use of a step-wise training strategy, consisting of a pretraining phase
and an integrative training phase (Fig. 1a). Using the translation
between transcriptome and chromatin profiles as an example again, in
the pretraining phase, we first independently train the RNA encoder
En, with its corresponding decoder De,, as well as the ATAC encoder
En, with its decoder De,. During the integrative training phase, we then
initialize the parameters of the encoders and decoders with the pre-
trained parameters, and train the scButterfly-B model using both
modalities simultaneously to capture interdependencies between
modalities. The detailed process is as follows.

For the pretraining phase, we mainly focus on the reconstruc-
tion loss and evidence lower bound (ELBO) loss for variational
inference. Translators are incorporated just for the end-to-end
mapping within each of the individual modalities to maintain con-
sistency with the integrative training phase. In each iteration, pro-
cessed RNA profiles X, is subsequently forward propagation
through encoder En,, translator T, and decoder De,, resulting the

reconstructed XP"=De, (T, (En,(X;))). We use the mean square
error (MSE) loss as reconstruction loss, which could be calculated
as:

1 n
Lo (X9, X, ) =MSE(XP"™ X, ) = =3 " Xk - X [K]”. 3)
k=1
The ELBO loss could be described as the Kullback-Leibler diver-
gence between the shared embedding X'-P"" of T,,. and normal

. . . . . . embed
multivariate Gaussian distribution:

embed embed

Letso (xr pretram) KL(Xr pretram”N(o’ 1)
i @

= r_pretrain r_pretrain X -Pretrain
- 5(1 +Xlar — (X[etram®™ _ gXar ),

where X[-Pretain and Xr-pretain genote the mean and log-variance
vectors obtained from T,, respectively. We train En,, T, and De, with a

combination of the two parts of loss as follows:

Lo = w, L, (xfred 'xr> +WeigoLeipo (x;n?;tdram) : )
We set W, = 1 and wggo =22, and train the networks for 100

epochs. We apply the Adam optlmlzer with a learning rate of 0.001
and early-stop with patience of 50 epochs. The strategy for ATAC
pretraining is nearly identical to RNA pretraining, with the only dif-
ference being the use of binary cross-entropy (BCE) reconstruction
loss, denoted as L, instead of L,. With the reconstructed output
X2 =De, (T,_,(En,(X,))), La can be calculated by:

L (XE™0.X, ) = BCE(XP’Ed X,)

- Z(X (6)

] log(XE™d[k]) + (1 — X, [k]) log(1 — XE"d[k])).

For the integrative training, we further calculate the discriminator
loss Lp;s, utilizing the BCE loss L, for the classification of discriminators
and implementing the soft labels technique®. Specifically, we first
sample the smoothed positive label [, ~U[0.8,1] and negative label
[neg ~U[0,0.2], respectively for the labels 1 and 0. Subsequently, we
derive the loss for the discriminator Lp;s as follow:

Lots = Lp (Diss (Tr—a (EN (X)) ) Lneg ) *Lp (Disa (ENg (X)) Lpos

)
+1p (Disr (T (En, (xa))),zneg) +Lp (Disr (Enr(Xr)),[pos>.
For updating the discriminators, we employ an SGD optimizer®?
with a learning rate of 0.005.
For each iteration, we train the encoders, translator, and deco-
ders, after the updating of discriminators. Finally, we can obtain two
reconstruction results and two translation results as follows:

r—a

Xered =pe, (T

a—Tr r

®

(En; (X;)))

XPred =De, (T, (En, (X/)))
)

)

(
XPd =De, (T,_., (En, (X,

a—a
and train the encoders, translator, and decoders with a combination of
reconstruction loss, translation loss, ELBO loss, and the recalculated
discriminator loss with updated discriminators:

Loss=w,(L (xpfed X ) +L (xpfed X ))

r—r’ a—r’

+We o (LELBO (Xembed) + I-ELBO (xembed))

(L (XP“" X ) +L (xpred X ))

a—a’r r—a’
— WaisLpiss

©
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where Xgmpeq aNd X peq denote the shared embeddings of RNA and
ATAC, respectively, Lps is recalculated using the updated dis-
criminator for each mini-batch, and the weights of w,, w.,, wg o and
Wgis are setto 1, 2, ? + %, and 1, respectively. We update the encoders,
translator, and decoders using the Adam optimizer®® with a learning
rate of 0.001. The integrative training consists of 200 epochs with
early-stop patience of 50 epochs.

