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Nonlinear DNA methylation trajectories in
aging male mice

Maja Olecka 1,5, Alena van Bömmel 1,5, Lena Best 2, Madlen Haase3,
Silke Foerste1, Konstantin Riege1, Thomas Dost 2, Stefano Flor 2,
Otto W. Witte3, Sören Franzenburg 4, Marco Groth 1, Björn von Eyss 1,
Christoph Kaleta 2,6, Christiane Frahm3,6 & Steve Hoffmann 1,6

Although DNA methylation data yields highly accurate age predictors, little is
known about the dynamics of this quintessential epigenomic biomarker dur-
ing lifespan. To narrow the gap, we investigate the methylation trajectories of
malemouse colon atfive different timepoints of aging.Our study indicates the
existence of sudden hypermethylation events at specific stages of life. Pre-
cisely, we identify two epigenomic switches during early-to-midlife (3-9
months) and mid-to-late-life (15-24 months) transitions, separating the
rodents’ life into three stages. These nonlinear methylation dynamics pre-
dominantly affect genes associated with the nervous system and enrich in
bivalentlymarked chromatin regions. Basedongroupsof nonlinearlymodified
loci, we construct a clock-like classifier STageR (STage of aging estimatoR) that
accurately predicts murine epigenetic stage. We demonstrate the universality
of our clock in an independent mouse cohort and with publicly available
datasets.

Biological aging, which we refer to as a process taking place over the
whole lifespan, is frequently perceived as a constant decay of function
at the cellular, tissue, and organismal level, e.g., caused by the accu-
mulation of DNA damage, telomere shortening, loss of proteostasis or
stem cell exhaustion1. Thus, many studies focus on discovering linear
relationships between time and various molecular data. Since the
aging process involves abrupt changes as well, e.g., menopause or loss
of neurons in the intestine2, linearmodels may be too simplistic, and a
more thorough search for nonlinear trajectoriesmay shed new light on
the nature of aging and its driving forces.

In recent years, the scientific literature has increasingly appre-
ciated nonlinearities in the aging process. For example, studies in
Drosophila suggest discrete stages in aging, marked by a sudden
increase in intestinal permeability3. A study on aging human plasma
proteome found that most changes across the lifespan are nonlinear

and occur in waves around 34, 60, and 78 years4. Another study of
human transcriptomes found an acceleration of cancer incidence in
the mid-life phase between 35–45 years, potentially pointing to an
acceleration of DNA damage5. In addition, Schaum et al. characterized
nonlinearities in gene expression levels in aging mouse organs6, and
Kang et al. described nonlinear aging patterns in muscle tran-
scriptomes of old mice7. Another study on aging skin identified four
distinct aging phases based on integrated epigenetic and tran-
scriptomic features8.

However, research on discontinuous aspects of aging is still in its
infancy, and critical molecular processes, including those involving
epigenomic regulation, have yet to be examined.

DNAmethylation (5mC) is an essential layer of epigenetic control.
Although DNA methylation studies have revealed specific age-related
phenomena, such as global demethylation and hypermethylation of
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CpG islands (reviewed in ref. 9), we still know little about the dynamics
of this epigeneticmark. Notably, today’smethylation-based epigenetic
clocks are frequently built using linear regression models (usually
involving elastic-net regularization) and thus geared to detect con-
tinuous changes (reviewed in ref. 10). So far, attempts to distill non-
linear age-related changes, e.g., using the power-law model11, have not
yielded a comprehensive picture.

In the context of aging, the intestine is of particular interest.While
the tissue has one of the highest regenerative capacities, numerous
biological functions undergo age-related alterations, affecting intest-
inal microbiota, barrier, immune functions, and the enteric nervous
system (reviewed in ref. 12). At the same time, the consequences of
such changes can have a profound systemic impact on the emergence
of age-related phenotypes in other organs, such as the brain, the heart,
or the endocrine system. In addition, Dambroise et al. suggest that
disruption of the intestinal barrier may be a critical evolutionary con-
served event in the aging process13.

In this work, we perform genome-wide DNAmethylation profiling
to identify and characterize 5mC trajectories in the aging male mouse
colon. We demonstrate the existence of nonlinear methylation tra-
jectories in aging at specific sets of CpGs associated with develop-
mental processes and the nervous system. Moreover, we show that
nonlinearly modified CpGs summarized by centroids provide a robust
set of predictor variables to estimate the epigenetic life stages. Our
analysis strategy is shown in Fig. 1a.

Results
To analyze DNAmethylation patterns in aging, we performed reduced
representation bisulfite sequencing (RRBS) on colon DNA samples
from 83 male C57BL/6J/Ukj mice at five time points throughout life (3,
9, 15, 24, and 28months). Utilizing theMspI restriction enzyme14, RRBS
enriches GC-rich genomic regions often associated with critical reg-
ulatory elements such as promoters and enhancers. Principal compo-
nent analysis (PCA) of raw methylation data reveals that the first
principal component, representing more than 25% of the data’s total
variance, clearly covaries with the age of the samples (Fig. 1b and
Supplementary Fig. 1a). Unsupervised hierarchical clustering carried
out on the same data suggests a separation of the samples into three
distinct primary life stages, i.e., early life (3 mo), midlife (9mo–15 mo),
and late-life (24 mo–28 mo) (Fig. 1c).

Differentially methylated regions in aging mouse intestine
To focus on the greatest age-related methylation changes, we restric-
ted our analysis to cytosines located in differentially methylated
regions during aging (aDMRs). In particular, we calculated pairwise
aDMRs between all combinations of time points. Combining all pair-
wise results yielded 18,006 aDMRs comprising 84,693 CpGs (5.5% of
the whole dataset) (Supplementary Data 1). As expected, the highest
number of aDMRs was detected between 3 mo and 28 mo (n = 4262).
The smallest numberwas seenwhile comparing 24mo and 28momice
(n = 38; Fig. 1e). Notably, we observed a substantial overlap between
aDMRs and reduced their number to 3981 when merging the over-
lapping regions. Pairwise similarity based on the number of aDMRs
supports the aggregation of the samples into three distinct aging
stages— young, midlife, and late-life, which was also found in the
unsupervised hierarchical clustering of methylation levels (Fig. 1c). On
a global level, we observe gradual hypermethylation of aDMRs during
aging. Notably, themajority of aDMR-associated CpGs in 3mo animals
is unmethylated (Fig. 1d). Furthermore, aDMRs are significantly enri-
ched in exons, and CpG islands as compared to randomly drawn
regions from theRRBSbackground (Supplementary Fig. 1b), and91%of
aDMR-associated cytosines could be annotated to a gene or a pro-
moter. Surprisingly, aDMRs are significantly enriched in genes with
specific functions for the cerebral cortex (Fig. 1f) as well as in canonical
pathways and potential upstream regulators associated with the

nervous system (Fig. 1g). The most enriched biological processes with
aDMRs are related to DNA pattern recognition, synapse organization,
and forebraindevelopment and themost enrichedmolecular functions
are DNA binding and channel activity, both pointing to transcription
factor activity and processes in the nervous system (Supplementary
Fig. 1e). We speculated that the aDMRs might be linked to age-related
changes in the enteric nervous system and found a significant enrich-
ment in markers of enteric neurons and glial cells compiled by ref. 15
(OR= 4.2, pval = 5.3e-03 and OR= 4.1, pval = 3.2e-03, respectively,
Fisher’s exact test). For instance, we found age-related DNA methyla-
tion changes in the first exon of Kctd8 (Fig. 1h), encoding a subunit of
theGABA-B receptor,which is broadly expressed in thenervous system
and plays an essential role in controlling neuronal excitability. Further,
we found age-related methylation changes in other markers of enteric
neurons (Elavl4, Scg3, Crmp1, and Gdap1l1, Supplementary Fig. 1c) and
glial cells (Itga4, Pdpn, Ptprz1, and Sox10, Supplementary Fig. 1d).

