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Single-cell and spatial RNA sequencing reveal
the spatiotemporal trajectories of fruit
senescence

Xin Li 1,2,3, Bairu Li1, Shaobin Gu 1, Xinyue Pang 4, Patrick Mason2,
Jiangfeng Yuan1, Jingyu Jia1, Jiaju Sun1, Chunyan Zhao 5 & Robert Henry 2

The senescence of fruit is a complex physiological process, with various cell
types within the pericarp, making it highly challenging to elucidate their
individual roles in fruit senescence. In this study, a single-cell expression atlas
of the pericarp of pitaya (Hylocereus undatus) is constructed, revealing exo-
carp and mesocarp cells undergoing the most significant changes during the
fruit senescence process. Pseudotime analysis establishes cellular differentia-
tion and gene expression trajectories during senescence. Early-stage oxidative
stress imbalance is followed by the activation of resistance in exocarp cells,
subsequently senescence-associated proteins accumulate in the mesocarp
cells at late-stage senescence. The central role of the early response factor
HuCMB1 is unveiled in the senescence regulatory network. This study provides
a spatiotemporal perspective for a deeper understanding of the dynamic
senescence process in plants.

Fruit, as a unique developmental organ in flowering plants, plays a
crucial role in seed formation and plant reproduction. The growth and
development process of fruit is generally divided into five stages: cell
differentiation, cell enlargement, fruit development, ripening, and
senescence1. Senescence, as the final critical stage in the fruit’s life
cycle, directly impacts the maintenance of fruit quality, as well as its
market value and post-harvest lifespan. Fruit senescence is a complex
oxidative and physiological process, accompanied by the metabolism
of numerous substances2. In recent years, various theories have been
proposed to explain the occurrence anddevelopmentof senescence2,3.
However, to date, themolecularmechanismsof senescence, especially
the development of senescence, remain far from fully elucidated.

In recent years, rapidly advancing transcriptome sequencing
technology has allowed the generation of large-scale gene expression
data, enabling researchers to explore complex physiological processes
within organisms based on spatiotemporal gene expression differ-
ences. Fruit is composed of different types of cells, but conventional

bulk transcriptome sequencing can only detect the average gene
expression levels4,5, which obscures the characteristics of different cell
populations. Consequently, it is not possible to analyze the cellular
diversity and transcriptomic state heterogeneity within fruit tissues,
which may be a significant reason why the overall patterns in the
process of fruit senescence remain unclear.

The recent advancements in single-cell RNA sequencing (scRNA-
seq) technology have provided an opportunity to systematically
identify the transcriptional regulatory patterns and molecular differ-
entiation trajectories of different cell types within multicellular biolo-
gical tissues at the single-cell level6,7. This technology allows us to gain
a deeper understanding of the changes and roles of different cell types
during fruit senescence.

While scRNA-seq has been systematically used to identify cell
populations inmodel plants like Arabidopsis andmaize, it is important
to note thatdatabases andmarker genes are still lacking for non-model
plants like pitaya (Hylocereus undatus, H. undatus, also named
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Selenicereus undatus), making it challenging to identify individual cell
populations. Also, to date, researchers have utilized single-cell tran-
scriptome sequencing technology to construct single-cell atlases for
fruit and vegetables, such as strawberries (Fragaria vesca)8 and lychees
(Litchi chinensis)9; however, the tissues analyzedwere leaves and shoot
apices. There have been no reports utilizing scRNA-seq technology on
the expression characteristics and variation patterns of different cell
types during the senescence and decay processes of fruit. During fruit
senescence and decay, it is worth exploring whether different types of
fruit pericarp cells are involved in distinct cellular processes and
possess distinct functions. These are important questions that warrant
investigation.

The recent development of spatial transcriptomics methods has
provided robust methods for addressing these questions10,11. Spatial
transcriptomics technology generates datasets that not only include
quantitative information on gene expression but also provide spatial
distribution images of gene expression within tissues. Through cor-
relation analysis with single-cell transcriptome data, it becomes pos-
sible to achieve spatial localization of different cell types within fruit
pericarp tissues10, thus supporting a comprehensive understanding of
the functions of various cell populationswithin the pericarpduring the
senescence process.

H. undatus is a plant in the cactus family (Cactaceae) and is rich in
sugars, plant proteins, vitamins, and water-soluble dietary fiber12. The
fruit pericarp of H. undatus contains a high level of flavonoids, pro-
viding a solid foundation for its anti-senescence properties. In addi-
tion, when comparing the anti-senescence effects of the preservative
Trypsin on various fruits and vegetables such as pitaya, mango, and
cucumber, pitaya exhibited the optimal response to the preservative4,5.
The thick and distinctly layered pericarp, coupled with its favorable
response to preservatives,makes it an excellent candidate for studying
the mechanisms of fruit senescence.

In this work, we conducted scRNA-seq and spatial transcriptomics
analyses of the H. undatus fruit pericarp tissue. Through the applica-
tion of four different algorithms, the data were correlated, enabling
the construction of a comprehensive pericarp cell atlas. By categoriz-
ing these heterogeneous cell populations, we identified five major cell
types and specific marker genes for each cell type. The expression
localization of the senescence marker gene HuSAG12 in the mesocarp
was validated through in situ hybridization. Subsequently, we per-
formed subpopulation analysis and pseudotime analysis on the two
most significantly changing cell types, exocarp and mesocarp, during
the fruit senescence process. This revealed the expression trends of
pseudotime-related genes during senescence. Finally, we constructed
a single-cell pseudotime regulatory network using the SCODE
algorithm13 and identified key genes within the network using plugins
like CytoHubba.

The results of this study have elucidated the critical cell popula-
tions and the pseudotime trajectories of gene expression during post-
harvest fruit senescence. They reveal a strategy for early warning of
decay bymodifying the early response system in fruit senescence. This
research provides ideas and technologies to reduce post-harvest los-
ses and extend storage periods, thus playing a significant role in
advancing fruit and vegetable industries.

Results
Generation of a cell atlas of H. undatus pericarp during
senescence
The acquisition of single-cell transcriptomes from pericarp tissues
posed a technical challenge, particularly when compared to more
tender tissues like roots14 or seedlings15. To systematically elucidate the
gene expression patterns within the pericarp of H. undatus during the
senescence process, we meticulously extracted pericarp tissues from
both mature and senescent stages, followed by the application of
droplet-based single-cell RNA sequencing (scRNA-seq) to generate a

comprehensive transcriptomic atlas (Fig. 1a). Notably, the pericarp of
H. undatus is characterized by its high content of lignin and poly-
saccharides, necessitating the optimization of protocols for protoplast
isolation and impurity removal. Due to the fragility of protoplasts, a
filtration step was employed to eliminate damaged cellular fragments
and organelles, after which the purified protoplasts were loaded into
the 10× Genomics Chromium Controller. In the CK (mature) and Post
(senescent sample after storage, details see “Methods” section) sam-
ples, 80% and 77% of viable cells were retrieved, respectively.

Subsequently, scRNA-seq libraries were constructed on an Illu-
mina platform and sequenced (Supplementary Table 1). A total of
6738 individual cells were successfully profiled in the CK group,
while 9179 individual cells were profiled in the Post group. After
stringent filtering, successful analyses were conducted on 5646 cells
from the CK group and 7670 cells from the Post group (Supple-
mentary Table 1). From the 422 million reads obtained from the
pericarp samples, 91.8% to 95.4% were successfully mapped to theH.
undatus reference genome. Furthermore, the expression of amedian
of 708 genes in the CK samples and 777 genes in the Post samples
was detected using the H. undatus reference [Pitaya Genome and
Multiomics Database (PGMD)].

To generate a comprehensive cellular atlas ofH. undatus pericarp
senescence, mature samples (CK group) were merged with post-
storage senescent samples (Post group) for cell clustering and anno-
tation. A total of 27,735 genes were identified from the single-cell
transcriptome data and categorized into 13 distinct cellular clusters.
Uniform Manifold Approximation and Projection (UMAP) was
employed for visualizing and exploring these cellular clusters (Fig. 1b).
It should be noted that these cellular clusters exhibited differences in
their relative abundances between the CK group and the Post group.
Specifically, cellular clusters 2, 3, 4, 7, 9, 10, and 11 were predominantly
composed of cells from the CK group, while cellular clusters 0, 1, 5, 6,
8, and 12 contained a higher proportion of cells from the Post group
(Supplementary Table 2).

To annotate each cellular cluster, we identified cluster-enriched
genes with significantly higher expression levels in specific cellular
clusters compared to all other cellular clusters (SupplementaryData 1).
Among the 13 clusters, a total of 38 marker genes were screened.
HU05G00061 was a marker gene in both Cluster 10 and Cluster
12 (Fig. 1c).

Spatial transcriptome sequencing of the pericarp of H. undatus
fruit and cell-type recognition
To achieve the spatial localization of the 13 cell clusters obtained from
the single-cell transcriptome and thereby identify each cell cluster, we
conducted spatial transcriptome analysis on CK samples using the 10×
Visium platform (Fig. 2a).

The technology employed in this study involved placing frozen
tissue sections on an array of 5000 spots, with each spot measuring
6.5 × 6.5mm2. Each spot had a diameter of 55μm and contained
approximately 100 million oligonucleotides. These oligonucleotides
possessed specific positional barcodes andwere attached to oligo (dT)
primers (Fig. 2a). For the frozen sections of fruit pericarp, we further
optimized enzymatic control of tissue structure permeabilization,
specifically tailored for H. undatus (Supplementary Fig. 1). Out of the
325 million reads obtained from the pericarp samples, 98.0% of the
barcodes were considered valid, ensuring data accuracy. The average
number of reads per spot was 91,253, enabling comprehensive spatial
transcriptome analysis.

The spatial transcriptome sequencing generated 3566 valid
spots and 17,849 valid genes. Among them, 3652 genes (Supple-
mentary Data 2) exhibited significant spatial variation between dif-
ferent tissues (Supplementary Fig. 2A, B). By applying Seurat’s SNN
algorithm to the dataset, beads were effectively classified into 7
clusters within 5 regions (Fig. 2b). These regions included exocarp
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(EX, cluster 4), mesocarp (ME, clusters 1, 2, and 7), endocarp (EN,
cluster 5), endocarp fibers (ENF, cluster 3), and vascular bundles (VB,
cluster 6). The UMAP plot of the spatial transcriptome vividly
depicted 5 distinct components of the pericarp (Supplementary
Fig. 2C). Similar to the methods used in scRNA-seq analysis, each
pericarp region’s top marker gene was identified by comparing their
expression differences with other regions. The spatial localization
maps (left) and violin plots (right) of marker gene expression for
each cluster showed that gene HU08G01266 specifically localized to
EX, gene HU08G02237 specifically localized to ME, gene
HU06G02555 was specifically localized to EN, gene HU07G02077
was specifically localized to ENF, and gene HU10G00163 was speci-
fically localized to VB (Fig. 2c).

Integrating microarray-based spatial transcriptomics and
single-cell RNA sequencing reveals tissue architecture in peri-
carp of H. undatus
We employed two categories of four different methods to integrate
and analyze spatial transcriptomic and single-cell transcriptomic data.
The objective was to elucidate the spatial localization information of
various cell clusters identified in the single-cell spectra and further
reveal the composition of different cell types.

Based on analysis using SingleR (Single Cell Recognition) and
SciBet (Single Cell Identificator Based on E-test), we observed that cell
clusters 0, 1, 6, and 8 from the scRNA-seq data clustered together,
suggesting that they belong to the ME component. Furthermore, cell
clusters 2, 3, 5, 7, and 9 in the scRNA-seq data exhibited similar
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Fig. 1 | Generation of aH. undatuspericarp cell atlas. a Flowchart of experiments
in this study. Different colors represent Barcode and UMI (Unique Molecular
Identifier) sequences, where barcodes are used for cell differentiation, and UMIs
are used for transcript differentiation. In 10×Genomics reagents, there are a total of
4million Barcode variations, and UMIs consist of 10 nucleotides, allowing for up to
1,048,576 unique combinations. b UMAP visualization of 13 cell clusters in CK and

Post group of H. undatus pericarp samples. Each dot denotes a single cell. Colors
denote corresponding cell clusters. c Expression patterns of representative cluster-
specific marker genes on UMAP. Dot diameter indicates the proportion of cluster
cells expressing a given gene. The color scale represents the gene expression levels,
with red indicating high expression and blue indicating low expression.
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clustering patterns, indicating a likely association with the EX com-
ponent, with cell cluster 7 possibly also belonging to the ENF com-
ponent. Cell cluster 10 was classified as the VB component, although
there is someuncertainty regarding whether cell cluster 5 also belongs
to the VB component. Cell clusters 4, 11, and 12 showed clustering
patterns consistent with the ENF component. The clustering data for
cluster 12 was only concentrated in the ENF, indicating that cluster 12
belonged to ENF first, but it remains uncertain whether any of them
belonged to the EN component (Fig. 2d).

The results obtained from regional cell type deconvolution
(RCTD) and cell annotation in regional decomposition (CARD) were
generally consistent, with the spatial localization of EX, ME, and VB
cells matching the results from SingleR and SciBet (Fig. 2d and Sup-
plementary Fig. 2D, E). However, there were differences in the locali-
zation of ENF and EN cells between thesemethods, and there was also

inconsistency between SingleR and SciBet (Fig. 2d and Supplementary
Fig. 2D, E).