The data augmentation strategy of scButterfly

To further enhance the translation performance and address the
challenges posed by the limited number of training cells and the high
noise in multi-omics data, we introduce two variants of the scButterfly-
B model, namely scButterfly-T (Type) and scButterfly-C (Cluster), for
the scenarios with and without cell-type labels, respectively.
scButterfly-T and scButterfly-C share the same model structure as
scButterfly-B, while additionally employing data augmentation strate-
gies to generate synthetic samples before model training. The gener-
ated samples could effectively simulate the original dataset and
alleviate the issues of limited number of cells measured by multi-omics
protocols (Supplementary Text 11).

For scButterfly-T, we partition all training samples by cell-type
label, and for each cell type, generate artificial samples by pairing
profiles of one modality of the randomly shuffled cells with profiles of
another modality of the non-shuffled cells (Fig. 1c). To strike a balance
between efficiency and performance, we perform two rounds of
shuffling, resulting a total of twice as many synthetic samples as the
original training set. The additional samples are mixed with the original
training samples, resulting in a training dataset that is three times as
large as the original dataset, for both the pretraining and integrative
training phases.

In scenarios where cell type annotation is unavailable, scButterfly-
C serves as a more general alternative approach by leveraging multi-
omics integration techniques (Fig. 1d). scButterfly-C first trains a
MultiVI*> model with default settings to obtain joint cell embeddings
based on scRNA-seq and scATAC-seq profiles. Subsequently, Leiden®
clustering is used to obtain cluster labels to compensate for the lack of
cell type annotation. scButterfly-C employs a high clustering resolu-
tion of three to ensure high purity of cell types within each cluster.
Finally, for each Leiden cluster, scButterfly-C generates artificial sam-
ples by pairing profiles of one modality of the randomly shuffled cells
with profiles of another modality of the non-shuffled cells for two
rounds, also resulting in a training dataset that is three times as large as
the original dataset, for both the pretraining and integrative training
phases. scButterfly is a flexible framework that could also incorporate
with other methods, such as detected anchors between the two
modalities with Seurat, for data augmentation (Supplementary
Text 12).

Data collection, pre-processing, and post-processing
We collected multiple datasets with different modalities, species, tis-
sues, and protocols to evaluate the performance of the scButterfly
model from a comprehensive perspective. For the translation between
transcriptome and chromatin profiles, we collected seven paired RNA
and ATAC datasets: the BMMC dataset composed of bone marrow
mononuclear cells from 10 healthy human donors by 10x-Multiome?,
the MB and MDS datasets of adult mouse brain and dorsal skin,
respectively, profiled by SHARE-seq’, the MK dataset of adult mouse
kidney profiled by sci-CAR?, the MCC dataset of adult mouse cerebral
cortices profiled by SNARE-seq*, the CL dataset of multiple cancer cell
lines profiled by scCAT-seq’, and the PBMC dataset of peripheral blood
mononuclear cells profiled by 10x-Multiome (Supplementary Fig. 3).
Additionally, we considered the diagonal analysis of unpaired data
and collected eight unpaired multi-omics RNA and ATAC datasets: the
UP_HK dataset of snRNA-seq and snATAC-seq profiles from five healthy
human kidney samples*, the UP_.MPMC dataset of 10x RNA v3 and

SnATAC-seq profiles from mouse primary motor cortex*?, the UP_eye,
UP_muscle, UP_pancreas, UP_spleen, UP_stomach, UP_thymus datasets
of sci-RNA-seq*® and sci-ATAC-seq** profiles from various human fetal
organs (Supplementary Fig. 3).

We further extended scButterfly to single-cell perturbation-
response prediction and collected the PT_PBMC dataset of seven cell
types of control and interferon-beta-stimulated human peripheral
blood mononuclear cells. In addition to epigenome and tran-
scriptome, we also investigated the translation between transcriptome
and proteome profiles with two datasets: the CITE_.BMMC dataset of
bone marrow mononuclear cells from the same human donors as the
BMMC dataset”® and the CITE_BM dataset of scRNA-seq profiles
alongside a panel of antibodies from human bone marrow> (Supple-
mentary Fig. 3).

We provide a summary of the above-mentioned datasets (Supple-
mentary Fig. 3), including more detailed information such as the num-
ber of cells, features, batches and cell types, as well as the imbalance of
cell types, sparsity, protocol and species of these datasets.

For data pre-processing, we applied conventional methods spe-
cific to different modalities (Fig. 1a). For the count matrices of SCRNA-
seq profiles, we normalized the total count of each cell to have the
same values equal to the median of total counts for cells before nor-
malization, logarithmized the normalized values with an adding offset
of one, and selected the top 3000 highly variable genes (HVGs)**' for
scButterfly training and downstream analysis.