The enteric nervous system is thought to be more vulnerable to
degeneration and cell death during aging than other parts of the ner-
vous system (reviewed in ref. 16), and these results may indicate that
epigenetic changes contribute to this vulnerability.

Nonlinear DNA methylation trajectories in aging
To identify recurrent trajectories of cytosine methylation, we per-
formed unsupervised clustering of aDMR-associated CpGs using
clust17. After four iterative rounds of clustering, we obtained 19 clusters
comprising 94% of all aDMR-associated cytosines (Supplementary
Data 2). Analyzing the methylation Z-scores in the clusters, we identi-
fied two clusters with linearmethylation trajectories (C1 and C5), while
all remaining clusters exhibited nonlinear methylation changes
(Fig. 2a). Consequently, almost half (n = 34,322) of all clustered aDMR
cytosines (n = 71,447) were assigned to clusters with nonlinear
methylation trajectories.

We selected the five most prominent clusters representative of
different trajectories for further analysis. This selection includes the
largest linear cluster, C1, representing global age-associated hyper-
methylation. Similarly, we find another yet smaller linear cluster, C5,
exhibiting hypomethylation during aging (Fig. 2a). Additionally, we
identified three clusters showingamarkedly nonlinear behavior during
specific life stages (Fig. 2a). Specifically, clusters C2 and C3 show
abrupt methylation increases during the early-to-mid-life transition
between month 3 and month 9. One of the genes potentially affected
by CpGs following this trajectory is Zcchc3 (Fig. 2d), zinc finger CCHC-
type containing three genes which play a vital role in the innate
immune system18,19. Other genes with the most CpGs associated with
clustersC2 andC3 areAjap1 and ProtocadherinsGammagenes (Pcdhg,
Supplementary Fig. 2a). Ajap1 is a structural protein involved in
numerous humanmalignancies and correlates with tumor growth and
survival20. The cell surface glycoproteins Protocadherins Gamma
(Pcdhga1-9, Pcdhgb1-4) are linked to differentiation, cancer, aging,
neurological disorders, and muscle weakness21,22.

Analogously, cluster C4 exhibits sudden hypermethylation during
the mid-to-late-life transition (>15 mo), as shown for gene Nkx6-2
(Fig. 2d). NK6 Homeobox 2 transcription factor regulates multiple
developmental processes with a leading role in neurogenesis23,24 and
pancreatic development25. Interestingly, this gene was recently found
to be associated with delta age, a biomarker of brain aging that cap-
tures differences between the chronological age and the predicted
biological brain age26. Moreover, cluster C4 is strongly linked to many
other genes with known age-associated functions, such as Satb1,
Nova1, Adra2c, Pax5, Zeb1, and Dmrta227–35(Supplementary Fig. 2a).

To explore the epigenomic context of cytosines from different
clusters, we evaluated the enrichment of ENCODE chromatin states of
murine intestines36 at the timeof birth (P0) in termsof odds ratios (OR)
(Fig. 2b). Notably, cytosines associated with different life stage tran-
sitions show apparent differences in their epigenomic context. Also,
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clusters with similar methylation trajectories show similar epigenetic
patterns and are grouped together by hierarchical clustering (e.g., C3,
C17, C13, and C2 or C4 and C19, Fig. 2b). Cytosines affected by mid-to-
late-life transition in C4 are typically lowly methylated, show com-
parablyminor methylation gains (Fig. 2a), and are strongly enriched in
bivalent promoters (OR = 25). Bivalent chromatin is characterized by
simultaneous occupancy with activating (H3K4me3) and repressing
(H3K27me3) histone marks and is often involved in regulating devel-
opmental genes in stem cells37–39. Moreover, C4 CpGs are strongly

overrepresented at binding sites of Polycomb repressive complex 2
(PRC2) proteins (Suz12, EZH2, and Jarid2, Supplementary Fig. 3c),
which repress gene expression at bivalent promoters and are impli-
cated in cancers and developmental disorders (reviewed in ref. 40).
Strikingly, 86% (4372 out of 5091) cytosines of C4 are found within
binding sites of Mtf2, a recruiter of the PRC2 (Supplementary Fig. 3c).

In contrast, cytosines in C2 and C3 showing early-to-midlife
transition accumulate in potent proximal enhancers and H3K9me3-
associated heterochromatin (Fig. 2b). H3K9me3 is vital for
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heterochromatin organization and genome integrity41 and for estab-
lishing and maintaining cell identity by repressing lineage-
inappropriate genes (reviewed in ref. 42). Moreover, it was shown
that H3K9me3 recruits DNA methyltransferase 1, promoting the
maintenance of DNA methylation43. Additionally, we observe a strong
enrichment of cytosines from C2 and C3 in binding sites of the
immunoregulatory transcription factor Gata1 (Supplementary Fig. 3c).

The cytosines from clusters C1–C4 follow a similar genomic dis-
tribution, with most cytosines located in introns, exons, and pro-
moters (Supplementary Fig. 3d).

It is important to note that the only clusterwith cytosines showing
a gradual decrease of methylation during aging (C5; 1.2% of all clus-
tered cytosines) differs markedly from its hypermethylated counter-
parts in terms of the epigenomic contexts (Fig. 2b) and genomic
distribution with almost 80% of cytosines located in exons and introns
(Supplementary Fig. 3d).

To further explore the potential function of genes associatedwith
nonlinear trajectories, we have tested whether the clusters are enri-
ched for gene sets associated with hallmarks of aging proposed by
ref. 44. To this end, we used lists of genes associated with the nine
aging-relatedprocesses compiledby ref. 8. The odds ratios for thenine
gene sets show a distinct pattern for the prominent clusters C1–C5
(Fig. 2c). Interestingly, themid-to-late-life cluster C4 is highly enriched
for stem cell exhaustion which goes in line with the occupancy of
bivalent chromatin by C4 cytosines. Moreover, C4 genes are asso-
ciatedwith cellular senescence. The early-to-midlife clusters C2 andC3
are enriched for stem cell exhaustion and epigenetic altera-
tions (Fig. 2c).

Next, we sought to evaluate whether DNA methylation at cyto-
sines following nonlinear trajectories corresponds rigidly to chron-
ological age or can be modified. To this end, we analyzed publicly
available bisulfite sequencing datasets and found that 5mC levels
respond to different experimental conditions. Specifically, mice with
an intestinal infection45 show older methylation profiles in nonlinear
clusters compared to controls (Fig. 3). Strikingly, colon organoids
derived from 40 days old mice46 show an extremely aged methylation
profile with almost full hypermethylation even after only 2 months of
culture (Fig. 3).