In the violin plot of Supplementary Fig. 2F, the marker gene of
cluster 12 was only independently expressed in cluster 12. It is difficult
to find the marker genes of cluster 4 that were only independently
expressed in cluster 4. They were all co-expressed in clusters 4 and 11,
and even had a certain expression level in cluster 12. The same applied
to the marker genes of cluster 11. In addition to Hu03G02180 being
specifically expressed in cluster 11, other marker genes were co-
expressed in clusters 11 and 4 and even co-expressed in cluster 12.
Therefore, when classifying the cell types of each cell cluster, we
grouped cluster 4 and cluster 11 together. Due to the clear classifica-
tion of cluster 12 as ENF, clusters 4 and 11 were classified as the second-
highest-scoring EN components in the results of SciBet and Sin-
gleR (Fig. 2d).
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Fig. 2 | Reconstruction of a cellular atlas for mature pericarp of H. undatus
using spatial transcriptomics. a Workflow for sampling and sequencing H.
undatuspericarpon the 10×Visiumplatform.b Illustrations of cell typesdiscovered
on glass slides, overlaid on corresponding H&E-stained images. Clusters are named
based on the spatial positioning of cell types. c Spatial localization maps (left) and
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RCTD, and CARD. e UMAP plot displaying 13 clusters of single cells classified into 5
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Based on the results from the four algorithms and considering the
results of violin plot of marker genes and the close proximity of cell
clusters of the same type on the UMAP plot, the 13 cell clusters iden-
tified from the scRNA-seq data were categorized into five distinct cell
types. Cell clusters 0, 1, 6, and 8were classified asmesocarp (ME) cells.
Cell clusters 2, 3, 5, 7, and 9 were designated as exocarp (EX) cells. Cell
cluster 10was assigned as vascularbundle (VB) cells. Cell clusters 4 and
11 were categorized as endocarp (EN) cells, while cell cluster 12 was
labeled as endocarp fiber (ENF) cells (Fig. 2e).

The integration analysis of spatial transcriptomics and single-cell
transcriptomics has successfully identified the cell types in H. undatus
pericarp and constructed a comprehensive pericarp cell atlas.

Subcluster analysis distinguished cells belonging to different
samples in key components of H. undatus pericarp
A statistical analysis of cell proportions in the CK and Post-samples
revealed significant changes in cell composition in the senescent
pericarp after storage. The proportion of cells belonging to the
exocarp (EX) component significantly decreased from 64.97% in
the CK group to 25.97% in the Post group (Fig. 3a). Conversely, the
proportion of cells in the mesocarp (ME) component significantly
increased from 10.87% in the CK group to 67.46% in the Post group
(Fig. 3a). These findings were further supported by UMAP visualiza-
tion, clearly demonstrating the significant increase in ME cell

populations and the significant decrease in EX cell populations
(Supplementary Fig. 3A).

Microscopic images clearly illustrated the changes in different
layers of H. undatus pericarp. In the CK group samples, beneath the
smooth and thick waxy layer, there were three to four layers of
exocarp cells tightly arranged, with each layer exhibiting a relatively
orderly structure. Moving inward, there was a large area of thin-
walled mesocarp cells, densely packed with small gaps between
them. Further inward was the endocarp layer, where cell arrange-
ment was also relatively orderly (Fig. 3b). In the Post group samples,
the wax layer became thinner and wrinkled, closely followed by an
exocarp cell layer with increased gaps between cells. The mesocarp
cell layer was significantly thinned, with only three to four layers of
thin-walled cells maintaining their normal cell morphology. The
remaining mesocarp cells experienced significant dehydration,
resulting in noticeable wilting and wrinkling. The innermost endo-
carp cell layer appeared more disorganized, with significantly
enlarged intercellular spaces (Fig. 3b).

Considering the significant changes observed in the EX and ME
components during fruit senescence, the subsequent analysis focused
on exploring the cellular subpopulations within these two compo-
nents. After re-clustering EX andME cells, five distinct subgroups were
identified (Fig. 3c) and further categorized as CK subgroups (Clusters 1
and 2) and Post subgroups (Clusters 0, 3, and 4) (Fig. 3d). To
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repeated with similar results. c Bar charts illustrating the statistical proportions of
CK and Post sample cells within each subcluster of cells. d UMAP plots for cells of
various subclusters. e Sankey diagram showing the distribution of clusters in
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Colors according to Fig. 1b. f Heatmap and UMAP of top 1 marker genes of

5 subclusters from the exocarp and endocarp cells, with the top1 gene ID empha-
sized. The UMAP plot in Fig. 3f illustrated the expression localization of the top 1
geneof subclusters0, 1, 2, 3, 4 from the heatmap in each subcluster, consistentwith
the distribution of CK and Post in Fig. 3c. g RNA FISH indicated that the pre-
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labeled in the light field image. HuSAG12 probes were labeled with FAM (green).
Nuclei were stained with DAPI (blue). Scale bar: 40μm.
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comprehensively depict the relationships among the 13 clusters from
scRNA-seq and these five components, as well as their distribution in
CK and Post samples, we employed a Sankey diagram. Notably, the
diagram clearly illustrates the specificity of the EX component to CK
samples and the ME component to Post samples. Certainly, a small
fraction of the EX components were attributed to the Post samples
(Fig. 3e). Furthermore, a comparisonof the expression levels of the top
100 marker genes within each subgroup confirmed distinct gene
expression profiles among the five identified subgroups (Fig. 3f).

Based on the scRNA-seq profiles, the UMAP overview in CK and
Post samples showed the expression localization of the top gene in
each of the five subgroups (Fig. 3f and Supplementary Data 3).
Hu08G02237 exhibited expression specificity in the Post sample,
mainly located in the mesocarp. The spatial transcriptomics results
also confirmed the specific localization of this gene in the fruit’s
mesocarp. This result was further validated by RNA–FISH, indicating
that the expression of Hu08G02237 was primarily localized in the
mesocarp, whether from CK or Post samples (Fig. 3g). Moreover, the
RNA–FISH results clearly showed that the expression level of
Hu08G02237 was higher in Post samples compared to CK samples
(Fig. 3g). This finding was consistent with the results obtained from
single-cell transcriptome sequencing (Hu08G02237 expression in CK
and Post was 0.0395 and 2.395, respectively).

Pseudotime analysis revealed the time conversion trajectories
of mature and senescent cells in the mesocarp and exocarp
As is well-known, in leaves, the differentiation rate at the edges is
slower than in the central parts16. However, during the senescence
process of the pericarp, the differentiation patterns of different parts
of thepericarphave remainedunclear. To clarify this issue,we selected
the exocarp and mesocarp cells in H. undatus pericarp, which exhib-
ited the most significant changes during senescence, and conducted
pseudotime analysis.

The gene expression changes were plotted along pseudotime,
and these genes were divided into four clusters (Supplementary
Fig. 3B). For Cluster 3, genes exhibited early high expression along
the pseudotime axis and were enriched for GO and KEGG entries
associated with oxidative stress, chitin metabolism processes, and
carbohydrate derivative metabolism processes (Supplementary
Data 3). In the relevant clusters in the exocarp, they were upregu-
lated, indicating an initial cellular stress response in the exocarp.
Next, genes in Clusters 2 and 4 showed higher expression in the
middle of the pseudotime axis, also corresponding to cells in the
exocarp. Their functions primarily involved phenylpropanoid bio-
synthesis pathways downstream flavonoid biosynthesis and cellular
stress resistance (Supplementary Data 3). The senescence pathways
associated with Cluster 2 can be summarized in a DAG (Supple-
mentary Fig. 3C). For example, the GO biological process “flavonol
biosynthetic process (GO:0051555)” is a child term of two terms:
“flavonol metabolic process (GO:0051554)” and “flavonol biosynth-
esis process (GO:0051553)” (Supplementary Fig. 3C). Genes in Clus-
ter 1 were primarily upregulated in the later stages along the
pseudotime axis, with high expression in mesocarp clusters 0, 1, 6,
and 8, related to fruit senescence (represented by HuSAG12, gene ID
HU08G02237) and seed development (represented by HuSUS, gene
ID HU02G00890) (Supplementary Data 4).

To investigate the developmental trajectories of mature and
senescent cells, gene sets were constructed based on the results
mentioned above, including 52 senescence-related genes, 642
resistance-related genes, 1913 reactive oxygen species (ROS)-related
genes, and 258 phenylpropanoid pathway-related genes (Supplemen-
tary Data 5).

We conducted pseudotime and embedding heatmap analysis for
genes in the four gene sets mentioned above. To clarify the pseudo-
time expression patterns of each gene set, eight key pseudotime

nodes, consisting of the first and last genes in the four clusters of the
overall pseudotime graph, were selected. These eight genes served as
critical pseudotime nodes for the overall senescence pseudotime and
were plotted together with the genes from the gene sets mentioned
above, elucidating the positions of gene expression for each gene set
within the overall pseudotime. The results demonstrated that both
resistance-related genes and phenylpropanoid pathway-related genes
involved in resistance, as well as senescence-related genes and ROS-
related genes involved in senescence, exhibited temporal expression
patterns along the pseudotime (Supplementary Fig. 3D). Furthermore,
the heatmap revealed the pseudotime expression patterns of some
functionally unknown genes, such as HU05G00200 in resistance-
related genes, identified as an uncharacterizedprotein LOC104893067
in the database, and HU07G02057 in senescence-related genes, iden-
tified as a hypothetical protein GH714_016062 in the database. How-
ever, based on their early response to senescence, these genes are
likely to play important roles in fruit senescence. Taken together, our
results reveal a differentiation continuum of pericarp cells during
senescence.

To find cells with a high correlation with the above-mentioned
key gene functions and make the trajectory of fruit senescence
clearer, gene set scoring was used to screen target cells17,18. The
results showed that, compared to the CK group, the Post group had
a significant increase in cells related to senescence and ROS, while
cells related to resistance and the phenylpropanoid pathway sig-
nificantly decreased (Fig. 4a). Based on the gene set scoring results,
9019 cells highly correlated with the mentioned genes were
selected. These cells were further subjected to subcluster analysis,
resulting in 13 subclusters (Supplementary Fig. 3E), with sub-
clusters 0, 3, 4, 8, 10, and 11 primarily consisting of cells from the
CK sample, while the remaining subclusters were mainly composed
of cells from the Post sample, as depicted in the uMAP plot (Sup-
plementary Fig. 3F).

Thedevelopmental trajectories of 13 subpopulations consistingof
9019 cells highly correlated with senescence were subsequently deli-
neated. The results revealed three major trajectories, with cells from
the mature (CK group) and senescent (Post group) samples aligning
along pseudotime paths (Fig. 4b).

This ordering was captured by latent time (Fig. 4b). As depicted in
Fig. 4b, mature cells (MC) and senescent cells (SC) occupied distinct
branches. Mature cells from the CK sample were distributed at a
relatively early pseudotime stage, situated in the Pre-branch, and
categorized as State 1. Mature cells with a later differentiation time
resided in Branch 1, primarily comprising cells with high expression of
resistance genes, referred to as resistance cells (RC), and were classi-
fied as State 3. A small subset of early-stage senescent cells from the
Post sample was classified as State 3, while the majority of cells from
the Post sample at various stages of senescence exhibited the latest
differentiation time and predominantly expressed genes indicative of
a senescent state, referred to as senescent cells (SC) and classified as
State 2 (Fig. 4b). The results showed that, overall, cells from the CK
sample exhibited lower differentiation compared to cells from thePost
sample, with cells from the Post sample being in a more open differ-
entiation state (Fig. 4b).

When considering spatial information within the developmental
trajectory, we found that the cells in the pre-branch included both EX
and ME cells (Fig. 4b and Supplementary Fig. 4A–C). The resistance
cells in Branch 1 exhibited a distinct spatial distribution pattern, pri-
marily belonging to the CK sample, mainly located in EX, and with a
later differentiation time (Fig. 4b and Supplementary Fig. 4D). On the
other hand, the senescence cells in Branch 2, primarily from the Post
sample, were mainly located in ME and had the latest differentiation
time (Fig. 4b and Supplementary Fig. 4E).

Based on the gene expression characteristics, cells were cate-
gorized into three states according to RNA velocity (Fig. 4c). The
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results of RNA velocity analysis showed that MC (mature cells in CK
samples) formed trajectory sources leading to both RC (resistant cells
in the EX of CK samples) and SC (senescent cells in theME component
of Post samples) directions (Fig. 4c). RNA velocity dynamics also
revealed stable attractor states for different cells. The stable attractor
state under mature conditions was represented by MC cells. Addi-
tionally, RC cells represented the attractor state under resistant con-
ditions, while SC in the Post samples became the attractor state in the
late storage period (Fig. 4c).

