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Decreased Indian Ocean Dipole variability
under prolonged greenhouse warming

Soong-Ki Kim 1, Hyo-Jin Park1,2, Soon-Il An 1,2,3 , Chao Liu 1,
Wenju Cai 4,5,6,7, Agus Santoso8,9,10 & Jong-Seong Kug 11

The Indian Ocean Dipole (IOD) is a major climate variability mode that sub-
stantially influences weather extremes and climate patterns worldwide. How-
ever, the response of IOD variability to anthropogenic global warming remains
highly uncertain. The latest IPCC Sixth Assessment Report concluded that
human influences on IOD variability are not robustly detected in observations
and twenty-first century climate-model projections. Here, using millennial-
length climate simulations, we disentangle forced response and internal
variability in IOD change and show that greenhouse warming robustly sup-
presses IODvariability. On a century time scale, internal variability overwhelms
the forced change in IOD, leading to a widespread response in IOD variability.
This masking effect is mainly caused by a remote influence of the El
Niño–Southern Oscillation. However, on a millennial time scale, nearly all cli-
mate models show a long-term weakening trend in IOD variability by green-
house warming. Our results provide compelling evidence for a human
influence on the IOD.

The Indian Ocean Dipole (IOD) is a leading climate variability mode in
the tropical Indian Ocean1–3. A positive IOD phase features anom-
alously warm sea surface temperature (SST) in the western Indian
Ocean and cold SST in the east, and the zonal warm-cold pattern is
reversed during its negative phase. IOD events alter ocean and atmo-
spheric circulation patterns3–5 and the associated precipitation
anomalies cause substantial impact on Indian Ocean-rim countries,
such as droughts and floods in Australia6,7, Southeast Asia8–10, the
Indian continent11,12, and East Africa13, wildfires in southeast Australia14

and Indonesia9, coral reef dieback in western Sumatra15, and malaria
outbreaks in East Africa16.

Understanding the response of IOD to global warming has been
one of the long-standing important problems in climate science4,5,17–20.
The latest IPCC Sixth Assessment Report (AR6)21 has concluded that
the human influence on IOD is not robustly detected during the
observational period21,22 and the forced change in IOD by global
warming in the future is uncertain due to a lack of robust evidence21,23.
IOD variability, a fluctuation in climate variables induced by the IOD, is
typicallymeasuredby thedipolemode index (DMI),which isdefined as
the difference between the western (50° E–70° E and 10° S–10° N) and
eastern (90° E–110° E and 10° S–0° N) SST anomalies of the tropical
Indian Ocean. This traditional IOD index serves as a fundamental
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physical metric for IOD dynamics and associated teleconnection
impacts. So far, no significant trends in the DMI variability have been
detected in either observations or future climate-model
projections17,18, despite a strong warming signal being present in the
tropical Indian Ocean18,24. Although some studies founded changes in
the intensity and frequency of strong positive IOD events in the pro-
jected future climate using the principal component decomposition
technique on SST5 and rainfall4,25, the response of DMI variability,
which describes the warm-cold cycles of the tropical IndianOcean SST
anomalies, remains uncertain and no inter-model consensus has yet
been found.

The lack of robust changes in DMI variability appears contra-
dictory to our understanding of IOD dynamics. The mean state of the
tropical Indian Ocean, which is known to physically shape the IOD
feedback processes and variability, shows robust changes due to glo-
balwarming: fasterwarming in thewest thaneast (i.e., positive IOD-like
warming), shoaling of the eastern thermocline, and easterly wind
anomalies18. Such a clear warming pattern in the tropical Indian Ocean
raises the question as to why the change in IOD amplitude is not as
robust as the change in the background mean state.