In summary, we identified loci undergoing sudden hypermethy-
lation during aging. Their nonlinear trajectories divide lifespan into
three major epigenetic stages (Fig. 2d). Importantly, DNA methylation
transitions are not accompanied by considerable shifts in cell type
composition (Supplementary Fig. 4). Our data suggest that cytosines
undergoing mid-to-late-life transition are associated with effects on
PRC-controlled developmental programs, which may affect stem cell
function. In contrast, changes between early life and midlife may
reflect thematurationprocesses of theorgan. Although cytosines from
the two transitions differ, as well as the majority of associated genes
(Supplementary Fig. 2b), gene ontology (GO) analysis indicated that
affected genes are involved in similar processes, such as development,

regulation of transcription, and transsynaptic signaling (Fig. 2e and
Supplementary Fig. 2c).

Nonlinear gene expression trajectories in aging
To evaluate gene expression patterns of genes overlapping with CpGs
following nonlinear DNA methylation trajectories, we conducted bulk
RNA-Seq analysis on all the samples. The vast majority of genes from
the nonlinear DNA methylation clusters are active (see Methods,
Supplementary Fig. 3b). When comparing the gene expression deciles,
we observe that genes associated with early-to-mid-life methylation
changes show higher expression levels compared to those related to
mid-to-late-life transition (Supplementary Fig. 3b). Interestingly, CpGs
undergoing a nonlinear mid-to-late-life transition (C4) also enrich in
genes differentially expressed between 15 and 24 months (p value =
0.007, Fisher’s exact test). Specifically, 13% of genes with C4 CpGs are
also differentially expressed between 15 and 24 months.

To identify genes with the same trajectory on DNA methylation
and expression levels, we clustered genes showing age-dependent
dynamics based on their expression trajectory during the lifespan. To
this end, we applied the same strategy as in the case of DNA methy-
lation analysis. First, we identified all pairwise differentially expressed
genes across the age groups (n = 14,061) and conducted five rounds of
unsupervised clustering based on gene expression Z-scores. Interest-
ingly, the largest gene expression cluster, CE1 (n = 2483), exhibits an
expressiongain between 15 and 24months (Fig. 4a). TogetherwithCE6
(n = 801), CE1 indicates the existence of mid-to-late-life transition on
the expression level. Similar to the above, C4 CpGs significantly enrich
in CE1 and CE6 genes (p value = 0.02, Fisher’s exact test). Additionally,
we found cluster CE5 (n = 761) to show an early-to-mid-life transition.

Next, we identified 27 genes showing a simultaneous change in
DNA methylation and gene expression during the early-to-mid-life
transition and 146 genes during the mid-to-late-life transition (Fig.
4b, c). Many of the identified genes play essential roles in colon
function. For instance, Filip1l, which undergoes an early-to-mid-life
transition, acts as a tumor suppressor in mucinous colon cancer47.
Additionally, 66 genes followingmid-to-late-life trajectory show strong
interactions on the protein level based on the STRING database
(Fig. 4d). Strikingly, almost all genes from the network have known
functions in colorectal cancer, intestinal barrier, or enteric nervous
system. The most exciting examples include Reln and Ntn, which are
associated with all these mentioned functions48–54.

Overall, we identified genes that follow the same nonlinear tra-
jectories on the gene expression level and DNA methylation of over-
lapping CpGs. These genes, particularly those associated with mid-to-
late-life transition, encode crucial colon function and cancerogenesis
regulators.

Validation dataset
To validate the existence of nonlinear methylation trajectories during
aging, we analyzed an independent set of 20 male C57BL6/J mice at

Fig. 1 | DNA methylation dynamics in aging male mouse colon. a Experimental
strategy. Reduced representation bisulfite sequencing (RRBS) was performed on a
set of colon DNA samples from 83 adultmalemice at five ages. Clustering based on
the Z-score of methylation levels of CpGs from pairwise differentially methylated
regions revealed various methylation trajectories during aging. Most abundant
nonlinear clusters divided lifespan into three stages and were used to construct an
epigenetic clockwise classifier– STageR. Hypermethylation events separating the
epigenetic stages of life are presented as mountain peaks. b Principal component
analysis (PCA) based on 10,000 randomly selected CpGs. One sample has been
identified as an outlier and removed from the dataset. PCA of all samples is pre-
sented in Supplementary Fig. 1a. c DNA methylation patterns in 10,000 randomly
selected CpGs with hierarchical clustering of all samples indicate three major epi-
genetic life stages (early-, mid-, and late-life). d Methylation distribution at aDMR
CpGs in the age groups; n = 16 (3 mo, 9 mo, 15 mo, 24 mo), n = 18 (28 mo) animals.

e Number of differentially methylated regions in aging (aDMRs) for all pairwise
combinations of age groups. f Enrichment of tissue-specific genes in genes asso-
ciated with aDMRs. FDR-adjusted hypergeometric one-sided P values are shown.
g Top ten enriched ingenuity pathways (left) and potential upstream regulators
(right) of genes associatedwith aDMRs. FDR-adjustedone-sided P values of Fisher’s
exact test are shown. hMethylation pattern in aDMR in the first exon of Kctd8. DNA
methylation levels are shown as box plots for the age groups (top) and as mean
levels (line) with confidence intervals (shaded area) in the genome browser (bot-
tom); n = 874 (3 mo), n = 834 (9 mo), n = 823 (15 mo), n = 841 (24 mo), n = 945 (28
mo) according to available measurements of 55 CpGs in the corresponding age
groups. For the box plots, the center line shows themedian, the box limits show the
first and third quartiles, and the upper and lower whiskers extend from the hinge to
the largest or the lowest value no further than 1.5× the interquartile range (IQR)
from the hinge. Source data are provided as a Source Data file.
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Polycomb-associated, HcH - Heterochromatin, H3K9me3-associated, Ns - No sig-
nificant signal. c Enrichment of hallmarks of aging gene sets in genes associated
with five representative clusters. d A scheme presenting nonlinear DNA methyla-
tion trajectories dividing lifespan into three stages and their main features. e Gene
ontology (GO) analysis of genes associated with clusters C2, C3, and C4. GO terms
were functionally grouped. A comparative analysis of C2 and C3 vs C4 genes is
presented in Supplementary Fig. 2c. Inb, cORodds ratio. Source data are provided
as a Source Data file.
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four ages from another mouse facility: 3 mo (n = 4), 7 mo (n = 5), 12 mo
(n = 5), and 27 mo (n = 6). To exclude potential artifacts, animal and
sequencing facilities differed in the validation experiment.Weused the
samemethodology to identify aDMRs in the validation set, resulting in
3336merged aDMRs comprising 103,151 CpGs. In total, 74% (62,782) of
the aDMR CpGs from our original analysis are located in aDMRs
identified in the validation dataset—a surprisingly high value given all
technical and biological variabilities (Fig. 5a). Likewise, the majority of
the pairwise aDMRs determined in the original dataset could be vali-
dated by the independent set when the most similar age groups were
considered (Supplementary Fig. 6a).

Further, we evaluated age-dependent methylation trajectories in
the validation dataset. The validation data confirmed the trends in the
linear clustersC1 andC5 and the nonlinear clusters describing early-to-
midlife (C2 andC3) andmid-to-late-life transitions (Fig. 5b–f). Likewise,
the methylation distribution in the young (3 mo), midlife (7–12 mo),
and late-life mice (27 mo) is consistent with the methylation distribu-
tion in the original dataset in the corresponding life stage. Accordingly,
the methylation Z-scores derived from the validation data follow the
same linear trajectories in C1 and C5 (Fig. 5b–f) and nonlinear trajec-
tories in clusters C2–C4 (Fig. 5c–e).