Furthermore, we assessed the gene expression patterns along the
pseudotime based on the differentiation branching points from the

Pre-branch to Branch 1 and from the Pre-branch to Branch 2 within EX
and ME cells. Cluster analysis revealed four expression clusters
representing differentiation patterns of four classes of genes (Fig. 4d).
As expected, KEGG terms related to senescence, such as amino acid
metabolism, fatty acid degradation, sphingolipid metabolism, amino
sugar and nucleotide sugar metabolism, were enriched in cells from
clusters 2 and 3, whichwere pointing towards Branch 2 (Fig. 4d). These
clusters represented gene expression changes in cells transitioning
from a fresh state to senescence. Cluster 2 was enriched with genes
involved in oxidative phosphorylation pathways, likely responsible for
senescence induction.
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On the other hand, KEGG terms associated with resistance,
including “Cutin, suberine and wax biosynthesis,” “Phenylpropanoid
biosynthesis,” “Pentose and glucuronate interconversions,” and more,
were significantly enriched in cells from clusters 1 and 4, which were
pointing towardsBranch1 (fromstate 1 to state 3) and containednearly
all of the resistance cells. Cluster 4 was enriched with genes highly
expressed in pathways related to phenylpropanoid biosynthesis,
including flavonoid synthesis, as well as the pentose and glucuronate
interconversions pathway. This pathway is crucial in plants and con-
tributes to maintaining the structural integrity of cell walls, defense
against pathogens, and detoxification of foreign substances. It pro-
vides precursors for the biosynthesis of structural components of the
cell wall, such as hemicelluloses and pectin, which serve as physical
barriers against pathogens. This pathway also contributes to the
synthesis of secondary metabolites with antimicrobial properties.
Genes in cluster 4 primarily play roles in plant defense, antimicrobial
functions (HuTL1, thaumatin-like protein 1b), stress resistance (HuP-
GIP1, polygalacturonase inhibitor-like), and participation in plant
defense responses (HuALL2-2, hypothetical protein
CDL15_Pgr017890). Genes in cluster 1 were enriched in pathways such
as “Cutin, suberine and wax biosynthesis” and “Plant-pathogen inter-
action,” laying the foundation for resistance in exocarp cells. Clusters 1
and 4 represented gene expression changes from fresh to stress-
resistant cells (Supplementary Data 6).

Mapping the expression changes of marker genes onto the
pseudotime trajectory revealed that the gene HU04G00170, involved
in defense responses, remained highly expressed inmature cells at the
pre-branch and in resistance cells at branch 1. The gene HU03G00713,
specifically expressed in resistance cells, was preferentially distributed
along branch 1 of the trajectory (Fig. 4e and Supplementary Data 7). In
contrast, the senescence marker genes HU08G02237 and
HU02G01506 exhibited increased density and expression levels at the
terminal points of these trajectory branches (Fig. 4e).

ROS and flavonoid phenotypic changes and their regulatory
mechanisms in mature and senescent cells
To validate the temporal trajectory of fruit senescence as determined
by pseudotime analysis, the levels of ROS and flavonoids in the exo-
carp and mesocarp of the fruit were examined during the senescence
process. The results revealed a significant increase in the accumulation
of endogenous ROS in the fruit pericarp as senescence progressed.
The accumulation of ROS was primarily concentrated in the mesocarp
and endocarp regions (Supplementary Fig. 4F). At day 0, ROS accu-
mulation was detected in both the mesocarp and endocarp, likely due
to cellular damage during tissue sectioning, while the exocarp exhib-
ited very low levels of ROS. However, after 6 days of storage, ROS
accumulationwasobserved in the exocarpaswell, andby this time, the

mesocarp and endocarp had already exhibited relatively high levels of
ROS (Supplementary Fig. 4F). It’s worth noting that DCF can detect
various ROS species, including superoxide anions, hydrogen peroxide
(H2O2), and ROO radicals19, and so further separate measurements
were performed for superoxide anions and H2O2 to clarify the pattern
of ROS accumulation.

Further analysis of superoxide anions revealed that their accu-
mulation was primarily observed in the mesocarp. Superoxide anion
response occurred very early, with a significant increase in superoxide
anions detected in the mesocarp as early as 12 h into storage. The
exocarp maintained low levels of superoxide anions throughout sto-
rage until a burst of superoxide anions was observed in the late stages
of fruit decay (Fig. 4f).

The results of flavonoid detection indicated that the flavonoid
response in the pericarp occurred later than the response of other
ROS, such as superoxide anions. The overall flavonoid levels in the
pericarpbegan to increaseon the secondday, reached thefirstpeakon
the third day, decreased during the mid-term of storage, and then
increased again to the highest levels during the late stages of fruit
decay. When the exocarp and mesocarp were sampled separately, the
flavonoid levels in the exocarp followed a pattern consistent with the
overall pericarp changes and were significantly higher than the overall
levels. In contrast, the mesocarp showed minimal fluctuation in fla-
vonoid levels during the fruit senescence process (Fig. 4g). Specific
staining for H2O2 in electronmicroscopy showed a significant increase
in H2O2 accumulation in the pericarp of the Post group (Fig. 4h, right
panel) compared to the CK group (Fig. 4h, left panel). Hydrogen per-
oxide primarily accumulated in the exocarp, but at lower levels and
with amore uniform distribution, without the characteristic clustering
seen in oxidative bursts following pathogen infection (Supplemen-
tary Fig. 4g).

The gene regulatory network underlying the pericarp senescence
process was inferred using SCODE (Supplementary Data 8). By inte-
grating the dynamic expression of the top 100 genes at the pseudo-
time branch points and pseudotime-related transcription factors
(Fig. 4I), we revealed a complex network governing pericarp senes-
cence (Supplementary Data 8).We obtained three clusters through the
Cytoscapeplugin “MCODE”, which respectively contained 13, 15, and 15
nodes (Supplementary Data 8). Notably, proteins encoded by genes
such as the senescencemarker gene HuSAG12, resistance-related gene
HuDIR23, auxin response factor HuARF5, and transcription factor
HuCMB1 were all assigned to Cluster 2 (Fig. 4j).

To explore the potential regulatory mechanisms of the senes-
cence process, the first objective was to identify hubs within the
network of pseudotime-related genes (PRGs). Investigating the
interactions among PRGs will help in understanding the roles of
PRGs in pericarp cell senescence.

Fig. 4 | Senescent trajectories of exocarp cells and mesocarp cells. a Gene set
scoring results plot showcasing cells highly correlated with target genes in CK and
Post samples. b Latent time showed the internal clock of cells. Different colors of
latent time represent different differentiation times, with darker shades of red
indicating earlier times and darker shades of blue indicating later times. c RNA
velocity analysis mapped three cellular states on the pseudotime plot. The colors
represent different cell states. The direction of the black arrows represents the
potential trajectories of the cells, and the length of the arrows represents the
strength of the trends. d Clustering of differentially expressed genes along a
pseudotime progression of EX cells and ME cells. e Visualization of the gene
expression patterns of top genes in the clusters of Fig. 4d mapped onto the
pseudotime trajectory. Pseudotime mapping of each gene with expression curves
below. The color of each point represents different cellular states, and the hor-
izontal axis represents time progression from left to right. The figure illustrates the
gene’s expression changes across three different states of cells over time.
f, g Changes in endogenous superoxide anion and flavonoid concentrations within
pericarp during the post-harvest storage in CK and Post samples. Data are

presented as mean values ± SD. The style of connecting is spline. The area under
curve is filled. h Accumulation of endogenous H2O2 within the pericarp of CK and
Post samples. Three independent experiments were repeated with similar results.
Arrows indicate the deposition of cerium peroxide (Ce[OH]2OOH and
Ce[OH]3OOH) formed after CeCl3 staining, representing the deposition of H2O2.
Scale bar: 20μm. i Clustering of 529 transcription factors-encoding genes along a
pseudotime progression. j The Gene Regulatory Network (GRN) was inferred from
the dynamic expression of top 100genes at pseudo-temporal branching points and
529 transcription factors integrated dynamically expressed across senescence
differentiation pseudotime with a parameter cutoff of 2.0. Solid and dotted lines
represent positive and negative regulation, respectively. Node size corresponds to
the predicted connectivity. Nodes from clusters obtained via MCODE are labeled
with different colors. Nodes that are specifically upregulated during senescence in
the EX and ME sections were also depicted as inverted triangles and triangles.
Nodes co-expressed in EX andMEwere represented as circles. kHierarchical layout
of 10 hubs in Fig. 5J. The nodes were ranked and colored by cytoHubba.
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In the CytoHubba plugin within the Cytoscape software, the
widely recognized senescence marker gene HuSAG12was identified as
the most highly connected hub regulatory factor (Fig. 4k). Interest-
ingly, using 12 algorithms such as MNC and closeness in cytoHubba,
nine algorithms yielded nearly identical top 10 nodes (Supplementary
Data 8). Apart from the top-ranked HuSAG12, which was specifically
upregulated in the mesocarp during H. undatus senescence,
HuSBT3.17, HuCMB1, and HU08G00805 also exhibited mesocarp-
specific upregulation during the H. undatus senescence process. The
network also highlighted two transcription factors among the top 10
nodes,HuCMB1 (HU10G00469,MADS-boxproteinCMB1), andHuARF5
(HU02G01225, auxin response factor 5). In the Gene Regulatory Net-
works (GRNs) focusing solely on transcription factors, HuCMB1 and
HuARF5 also ranked among the top three crucial nodes (Supplemen-
tary Fig. 4H). Furthermore, the pseudotime heatmap revealed another
transcription factor, HuARF5, among the top ten, exhibiting early to
mid-stage expression during senescence. Hormone profiling showed
changes in various hormone levels during the H. undatus senescence
process (Supplementary Fig. 4I). Combining these results with the
pseudotime analysis suggested that auxin might be a key hormone
associated with senescence in H. undatus.

In order to further elucidate the changes in flavonoids and other
metabolites in different components during the senescence process,
mass spectrometry was employed to detect the metabolite levels in H.
undatus at four storage time points. A data-independent acquisition
(DIA) method, sequential window acquisition of all theoretical
fragment-ion spectra (SWATH), was utilized for data analysis20,21. Using
this method, the instrument deterministically fragmented all pre-
cursor ions within the predefined m/z range in a systematic and
unbiased fashion.

A total of 3015 metabolites were identified in both negative and
positive ion modes (Supplementary Data 9). Among them, 697 meta-
bolites were matched to the HMDB database (Supplementary Fig. 5A),
including 153 lipids and lipoid molecules (21.95%), 135 organoheter-
ocyclic compounds (19.37%), 94 phenylpropanoids, and polyketides
(13.49%). (Supplementary Data 8). PLS-DA results showed that com-
pounds identified in the exocarp, mesocarp, and endocarp could be
clearly distinguished in both positive and negative ion modes (Sup-
plementary Fig. 5B, C).

To explore the differences in metabolites among different com-
ponents, the top 30metabolites were identified based onVIP > 1 and p
<0.05 (Supplementary Fig. 5D and Supplementary Data 9). The Venn
diagram illustrated the differences in metabolites among the three
main components—exocarp (EX),mesocarp (ME), and endocarp (EN)—
with no compound overlapping among the differentially regulated
metabolites in all three components (Supplementary Fig. 5E). KEGG
enrichment analysis results revealed the pathways involved in the
metabolites of these three components. The differentially regulated
metabolites in the exocarp component were mainly enriched in the
“Phenylpropanoid biosynthesis” pathway compared to the other two
components, while metabolites in the mesocarp component were
mainly enriched in pathways such as “Biosynthesis of cofactors,”
“Arginine biosynthesis,” and “Histidine metabolism” (Supplemen-
tary Fig. 5F).

Functional validation of HuCMB1during the senescence process
through VIGS
To validate the accuracy of scRNA-seq and pseudotime heatmap ana-
lysis, four genes with high expression at different stages of the
senescence process were selected for RT-qPCR analysis. In addition to
the hub genes identified in the gene regulatory network (GRN), namely
HuCMB1, HuSAG12, andHuMED32, considering their high expression in
both early and late senescence stages, the gene HuERD6-2, which
showed elevated expression in the mid-senescence-period-according-
to the pseudotime heatmap, was also included.

The RT-qPCR results revealed that the HuCMB1 gene exhibited
specific high expression in the mesocarp and showed elevated
expression in the mid and late stages of senescence (p < 0.01). The
well-known senescence marker gene HuSAG12 exhibited extremely
high expression only in the late senescence stage of the mesocarp
component (p <0.05). HuERD6-2 was found to be highly expressed in
the exocarp during the mid-senescence stage (p < 0.01), and the gene
HuMED32 showed high expression in the late-senescence stage of the
exocarp component (p < 0.05) (Fig. 5a, Supplementary Data 10).

To further confirm the role ofHuCMB1 in fruit senescence, RNA-
silenced lines of the HuCMB1 gene were constructed through virus-
induced gene silencing (VIGS) (Fig. 5b). In comparison to the control,
the fruit exhibited a darker color, dried and developed lesions more
rapidly, and showed an accelerated senescence process after
HuCMB1 silencing (Fig. 5c). The rate of weight loss during senescence
slightly increased (Fig. 5D) (p > 0.05), and there was a significant
reduction in the early-stage flavonoid biosynthesis (24 h, p < 0.05),
resulting in an overall smoother bimodal curve of flavonoid accu-
mulation (Fig. 5e). RT-qPCR results demonstrated a significant
downregulation of HuCMB1 gene expression in the RNA-silenced
lines, along with a substantial decrease in the expression ofHuSAG12
gene. The expression of theHuERD6-2 andHuMED32 genes showed a
slight up or downregulation in the RNA-silenced lines, respec-
tively (Fig. 5f).

In summary, our results revealed the developmental trajectory of
pericarp cells during senescence and provided insights into the
interactions between the senescence-related genes and resistance-
related genes that exhibited specific localization in the mesocarp and
exocarp during the developmental processes of senescence and
resistance cells (Fig. 6).