One of the possible reasons for this problem is internal variability,
a natural variation of IOD characteristics caused by intrinsic atmo-
spheric and oceanic processes. Internal variability can mask forced
changes in IOD variability due to global warming, resulting in a wide
range of IOD amplitude projections and an obscured link with the
changes in the mean background state of the tropical Indian Ocean. A
large ensemble simulation using the Community Earth System Model
shows that internal variability alone can generate widespread long-
term trends in future IOD variability change; projected IOD amplitude
in the twenty-first century either increases or decreases depending on
the ensemble member with different internal variability, despite the
same warming forcing26. Notably, a spectral analysis of the CMIP6
preindustrial control (piControl) experiment shows a surprisingly low-
frequency peak in the inter-centennial IOD amplitude change, ranging
from 1/400 year−1 to 1/50 year−1 (Supplementary Fig. 1). This implies
that the internal variability has the potential to influence future CMIP6
IOD projections, which are typically assessed over an 86-year time
frame (2015-2100). Taken together, this underscores the need for an
unprecedented long length of warm climate simulations to reliably
resolve forced response and internal variability.

In this Article, we utilize climate simulations from the Long Run
Model Intercomparison Project27 (LongRunMIP), an archive of
millennial-length scale fully coupled climate-model simulations, to
clarify a forced response of IOD to greenhouse warming. The Long-
RunMIP provides global climate simulations subject to a wide range of
atmospheric CO2 levels with a length of typically longer than 1000
years. The typical forcing scenario is an instantaneous doubling
(abrupt2x), quadrupling (abrupt4x), and octupling (abrupt8x), and a
gradual increase at a rate of 1%per year until the atmospheric CO2 level
doubles (1pct2x) and quadruples (1pct4x). After the CO2 increase, the
forcing is stabilized for typically longer than 1000 years. The Long-
RunMIP also provides a preindustrial control simulation with constant
external forcings (control). Therefore, the LongRunMIP provides a
unique opportunity to disentangle forced response and internal
variability and to systematically study the response of IOD to different
levels of greenhouse warming (e.g., ref. 28).

We evaluate the IOD simulation performance of all available
models from the LongRunMIP archive, and select 9 models that can
reasonably simulate the observed temporal and spatial characteristics
of IOD (“Methods” section and Supplementary Discussion 1). Our
analysis sample includes 9 control and 18 high-CO2 simulations (total
27) from 9 models (Supplementary Table. 1). We use the DMI, a com-
monly used index for IOD, to describe IOD variability (“Methods”
section). We apply two different measures for the strength of the IOD
variability. The main metric is the IOD amplitude, defined as the

standard deviation of the DMI. The other is IOD event intensity,
defined as the peak DMI during the positive or negative IOD event
(“Methods” section). Both metrics are highly correlated by definition
(i.e., if the IOD amplitude is high, the IOD event intensity is very likely
to be high, and vice versa), but we mainly use the IOD amplitude to
examine the change in the IOD variability strength. The IOD amplitude
is a fundamental metric that can show the overall response of the IOD
variability to greenhouse gas warming. The simplicity of the IOD
amplitude definition has advantages that facilitate the physical inter-
pretation of the results.

Results
Equilibrium IOD response
We first analyze the equilibrium response of IOD variability to CO2

forcing. We use the last 500 years of variables where the global mean
surface temperature (GMST) reaches nearly equilibrium (Supplemen-
tary Fig. 2) and define this time frame as the equilibrium period. The
simulation array of different levels of equilibrium GMST allows us to
examine the forced equilibrium response of IOD to greenhouse
warming.We calculate the IOD amplitude for the equilibriumperiod of
each control and high-CO2 simulation.