For the count matrices of scATAC-seq profiles, we binarized the
matrices, filtered out the peaks activated in less than 0.5% of all cells,
and performed term frequency-inverse document frequency (TF-IDF)
transformation as follows>%¢*;

X2"(aLJ]
S XS] K]

IDF[{][j]=log (1 +

TF[[/]=

n > 10)
kX" K]
XFPF = TF x IDF,

where X2 and XIT°F are the matrices before and after TF-IDF
transformation, respectively. The matrix was then scaled to the range
of [0,1] by dividing the elements by the maximum § of the matrix.

For the perturbation-response dataset of PT_PBMC, we retrieved
the processed data in scGen* and performed no additional processes
to maintain the consistency in evaluation.

For the count matrices of proteome profiles, we performed the
centered log ratio (CLR) transformation across cells®, with the formula
as follows:

X, X,
CLR(x)=1o, <—1 ...... —”) 1
00708 (g0 g0 v
where X=(x,...... ,X,) represents the count vector of protein epi-

topes for each cell, and g(x) denotes the geometric mean

For data post-processing, we set the values in the predicted RNA
and ATAC matrices to zeros if they fell below the threshold of 1e-4,
considering the high sparsity nature of original profiles. Additionally,
we devised a method to recover count matrices from ATAC predic-
tions, to ensure downstream methods that require count matrices,
such as MultiVI?, could utilize the count matrices as input. Specifically,
the inverse process involves reversing the scaling and TF-IDF trans-
formation in the pre-processing stage:

1, )
X 1= XSPRe L] < S/IDFLL] < > XS [k],  (12)
k=1
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where X:P¢ represents the sparse version of the output XP*d of
scButterfly, S is the scale factor in pre-processing, IDF and
S e_ XU"[i][k] are the matrices in TF-IDF transformation in pre-
processing. We finally set the elements of X{°'s* whose value was
greater than both the corresponding column and row means to ones,
and to zeros otherwise', resulting binarized count matrices for

downstream analysis.

Unpaired data training with scButterfly

In addition to translating paired multi-modal profiles, scButterfly can
also perform the more challenging diagonal analysis of unpaired data
using a similar method as the data augmentation strategy of
scButterfly-T. Taking the translation between transcriptome and
chromatin profiles as an example, we first identify the shared cell types
of unpaired scRNA-seq and scATAC-seq single-modal datasets. Sup-
pose that there are RNA profiles X, ¢ R"*/r and ATAC profiles X, €
R"™*!a with n, and n, cells respectively. Let m represent the count of
shared cell types, and for type i <m, let s} and s? separately denote the
proportion of this type in X; and X,. Then the proportion of sampling
for type i is given by:

r a
ST+

S

13

which represents the normalized average proportion of type i. Next,
we sample %" %) pajred profiles for model training by randomly
matching the RNA profile of one cell of type i with the ATAC profile
of another cell of type i. Although the training process only focuses
on the shared cell types between two single-modal datasets, we
included all cell types of each single-modal dataset in the
testing phase.

Single-cell perturbation-response prediction with scButterfly
The scButterfly framework can be generalized to translate between
transcriptome profiles before and after perturbation, enabling the
prediction of single-cell perturbation responses. In terms of the model
architecture, we replace the ATAC encoder and decoder with the RNA
encoder and decoder, respectively. One pair of RNA encoder and
decoder is dedicated to modeling gene expression data from the
control group, while another pair of RNA encoder and decoder is
responsible for modeling gene expression data from the
stimulated group.

For model training, we utilize optimal transport to match cells and
generate paired training samples®. Specifically, we first divide cells into
different groups based on their cell types and perform principal com-
ponent analysis (PCA) to reduce the dimension to 50 for each group.
Denoting the number of cell types as m, then for type k < m, we calculate
the Euclidean distance cost matrix M; between the 50-dimensional
representations of control and stimulated data. In the absence of prior
knowledge, a uniform distribution assumption is made for both the
control and stimulated groups, represented by weight vectors
W= (e ) € U and wii= (L%%) e R
where n{* and n,sji denote the cell counts of control and stimulated
groups of type k, respectively. Then the optimal transport problem
could be formulated as the Earth Movers Distance (EMD) problem:

Vi = argmin <y,M,>¢
Y

y 1=w{"
st yT-1=wi,
Y20

14)

where y; is the optimal transport matrix for control and stimulated
data of type k,<y,M;>; is the Frobenius inner product, defined as

z?ﬁ‘;zj’.’f‘lmmmk[qu}. We use the algorithm in ref. 48 to solve this

problem. Finally, for cell type k, we select the stimulated cell with the
highest value in y; for each cell in the control group, thereby gen-
erating paired samples by pairing each control profile with its corre-
sponding stimulated profile to train scButterfly. Note that some
stimulated cells may be paired with multiple control cells, however,
this kind of reusing will not significantly affect the prediction perfor-
mance of scButterfly (Supplementary Text 13).