Discussion
Nowadays, there are over a thousand reports using single-cell tran-
scriptomics (scRNA-seq), with themajority of these articles focused on
studying animal cells22–24. Currently, there are various platforms for
scRNA-seq, including BD Rhapsody (BD Biosciences, USA), and Chro-
mium (10× Genomics, USA), among others, providing multiple possi-
bilities for high-throughput analysis25. Drop-based high-throughput
and low-cost cell processing platforms, such as Drop-seq or the
Chromium 10x platform, dominate the field of plant single-cell tran-
scriptomics. Using these platforms, studies have been conducted on
various plant tissues, including Arabidopsis roots and leaves, rice
stems, and sheaths26,27.

However, regardless of whether the research subject is animals or
plants when examining all the single-cell transcriptomic articles, the
analyses typically begin with cell type annotation. The reason behind
this is that the data obtained from single-cell transcriptomics encom-
pass a vast number of cells, and the cell clusters defined by expression
characteristics ultimately belong to mathematical groupings22. Such
cell groupsonly acquire biological significance for further downstream
analysis after undergoing cell type annotation. For plant studies, cell
type annotation poses even greater challenges14,15.

Some databases provide information on marker genes for cer-
tain plant species, such as Arabidopsis and rice28,29. However, infor-
mation on marker genes for cacti, a family of plants that includes H.
undatus, remains limited. Additionally, most marker genes have
been identified from root cells and flowers, leading to a lack of cell
type information related to pericarp in existing databases, which
mainly cover root epidermis and epidermal cells. In this current
work, we found that the marker gene HU08G02237 from cell cluster
1 in H. undatus matches the marker gene SAG12 (senescence-asso-
ciated gene 12) from Arabidopsis petiole in the PlantCellMarker
database30,31. Furthermore, the marker gene HU05G01893 was
identified as matching the marker gene LOC_Os12g30150 (calmo-
dulin depedent protein kinases) from the Oryza sativain the
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PlantCellMarkerdatabase32,33. This suggested that HU05G01893 may
be located in the vascular bundle region of H. undatus pericarp.

At the same time, it was observed that even amongmarker genes,
the specificity of expression varies across different clusters. Mean-
while, we observed that even among marker genes, the expression
specificity varied across clusters. Some clusters hadmarker genes with
higher expression specificity within the cluster, such as marker genes
HU07G01483, HU03G02606, and HU01G01880 in Cluster 2, and
marker genes HU09G00039, HU08G01941, and HU07G01714 in Clus-
ter 9. However, some clusters hadmarker genes with lower expression
specificity, as they were also expressed at higher levels in several other
clusters. For example, marker genes HU10G01409, HU08G00805, and
HU02G01506 in Cluster 1 had relatively high expression in Clusters 0,
6, and 8. Similarly, marker genes HU02G02701, HU01G00649, and
HU04G00167 inCluster 6 exhibited higher expression inClusters 1 and
8. Multiple marker genes are expressed at high levels in these four
clusters 0, 1, 6, and 8. These findings strongly suggest that cell clusters
0, 1, 6, and 8 may belong to the same cell type (see “Results” section).
However, due to the lack of information on other cell types in the
pericarp, such as the exocarp, mesocarp, and endocarp, we currently
cannot obtain amore comprehensive understanding of cell types from
existing databases. Therefore, it is necessary to acquire clearer spatial
information and cell type-specific expression patterns.

During the post-harvest storage of fruit, understanding the gene
expression changes in different cell types within the pericarp is crucial

for comprehending the senescence process. However, specific gene
expression changes within various cell types of the pericarp have lar-
gely remained unexplored. Our objective was to construct a spatial
cellular map of the pericarp and identify cell types associated with the
13 cell clusters obtained from scRNA-seq analysis. To achieve this goal,
we performed spatial transcriptome sequencing (stRNA-seq) on cross-
sections of H. undatus pericarp using the 10× Visium platform (see
“Results” section). This approach enabled us to investigate the spatial
distribution of gene expression within the pericarp and gain deeper
insights into the cellular composition of this tissue.

Currently, stRNA-seq technologies can be categorized into three
main types: laser capture microscopy-based methods (LCM-seq, Geo-
seq), imsenescence-based methods (FISSEQ, MERFISH, osmFISH, Bar-
istaSeq, STARmap), and in situ capture sequencing methods (Visium,
HDST, slide-seq, DBiT-seq, Seq-Scope, Stereo-seq)34. Microdissection-
based methods can achieve single-cell or even subcellular resolution
but have limitations in terms of the number of detected genes.
Imsenescence-based methods mostly allow single-cell resolution but
are constrained by long image acquisition times and the need for
complex equipment. The resolutionofmost in situ capture sequencing
methods is usually limited by the diameter of the capture points. These
stRNA-seq technologieswith single-cell resolution can infer subcellular
structures and address cellular heterogeneity.

However, in the context of plant research, the successfully applied
stRNA-seq technologies are primarily the commercial platforms 10X
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Fig. 5 | Silencing ofHuCMB1 led to faster senescence ofH. undatus. a Expression
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mean values ± SD. A paired two-tailed t-test was used for all statistical analyses. No
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Genomics’ Visium and BGI’s Stereo-seq. For instance, Xia et al. used
Stereo-seq to examine Arabidopsis leaves, distinguishing morpholo-
gically distinct cell subtypes (upper and lower epidermis, spongy, and
palisade mesophyll cells) with similar transcriptomic features35. For
large-scale plant tissues requiring the detection of numerous poten-
tially functional genes, high-throughput stRNA-seq technologies are
foundational. Visium’s spatial chips can capture tissue slices spanning
several millimeters, such as Arabidopsis inflorescences36 and early
floral organs of orchids37.

Despite the promising applications of current stRNA-seq tech-
nologies in plants, challenges persist in terms of sampling difficulties
and data processing. The spatial transcriptomic technique utilized in
this study underwent optimization across multiple steps, including
fixation, probe capture, and library construction19,20, and it was suc-
cessfully applied to perform spatial transcriptome sequencing of H.
undatuspericarp tissue (see “Results” section). Next, we aim to address
the challenges in the data processing of stRNA-seq through a corre-
lation analysis with scRNA-seq.

Single-cell RNA sequencing (scRNA-seq) can systematically
identify cell populations within tissues, but characterizing their
spatial organization remains challenging. In this study, a microarray-
based spatial transcriptomics approach was combined with scRNA-
seq generated from the same sample. This method utilizes an array of
spots to reveal spatial patterns of gene expression, with each spot
capturing the transcriptome of multiple neighboring cells. Various
analytical methods were employed to decipher the diverse cell types
obtained from individual cells of H. undatus pericarp, enabling a
precise characterization of cell composition across different tissue
regions.

SingleR and SciBet cluster and annotate cells by annotation of
marker genes and supervised learning38,39. Because the components of

the spatial transcriptome of the H. undatus pericarp were clearly
located, it was accurate to evaluate the cell type obtained in scRNA-seq
through the data set of the spatial transcriptome by using SingleR and
SciBet. RCTD and CARDwere also used in this work, both of which are
deconvolution algorithms40,41. In fact, there were two ormore types of
cells in a part of the spot in the spatial transcriptome. Because of the
assumptions of RCTD and CARD, when using the RCTD and CARD
algorithm, the componentswith a high proportion of cells in thewhole
sample, such as EX (42.50%, Supplementary Table 2) and ME (43.47%,
Supplementary Table 2), or the component VB with clear location,
which was significantly different from other components, were more
accurate. For components with fewer cells and less distinct partition-
ing compared to other components (EN and ENF), the calculation
results of RCTD and CARD had significant errors.

After the identification of cell types within the 13 cell clusters,
both the statistical analysis of cell proportions and microscopic
observations revealed that the exocarp (EX) and mesocarp (ME) were
the two cell types undergoing themost significant changes during fruit
pericarp senescence (see “Results” section). Subcluster analysis seg-
regated the EX andME cells fromboth samples, attributing them toCK
and Post samples, respectively. In both scRNA-seq and spatial tran-
scriptomic results, Hu08G02237 (HuSAG12) was identified as the
marker gene for the mesocarp. RNA-FISH results were consistent with
both single-cell transcriptomics and spatial transcriptomics, showing
that the expression of the senescence marker gene HuSAG12 was pri-
marily localized in the mesocarp. In the Post sample, due to a sig-
nificant amount of cell death, there were fewer cell nuclei stained with
DAPI, resulting in a lower number of cells showing RNA expression
with FAM staining. On the other hand, the cells stainedwith FAM in the
Post sample exhibited significantly higher fluorescence intensity
compared to the CK sample, indicating an upregulation of expression
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in the senescing sample, in line with the results from single-cell and
spatial transcriptomics (see “Results” section).

Pseudotime analysis is widely employed in the field of scRNA-seq
and is used to study the temporal patterns of gene expression during
cell development and dynamic processes. By constructing a topolo-
gical map of cell development or a pseudotime axis, it becomes pos-
sible to model and infer the developmental trajectories of cells,
thereby revealing crucial changes in gene expression and regulatory
networks. In the study of early senescence processes, pseudotime
analysis can be utilized to identify genes associated with senescence,
uncovering their expression patterns and temporal characteristics
during cell development. The application of this method contributes
to a deeper understanding of the mechanisms underlying early fruit
senescence and provides insights and targets for strategies and
interventions aimed at fruit decay prevention.

Two pseudotime analyses were conducted. In the first pseudo-
time analysis, two cell types, EX and ME, were selected for computa-
tion. In the pseudotime analysis of all cells in EX andME, we conducted
GO and KEGG analysis of pseudotime-correlated genes (Supplemen-
tary Data 3) and identified significant enrichment in four functions:
senescence, resistance, phenylpropanoid pathways, and ROS meta-
bolism. This implies that these genes play a crucial role in the senes-
cence trajectory. Therefore, four gene sets associated with these four
functionswereestablished, and9,019 cells highly correlatedwith these
genes were selected through gene set scoring. Subsequently, pseu-
dotime analysis of these functionally defined cells clarified the differ-
entiation trajectory of cells during the senescence process (see
“Results” section). Thus, the first clustering analysis revealed themajor
functions of target cells, and the second clustering analysis, focusing
on highly correlated cells with the identified functions, elucidated the
cell differentiation trajectory. Pseudotime analysis has provided a clear
timeline for fruit senescence. Initially, there is a reduction in the cells’
antioxidant capacity, leading to the accumulation of reactive oxygen
species (ROS), primarily occurring in themesocarp cells. The signaling
then propagates to the exocarp cells, where cells perceive stress and
initiate the high-level expression of enzymes involved in the phenyl-
propanoid biosynthetic pathway. This promotes the synthesis of
compounds like flavonoids, enhancing cell wall strength and increas-
ing the exocarp cells’ antioxidant capacity (see “Results” section).
However, as the storage time prolongs, cells become unable to main-
tain their antioxidant capacity, resulting in a significant imbalance of
ROS within the cells, pushing the cells into a senescent state. At this
point, mesocarp cells start accumulating senescence marker proteins,
such as HuSAG12.

The pseudotime heatmap demonstrated that HuCMB1, highly
expressed in the late stages of senescence, already showed some
expression in the earliest stages of senescence. Thus, while the GRNs
suggested that HuCMB1 was regulated by HuSAG12 (see “Results”
section), there were no reported interactions between the two. While
some research hadmentioned theWHIRLY protein’s role in regulating
gene expression related to defense and senescence by binding to gene
promoters, and the Arabidopsis WHY1 (single-stranded DNA-binding
protein) was found to accumulate in the cell nucleus, altering RNA
polymerase II (RNAP II) and suppressing the transcription of
senescence-related transcription factor WRKY5342, the role of RNA
polymerase II in plant cell senescence remained unclear. In a 2023
paper published in Nature, Debès et al. clarified the role of MED32 in
regulating senescence in five model species, including humans and
mice43. The pseudotime heatmap in this study showed that HuMED32
began to express in the early stages of senescence, potentially pro-
viding evidence for MED32’s involvement in senescence in plants (see
“Results” section). A hypothesis was proposed that HuCMB1 might
have already begun to function in the early stages of pericarp cell
senescence, potentially regulating HuMED32 (HU08G00932, a med-
iator of RNA polymerase II transcription subunit 32), which affected

senescence speed and had not been previously recognized43. The
pseudotime heatmap in this study also demonstrated that transcrip-
tion factors WHY1/2 within the resistance-related genes not only
exhibited high expression at the end of senescence but also showed a
strong response in the early stages of senescence, offering theoretical
support for WHY1/2’s functions in repair, cell senescence, and resis-
tance, as described in the literature42,44,45.

There has been controversy surrounding the role of the senes-
cence marker gene SAG12 in senescence. In different plants such as
Arabidopsis and rice, there are conflicting pieces of evidence regard-
ing whether SAG12 positively or negatively regulates senescence,
particularly leaf senescence46,47. This could be attributed to the fact
that SAG12 expression occurs in the mid to late stages of senescence,
influenced by numerous genes expressed in the early stages of
senescence, making its role in senescence complex and challenging to
elucidate. The carboxyl-terminal region of theHuCMB1 protein can act
as a transcription activation domain (see “Results” section). In this
study, when silenced, the HuCMB1 protein significantly influences the
senescence process of H. undatus, indicating its crucial role in the
regulation of transcriptional activation in this context. In the silenced
lines of HuCMB1, the expression of HuSAG12 was significantly down-
regulated. However, phenotypically, the HuCMB1-silenced lines
exhibited a markedly accelerated senescence. Therefore, we specu-
lated that there are two possibilities: either HuSAG12 is negatively
correlated with senescence in H. undatus, or HuSAG12, as a late-
response protein in senescence, is interfered with by early-response
factors such as HuCMB1. Further investigations are needed to eluci-
date the exact role of SAG12 in fruit senescence and to understand the
interplay between HuCMB1 and HuSAG12 in this context.