Taken together, our validation experiment confirms the linear and
nonlinear methylation dynamics in aging mouse intestines.

Cluster-based epigenetic clock STageR
Epigenetic clocks modeling the chronological age from 5mC levels are
typically built using supervised machine learning methods such as
elastic-net regression (reviewed in ref. 10). The application of these
models typically relies on a fixed set of CpGs, i.e., themodel CpGs. One
of the shortcomings of such clocks is their lack of transferability,
especially when using the popular RRBS protocol, where the number of
sites captured and sufficiently covered is highly variable between
datasets. To remedy this shortcoming,wepropose tobuild aging clocks
based onmeasures derived from highly correlated and thus redundant
CpG methylation information. For instance, using the methylation
centroids of the above-described clusters instead of single CpG values.

Here, we propose an epigenetic clockwise classifier STageR
(STage of aging estimatoR) which predicts the underlying aging-
stage based on limited methylation information. In particular, we
perform a multinomial logistic elastic net regression to predict the
aging-stage membership (early-, mid-, or late-life) of each sample
based on the median methylation level of CpGs in three nonlinear
clusters, C2, C3, and C4. Thus, in our case, the dimensionality of the
feature space is dramatically reduced from more than 80,000 age-
associated CpGs to only three methylation clusters (see the training
set in Supplementary Fig. 7a). Our choice of early-to-mid-life (3–9
mo) and mid-to-late-life (15–24 mo) clusters is underpinned by a
number of important observations: (i) hierarchical clustering of raw
methylation data already results in the division of samples into three
main groups, i.e., 3 mo, 9 and 15 mo, 24 and 28mo (Fig. 1c), (ii) early-
to-mid-life (C2 and C3), as well as mid-to-late-life (C4) methylation
clusters, together with C1 and C6, were detected during the first
clustering round with clust17, which indicates that the CpGs in
these clusters exhibit a comparably strong signal, (iii) gene expres-
sion trajectories (Fig. 4a) support the timing of transitions identified
on the level of DNA methylation. Specifically, cluster CE1 (the
largest cluster) and CE6 support mid-to-late-life transition, and
CE5 supports early-to-mid-life transition.

In a tenfold cross-validation, our methylation clock predicts the
aging-stage membership without errors. Interestingly, the model
achieves this optimal performance by reflecting the stage transitions in
the model coefficients (Fig. 6b). For example, the early-to-midlife
cluster C3 with the steep increase between 3 mo and 9 mo, has the
largest positive coefficient in the early life stage. The other early-to-
midlife cluster, C2, has the highest coefficient in the midlife stage.
Differently, the mid-to-late-life cluster C4 has the largest positive
coefficient in the late-life stage (Fig. 6b).

To test the robustness of STageR, we randomly sampled a set of
cytosines of a given size from each cluster, calculated then the cluster
medians and used them for testing in each fold of cross-validation.
Subsequently, we evaluated the misclassification error using a tenfold
cross-validation. The entire procedure was repeated ten times,
choosing different cytosines randomly in each repetition. Strikingly,
themedianmisclassification error remained smaller or equal to 10% for
aminimumof 100 cytosines per cluster (Fig. 6c). It increased to 13% for
as little as 30 cytosines per cluster and rose over 20% only when ten or
fewer cytosines per cluster were used.

Next, we tested STageR on the validation dataset. In summary, all
20 validation samples were correctly assigned to their aging stages,
where the 3 momice were classified in early life, 7 mo and 12 momice
in mid-life, and 27momice in the late-life stage (Fig. 6d). Interestingly,
thepredictedprobabilities of all three stages reflect the younger ageof
all 7mo samples in comparison to 12mo samples with larger predicted
probabilities of early life stage while having their maximum in the
midlife stage (Fig. 6d).

Subsequently, we tested STageR’s performance with incomplete
methylation information. We sampled a fraction of overlapping cyto-
sines in the validation dataset (75, 50, 25, and 10% of the original size,
respectively) in each cluster, then calculated the sample median
methylation and predicted the aging-stage using STageR. The results
based on sampledmedians confirm the robustness of STageR even for
a small number of cytosines (Fig. 6e). The midlife (12 mo) and late-life
(27 mo) samples were consistently correctly classified even when
medians were determined on only 10% of the cluster cytosines. Early
life samples were correctly classified using at least 25% of cytosines,
showing a lowmisclassification rate (0.12)whenusing 10%of cytosines.
A larger variability involvingmisclassificationswas found only for the 7
mo samples when medians were based on 25% or less of all cytosines
when these samples were partially misclassified to the early life
stage. However, the mean predicted probabilities show consistent
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Fig. 3 | DNA methylation of CpGs following nonlinear trajectories in publicly
available bisulfite sequencing datasets. Upper panel, DNA methylation of CpGs
from most abundant nonlinear clusters C2, C3, and C4 from this study. Middle
panel, reduced representation bisulfite sequencing (RRBS) data of colon samples
from 27 weeks old mice with and without infection with Helicobacter hepaticus45.
Red arrows highlight the shifts in the median between the two experimental con-
ditions. Bottom panel, RRBS of colon-derived organoids46. The culture was estab-
lished from the colon crypts of 40-day-old mice and continued for the periods
indicated by the labels. Vertical lines in the density plots correspond to the
methylation median. Source data are provided as a Source Data file.
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patterns for all subsampled samples and their corresponding aging
stages (Fig. 6e).

Finally, we tested STageR on publicly available datasets45,46. The
proportion of cytosines from clusters C2, C3, and C4 covered by the
analyzed samples ranged from 20 to 80% (Supplementary Fig. 7b). We
were able to correctly predict the aging-stage of 27 weeks
(6,75 months) old mice based on their methylation levels measured in
colon45 (Fig. 5f). Interestingly, STageR confirmed our previous

observation of older methylation profiles in mice with an intestinal
infection compared to controls. Specifically, STageR assigns higher
probabilities of the midlife stage for mice infected with Helicobacter
hepaticus than healthy mice (Fig. 6f). Strikingly, colon organoids
derived from 40 days old mice46 are classified into late-life stages
independently from time in culture (Fig. 6f).

Taken together, we defined a cluster-based epigenetic stage clock
STageR that can capture the aging-relatedmethylation dynamics even
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when using a minor proportion of the data. Our robust aging-stage
classifier STageR can be easily applied to other datasets, even when a
small proportion of cluster cytosines is covered.

Discussion
The widespread successful application of DNA-methylation aging
clocks demonstrates an intricate link between a critical component of
the epigenome and the aging process in principle. By design, however,
methylation clocks are typically geared to predict a sample’s chron-
ological age based on methylation data from as few CpGs as possible.
Differences between the predicted and the true age are subsequently
interpreted as an acceleration or deceleration of aging. Unfortunately,
little can be learned about the underlying molecular mechanisms
driving the speed of aging from such a maximally reduced model. At
first glance, one could imagine the aging epigenome as a weathering
landscape exposed to constant erosion. Age-dependently and gradu-
ally increasing insufficiencies of the SAM cycle or decreasing methyl
group availability, for example, could lead to a loss ofCpGmethylation
at sites with a high DNA-methylation turnover. Clearly, linear models
using methylation data of a comparably small set of such CpGs would
be well-suited to reflect such a process. In this scenario, however, age-

related epigenomic change is a consequenceof amore profound aging
process that might not contribute to aging itself. Tuning a model’s
prediction performance while minimizing the necessary data at the
same time thus yields the danger of missing essential aging processes.
Consequently, investigating the methylome’s link to aging calls for
alternative analyses.