Translation between transcriptome and proteome with
scButterfly

scButterfly can be easily extended to facilitate the translation between
transcriptome and proteome profiles through specific modifications
to the model structure and training strategy. In terms of the model
structure, we maintain the consistency in the RNA encoder, RNA
decoder, translator, and discriminators as the translation between
transcriptome and chromatin profiles. For the ADT (Antibody-Tagged
Detection) encoder, the processed data is projected into latent space
via two blocks of 128-dimensional fully connected layer and LeakyR-
eLU. The ADT decoder performs the reverse process by recovering the
mapped/translated embeddings to the original dimension. Given the
relatively high quality of ADT data, we do not use the masking strategy
for ADT input. We also discussed the impact of different embedding
dimensions on translation performance in Supplementary Text 14.

During the model training phase, we follow the same procedure as
the translation between transcriptome and chromatin profiles. How-
ever, due to the generally lower dimensionality of ADT profiles in
comparison to RNA or ATAC profiles, we assign a constant weight of 15
to the KL divergence term associated with the ADT component. This
precautionary measure is taken to mitigate the potential occurrence of
posterior collapse, which can happen if the weight for the ELBO term is
set too high and the variational posterior distribution closely matches
the prior for a subset of latent variables®.

For the data augmentation strategy, no modifications are made
for the scButterfly-T variant. However, for the scButterfly-C variant,
instead of MultiVI*, we employ totalVI®®, which is a multi-omics inte-
gration method specifically designed for transcriptome and proteome
profiles. Specifically, we train totalVI with default settings to obtain
joint embeddings of paired RNA and ADT profiles, then perform Lei-
den clustering®® with a resolution of three based on the cell embed-
dings, and finally augment the dataset and train scButterfly-C using the
same approach as scButterfly-C for the translation between RNA and
ATAC profiles.

Evaluation metrics

To quantitatively evaluate the cell heterogeneity preserved in trans-
lated profiles, we first performed PCA to reduce the dimensionality of
translated profiles to 50, then performed cell clustering by the Leiden
algorithm with default resolution of one® based on the dimensionality
reduction results, and finally assessed the clustering results by four
widely-used metrics**2°, including adjusted Rand index (ARI), adjus-
ted mutual information (AMI), normalized mutual information (NMI),
and homogeneity (HOM). Rand index (RI) computes a similarity
measure between the cluster labels and the cell-type labels. ARI is
adjusted based on RI and accounts for chance agreement. Mutual
information (MI) quantifies the correlation between the cluster labels
and the cell-type labels. NMI is a normalized variant of MI, while AMI
further considers chance agreement based on MIl. HOM measures the
purity of cell types within each cluster, and it equals one if all the cells
within the same cluster belong to the same cell type. Note that the
sizes of cell populations in most single-cell data are unbalanced and
AMI is more appropriate in most cases since it is preferred when the
sizes of clusters are unbalanced, while ARI is preferred when the
clusters have nearly equal-sizes®.
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To evaluate the performance of cell type annotation, we adopted
four metrics as suggested by recent studies®®*’, including accuracy
(Acc), Cohen’s kappa value (Kappa), F1-macro, and Fl-weighted. Acc
provides a direct measure of the agreement between the annotated
and ground-truth cell-type labels. Kappa takes chance agreement into
consideration and is particularly suitable for non-ordinal categorical
variables. Both F1-macro and F1-weighted are derived from Fl-score:
F1-macro is the arithmetic mean of the F1-scores for all cell-type labels,
while Fl-weighted is a weighted sum of the Fl-scores. Compared to
Acc, F1-macro and Fl-weighted give relatively equal attention to both
common and rare cell types, providing a more comprehensive eva-
luation of the annotation performance.