In almost all models, the IOD amplitude decreases monotonically
with increasing CO2 (Fig. 1a). The exceptions are HadCM3L and
MIROC3.2. HadCM3L simulates a decreased IOD amplitude in the
abrupt4x, but an increased IOD amplitude in the abrupt2x and
abrupt8x simulations. MIROC3.2 shows a slight increase in 1pct2x, but
a large decrease in 1pct4x. Simulation-wise, the majority of the high-
CO2 simulations (15 out of 18) show decreased IOD amplitude com-
pared to their control simulations. The average intensity of positive
and negative IOD events decreases in nearly all high-CO2 simulations
(18 of 18 high-CO2 simulations for positive IODand 15 of 18 for negative
IOD), and the change is monotonic with CO2 in most models (Sup-
plementary Fig. 3 and “Methods” section). Both the reduced SST
variability in the eastern and western tropical Indian Ocean contribute
almost equally to the decrease in IOD amplitude (Supplementary
Fig. 4). The seasonal variability of IOD decreases in almost all seasons
(Supplementary Fig. 5). These changes show that theweakening of IOD
variability is robust under equilibrium greenhouse warming. The
equilibrium sensitivity analysis (“Methods” section) suggests that the
change in IOD amplitude per 1 °C increase in GMST is estimated to
range from –6.6% to 0.6%, and 8 out of 9 models show a negative
sensitivity (Fig. 1b).

Notably, the CESM1.0.4 simulates a substantial weakening of IOD
variability, that is a near-collapse response to CO2 forcing. The power
spectra of the IOD variability in a broad frequency range (1/50 to 1/2
year−1) largely decreases with increasing CO2 levels (Supplementary
Fig. 6). In particular, the spectral power of the IOD variability is almost
indistinguishable from the climate noise level in the abrupt8x simu-
lation. This suggests that the IOD mode is in a near-collapse state and
that the tropical Indian Ocean SST variability is dominated by
climate noise.

Such transition occurs not only in the amplitude but also in
the seasonal phase locking and spatial pattern of the
CESM1.0.4 simulations. The IOD commonly peaks in September in all
CESM1.0.4 simulations, but a secondary peak appears in April with
increasing CO2 levels (Supplementary Fig. 5), indicating an alteration
of the typical seasonality of the IOD. This alteration in the seasonality
also occurs in other models including HadCM3L and CCSM3II.
HadCM3L simulations show a transition in seasonal peak from
October (control and abrupt2x) to July (abrupt4x and abrupt8x).
CCSM3II simulations show a gradual shift of seasonal peak from
September (control) to August (abrupt700ppm) to June
(abrupt1400ppm). Such a pronounced increase in IOD variability in
boreal summer is consistent with the previous study19 shows an
increased occurrence of early positive IOD events by global warming
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under the IPCC’s high-emissions scenario (although the warming
scenario is different).

The spatial pattern of variability in CESM1.0.4 simulations also
change from a dipole-like to a monopole-like pattern due to the
weakening of thewestern IndianOceanSST variability (Supplementary
Fig. 7). The abrupt8x shows a clear monopole-like variability pattern,
which is more appropriately referred to as Indian Ocean Monopole
rather than an IOD. These results show that themain characteristics of
the IOD in a significantly warm climate can substantially deviate from
those of what are currently known about the IOD. This is somewhat
analogous to the bifurcation or critical transition phenomenon29,30,
which refers to qualitative changes in the characteristics of a system
when it crosses the critical threshold.

Transient IOD response
Next, we analyze the transient response of the IOD amplitude to the
CO2 forcing. We calculate the 100-year moving IOD amplitude for the
entire simulation period. This window length corresponds to the
typical time length for assessing future IOD change (e.g., comparing
IOD variability for 1900–1999 and 2000–2099). The inter-simulation
mean of the equilibrium GMST warming level of the quadrupling CO2

simulations (abrupt4x and 1pct4x) is 5.5 °C (Supplementary Fig. 2).
This is comparable to the projected warming level over 2081–2100 in
the IPCC’s high-CO2 emissions scenario21, which ranges from 3.3 °C to
5.7 °C, although the detailed warming pathway is different.