We have explored nonlinear aspects of age-related 5mC changes
to narrow this critical gap. Analyzing the data of aging mouse colon
tissues, we have identified multiple sets of CpGs exhibiting sudden
methylation changes at two different time points. One group of sets
undergoes a rapid methylation change during the early-to-midlife
transition, while another group exhibits accelerated methylation
changes during the mid-to-late-life transition. Interestingly, DNA
methylation switches at similar time points were observed in rat per-
ipheral blood DNA55. Notably, the division of the lifespan into three
stages is already supported by the raw methylation data (Fig. 1c). Our
data goes in line with a digital aging hypothesis which views aging as a
process consisting of discrete steps resulting from mechanisms
showing variation in rate during lifespan56. The existence of transitions
between discrete stages reveals the more controlled, or even pro-
grammed, nature of epigenetic aging and opens questions about the

Fig. 4 | Nonlinear gene expression trajectories in aging mouse colon. a Pie
charts illustrating the gene proportions within specific clusters relative to all dif-
ferentially expressed genes (top). Gene expression trajectories during aging as
Z-scores (bottom). Blue shading—cluster corresponding to early-to-mid-life tran-
sition, red shading—clusters corresponding to mid-to-late-life transition. b Genes
overlapping with at least one CpG following early-to-mid-life or mid-to-late-life
methylation trajectory were intersected with genes following the same type of
transition on gene expression level. * - only genes covered in the RRBS dataset were
included in the analysis. c Top five genes with the highest number of CpGs
undergoing either early-to-mid-life transition (left) or mid-to-late-life transition

(right) were selected from the intersection sets depicted in b. Each smoothed line
corresponds tooneCpG. Coloreddots represent themeanTPM for an age group. * -
the same set of CpGs was annotated to 6820408C15Rik (Supplementary Fig. 5)
d STRINGprotein–protein interaction network created fromgenes following amid-
to-late-life trajectory on both DNA methylation and gene expression levels. Genes
with known functions in the enteric nervous system, intestinal barrier, and/or
colorectal cancer are marked with specific coloring. Supplementary Table 1 con-
tains corresponding references related to the functions of genes from the network.
Source data are provided as a Source Data file.
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regulation and consequences of these abrupt changes. It also indicates
that essential insights into the nature of aging may be missed when
comparing only two ages.

The identified epigenetic transitions may have functional con-
sequences. CpGs following the early-to-mid-life transition are strongly
enriched in binding sites of Gata1, a critical transcription factor in the
development of eosinophils57. These immune system cells were
reported to play an important role in intestinal homeostasis, including
the maintenance of barrier function58. Interestingly, the concentration
of bacterial endotoxin, a marker of intestinal permeability, in mouse

plasma increases markedly between 2 and 15 mo59. Hence, it is likely
that early-to-mid-life transition changes affect the gut barrier.

In contrast, changes observed during the mid-to-late-life transi-
tion may affect the stem cell pool. It is well known that the function of
intestinal stem cells (ISCs) declines with age (reviewed in ref. 60), but
the underlying molecular processes are not well understood. We
identify age-dependent nonlinear DNA methylation dynamics in
regions important for ISCs function, such as bivalent chromatin and
binding sites of PRC2 complex components. PRC2 regulates ISCs in
adultmiceby themaintenanceof bivalent promoters61, and its deletion
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quartiles, and the upper and lower whiskers extend from the hinge to the largest or
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from each cluster. f STageR predictions for publicly available datasets45,46. Source
data are provided as a Source Data file.
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results in the loss of ISCs62. Moreover, genes overlapping CpGs fol-
lowing mid-to-late-life transition are associated with stem cell
exhaustion, an important hallmark of aging. Hence, it is tempting to
speculate that the nonlinear methylation changes are linked to the
decline of ISCs function in aging. Although changes in methylation
levels during mid-to-late-life transition are very subtle, they may have
profound consequences if the ISCs population is affected. Strikingly,
gene expression of Cdx1 and Ehf, transcription factors crucial for
colonic differentiation63, follow a nonlinear trajectory with drops in
expression coinciding with early-to-mid-life and mid-to-late-life tran-
sitions (Supplementary Fig. 8). Moreover, levels of apoptosis in the
intestinal crypts after low-dose irradiation increase considerably in 29
momice compared to 18mo and younger individuals64, indicating that
after mid-to-late-life transition, ISCs are more sensitive to damage.

Furthermore, our gene set enrichment analyses consistently show
strong associations between genes affected by nonlinear 5mCchanges
and the nervous system. Interestingly, mid-to-late-life transition,
starting after 15 months, agrees well with the timing of the loss of
enteric neurons, whose number stays stable for the first 16 months of
life and starts to decline afterward2. Thus, nonlinear DNA methylation
changes may affect not only ISCs but also neural progenitor cells. One
supporting evidence for this is the considerable increase in tran-
scription and methylation of Dmrta2 during the mid-to-late-life tran-
sition (Fig. 4c). Dmrta2 controls the cell cycle of neural progenitor
cells, and its increase suppresses differentiation35, which results in
impaired neurogenesis. Furthermore, the motility of the colon, which
is under the control of the enteric nervous system, undergoes changes
coinciding with the timing of the mid-to-late-life transition. For
instance, the total transit time is significantly prolonged in the colon
from 24momice compared to 18mo and younger individuals65, which
goes in line with the age-dependent changes in 5-HT signaling, a major
regulator of colonic motility66. The enteric nervous system (ENS)
communicates extensively with the central nervous system (CNS).
Thus, it may not be surprising that cognitive decline in mice also
occurs from the 15th month of age onwards67. Interestingly, many
neurodegenerative diseases are accompanied by gastrointestinal
symptoms, which can even manifest earlier than dysfunctions in the
CNS (reviewed in ref. 68). Moreover, the human ENS was shown to
express risk genes for extraintestinal diseases15. Therefore, future
analyses of transitions between epigenetic stages in the intestine may
shed light on the aging process of other organs as well.

Based on nonlinear DNA methylation trajectories, we built an
epigenomic age classifier. Our model STageR predicts the epigenetic
stage of life-based on median methylation values of the nonlinear
methylation clusters. The utility of our model may be counterintuitive
given the existence of highly accurate epigenetic clocks predicting
chronological age. However, depending on the usage context, a clas-
sifier allowing for dividing the aging process into stages may be more
practical. To date, biological markers stratifying aging into clear pha-
ses are lacking. We propose that nonlinear DNA methylation trajec-
tories may be used to stage the aging process. In contrast to current
epigenetic clocks, which convey little information on underlying
molecular processes, our set of cytosines is highly enriched for specific
features. Moreover, STageR overcomes a major technological bottle-
neck of current epigenetic clocks, which rely mostly on a predefined
set of cytosines and can be used predominantly with data from the
array technology. The set of loci used by STageR is highly redundant,
allowing for input data flexibility and usage ofWGBS or RRBS datasets.
STageR lays a foundation for future developments in epigenetic age
prediction.