The well-recognized senescencemarker gene SAG12was found to
exhibit high expression in the later stages of senescence. If the
senescence status of the fruit is only discovered at this point, it is
already too late. In this study, pseudotime analysis has allowed the
identification of early response genes, which may have a simpler and
clearer role in senescence. If the early-response genes discovered in
this study were used as senescence-reporting genes, it would be more
effective for monitoring fruit senescence. Importantly, through pseu-
dotime analysis, not only were genes reported to regulate senescence
in animals discovered, such as MED3243 and its upstream transcrip-
tional regulator CMB147, but also some functionally unknown early-
response senescence genes (HU05G00200, HU07G02057, etc.) were
uncovered. The inferred gene expression pseudotime patterns pro-
vide valuable resources for identifying early regulatory factors and key
genes involved in fruit senescence.

RNA velocity analysis provides an independent method to study
differentiation dynamics. It calculates changes inmRNAabundance for
each individual cell and uses these changes to predict its future tran-
scriptional state48. In the UMAP cell state space, this analysis provided
trajectory field vectors pointing toward differentiation directions for
all cells, summarized into trajectories leading towards developmental
directions under different treatment conditions (see “Results” sec-
tion). Based on the results of RNA velocity analysis, we proposed a
hypothesis that MCs (mature cells) in CK samples formed a trajectory
source, sensing cell dehydration in the early storage period and
responding to H2O2 signals, leading to the direction of RCs (resistant
cells) in EX of CK samples. In the late storage period, they sensed
significant cell dehydration and formed a trajectory source that
received senescence signals leading to the direction of SCs (senescent
cells) in the ME fraction of Post samples. This result aligned with the
pseudotime tree results (see “Results” section).

While there are several theories about the mechanisms of senes-
cence, suchas the free radical senescence theory, telomere senescence
theory, mtDNA mutation theory, and carbonyl toxicity senescence
theory, the free radical senescence theory has received substantial
experimental evidence. This theory suggests that the primary cause of
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organism senescence is the oxidative damage inflicted by free radicals
on cellular biomolecules (nucleic acids, lipids, proteins, etc.), leading
to impaired cellular function, decline, or loss of cellular function,
ultimately resulting in organismal senescence2,49.

However, at what point does the excessive accumulation of these
damaging ROS begin? Some studies suggest that the accumulation of
ROS serves as a trigger for cell senescence49,50. Fruit, when subjected to
oxidative damage, experiences a decline in physiological functions,
with reduced resistance, and becomes more susceptible to pathogen
infections2. Hydrogen peroxide, as a crucial signaling molecule, pos-
sesses dual physiological functions. Low concentrations of H2O2 and
other ROS molecules in cells are likely induced by signals of cell
senescence, which, through the MAPK pathway, amplify the senes-
cence signals, activate the synthesis of antioxidants in the phenyl-
propanoid pathway, and actively counteract the senescence process in
fruit. When ROS levels become excessively high, they trigger sub-
sequent senescence-related physiological processes2,49. This current
work further supported the role of H2O2 as a signaling molecule by
observing the accumulation of trace amounts of H2O2 in the exocarp
during fruit senescence under transmission electron microscopy (see
“Results” section).

In comparison to the negative ionmode, compounds identified in
the positive ion mode from both exocarp (EX) and mesocarp (ME)
exhibited clearer temporal differences. With prolonged storage time,
the metabolites in senescent samples diverged more from those in
mature samples taken on day 0, with the greatest difference observed
onday 9 (see “Results” section).Whendisregarding the time factor and
categorizing all metabolites from different components into three
groups (EX, ME, and EN), the inter-group difference analysis revealed a
significant proportion of flavonoid compounds in both the differen-
tially regulated metabolites between EX and EN, as well as between EX
and ME (33.33% and 36.67%, respectively) (see “Results” section).
Furthermore, some compounds with excellent antioxidant and other
biological activities, not previously identified in H. undatus, were
detected (Supplementary Data 8). Examples include flavonol com-
pound Herbacetin, a natural flavonoid from flaxseed known for its
antioxidant, anti-inflammatory, and anticancer activities51,52. Addition-
ally, Esculin, a coumarin glucoside found in various plants, exhibited
anti-inflammatory effects53,54. In contrast to EX,ME primarily contained
amino acids, cofactors, and other primarymetabolites, indicating that
EX may be responsible for providing resistance, while ME maintains
the normal physiological status of H. undatus during fruit senescence
(see “Results” section). The results of metabolite changes from UPLC-
MS/MS supported the single-cell transcriptome analysis in this study,
providing evidence for unraveling the mechanism of H. undatus
senescence.

Furthermore, researchers have proposed that antioxidant com-
pounds can be defined as anti-senescence substances. They can
selectively kill senescence cells or act as modifiers of the senescence
phenotype by regulating the senescence phenotype50,55. In this con-
text, early-response oxidative stress molecules associated with phe-
nylpropanoids, which have antioxidant activity, can potentially serve
as therapeutic targets for delaying cell senescence.

It has been reported that metabolites in the pericarp, including
those involved in flavonoid biosynthesis, flavone and flavonol bio-
synthesis, and phenylpropanoid biosynthesis, vary during the
maturation process in other species such as avocado56,57. These pro-
ductsmay beproduced at different stages of fruitmaturation andwere
likely generated by different types of cells, representing distinct stages
of fruit ripening56,57. The results of this study provide theoretical sup-
port for understanding the roles of different types of cells in fruit
maturation and senescence.

The results of this study clearly showed the bimodal trend of
flavonoid accumulation during the senescence process (see “Results”
section). The significant impact of silencing the key transcription

factor HuCMB1, which responds early to senescence, on flavonoid
synthesis was evident. HuCYP75B1, previously identified as a crucial
gene for flavonoid synthesis in H. undatus5, was significantly down-
regulated in the HuCMB1-silenced lines in this work (see “Results”
section), reinforcing the hypothesis that HuCMB1 likely accelerates
fruit senescence by inhibiting flavonoid synthesis, thereby reducing
resistance. On the other hand, the expression of HuERD6-2, a protein
responding to stress such as dehydration, showed a slight upregula-
tion in the HuCMB1-silenced lines, indicating that it is not regulated by
CMB1. Instead, due to reduced fruit resistance, it experiences more
pronounced stress stimulation, leading to increased expression.

This study proposed that flavonoids may serve as potential indi-
cators of the senescence process. Flavonoids exhibit excellent ROS
scavenging activity, and ROS is closely associated with senescence52,58.
The anti-senescence effects of flavonoids in animals have been
confirmed59, and the correlation between changes in flavonoid levels
and plant senescence processes has been suggested60. However, the
bimodal pattern of flavonoids as a marker for fruit or even plant
senescence has not been reported. This might be attributed to the
single-cell transcriptome analysis in this study, which addressed the
issue of concealed cellular heterogeneity, highlighting the correlation
between flavonoid changes in the exocarp and senescence (see
“Results” section). This provided insights into the study of the
mechanisms underlying fruit and other plant tissue senescence.

The pseudotime analysis in this study revealed several transcrip-
tion factors involved in the senescence process of H. undatus, includ-
ing HuCMB1, HuARF5, and HuAP1-2. Similarly, in other fruit such as
strawberries, scRNA-seq studies have uncovered transcription factors
associated with the infection process of Fragaria vesca leaves by
Botrytis cinerea, including WRKY75 and NAC0428. The transcription
factor interaction network obtained in our work also includedmultiple
WRKY family transcription factors, such as WRKY75 (see “Results”
section). However, in the WRKY family, HuWRKY40 and HuWRKY53
played more central roles in the senescence process of H. undatus.
Regarding the NAC family, HuNAC002 emerged asmore crucial in the
senescence of H. undatus (Supplementary Data 9). While the scRNA-
seq of Fragaria vesca has revealed early response genes after infection
with Botrytis cinerea8, the senescence response genes identified in this
study differ. The variations between the results of this work and the
transcriptomeof Fragaria vesca leaves duringBotrytis cinerea infection
could be attributed to species differences between H. undatus and
Fragaria vesca, tissue differences between fruit and leaves, or dis-
tinctions between the processes of senescence and disease
susceptibility.

Analyzing the temporal trajectory of post-harvest fruit cell dif-
ferentiation is crucial for advancing research into the mechanisms of
post-harvest preservation of fruit. This study found that the senes-
cence processes of fruit exhibited a very clear timeline of ROS-resis-
tance- senescence, and also identified a spatial transition of cell
function along themesocarp-exocarp-mesocarp. Transcription factors
of theMADS family suchasHuCMB1were found tobehighly expressed
at different stages of senescence and in different types of peel cells,
indicating their likely involvement in distinct biological processes of
different cell types. While the MADS family has been previously
reported to be involved in flower development, this study revealed
their participation in fruit resistance and senescence, particularly by
exploring the temporal trajectory of HuCMB1 gene regulation in
senescence, providing evidence for understanding the mechanism of
fruit senescence. Thus far, preservation research has primarily focused
on macroscopic environmental factors and signaling pathways post-
harvest. However, the results of this study suggested that future fruit
preservation strategies may involve controlling and utilizing the
functionality of specific cell populations to achieve anti-senescence
effects. This research will contribute to a better understanding of the
roles of different types of fruit cells in the senescence process, thereby
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promoting more in-depth research into post-harvest fruit senescence
mechanisms at the single-cell level. In conclusion, single-cell studies on
fruit are still in their early stages, and future research on a broader
range of fruit species will provide more robust evidence for under-
standing the mechanisms underlying fruit senescence.

Methods
Preparation of mature and senescent samples
Fruit from the 35th days after artificial pollination (DAAP) ofH. undatus
(Vietnam No. 1) was collected from Miaoshui Base, Luoge Road,
Ruyang County, Luoyang City, Henan Province, China. The harvested
fruit were used asmature samples. They were stored under conditions
of 25 °C and 85% relative humidity. During the storage period, the
levels of superoxide anion and flavonoids in the exocarp were mon-
itored every three days. The senescent sample was identified typically
on the ninth day, characterized by the eruption of superoxide anions,
the second peak in flavonoid levels, and the simultaneous appearance
of pronounced dehydration-induced wrinkling or disease spots on the
fruit phenotype.

Sample collection and preparation of single-cell suspensions
According to the 10× Genomics user guide, strict requirements are
imposed on the purity and concentration of native protoplasts. Single-
cell preparation wasmodified from the procedure previously reported
and described as follows7. In brief, mature and senescent pericarpofH.
undatus were separately taken, and the tissues were digested in
enzyme solution devoid of RNase (1% cellulase, 1% hemicellulase, 0.3%
pectinase, 0.6M mannitol, 100mM MES, 20mM KCl, 20mM CaCl2,
and 10% bovine serum albumin) for 0.5 h at room temperature. The
enzyme solution was passed through a 100 μm cell strainer, cen-
trifuged, resuspended in an isotonic CWP solution (400mMmannitol,
0.1% BSA), passed through a 40 μm cell strainer, and centrifuged to
collect cell pellets, which werewashed one to three times. Cell viability
was observed and counted with a final concentration of 0.1x Trypan
Blue staining. Cell concentration was adjusted to between 400 and
1200 cells/μl.

scRNA-seq library construction
The suspension of H. undatus cells was loaded onto the 10× Genomics
ChromiumTM system, resulting in the formation of single-cell micro-
reactor systems encapsulated within oil droplets, known as GEMs (Gel
Bead-in-Emulsion). All remaining steps, including library construction,
were carried out according to the manufacturer’s standard protocol
(Chromium Single Cell 3ʹ v3.1)7. Quantification of the sequencing
library was performed using a high-sensitivity DNA chip on the Bioa-
nalyzer 2100 (Agilent) and the Qubit high-sensitivity DNA quantifica-
tion instrument (Thermo Fisher Scientific). Sequencing of the library
was performed on the NovaSeq6000 platform (Illumina), generating
paired-end reads of 150 base pairs.

scRNA-seq data processing
The reads were processed using the Cell Ranger 4.0 pipeline with
default and recommended parameters. The Illumina sequencing out-
puts in FASTQ format were aligned to the H. undatus reference gen-
ome from the Pitaya Genome and Multiomics Database (PGMD) using
the STAR algorithm61. Subsequently, UMI (UniqueMolecular Identifier)
counting and filtering of non-cell-related barcodes were performed to
generate a gene barcode matrix for each individual sample. This
resulted in the creation of a gene barcode matrix containing cell bar-
codes and gene expression counts. Next, this output was imported
into the Seurat (v3.2.0) R package for quality control and downstream
analysis of single-cell RNA sequencing data62. Unless otherwise speci-
fied, all functions were run using default parameters. Cells with a high
proportion ofmitochondria and cells containing dual cells in a droplet
were filtered out. Standard panels with three quality criteria were used

to filter low-quality cells and determine the number of detected tran-
scripts (count of uniquemolecular identifiers), the number ofdetected
genes, and the percentage of reads mapped to mitochondrial genes
(filtered based on quartile threshold criteria). Normalized data (using
the NormalizeData function in the Seurat package) were extracted for
a subset of variable genes. In determining variable genes, we also
controlled the close relationship between variability and mean
expression levels.