The evolution of IOD amplitude against GMST level is shown in
Fig. 2a. In nearly all high-CO2 simulations (17 out of 18), the IOD
amplitude shows a long-term decreasing trend with increasing GMST.
The exception is HadCM3L abrupt8x. This is consistent with the
equilibrium response shown in Fig. 1, indicating that the long-term
trend can be read as a forced response due to greenhouse warming
towards the equilibrium state. However, within this long-term trend,
the IOD amplitude largely fluctuates, not in line with the steadily
increasing GMST. For example, the CESM1.0.4 abrupt4x simulation
shows that the IOD amplitude increases in the GMST range between

18 °C and 19 °C, contrary to the long-term decreasing trend (Fig. 2a).
This fluctuation is due to internal variability of the IOD amplitude, a
deviation from the forced long-term trend. Throughout the paper, we
refer to the anomalous short-term fluctuation in the variable that
deviates from the long-term forced change as internal variability. This
shows that the internal variability can mask the forced response to
greenhouse warming by broadening the response range of the IOD
amplitude.

To quantify the internal variability of IOD amplitude deviating
from its forced long-term trend, we perform the transient sensitivity
analysis (“Methods” section). Based on the results shown in Fig. 2a, we
calculate the moving transient sensitivity of IOD amplitude against
GMST and derive its distribution. This distribution represents an
ensemble of all possible measurable transient sensitivities of IOD
amplitude under a given warming forcing. If the change in IOD
amplitude is driven solely by the forced response and not influenced
by internal variability, the distribution would converge to the long-
term trend sensitivity. In all high-CO2 simulations, the transient sen-
sitivity shows widespread distribution that deviates from its long-term
trend sensitivity (Fig. 2b and Supplementary Fig. 8). The distribution
range of the transient sensitivity differs between the model and
simulations. For example, the CCSM3II abrupt700ppm ranges from
−92%/°C to 50%/°C and the IPSL-CM5A-LR abrupt4x ranges from−37%/
°C to 13%/°C (mean minus/plus one standard deviation). However, in
all high-CO2 simulations, the transient sensitivity ranges from negative
to positive value, and its lower/upper bound is much larger than its
long-term trend sensitivity.

Consistent with the IOD amplitude change, the intensities of both
positive and negative IOD events also show long-term decreasing
trends with increasing GMST (15 of 18 high-CO2 simulations for posi-
tive IOD and 15 of 18 for negative IOD), but show large fluctuations and
widespread transient sensitivity to GMST (Supplementary
Figs. 9 and 10).

This suggests that internal variability significantly influences the
inter-centennial IOD variability change to GMST increase and masks

a b

1 S.D range

Decreased simulation (15 out of 18)

Increased simulation (3 out of 18)

Percentage change in equilibrium IOD amplitude 
per 1 C increase in GMST

Decreased model (8 out of 9)

Increased model (1 out of 9)

Fig. 1 | Changes in Indian Ocean Dipole (IOD) amplitude in a warm equilibrium
climate. a Changes in IOD amplitude in the equilibrium period where global mean
surface temperature (GMST) reaches equilibrium after an increase of atmospheric
CO2 level. The absolute IOD amplitude (left axis) and the percentage change from
the control simulation (right axis). A one standarddeviation rangeof IODamplitude
in the control simulation is shown in gray shading. A high-CO2 simulation with a
decrease (increase) in IOD amplitude outside of the one standard deviation range
of the control simulation is marked with a black circle (triangle). In all high-CO2

simulations, the IOD amplitude change compared to the control simulation is

statistically significant (P <0.05). The statistical significance is testedwith the F-test
for a pair of dipole mode index (DMI) time series of the control and high-CO2

simulations. b The equilibrium sensitivity of IOD amplitude to GMST. For each
model, the equilibrium sensitivity is calculated using an array of IOD amplitude and
GMST in the equilibrium period (“Methods” section). The model with negative
(positive) sensitivity is marked with a colored circle (triangle). This equilibrium
sensitivity indicates the percentage change in IOD amplitude per 1 °C increase in
GMST under an equilibrium climate condition.
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the long-term response. The masking effect of internal variability
becomes stronger with increasing strength and decreasing frequency
of internal variability (Supplementary Discussion. 2).