To evaluate the performance of single-cell perturbation-response
prediction, we adopted two metrics that were universally used in
existing studies**¢, First, we performed differential gene expression
analysis between the control data and the real stimulated data,
resulting real differentially expressed genes (DEGs), and between the
control data and the predicted stimulated data, resulting predicted
DEGs. To assess the capability of preserving the biological variance in
real data, we then counted the number of common DEGs of the top
100 real DEGs versus the top 100 predicted DEGs. Second, to examine
the consistency between the predicted perturbation responses and the
ground truth responses, we randomly sampled 80% of the test data
with replacement 100 times and computed the squared Pearson cor-
relation (R?) for mean gene expression of the top 100 real DEGs
between predicted and real stimulated data.

For the translation between transcriptome and proteome profiles,
in addition to the above four clustering metrics for evaluating the cell
heterogeneity preserved in translated profiles, we further evaluated
the translated proteome profiles from a numerical accuracy stand-
point, given the low dimensionality and dense nature of ADT data'®,
Specifically, for the real and predicted protein expression level of each
cell, we investigated the correlation coefficients via Pearson correla-
tion and Spearman correlation, respectively.

More detailed mathematical equations and formulas for the
aforementioned metrics are provided in Supplementary Text 15.

Visualization

For data visualization, we performed PCA to reduce the dimensionality
of translated profiles to 50 and then adopted the t-SNE®” method to
further reduce the dimension to two. Cells in the visualization could be
colored by cell-type labels, batch indices, or clustering labels.

Baseline methods

For the translation between transcriptome and chromatin profiles,
we compared the performance of scButterfly against three state-of-
the-art methods, including BABEL'!, Polarbear®, and JAMIE®. We
implemented BABEL and JAMIE using their respective GitHub
repositories with the default parameter settings. For Polarbear, we
implemented it used the default parameters on the NGC docker
with pre-compiled TensorFlow v1.15. Because of the extremely high
dimension of chromatin profiles (1,050,819 peaks) in the datasets of
UP_eye, UP_muscle, UP_pancreas, UP_spleen, UP_stomach and
UP_thymus, we additionally adapted the same features selection
strategy as scButterfly when implementing baseline methods or
encountered memory errors otherwise. Note that we did not con-
sider the cross-modal autoencoder’ and UnitedNet' for compar-
ison because the former is mainly designed for translation between
scRNA-seq data and chromatin images and does not provide the
source code for its intricate data processing steps, while the latter
does not provide the guideline for number determination of the
features to be selected as well as the code for data processing and
performs translation between epigenome and transcriptome in a
supervised manner that requires ground-truth cell-group
identification.

For the cell type annotation of scATAC-seq data, we compared the
performance of scButterfly with the state-of-the-art EpiAnno®® and
Cellcano® methods. For the prediction of single-cell perturbation
responses, we compared the performance of scButterfly with the
advanced scGen®* and scPreGAN*® methods. For the translation
between transcriptome and proteome profiles, we compared the
performance of scButterfly with the latest sciPENN' and JAMIE®
methods. Note that we implemented the above baseline methods
following their tutorials and with their default settings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All relevant data supporting the key findings of this study are avail-
able within the article and its Supplementary Information files. The
BMMC and CITE_ BMMC datasets were collected from NCBI Gene
Expression Omnibus (GEO) with the accession number GSE194122%
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122].
The MB and MDS datasets can be accessed in GEO with the accession
number GSE140203? [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE140203]. The CL dataset was collected from the sup-
plementary data 3 and 4 of previous study’ [https://www.nature.com/
articles/s41467-018-08205-7]. The MCC dataset is available at GEO
with the accession number GSE126074* [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE126074]. The MK dataset was col-
lected from GEO with the accession number GSE117089° [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117089]. The
PBMC dataset can be accessed at https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3. The UP_HK
dataset was collected from GEO with the accession number
GSE151302*"  [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE151302]. The UP_MPMC dataset is available in the NeMO archive
(RRID: SCR_016152)** [https://assets.nemoarchive.org/dat-chlngb7].
The six unpaired datasets from human fetal atlas (UP_eye, UP_muscle,
UP_pancreas, UP_spleen, UP_stomach, UP_thymus) were derived from
two studies*** [https://descartes.brotmanbaty.org/]. The CITE_.BM
dataset can be accessed in GEO with the accession number
GSE128639°" [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE128639]. The PT_PBMC dataset was collected from https://
github.com/theislab/scgen-reproducibility”. Source data are pro-
vided with this paper.

Code availability

scButterfly algorithm is implemented in Python based on the PyTorch
framework. The MIT-licensed scButterfly software including detailed
documents and tutorials is freely available at https://github.com/BioX-
NKU/scButterfly®®. The source code for reproduction is available at
https://github.com/BioX-NKU/scButterfly_source®,
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