Cell clustering and annotation
After computing the shared nearest neighbor graph62, we applied the
Louvain Method63 to perform graph-based clustering on the PCA-
reduced data, thereby clustering the cells. For sub-clustering, the
same scaling, dimensionality reduction, and clustering procedures
were applied to specific datasets, typically limited to one cell type.
The FindClusters function of seurat software was used to complete
dimensionality reduction clustering analysis of cell sub-clusters64,65.
For each cluster, we used the Wilcoxon Rank-Sum test to identify
significantly differentially expressed genes when compared to the
remaining clusters. SCINA66 and known marker genes were
employed for cell type identification. In this study, PCA67 andUMAP68

were used as dimensionality reduction algorithms.

Differential expression analysis and functional enrichment
Differential gene expression analysis was performed on mature and
senescent H. undatus pericarp using the “FindMarkers” function in
Seurat. To annotate each cell cluster, we identified cluster-enriched
geneswith significantly higher expression levels in specific cell clusters
compared to all other cell clusters. These genes needed to meet the
following criteria: expression in the specific cell cluster in over 40% of
cells, expression in the remaining cell clusters in less than 20% of cells,
statistical significance (q ≤0.01), and a high fold change (log2FC ≥ 1).
Ranked indescending order basedon log2FC, the top three genes from
each cluster were selected as marker genes. Dot plots of marker gene
expression for each cluster were generated using the DotPlot function
in Seurat (modified as needed). The same function, using the split.by
parameter (modify as needed), was also used to visualize the expres-
sion of key genes in fresh and overripe H. undatus pericarp for each
cluster. The AddModuleScore function was employed to score the
target gene set. Based on the scoring results, cells highly correlated
with this gene set were determined using quartile-based methods.

Pseudotime analysis
Pseudotime trajectory analysis was conducted using the DDRTree
algorithm within the Monocle69 software package. The trajectory was
visualized as a tree structure, including tips and branches. Log-
normalized data from the Seurat object were imported into Monocle.
Gene expression profiles in Monocle were used to identify genes with
specific expression across cell groups and assess the statistical sig-
nificance of these findings70. Cells were ordered along the trajectory
and visualized in a reduced-dimensional space. Pseudotime analysis
was performed on H. undatus-related genes, grouping genes with
similar expression trend. Branch points were selected to determine
genes contributing to developmental trajectory branches. Differential
gene testing functions were used to filter for pseudotime-dependent
or branch-dependent genes. Significantly branch-dependent genes
were visualized using the plot-genes branched-heatmap function.

RNA velocity analysis
As previously reported, RNA velocity was calculated based on spliced
and unspliced counts and analyzed using cells present in the pseu-
dotime ordering48. We estimated RNA velocity using scVelo (https://
scvelo.org), a method for developmental trajectory analysis71. This
estimated changes in RNA abundance over time by calculating the
ratio of spliced to unspliced mRNA within individual cells and inferred
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the likely direction of cell differentiation in the next steps. The velocity
field was projected onto the pseudotime space generated by Mono-
cle 272.

Visualization of pseudotime-related gene regulatory networks
The top 100 genes along the Monocle 2 pseudotime branch points
and transcription factors from the pseudotime-related differential
genes were selected. The expression levels of these 100 branch
point-related genes and 529 transcription factors was fitted to
smooth spline curves using a Vector Generalized Linear and Additive
Model (VGAM) to describe the gene expression trends along the
pseudotime. Normalize pseudotime for each cell from 0 to 1. Gene
Regulatory Networks (GRNs) were inferred using SCODE13. To obtain
reliable relationships, we ran SCODE 50 times and averaged the
results. The regulatory relationships between genes were exported
to a file named “meanA.txt,” where positive and negative values
represent upregulation anddownregulation, inferring activation and
inhibition relationships, respectively. Load the arranged file con-
taining source, target, SCODE values, and regulation columns into
Cytoscape for visualization65,73.

Spatial transcriptomic (stRNA-seq) experiments
Like the CK samples in single-cell transcriptome, mature H. undatus
peel was taken for spatial transcriptome sequencing. All H. undatus
samples were embedded in cold OCT before cryosectioning. The tis-
sue sections were placed on frozen Visium tissue optimization slides
(10× Genomics) and Visium Spatial Gene Expression slides (10×
Genomics). Subsequently, the tissue sections were fixed in cold
methanol and stained according to the Visium Spatial Gene Expression
User Guide (10× Genomics) or the Visium Spatial Tissue Optimization
User Guide (10× Genomics). Tissue clearing was performed for 3min
based on the tissue optimization protocol36,37.

Libraries were prepared following the Visium Spatial Gene
Expression User Guide and loaded at a concentration of 300 pM onto
the NovaSeq 6000 system (Illumina) with the NovaSeq S4 reagent kit
(200 cycles, 20027466, Illumina) to achieve a sequencing depth of
approximately 250M read-pairs per sample or higher. The sequencing
scheme for the samples was as follows: Read 1: 28 cycles; i7 index read,
10 cycles; i5 index read, 10 cycles; Read 2: 91 cycles.

For tissue sections attached to capture areas,fixation, histological
staining, and tissue clearing were performed. After capturing tran-
scripts with surface probes, reverse transcription was carried out
overnight. Following surface cDNA synthesis, the tissue was removed,
and spatial barcodemRNA-cDNA hybrids from each capture area were
released from the array, collected into tubes, and subjected to library
preparation. Subsequently, ST librariesweregenerated and sequenced
on the Illumina platform.

stRNA-seq data analysis
Weprocessed, aligned, and summarized UMI counts for each spot on
the Visium spatial transcriptomics chip using the Space Ranger
software from 10× Genomics (version v. 1.2.2), with the reference
genome being the [Pitaya Genome and Multiomics Database
(PGMD)]. The original UMI count point matrix, images, point image
coordinates, and scale factors were imported into R. The point
matrix was filtered to retain only points that covered the tissue
sections. Normalization of the raw UMI counts was performed using
a negative binomial regression approach (SC Transform)74. To ana-
lyze high-resolution spatial RNA-seq data, unbiased and graph-based
clustering of spatial features was performed using the Louvain
method63. Visualization of clustering was achieved in a two-
dimensional map using Uniform Manifold Approximation and Pro-
jection (UMAP)75. The FindMarkers function in Seurat was employed
to identify Differentially Expressed Genes (DEGs) between two dif-
ferent samples or clusters using a likelihood ratio test. Essentially,

DEGs with |log2FC | > 0.25 and Q-value ≤0.05 were considered as
significantly differentially expressed genes.

Integration analysis of stRNA-seq and scRNA-seq
To compare clusters identified from single-cell sequencing and our
stRNA-seq data, we employed the following analysis methods:
SingleR38, SciBet39, RCTD40, and CARD41to pinpoint highly correlated
cell clusters. The annotation in SingleR was performed for each single
cell independently38. First, a Spearman coefficient was calculated for
single-cell expression with each of the samples in the reference data-
set. The correlation analysis was performed only on variable genes in
the reference dataset. Next, multiple correlation coefficients per cell
type according to thenamedannotations of the referencedatasetwere
aggregated to provide a single value per cell type per single cell. The
SingleR open-source R package is maintained on GitHub R package
and available from https://github.com/dviraran/SingleR. Code to
reproduce the figures is also available in the GitHub repository. The
Training-test split, cross-validation, and supervised cell type annota-
tion by SciBet were performed as described by Li et al. 39. SciBet
selectedmarker genes using an entropy test and then assigned cells to
their respective cell types using multimodal distribution models and
maximum likelihood estimation applied using the default number of
marker genes. All the functionsmentioned abovewere implemented in
the R package SciBet, which can be downloaded at http://scibet.
cancer-pku.cn. An online version of SciBet is also available on this
website, which is based on JavaScript. All codes used for benchmarks
are available at https://github.com/PaulingLiu/scibet. In the heatmaps
generated by SingleR and SciBet, clusters were grouped based on the
correlation data between single-cell transcriptome and spatial tran-
scriptome clusters. As for the method RCTD, we followed the guide-
lines on the RCTD GitHub repository: https://raw.githack.com/
dmcable/spacexr/master/vignettes/spatial-transcriptomics.html. We
set doublet_mode = ‘full’40. As for the CARD, in scRNA-seq, B was
denoted as the G by K cell type-specific expression matrix for the
informative genes, where each element represented the mean
expression level of an informative gene in a specific cell type. The
expression matrix B was commonly referred to as the reference basis
matrix. In the spatial transcriptomics data, Xwasdenoted as theGbyN
gene expression matrix for the same set of informative genes mea-
sured on N spatial locations. V was denoted as the N by K cell type
compositionmatrix, where each row of V represented the proportions
of the K cell types on each spatial location. The objective was to esti-
mate V given both X from the spatial transcriptomics data and B
constructed from the scRNA-seq data41.

RNA fluorescence in situ hybridization (RNA-FISH)
After dehydration, the tissue blocks were embedded in paraffin wax
and sectioned using amicrotome (LEICA RM2016, Germany) into 5 μm
thick slices. Deparaffinization was carried out twice in xylene, followed
by dehydration in 100%, 95%, 80%, and 70% ethanol solutions. The
samples were then fixed in 4% paraformaldehyde (RNA-free). Subse-
quently, a humid chamber was prepared using 5× SSC (pH 7.5) and
formamide (1:1). The samples were treated with 30% H2O2 in pure
methanol (1:9) for 10min, followed by the addition of 0.25% hydro-
chloric acid and incubation at roomtemperature for 15min. Proteinase
Kwas applied to cover the samples, and the samples were incubated in
a molecular hybridization oven at 37 °C for 20min. A 0.1M glycine
wash solution was used for a 1-min wash to terminate the action of
proteinase K. After each of these steps, the samples were rinsed 2–3
times with DEPC water for 1min each time. The tissues were fixed with
4% paraformaldehyde (PFA) for 10min. Probes were applied to cover
the slices, followed by hybridization at 65 °C for 48 h. The slices were
washed three times with 2× SSC buffer. Subsequently, staining with
1 µg/ml DAPI was performed for 5min at room temperature. Images
were obtained using a fluorescence upright microscope (Leica
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DM2500, Germany), and fluorescence intensity analysis was con-
ducted using ImageJ. The fluorescent oligonucleotide probe for
HU08G02237 was synthesized by Gefan Biotechnology Co., Ltd.
(China)76. The probe sequence was as follows: 5’-FAM-CAAAGCCAUC-
CAUUGCUCGUGCUGAUCGACCAUGGAUGGCUCAUC -3’.

Endogenous H2O2 localization by transmission electron
microscopy
The H2O2 content in H. undatus pericarp was detected using histo-
chemical methods76–78. Tissue blocks (2 × 2 × 2mm) were excised from
fresh and decaying H. undatus pericarp. These tissue blocks were
suspended in an aqueous solution of 5mM CeCl3 (Sigma, UK) in glu-
taraldehyde buffer and allowed to incubate for 2 h at 28 °C to visualize
H2O2 accumulation within the tissues. Subsequently, the samples were
rinsed with phosphate buffer and dehydrated with a gradient of
ethanol solutions (30%, 50%, 70%, and 80%). Afterwards, the samples
were transferred to 90% and 95% acetone solutions and treated for
15min, respectively. Finally, samples were treated twice with pure
acetone for 20min each time. The samples were then treated with a
mixture of Spurr embedding agent and acetone (V/V = 1/1 and 3/1) for 1
and 3 h, respectively, andfinallywith pureembedding agent overnight.
Thin sections (70–90nm) of the samples were obtained using a LEICA
EM UC7 ultramicrotome. Deposition of cerium peroxide was mon-
itored using anH-7800 transmission electronmicroscope operating at
80 kV76.

Morphological microscopic observation of pericarp
Preliminary observations of fresh H. undatus pericarp was conducted
using a Nikon EclipseCi opticalmicroscope equippedwith a calibrated
eyepiece micrometer. Images were captured using Image-Pro Plus
software78, and analysis was performed to determine the sizes of epi-
dermal and subcutaneous tissue cells, as well as the thickness of the
epidermal and subcutaneous tissue layers.

Flavonoid and ROS assessment
For the control group, fresh H. undatus pericarp was cut into
0.8 × 1.8 cm strips and placed in 10mM fluorescent probe H2DCFDA.
Incubation was carried out in the dark at 25 °C for 0.5 h. Afterward, the
samples were rinsed with PBS buffer. Subsequently, slices were taken
from a position 0.3 cm from the outer edge of the strips and imme-
diately mounted on temporary slides for fluorescence microscopy
observation.

For the experimental group, H. undatus pericarp samples placed
for 3, 6, and 9 days were used, following the same procedures as the
control group. Pericarp of H. undatus without any treatment was
prepared as temporary slides for observation as the negative control.