Physical sources of the IOD change
To investigate the physical sources of the forced change and internal
variability of IOD amplitude, we utilize a simplemodel for the IOD20,31,32

(“Methods” section). The simple IOD model includes three key para-
meters/terms that characterize IOD variability, namely, local feedback
processes (λ), external El Niño–Southern Oscillation (ENSO) forcing
(β × ENSO), and weather noise (σ). The simple IOD model, which rea-
sonably reproduces the IOD variability (blue lines in Fig. 3f, g), disen-
tangles the key physical sources of IOD as each parameter (“Methods”
section and Supplementary Figs. 11–14) and allows us to quantify the
contribution of each of physical source to the change in IOD ampli-
tude. All three parameters/terms, λ, β × ENSO, and σ are robustly
decreased in the equilibrium period of high-CO2 simulations (Fig. 3a
and Supplementary Fig. 11) and exhibit considerable internal variability
(Fig. 3e and Supplementary Figs. 12–14) (“Methods” section).

Weperform twodifferent sets of experimentswith the simple IOD
model. First, we perform the parameter perturbation experiment
(“Methods” section) to quantify how much each forced change in λ,
β × ENSO, and σ contributes to the forced change in the IOD amplitude.
Second, we perform the low-pass parameter experiment (“Methods”
section) to quantify how much each of the internal variability of λ,
β × ENSO, and σ contributes to the internal variability of the IOD
amplitude.

The results of the parameter perturbation experiment (Fig. 3f)
show that the decrease in λ is the most dominant factor for the forced
IOD amplitude change, and the decrease in σ is a secondary con-
tributor. The decrease in β × ENSO has a minimal contribution. This
shows that greenhouse warming suppresses the local feedback pro-
cesses in the tropical Indian Ocean, leading to the decrease in IOD
amplitude. However, the weakened ENSO forcing makes virtually no
contribution to the IOD change, even though ENSO is known to be a
major forcing of IOD31,33. The change in local feedback processes is

associated with the changes in mean climatological state of the tro-
pical Indian Ocean17,18,20 (detailed discussion can be found in Supple-
mentary Discussion 3).

In contrast, the results of the low-pass experiments (Fig. 3g) show
that the internal variability in β × ENSO is the most dominant factor for
the internal variability of the IOD amplitude, and λ and σ play sec-
ondary roles. This indicates that the inter-centennial change in ENSO
forcing is a primary source of the internal variability of IOD amplitude,
while the local feedback processes have a lesser influence. Thus, the
masking effect of internal variability, which leads to the widespread
response of IOD amplitude, is mainly attributed to the remote influ-
ence of ENSO.

The remote ENSO forcing is a combined effect of ENSO variability
(ENSO) and sensitivity of IOD to ENSO variability (β). We perform
additional experiments to separately quantify their contribution to the
forced change and the internal variability of the IOD amplitude
(“Methods” section). The changes in both ENSO andβmake virtually no
contribution to the forced decrease in IOD amplitude (Supplementary
Fig. 15). The decrease in ENSO variability makes a larger contribution
than β, but the contribution is very small compared to λ and σ. The
internal variability of ENSO alonemakes a considerable contribution to
the internal variability of the IOD amplitude, similar in magnitude to
that of λ and σ, and β makes a slightly smaller contribution (Supple-
mentary Fig. 16). This shows that the large internal variability of
β × ENSO and its influence on IOD is attributed to combined internal
variability of ENSO and β.

In summary, these results from the simple IOD model experi-
ments show that the internal variability of the IOD amplitude is pri-
marily caused by the remote influence of ENSO, while the forced
weakening of the IOD amplitude is mainly induced by the suppression
of local feedback processes in the tropical Indian Ocean.