The use of the RRBS protocol, which enriches CpG-rich regions,
enabled us to achieve high coverages, facilitating the cost-effective
identification of modest methylation changes. In turn, our analysis is
therefore biased towards CpG-rich regions. The bias likely influences
which trajectories are detectable, e.g., because CpG-rich regions such

as CpG islands are frequently hypermethylated. Also, CpG-rich regions
are frequently located in the vicinity of genes. Thus, trajectories spe-
cific to inter-genic regions are less likely to be captured. In the future, it
will be interesting to employ whole genome bisulfite sequencing
(WGBS) to profile DNA methylation across the entire genome. To
conclude, we detect major nonlinearities in the progress of aging on
the level of DNAmethylation andpropose amolecular basis aswell as a
tool for staging the aging process in the mouse colon. Characterizing
differences between stages resulting fromabruptmethylation changes
is an exciting area for future investigation.

Methods
Animals
Male C57BL/6J/Ukj mice were bred in the Central Experimental Animal
Facility (ZET) at Jena University Hospital, Jena, Germany. Mice were
maintained at 22 ± 2 °C on a 14 h/10 h day-night cycle and at a relative
humidity of 55 ± 10%. Mice had unlimited access to water and food
(ssniff mouse V1534-300, ssniff Spezialdiäten GmbH, Soest, Germany).
Mice at ages 3 (n = 16), 9 (n = 16), 15 (n = 16), 24 (n = 17), and 28 (n = 18)
months were used (n = 83 total). All studies were performed in strict
compliance with the recommendations of the European Commission
for the protection of animals used for scientific purposes and with the
approval of the local government Thüringer Landesamt für Ver-
braucherschutz, Germany (license TVA 02-024/15). Experiments are in
accordance with the ARRIVE guidelines. This study was performed on
male mice only. The inclusion of both sexes was not possible because
of limited resources.

Animals used for validation experiment
Animal experiments were approved by the state government of
Thuringia under the animal experiment license FLI-17-024 and FLI-19-
012. Male C57BL6/J mice were obtained from The Jackson Laboratory.
The mice were kept in individually ventilated cages (IVCs) under Spe-
cific Pathogen Free (SPF) conditions with a 12 h/12 h dark/light cycle at
a temperature of 20 °C and a relative humidity of 55% according to the
directives of the 2010/63/EU andGVSOLAS. Animals were sacrificed at
the age of 3 (n = 4), 7 (n = 5), 12 (n = 5), and 27 (n = 6) months.

DNA and RNA extraction
For the extraction of genomic DNA and RNA, the mice were sacrificed
by cervical dislocation. Subsequently, the colon was removed, rinsed
with PBS, and cut lengthwise. After that, the tissue was divided
lengthwise again and cut in themiddle. The tissuewas snap-frozen and
the proximal section of the colon was used either for DNA or RNA
extraction. GenomicDNAwas isolated with the DNeasy Blood & Tissue
Kit (Qiagen, Cat.no: 69504). For RNA isolation, all samples were
homogenized inQIAzol Lysis Reagent (Qiagen, Cat.no: 79306), and 0.2
volumes chloroform (Sigma, Cat.no: C2432) were added. Following
phase separation, the aqueous phase was transferred into a fresh tube,
then 0.16 volumes of NaAc (2M, pH 4.0) (Sigma, Cat.no: S7670) and 1.1
volumes isopropanol (Sigma, Cat.no: I9516) were added. The RNA was
precipitated over night at −20 °C. After centrifugation, the pellet was
washed with 75% ethanol (Merck, Cat.no: 1.00983.2500). Total RNA
was re-suspended in water (Invitrogen; Cat.no: 10977-035) and stored
at −80 °C until use.

RRBS library preparation and sequencing
Reduced representation bisulfite sequencing (RRBS) libraries were
prepared and sequenced at the CCGA Sequencing platform (Compe-
tence Center for Genomic Analysis - Kiel, Germany), using an in-house
protocol. In brief, 200ng of DNAwas fragmented via a 5 hMspI-digest
(New England Biolabs, Cat.no: R0106M), followed by TruSeq adapter
ligation (Illumina, Cat.no: 20020595) and subsequent bisulfite con-
version following the manufacturer&’s protocol (EZ DNA Methylation
Gold Kit, Zymo Research, Cat.no: D5005). In order to assess bisulfite
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conversion efficiency, spike-in control oligos from a TrueMethyl kit
(CEGX) were added prior to bisulfite conversion at a concentration of
0.4% (w/w). The bisulfite converted DNA was amplified in a 19-cycle
PCR with Pfu Turbo Cx Hotstart DNA Polymerase (Agilent Technolo-
gies, Cat.no: 600410), and the resulting libraries were quality checked
using 4200 TapeStation (Agilent Technologies, Cat.no: 5067-5584).
Finally, the RRBS-libraries were pooled and sequenced in paired-end
mode with 50 bp read lengths (S2 reagent kit, Illumina, Cat.no:
20028316) on a NovaSeq 6000 machine (Illumina).

Validation samples
For sequencing of validation samples, Illumina’s next-generation
sequencing methodology69 was used. In detail, genomic DNA was
quality-checked and quantified using the 4200 TapeStation instru-
ments in combination with the Genomic DNA ScreenTape (both Agi-
lent Technologies). Libraries were prepared from 100ng of input
material using Ovation RRBS Methyl-Seq with TrueMethyl oxBS
(Tecan, Cat.no: 0553-32). In detail, only the bisulfite part of the pro-
tocol was followed, oxidation of DNA was not done, and samples were
treated as MOCK oxBS samples according to the manufacturer’s
instruction. Quantification and quality checks of libraries were done
using the 4200 TapeStation and D5000 ScreenTapes instruments
(both Agilent Technologies). Libraries were pooled and sequenced on
a NovaSeq 6000 (Illumina) using S1 100-cycle reagents (Illumina,
Cat.no: 20028319). The system was running in 101 cycle/single-end/
standard loading workflow mode. Sequence information was con-
verted to FASTQ format using bcl2fastq v2.20.0.422.

RRBS preprocessing
An in-house RRBS analysis pipeline was applied to obtain significantly
differentially methylated regions within the mouse genome GRCm38
retrieved along with its gene annotation from Ensembl v102. The
bisulfite conversion was measured across all cytosines of spike-in
control sequences and was found to have a mean efficiency of 99.7%.
According to inspections made from FastQC v0.11.9 (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc) reports, low-quality
sequences and Illumina universal adapter-, as well as poly mono-
nucleotide content was removed from the 3’ end of the reads using
Cutadapt v2.1070 (quality cutoff 20), thereby clipping end-repaired
MspI cutting sites. The preprocessed data was then aligned to the
reference genome using the bisulfite treatment aware mapping soft-
ware segemehl v0.3.471,72 with an adjusted accuracy (95%). Mappings
were filtered by Samtools v1.1273 for uniqueness and properly aligned
mate pairs. Overlaps with first mate sequences were trimmed off from
the second mate utilizing BamUtil clipOverlap v1.0.1474. Afterward,
methylation rates were reported for all cytosines within a CpG context
that have a read coverage of at least 10. For this purpose, the data-
adaptive variant caller haarz v0.3.075 was used. One sample was
excluded from downstream analysis as it was identified as an outlier in
the principal component analysis (Supplementary Fig. 1a).