Fluorescence of ROS stainedwithH2DCFDAwasmeasured using a
fluorescencemicroscope (Leica DM2500, Germany) with an excitation
wavelength of 488 nm and emission wavelengths between 515 and
540nm. The detection of superoxide anions was performed using the
hydroxylamine oxidation method49. After fully shaking the super-
natant of the fruit peel homogenate, 65mMPBS (pH = 7.8), and 10mM
hydroxylamine hydrochloride (V/V = 2/1/1) for 30min,
p-aminobenzene sulfonic acid (17mM) and α- naphthylamine (7mM)
(V/V = 2/2) were added in the reaction system. Themixture was rapidly
shaken and then reacted for 15min. The absorbance was measured at
530nm. Total flavonoid contents were determined using the alumi-
num chloride colorimetric method79. The flavonoid extracts or rutin
standard solution (>98%; CAS: 153-18-4; 10–100μg/mL) were mixed
with NaNO2 solution (94mM) and incubated at 25 °C for 6min. Al
(NO3)3 solution (54mM) was then added. The mixture was thoroughly
mixed and allowed to stand for another 6min. Subsequently, NaOH
(435mM) was added to each extract and incubated at room tem-
perature for 10min. The absorbance was measured at 510 nm.

Metabolites detection by mass spectrometry
Sample preparation and extraction. The freeze-dried pericarp was
crushed using a mixer mill (MM 400, Retsch) with a zirconia bead for
1.5min at 30Hz. 100mg powder was weighted and extracted 3 h at
60 °C with 0.6ml 70% aqueous methanol. Following centrifugation at
10, 000g for 10min, the extracts were filtrated (SCAA-104, 0.22 μm
pore size) before ultraperformance liquid chromatography-tandem
mass spectrometry (UPLC-MS/MS) analysis44.

UPLC and high-resolution MS settings. Liquid chromatography
separation was performed using a Shimadzu Nexera UPLC system
(Shimadzu, Kyoto, Japan), configured in binary 30A pumps, SIL- 30AC
autosampler and a CTO-30AC column oven. All the components were
eluted onto a Phenomenex Kinetix C18 column (2.1 × 100mm, 100A,
1.7 µm) fitted with a C18 guard column (2.0mm I.D. × 4.0mm; Phe-
nomenex Luna). The column oven was set at 50 °C, and the auto-
sampler was cooled at 8 °C. The flow rate was 0.4min/mL. The mobile
phase A (MPA) was 1% ACN, 0.1% Formic acid (V/V), and the organic
phase B (MPB) was 90% ACN, 1% formic acid. The gradient elution
program was as follows: an isocratic elution of 10% MPB for the initial
1.0min with column flow diverted to waste. Column flowwas returned
in line with MS followed by a linear gradient elution of 10–50% MPB
from 1 to 8min, and then followed by a linear gradient elution of
50–99%MPB from 8 to 10.5min; after holding the composition of 90%
MPB for the next 2.5min, the column was returned to its starting
conditions till the end of the gradient program at 15min for column
equilibration.

MS analysis was performed using an AB Sciex X500B mass spec-
trometer (Concord, Ontario, Canada), which operated in negative or
positive ionization mode with a TurboV ion source and ESI TwinSpray
electrode. The source conditions were set as follows: ion-spray voltage
floating 5.5 kV (4.5 kV negmode), declustering potential 40 V. collision
energy 5 V, turbo spray temperature 500 °C, nebulizer gas (Gas 1)
50 psi, heater gas (Gas 2) 50psi, and curtain gas 30 psi. Continuous
recalibration was carried out every 1 h by injecting and analyzing the
appropriate X500B calibration mix with the aid of the automated
calibration delivery system.All theparameterswere controlled and run
by Sciex OS v3.0software (Sciex, Concord, Ontario, Canada). Data
analysis was processed with MS-DIAL (Version 4.9.221218) (http://
prime.psc.riken.jp/compms/msdial/main.html)80.

The acquisition using SWATH consisted of a full scan, followed by
a Q1 isolation strategy. The full scan covered a mass range of m/z 100-
1000 with an accumulation time of 100ms. Variable SWATH windows
were developed based on test injections of pooled samples and opti-
mized using the SWATH Variable Window Calculator v1.2 (Sciex).
Dynamic collision energy with 5 V spread was used, and accumulation
time set to 0.04 s, and mass range of windows acquired set to
50–1000m/z.

RNA isolation and first-strand cDNA synthesis
Total RNA was extracted from EX, ME, or EN samples of H. undatus
pericarps using RNAprep Pure Micro Kit (DP432, TIANGEN, Beijing,
China), followed by cDNA synthesis with the TransScript® One-Step
gDNARemoval and cDNASynthesis SuperMixkit (AH311-02, TransGen,
Beijing, China)4,5.

Virus-induced gene silencing (VIGS) of HuCMB1
The fragment (178 bp) of HuCMB1 was cloned from the H. undatus
cDNA and ligated to the pTRV2 vector81. pTRV1, pTRV2, and pTRV2-
HuCMB1 were transformed into the A. tumefaciens strain GV3101
(forward primer: 5′GCTCTAGAACGAGATCAAATTGGGAAGCC3′,
reward primer: 5′CGGGATCCTAAAAGCCACGATATTCTGA3′). The
infection protocol was carried out according to Zhang et al.82. Peri-
carps of H. undatus were immersed in bacterial suspension with
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OD600 of 0.6 and then cultivated at 25 °C. The experiments were
performed in five biological replicates.

Gene expression analysis by RT-qPCR
The quantitative real-time polymerase chain reaction (RT-qPCR) was
performed as reported by Li et al.4. The gene β-actin ofH. undatuswas
used as the internal control83. Method of 2−ΔΔCt was employed to cal-
culate the relative copy numbers of the genes84,85. All primers used for
RT-qPCR were shown in Supplementary Data 10. Three biological
replicates were performed.

Statistical analysis
Perform statistical analysis using OriginPro 2021 (Version 9.8.0.200).
The intergroup differences in weight loss rates between CK and CMB-
silenced lines were analyzed using one-way analysis of variance
(ANOVA). The differences in gene expression and flavonoid levels
among different components at a single time point were assessed
using paired-sample t-tests for significance analysis. Values are deno-
ted as significant (p <0.05) or highly significant (p <0.01). Supervised
projection to latent structure discriminant analysis (PLS-DA) was car-
ried out to dissect the overall variance of metabolites and the com-
position differences of the samples. Metabolites were screened based
on the combination of p (corr) and variable importance in the pro-
jection (VIP) values from the PLS-DA5. The two-sided Wilcoxon Rank
Sum test was used in the statistical analysis of supplementary Data 1, 2,
4, and 10. Bonferroni was used for data adjustment, and the number of
multiple comparisons depends on the number of all genes in the rds
data (n = 20357 in supplementary Data 1, 4, and 10; n = 14,623 in sup-
plementary Data 2). The p-values were calculated based on a one-sided
hypergeometric model, and the p-adjust method (BH) was used in the
GO and KEGG analysis in the supplementary Data 3 and 6. The two-
sided t-test was used to obtain the p-values and the p-adjust method
(BH) was used in the analysis of the metabolites in Supplementary
Data 8. The parameters used in the Cytoscape plugin “MCODE” were
shown as follows: Node Score Cutoff: 0.2; Haircut: true; Fluff: false; K-
Core: 2; Max. Depth from Seed: 100 (Supplementary Data 9).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq and stRNA-seq data used in this study have been
deposited in the NCBI SRA database with BioProject numbers
“PRJNA974579” and “PRJNA1002459 ”. The data of transmission elec-
tron microscopy (TEM) have been deposited at the EBI bioimage
archive with BioStudies accession number S-BSST1358. The metabo-
lomics data have just been deposited to the EMBL-EBI MetaboLights
database with the identifier MTBLS9688. The complete dataset will be
accessedherehttps://www.ebi.ac.uk/metabolights/MTBLS9688. Source
data are provided in this paper.

References
1. Giovannoni, J. Molecular biology of fruit maturation and ripening.

Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 725–749 (2001).
2. Tian, S., Qin, G. & Li, B. Reactive oxygen species involved in reg-

ulating fruit senescence and fungal pathogenicity. Plant Mol. Biol.
82, 593–602 (2013).

3. Höhn, A. et al. Happily (n)ever after: aging in the context of oxidative
stress, proteostasis loss and cellular senescence. Redox Biol. 11,
482–501 (2017).

4. Li, X. et al. Omics analyses indicate the routes of lignin related
metabolites regulated by trypsin during storage of pitaya (Hylo-
cereus undatus). Genomics 113, 3681–3695 (2021).

5. Pang, X. et al. Catechin gallate acts as a key metabolite induced by
trypsin in Hylocereus undatus during storage indicated by omics.
Plant Physiol. Biochem. 158, 497–507 (2021).

6. Macosko, E. Z. et al. Highly parallel genome-wide expression pro-
filing of individual cells using nanoliter droplets. Cell 161,
1202–1214 (2015).

7. Zhang, T. Q., Xu, Z. G., Shang, G. D. &Wang, J. W. A single-cell RNA
sequencing profiles the developmental landscape of Arabidopsis
root. Mol. Plant 12, 648–660 (2019).

8. Bai, Y. et al. Development of a single-cell atlas for woodland
strawberry (Fragaria vesca) leaves during early Botrytis cinerea
infection using single cell RNA-seq. Hortic. Res. 9, uhab055 (2022).

9. Yang, M. C. et al. Single-nucleus RNA sequencing and mRNA
hybridization indicate key bud events and LcFT1 and LcTFL1-2
mRNA transportability during floral transition in litchi. J. Exp. Bot.
74, 3613–3629 (2023).

10. Du, J. et al. High-resolution anatomical and spatial transcriptome
analyses reveal two types of meristematic cell pools within the
secondary vascular tissue of poplar stem. Mol. Plant 16,
809–828 (2023).

11. Li, B. et al. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell
type deconvolution. Nat. Methods 19, 662–670 (2022).

12. Fan, Q. J., Yan, F. X., Qiao, G., Zhang, B. X. &Wen, X. P. Identification
of differentially-expressed genes potentially implicated in drought
response in pitaya (Hylocereus undatus) by suppression subtractive
hybridization and cDNA microarray analysis. Gene 533,
322–331 (2014).

13. Matsumoto, H. et al. SCODE: An efficient regulatory network
inference algorithm from single-cell RNA-Seq during differentia-
tion. Bioinformatics 33, 2314–2321 (2017).

14. Zhang, T. Q., Chen, Y., Liu, Y., Lin, W. H. & Wang, J. W. Single-cell
transcriptome atlas and chromatin accessibility landscape reveal
differentiation trajectories in the rice root. Nat. Commun. 12,
2053 (2021).

15. Sun, X. et al. Single-cell transcriptome reveals dominant sub-
genome expression and transcriptional response to heat stress in
Chinese cabbage. Genome Biol. 23, 262 (2022).

16. Martinez, C. C., Li, S., Woodhouse,M. R., Sugimoto, K. & Sinha, N. R.
Spatial transcriptional signatures define margin morphogenesis
along the proximal-distal and medio-lateral axes in tomato (Sola-
num lycopersicum) leaves. Plant Cell 33, 44–65 (2021).

17. Ren, X. et al. COVID-19 immune features revealed by a large-scale
single-cell transcriptome atlas. Cell 184, 1895–1913 (2021).

18. Hao, Y. H. et al. Integrated analysis of multimodal single-cell data.
Cell 184, 3573–3587.e29 (2021).

19. Dwyer, D. J. et al. Antibiotics induce redox-related physiological
alterations as part of their lethality. Proc. Natl Acad. Sci. USA 111,
E2100–E2109 (2014).

20. Kang, D. et al. Comparative analysis of constitutes and metabolites
for traditional Chinese medicine using IDA and SWATH data
acquisition modes on LC-Q-TOF MS. J. Pharm. Anal. 10,
588–596 (2020).

21. Castro-Moretti, F. R. et al. A metabolomic platform to identify and
quantify polyphenols in coffee and related species using liquid
chromatography mass spectrometry. Front. Plant Sci. 13,
1057645 (2023).

22. Han, X. et al. Construction of a human cell landscape at single-cell
level. Nature 581, 303–309 (2020).

23. Jovic, D. et al. Single-cell RNA sequencing technologies and
applications: a brief overview. Clin. Transl. Med. 12, e694 (2022).

24. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and
applications for single-cell and spatial multi-omics.Nat. Rev. Genet.
24, 494–515 (2023).

Article https://doi.org/10.1038/s41467-024-47329-x

Nature Communications |         (2024) 15:3108 17

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA974579
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1002459
https://www.ebi.ac.uk/biostudies/studies/S-BSST1358
https://www.ebi.ac.uk/biostudies/studies/S-BSST1358
https://www.ebi.ac.uk/metabolights/MTBLS9688


25. Ke,M., Elshenawy, B., Sheldon, H., Arora, A. &Buffa, F.M. Single cell
RNA‐sequencing: a powerful yet still challenging technology to
study cellular heterogeneity. BioEssays 44, 2200084 (2022).

26. Khozyainova, A. A. et al. Complex analysis of single-cell RNA
sequencing data. Biochemistry 88, 231–252 (2023).

27. Seyfferth, C. et al. Advances and opportunities in single-cell tran-
scriptomics for plant research. Annu. Rev. Plant Biol. 72,
847–866 (2021).

28. Jin, J. et al. PCMDB: a curated and comprehensive resource of plant
cell markers. Nucleic Acids Res. 50, D1448–D1455 (2022).