Remote ENSO influence on the IOD change
The quantification by the simple IOD model experiments shows that
the remote ENSO forcing is the dominant source of the internal
variability of the IOD amplitude, while it has a very small contribution

a b
Percentage change in transient IOD amplitude

per 1 C increase in GMST

abrupt2x

abrupt4x

abrupt8x

abrupt700ppm

abrupt1400ppm
abrupt2x

abrupt4x abrupt8x

1pct2x
1pct2x 1pct4x

abrupt4x

abrupt2x
abrupt4x

abrupt8x abrupt4x
1pct2x

1pct4x

1 S.D.-1 S.D. Mean

Long-term sensitivity

Fig. 2 | Evolutionof the IndianOceanDipole (IOD) amplitudeundergreenhouse
gaswarming. a Evolution of the 100-yearmoving IOD amplitude against the global
mean surface temperature (GMST) change. The linear regression line of IOD
amplitude against GMST is shown as a dashed line. All high-CO2 simulations show a
decreasing trend in IOD amplitude with increasing GMST, except for HadCM3L
abrupt8x. All linear trends are statistically significant (P <0.05). b The statistics of
the transient sensitivity of the IOD amplitude to GMST. For each high-CO2

simulation, the transient sensitivity is calculated withmoving GMSTwindowof 1 °C
(“Methods” section). The mean and one standard deviation of the transient sensi-
tivity distribution is shown as a large black circle and error bar. The full distribution
of the transient sensitivity can be found in Supplementary Fig. 8. The long-term
sensitivity (i.e., the slope of the linear regression line in a) is plotted as a small black
circle. The distribution represents an ensemble of all possiblemeasurable transient
sensitivities of the IOD amplitude under increasing GMST.

Article https://doi.org/10.1038/s41467-024-47276-7

Nature Communications |         (2024) 15:2811 4



to the forced IOD amplitude change. This contrasting role of the ENSO
forcing can be understood in physical terms.

The remote ENSO forcing on the IOD occurs by altering the
atmospheric circulation in the tropical Indian Ocean basin17,31,34,35. The
example ENSO regression pattern for wind stress and SST anomaly in
the tropical IndianOcean is shown in Supplementary Fig. 17. The warm
(cold) phase of ENSO induces an anomalous easterly (westerly) wind
stress in the eastern and central tropical Indian Ocean. This anomalous
easterly (westerly) wind stress strengthens the wind-thermocline-SST
feedback which acts as positive feedback, and consequently facilitates
the development of the positive (negative) phase of the IOD. Thus, the
ENSO-induced IOD variability is linked to the wind stress variability in
the eastern and central tropical Indian Ocean.

In the high-CO2 simulations, the eastern and central wind stress
variability in the tropical Indian Ocean is robustly weakened (Supple-
mentary Fig. 18). This forced weakening of the wind stress variability is
correlated with the decrease in the remote ENSO forcing (Supple-
mentary Fig. 18) and also with the ENSO-induced decrease in IOD
amplitude (Supplementary Fig. 19). This suggests that the forced

decrease in ENSO forcing weakens the wind stress variability in the
tropical Indian Ocean and has a subsequent effect on the decrease in
IOD amplitude. However, the reduced ENSO forcing actually has a very
small contribution to the decrease in IOD amplitude as shown in the
simple IOD model experiments. This is because the IOD feedback
processes are related not only to the wind stress variability, but also to
multiple mean states of the tropical Indian Ocean, including thermo-
cline depth, zonal SST gradient, and surface-subsurface coupling
strength (e.g., sensitivity of SST to thermocline depth perturbation)
(Supplementary Discussion 3). The forced change in these multiple
factors would also contribute to the change in the feedback process
and the associated IOD amplitude. Thus, the ENSO-inducedweakening
of the wind stress variability and associated wind-thermocline-SST
feedback alone has a limited impact on the net feedback process, and
is therefore unlikely to induce a significant change in IOD amplitude.