RRBS data analysis
For further analysis, we included CpGs that were covered by at least
eight biological replicates in all age groups (1,535,823 Cs in total),
hereinafter referred to as background cytosines.

Principal component analysis was calculated using prcomp func-
tion in the R stats package. Samples were clustered using 10,000
randomly selected background CpGs using the hierarchical complete
linkage clustering method and Euclidean distance of methylation
levels.

For each pairwise combination of age groups (e.g. 3 months vs.
9 months, 3 months vs. 12 months, etc.), BEDTools v2.29.276 was uti-
lized to compile matrices ofmethylation rates. Afterward, significantly
differentially methylated regions during aging (aDMRs) were called
using metilene v0.2.877 (q value ≤0.05 at a minimum of eight required

CpGs per DMR and eight data points per condition and CpG). All
aDMRs were then joined, resulting in 3981 aDMRs. CpGs overlapping
the aDMRs were extracted, resulting in 84,693 CpGs, hereinafter
referred to as aDMRs CpGs.

Clustering
All aDMRCpGs were clustered based on the Z-scores of the age group
mean methylation rate by clust v1.12.017 with four iterations in total.
After the first clustering round, 31% of aDMR-associated CpGs
remained unclustered. Hence, three additional rounds of clustering in
an iterativemannerwere performed resulting in 19 clusters comprising
94% of all aDMR CpGs.

Annotations
aDMRs and aDMR CpGs were annotated to genes and genomic fea-
tures using annotatr v1.20.078 and TxDb.Mmusculus.UCSC.mm10.
knownGene v3.10.0 R packages. The promoter region was set as 1 kbp
upstream from the transcription start site (TSS). Random CpGs were
sampled from background CpGs.

Enrichment analyses
Tracks with regulatory elements from ORegAnno79 and ENCODE
chromatin states frommouse intestine at P036 were downloaded from
UCSC Table Browser on 3 June 2019 and 25 May 2021, respectively.
Overlap between CpGs undergoing different trajectories in aging and
genomic features were performed with GenomicRanges v1.46.180.
Enrichments are presented as odds ratio (OR), and the p value was
calculated with Fisher’s exact test using R fisher.test function (two-
sided) and adjusted with the Benjamini–Hochberg method. For OR
calculation aDMR CpGs were compared to the mean of ten rando-
mized datasets of the same size drawn from background CpGs. Com-
plexHeatmap v2.10.0 was used for hierarchical clustering of age-
dependent trajectories based on the calculated OR. Enrichment in
tissue-specific genes was analyzed with TissueEnrich v1.14.081.

Overlapping genes with aDMR CpGs and background CpGs were
found using annotatr v1.20.0 when the CpGs overlapped the annota-
tion of gene promoters, exons, introns, 5’UTRs or 3’UTRs in mm10
genome. GO enrichment analysis for molecular functions and biolo-
gical processes was performed on all genes overlapping aDMR CpGs
against genes overlapping background CpGs using clusterPro-
filer v4.2.2.

Hallmark of aging enrichment analysis
Humangenes associatedwithHallmarks of Agingwereobtained from8.
Their mouse orthologs were found using Ensembl gene orthologs in
biomaRt v2.50.3 and org.Mm.eg.db v3.14.0. Genes overlapping with
CpGs in clusters C1–C5 were found using annotatr v1.20.0 and further
filtered for geneswith at least six CpGs fromthe corresponding cluster.
Enrichments were calculated using GeneOverlap v1.30.0 for the set of
each hallmark genes found also associated with the particular cluster
against all genes that are associated with the particular cluster and
have a human ortholog. Enrichments are presented as odds
ratios (OR).

Functional gene set enrichment analyses
Cytoscape v3.8.2 with a plug-in ClueGO v2.5.882 was used for the gene
ontology analysis and its visualization with the following settings: GO
biological process, custom reference set (genes overlapping with
background CpGs), right-sided hypergeometric test with Bonferroni
step down correction, p value ≤0.05.

Ingenuity Pathway Analysis v70750971 (IPA, QIAGEN)83 was
used for canonical pathway and potential upstream regulator
analysis. Genes overlapping with background CpGs were used as a
custom reference set, and p values were adjusted with the
Benjamini–Hochberg method.

Article https://doi.org/10.1038/s41467-024-47316-2

Nature Communications |         (2024) 15:3074 11

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc


RNA-Seq library preparation, sequencing, and data processing
RNA-sequencing libraries were prepared with the Illumina TruSeq
Stranded mRNA Library Preparation kit according to the vendor’s pro-
tocol. The resulting libraries were sequenced on a NovaSeq 6000
machine in paired-endmodewith read lengths of 100bp.We employed
cutadapt (v2.8) to remove adapter sequences from the raw reads with a
minimum overlap of 3 bp and a maximum error tolerance for 10% mis-
matches (TrueSeq forward adapter =GATCGGAAGAGCACAC; TruSeq
reverse complement universal adapter =GATCGGAAGAGCGTCGTG
TAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT). We did
additional 3’-end quality trimming for a minimum Phred-score of 25,
while also trimming poly-G ends due to Illuminas two-color chemistry
dark-cycle issues, with the cutadapt option --nextseq-trim=25. An addi-
tional quality filtering step was done with PrinSeq Lite (v0.20.4) with a
mean readquality over all basesof at least Phred-score 15, amaximumof
8 unknownbasecalls, andminimum read lengths of 20bp. Post-QC read
qualities were visually checked using FastQC (v0.11.9). Using Hisat2
(v2.1.0) software, the filtered reads were mapped against the Mus mus-
culus reference genome GRCm38 released by the European Bioinfor-
matics Institute in version 99 (February 2020). Only uniquely mapped
reads were kept, employing SamTools (v1.9) -F 256 flag. Gene abun-
dances were counted for properly mapped read pairs, taking into
account strandedness information (-s 2), with the tool “featureCounts”
from the subread software (v2.0.1).

RNA-seq data analysis
TPMs for all genes were calculated as raw read counts divided by the
merged gene length in kilobases (RPKs) and normalized then by the
scaling factor defined as the sum of all RPK values divided by 106. For
each age group, genes were categorized as active (mean TPM >0) or
inactive (mean TPM=0). Active genes were further divided into
expression deciles, with the lowest expressed genes in the first decile
and the highest expressed genes in the tenth. Differentially expressed
genes (DEGs) were assessed with the R-package DESeq2 v1.40.284. All
samples were loaded and processed together with a design formula
accounting for the library preparation batch and the age group as a
factor. Pairwise comparisons were extracted from the DESeq results
object for each one of the ten possible age group combinations. Genes
with padj <0.1 were considered significant. DEGs were clustered based
on the Z-scores of the age group mean TPM by clust v1.12.017 with five
iterations in total. A protein–protein interaction network was built
from genes undergoing the mid-to-late-life transition on both DNA
methylation and gene expression levels with the STRINGApp v2.0.1 of
Cytoscape85 with a confidence score = 0.4. To test for the enrichment
of genes associated with a particular methylation cluster and differ-
entially expressed genes undergoing transition at the same time,
fisher.test function in R version 4.2.2 stats package was used with all
genes covered in the RRBS experiment as the joint set. To test for the
enrichment of genes associated with C4 in differentially expressed
genes between the same time points, all differentially expressed aging
genes covered in the RRBS experiment were taken as the joint set.