29. Xu, Z. et al. Plant single cell transcriptome hub (PsctH): an inte-
grated online tool to explore the plant single-cell transcriptome
landscape. Plant Biotechnol. J. 20, 10–12 (2022).

30. Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D.
& Penin, A. A. A high resolution map of the Arabidopsis thaliana
developmental transcriptome based on RNA-seq profiling. Plant J.
88, 1058–1070 (2016).

31. Hofmann, F., Schon, M. A. & Nodine, M. D. The embryonic tran-
scriptome of Arabidopsis thaliana. Plant Reprod. 32, 77–91 (2019).

32. Wei, L. Q. et al. Genome-scale analysis and comparison of gene
expression profiles in developing and germinated pollen in Oryza
sativa. BMC Genomics 11, 338 (2010).

33. Davidson, R.M. et al. Comparative transcriptomics of three Poaceae
species reveals patterns of gene expression evolution. Plant J. 71,
492–502 (2012).

34. Yin, R., Xia, K. & Xu, X. Spatial transcriptomics drives a new era in
plant research. Plant J. 116, 1571–1581 (2023).

35. Xia, K. et al. The single-cell stereo-seq reveals region-specific cell
subtypes and transcriptome profiling in Arabidopsis leaves. Dev.
Cell 57, 1299–1310 (2022).

36. Giacomello, S. et al. Spatially resolved transcriptome profiling in
model plant species. Nat. Plants 3, 17061 (2017).

37. Liu, C. et al. A spatiotemporal atlas of organogenesis in the devel-
opment of orchidflowers.Nucleic Acids Res.50, 9724–9737 (2022).

38. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888–1902 (2019).

39. Li, C. et al. SciBet as a portable and fast single cell type identifier.
Nat. Commun. 11, 1818 (2020).

40. Cable, D. M. et al. Robust decomposition of cell type mixtures in
spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

41. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for
spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359 (2022).

42. Lin, W. et al. H2O2 as a feedback signal on dual-located WHIRLY1
associateswith leaf senescence inArabidopsis.Cells8, 1585 (2019).

43. Debès, C. et al. Ageing-associated changes in transcriptional
elongation influence longevity. Nature 616, 814–821 (2023).

44. Lai, C. et al. The Single-stranded DNA-binding gene Whirly (Why1)
with a strong pathogen-induced promoter from Vitis pseudor-
eticulata enhances resistance to Phytophthora capsici. Int. J. Mol.
Sci. 23, 8052 (2022).

45. Wang, W. et al. RNase H1C collaborates with ssDNA binding pro-
teins WHY1/3 and recombinase RecA1 to fulfill the DNA damage
repair in Arabidopsis chloroplasts. Nucleic Acids Res. 49,
6771–6787 (2021).

46. James, M. et al. SAG12, a major cysteine protease involved in
nitrogen allocation during senescence for seed production in Ara-
bidopsis thaliana. Plant Cell Physiol. 59, 2052–2063 (2018).

47. Myat, A. A. et al. Overexpression of GhKTI12 enhances seed yield
and biomass production in nicotiana tabacum. Genes (Basel) 13,
426 (2022).

48. La Manno, G. et al. RNA velocity of single cells. Nature 560,
494–498 (2018).

49. Mittler, R., Zandalinas, S. I., Fichman, Y. & Van Breusegem, F.
Reactive oxygen species signalling in plant stress responses. Nat.
Rev. Mol. Cell Biol. 23, 663–679 (2022).

50. Varesi, A. et al. The role of antioxidants in the interplay between
oxidative stress and senescence. Antioxidants 11, 1224 (2022).

51. Veeramani, C., Alsaif, M. A. &Al-Numair, K. S. Herbacetin, aflaxseed
flavonoid, ameliorates high percent dietary fat induced insulin
resistance and lipid accumulation through the regulation of hepatic
lipid metabolizing and lipid-regulating enzymes. Chem. Biol. Inter-
act. 288, 49–56 (2018).

52. Wu, Q. et al. Deciphering the metabolic pathways of pitaya peel
after postharvest red light irradiation. Metabolites 10, 108 (2020).

53. Mu, H. et al. Analysis of metabolite differences in skin between
clapp’s favorite and its mutant red clapp’s favorite through non-
targeted metabolomics]. Se Pu 39, 1203–1212 (2021). (In Chinese).

54. Salazar-López,N. J. et al. Avocado fruit andby-productsaspotential
sources of bioactive compounds. FoodRes. Int. 138, 109774 (2020).

55. Qiao, Y. et al. Herbacetin induces apoptosis in HepG2 cells: Invol-
vements of ROS and PI3K/Akt pathway. Food Chem. Toxicol. 51,
426–433 (2013).

56. Sun, W. et al. Characterization of the horse chestnut genome
reveals the evolution of aescin and aesculin biosynthesis. Nat.
Commun. 14, 6470 (2023).

57. Yang, X. D., Chen, Z., Ye, L., Chen, J. & Yang, Y. Y. Esculin protects
against methionine choline-deficient diet-induced non-alcoholic
steatohepatitis by regulating the Sirt1/NF-κB p65 pathway. Pharm.
Biol. 59, 922–932 (2021).

58. Zhang, Y. et al. The circadian-controlled PIF8-BBX28 module reg-
ulates petal senescence in roseflowers bygoverningmitochondrial
ROS homeostasis at night. Plant Cell. 33, 2716–2735 (2021).

59. Fan, X. et al. Flavonoids-natural gifts to promote health and long-
evity. Int. J. Mol. Sci. 23, 2176 (2022).

60. Liang, D. et al. Exogenousmelatonin application delays senescence
of kiwifruit leaves by regulating the antioxidant capacity and bio-
synthesis of flavonoids. Front. Plant Sci. 9, 426 (2018).

61. Le, D. T. et al. Mismatch repair deficiency predicts response of solid
tumors to PD-1 blockade. Science 357, 409–413 (2017).

62. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial
reconstruction of single-cell gene expression data.Nat. Biotechnol.
33, 495–502 (2015).

63. Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast
unfolding of communities in large networks. J. Stat. Mech. Theory.
E. 2008, P10008 (2008).

64. Chen, Y. P. et al. Single-cell transcriptomics reveals regulators
underlying immune cell diversity and immune subtypes associated
with prognosis in nasopharyngeal carcinoma. Cell Res. 30,
1024–1042 (2020).

65. Zhang, T. Q., Chen, Y. & Wang, J. W. A single-cell analysis of the
Arabidopsis vegetative shoot apex. Dev. Cell 56, 1056–1074 (2021).

66. Zhang, Z. et al. SCINA: a semi-supervised subtyping algorithm of
single cells and bulk samples. Genes (Basel) 10, 531 (2019).

67. Zuo, Y. et al. EuRBG10 involved in indole alkaloids biosynthesis in
Eucommia ulmoides induced by drought and salt stresses. J. Plant
Physiol. 278, 153813 (2022).

68. Mcinnes, L. & Healy, J. UMAP: Uniformmanifold approximation and
projection for dimension reduction. J. Open Source Softw. 3,
861 (2018).

69. Trapnell, C. et al. The dynamics and regulators of cell fate decisions
are revealed by pseudotemporal ordering of single cells. Nat. Bio-
technol. 32, 381–386 (2014).

70. Qiu, X. et al. Reversed graph embedding resolves complex single-
cell trajectories. Nat. Methods 14, 979–982 (2017).

71. Bergen, V., Lange,M., Peidli, S.,Wolf, F. A. & Theis, F. J. Generalizing
RNA velocity to transient cell states through dynamical modeling.
Nat. Biotechnol. 38, 1408–1414 (2020).

72. Guerrero-Juarez, C. F. et al. Single-cell analysis reveals fibroblast
heterogeneity and myeloid-derived adipocyte progenitors in mur-
ine skin wounds. Nat. Commun. 10, 650 (2019).

Article https://doi.org/10.1038/s41467-024-47329-x

Nature Communications |         (2024) 15:3108 18



73. Shannon, P. et al. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 13,
2498–2504 (2003).

74. Hafemeister, C. & Satija, R. Normalization and variance stabilization
of single-cell RNA-seq data using regularized negative binomial
regression. Genome Biol. 20, 296 (2019).

75. Lafzi, A., Moutinho, C., Picelli, S. & Heyn, H. Tutorial: guidelines for
theexperimentaldesignof single-cell RNAsequencing studies.Nat.
Protoc. 13, 2742–2757 (2018).

76. Bestwick, C. S., Brown, I. R., Bennett, M. H. & Mansfield, J. W.
Localization of hydrogen peroxide accumulation during the
hypersensitive reaction of lettuce cells to Pseudomonas syringaepv
phaseolicola. Plant Cell 9, 209–221 (1997).

77. Able, A. J., Guest, D. I. & Sutherland, M. W. Hydrogen peroxide
yields during the incompatible interaction of tobacco suspension
cells inoculated with Phytophthora nicotianae. Plant Physiol. 124,
899–910 (2000).

78. Li, X. et al. Bacterial Impact on H2O2 accumulation during the
interaction between Xanthomonas and rice. Plant Productionence
12, 133–138 (2009).

79. Ghasemzadeh, A., Jaafar, H. Z. & Rahmat, A. Variation of the phy-
tochemical constituents and antioxidant activities of Zingiber offi-
cinale var. rubrum theilade associated with different drying
methods and polyphenol oxidase activity.Molecules 21, 780 (2016).

80. Tsugawa,H. et al. A lipidomeatlas inMS-DIAL 4.Nat. Biotechnol.38,
1159–1163 (2020).

81. Riechmann, J. L. &Meyerowitz, E.M.MADSdomain proteins in plant
development. Biol. Chem. 378, 1079–1101 (1997).

82. Zhang, J. Q. et al. Aberrant seed development in Litchi chinensis is
associated with the impaired expression of cell wall invertase
genes. Hortic. Res. 5, 39 (2018).

83. Nie, Q. et al. Isolation and characterization of a catalase gene
“HuCAT3” from pitaya (Hylocereus undatus) and its expression
under abiotic stress. Gene 563, 63–71 (2015).

84. Xu, M. et al. Transcriptomic de novo analysis of pitaya (Hylocereus
polyrhizus) canker disease caused by Neoscytalidium dimidiatum.
BMC Genomics 20, 10 (2019).

85. Yang, A. M. et al. Label-free quantitative proteomic analysis of
chitosan oligosaccharide-treated rice infected with southern rice
black-streaked dwarf virus. Viruses 9, 115 (2017).

Acknowledgements
We are grateful for the free online platform of Majorbio I-Sanger Cloud
Platform (www.i-sanger.com). We would also like to acknowledge J.A.
Imlay for discussion and comments on the draft; andW.Ma for technical
assistance. This workwas supported by the Australian Research Council

Grant CE (No. 200100015, to R.H.) and the National Natural Science
Foundation of China (No. 22136006; No. 21976073, to C.Y.Z.).

Author contributions
Conceptualization: X.L. Investigation: B.R.L., X.Y.P., and J.F.Y. Metho-
dology: S.B.G., P.M., and J.J.S. Writing—original draft: X.L., B.R.L., X.Y.P.,
and J.Y.J. Writing—editing: C.Y.Z. and R.H., with inputs from all authors.
Visualization: X.L., and X.Y.P. Supervision: R.H. Funding acquisition:
C.Y.Z. and R.H.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47329-x.

Correspondence and requests for materials should be addressed to
Chunyan Zhao or Robert Henry.

Peer review information Nature Communications thanks Carlos R. Fig-
ueroa, Haiyan Hu and the other, anonymous, reviewer(s) for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47329-x

Nature Communications |         (2024) 15:3108 19

http://www.i-sanger.com
https://doi.org/10.1038/s41467-024-47329-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence
	Results
	Generation of a cell atlas of H. undatus pericarp during senescence
	Spatial transcriptome sequencing of the pericarp of H. undatus fruit and cell-type recognition
	Integrating microarray-based spatial transcriptomics and single-cell RNA sequencing reveals tissue architecture in pericarp of H. undatus
	Subcluster analysis distinguished cells belonging to different samples in key components of H. undatus pericarp
	Pseudotime analysis revealed the time conversion trajectories of mature and senescent cells in the mesocarp and exocarp
	ROS and flavonoid phenotypic changes and their regulatory mechanisms in mature and senescent�cells
	Functional validation of HuCMB1 during the senescence process through�VIGS

	Discussion
	Methods
	Preparation of mature and senescent samples
	Sample collection and preparation of single-cell suspensions
	scRNA-seq library construction
	scRNA-seq data processing
	Cell clustering and annotation
	Differential expression analysis and functional enrichment
	Pseudotime analysis
	RNA velocity analysis
	Visualization of pseudotime-related gene regulatory networks
	Spatial transcriptomic (stRNA-seq) experiments
	stRNA-seq data analysis
	Integration analysis of stRNA-seq and scRNA-seq
	RNA fluorescence in�situ hybridization (RNA-FISH)
	Endogenous H2O2 localization by transmission electron microscopy
	Morphological microscopic observation of pericarp
	Flavonoid and ROS assessment
	Metabolites detection by mass spectrometry
	Sample preparation and extraction
	UPLC and high-resolution MS settings
	RNA isolation and first-strand cDNA synthesis
	Virus-induced gene silencing (VIGS) of HuCMB1
	Gene expression analysis by RT-qPCR
	Statistical analysis
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