Cell type deconvolution from bulk RNA-seq data
Cell type compositions of our bulk sequencing data were estimated
from RNA-Sequencing profiles via the R-package MuSiC (v1.0.0).
MuSiC employs single-cell gene expression data to infer cell type
compositions from bulk RNA-seq data86. We have obtained large
intestine single-cell expression data fromTabulaMuris87 as a reference
dataset forMuSiC. For cell type annotation, we chose the cell ontology
classification, which was present in the Seurat-objects metadata
information. The cell ontology classification offered five different cell
types: 2019 epithelial cells, 964 enterocytes, 833 goblet cells, 63 brush
cells, and 59 enteroendocrine cells. In this classification, epithelial cells
were all undifferentiated cells either Lgr5+ (stem cell marker) or Lgr5−,
while enterocytes were considered properly differentiated cells. We

used the raw counts from our bulk RNA-Seq data and annotated the
ENSEMBL gene IDs with gene symbols. Matching the bulk gene sym-
bols to the single-cell gene symbols gaveus anoverlapof 21,003genes.
Deconvolution proportions were calculated with cell ontology class as
“clusters” and single-cell data mouse id as “samples” variables. The
deconvolution scores good explained variance (R²-values) in the range
of 0.26−0.61. Differences in the cell type compositions between the
age groups were tested with Kruskal Wallis and Dunn’s post hoc test,
corrected for multiple testing via Benjamini–Hochberg FDR.

Validation dataset preprocessing and analysis
The validation RRBS data preprocessing was slightly adapted tomatch
the different library preparation protocol and single-end sequencing
technique. Reads that contain a diversity adapter of length zero to
three, following an MspI cutting site, were selected prior to adapter
clipping, sequence quality, and content assessment. Further, aligned
data was deduplicated for over-amplified PCR fragments based on
unique molecular identifiers utilizing UMI-tools v1.1.188. The down-
stream processing of the dataset was performed analogously to the
initial dataset. Here, we included CpGs that were covered by at least
four or 80%of biological replicates in the agegroup. aDMRswereagain
called between all combinations of age groups. The underlying CpGs
were then compared with the CpGs in the aDMRs of the initial dataset
using the GenomicRanges R package. To assess the similarity of the
cluster trajectories, the overlapping cytosines were assigned to the
corresponding cluster. Then the Euclidean distance to the cluster
centroids per age category were calculated for all these cytosines. 70%
of the closest CpGs with minimal distance to the cluster centroid were
selected for the visualization in Fig. 5. The cubic smooth spline fit was
calculated based on the Z-scores in the original dataset using
smooth.spline with 5 degrees of freedom. The same spline fit was
projected on the validation data vertically moved by the difference of
the median methylation levels at the initial state (3 mo). The dis-
tribution of themethylation values was shown using box plots ofmean
values over all samples in the corresponding age group.

Publicly available dataset processing and analysis
Publicly available RRBS DNA methylome experiments from colon
samples upon induced intestinal inflammation (GSE163037) and colon
organoids (GSE114801) were processed according to their experi-
mental designs and library preparation methods. Datasets of the first
project, derived fromapaired-end librarywith diversity adapters,were
filtered for read pairs which contain MspI cutting sites following a
diversity adapter, which was subsequently clipped prior to the appli-
cation of our analysis pipeline as described above. For the second
project, our pipeline was adjusted to match the requirements to pro-
cess reads from single-end sequenced samples, filtered for MspI cut-
ting site sequences at their 5’ end.

Cluster-based epigenetic clock
To build STageR (STage of AGing Estimator)—an epigenetic clock
based on the methylation information in clusters, we first calculated
the median methylation value in each of the nonlinear clusters C2, C3,
and C4 for each sample. This data matrix consisting of three cluster
values for 82 samples was used as the feature matrix in the elastic net
regression. The corresponding life stage (early life = 3 mo, midlife = 9
mo and 15 mo, late-life = 24 mo and 28 mo) was used as the response
variable. Multinomial logistic regression with elastic net regularization
and alpha = 0.5 was used to fit the epigenetic clock. The performance
of the original dataset was assessed by tenfold cross-validation with
folds equally distributed over the life stages. The optimal parameter
lambda was assessed through the nested tenfold cross-validation
procedure. Reported coefficients for all clusters are the beta mean
values from the outer tenfold cross-validation procedure which was
repeated ten times to assess for possible sample biases in the folds.
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The full model used for later predictions was fit using all 82 samples in
the original dataset. The elastic net regression was trained and tested
using glmnet v4.1.6 package, and the random folds were created using
the caret v6.0.93 package.

Subsampling from clusters
To evaluate how much information per cluster is important to suc-
cessfully predict the epigenetic life stage using STageR we conducted
the following subsampling strategy embedded into the tenfold cross-
validation procedure. In each fold, the particular number (e.g., 500,
200, 100, 50, 20, 10, and 5) of cytosines was randomly selected in each
cluster to calculate the median methylation values per cluster in the
test set. The median calculation in the training set remained unchan-
gedusing all cytosines. Then, the clockwasbuilt on the training set and
used for the prediction of the test set based on subsampled cytosines.
The misclassification error of each prediction was assessed. The sub-
sampling procedure was repeated ten times for each number of
cytosines to obtain different cytosines per cluster.

Clock-based prediction for the validation dataset
Medians per cluster were calculated using all cytosines overlapping
oneof the three clusters (C2, C3, andC4) andused for the predictionof
the life stage using the full STageR model. In the subsampling proce-
dure, only a proportion of the cytosines present in both the validation
and the original dataset per cluster (e.g., 75, 50, 25, and 10%, respec-
tively) was selected randomly. This procedure was repeated ten times
to obtain different sets of cytosines. The predicted probabilities for
each life stage (e.g., response) were assessed for each sample.

Clock-based prediction for the publicly available dataset
First, cytosines overlapping the selected clusters (C2, C3, and C4) were
selected using GenomicRanges v1.46.180 for colon samples upon
induced intestinal inflammation (GSE163037) and colon organoids
(GSE114801). Then, medians per cluster were calculated and used for
the prediction of the life stage using the full STageR model. The pre-
dicted probabilities for each life stage (e.g., response) were assessed
for each sample.

Visualization
Plots were visualized using any of the following R packages: ggplot2
v3.4.0, ggridges v0.5.4, Gviz v1.38.4, eulerr v6.1.1., and Complex-
Heatmap v2.10.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheRRBSdata generated in this studyhavebeendeposited in theGene
Expression Omnibus (GEO) database under accession code
GSE233734. The RNA-Seq data generated in this study have been
deposited in the GEO database under accession code GSE248002. The
RRBS data from colon samples upon induced intestinal inflammation
used in this study are available in the GEO database under accession
code GSE163037. The RRBS data from colon organoids used in this
study are available in the GEO database under accession code
GSE114801. Mouse reference genome GRCm38 used in this study is
available at [https://ftp.ensembl.org/pub/release%2D102/fasta/mus_
musculus/dna/] and [https://ftp.ensembl.org/pub/release%2D102/gtf/
mus_musculus/]. Source data are provided with this paper.

Code availability
Code for STageR is available at [https://github.com/Hoffmann-Lab/
STageR]89.
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