In contrast, the eastern and central wind stress variability can
considerably contribute to the internal variability of IOD amplitude.
The eastern and central wind stress variability shows a very high level
of internal variability (Supplementary Fig. 20). The internal variability

Forced IOD amplitude change

Thermocline depth SST Wind stress

Internal variability of IOD amplitudef g

b c da Local feedbacks Remote ENSO forcing Atmospheric noise

e
Ratio of internal variability to forced change

-

+

-

+

-

+

+

-

+

-

-

+

-

+

+

-

Fig. 3 | Physical sources for the forced change and internal variability of Indian
OceanDipole (IOD) amplitude. a–dChanges in simple IODmodel parameters and
mean climatological states of the tropical IndianOcean in the equilibriumperiod of
high-CO2 simulation. The change is calculated by subtracting the control simula-
tion value from the high-CO2 simulation value (colored dots). The plus (minus) sign
indicates whether the change leads to an increase (decrease) in IOD amplitude (see
Supplementary Discussion 3). a The changes in the annual mean λ (left panel),
β × ENSO (middle panel), and σ (right panel). β × ENSO is a multiplication of the
annual mean β and El Niño–Southern Oscillation (ENSO) amplitude. b Changes in
the east (90° E–110° E and 10° S–0° N) (left panel) and west (50° E–70° E and 10°
S–10° N) (middle panel) thermocline depths. Changes in the west minus east
thermocline depth gradient (right panel). c Changes in the east (90° E–110° E and
10° S–0° N) minus west (50° E–70° E and 10° S–10° N) sea surface temperature
(SST). d Changes in the central (70° E–90° E and 5° S–5° N) zonal wind stress. e The

ratio of internal variability to forced changes for the simple IODmodel parameters
and mean climatological states of the tropical Indian Ocean (same variables as in
a–d). The standard deviation of the anomaly (deviation from a quadratic trend) is
divided by the forced equilibrium change (deviation from the control experiment).
A larger ratio indicates greater internal variability compared to the forced response.
Theblackdot indicates the ensemblemean. fResults of theparameterperturbation
experiments (“Methods” section). The original (x-axis) and reproduced IOD
amplitude by the simple IOD model (y-axis). The percentage change in IOD
amplitude from the control experiment is shown. The colored dots are the results
of each high-CO2 simulation. The linear regression line (without intercept) of the
reproduced IOD amplitude versus the original IOD amplitude (solid line). The slope
of the regression line is shown in the legend. g Results of the low-pass parameter
experiment (“Methods” section). Same as (f), but the standard deviation of IOD
amplitude variation (i.e., the strength of internal variability) are compared.
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of eastern and central wind stress is associated with the internal
variability of ENSO and its remote forcing on IOD (Supplementary
Fig. 21), and is closely linked with the internal variability of IOD
amplitude (Supplementary Figs. 22 and 23). This suggests that the
internal variability of ENSO influences the eastern and central wind
stress variability in the tropical Indian Ocean, and contributes to the
internal variability of IOD amplitude. The strong internal variability of
ENSO and the associated remote forcing by the anomalous wind stress
variability make the ENSO forcing the largest contributor to the
internal variability of IOD amplitude.

Discussion
Our results provide one explanation why the CMIP5/6 future projec-
tions show a widespread response of the IOD amplitude despite the
presence of a robust warming pattern in the tropical Indian Ocean, in
terms of the masking effect of internal variability. In high-CO2 simu-
lations, the tropical Indian Ocean shows a robust forced change in
mean climatological states; the eastern and western thermocline
depths decrease (Fig. 3b), the zonal SST gradient decreases (i.e.,
positive IOD-like change) (Fig. 3c), and the central Indian Ocean wind
stress shows anomalous easterlies (Fig. 3d). Following the changes in
the mean climatological state and the associated suppression of local
feedbackprocesses, the IODamplitude robustlydecreases in thewarm
equilibrium climate. This indicates that the IOD amplitude is tightly
correlated to the mean state of the tropical Indian Ocean under an
equilibrium climate condition, consistent with the conventional
notions on the IOD dynamics. In contrast, under a transiently warming
climate, the IOD amplitude is heavily influenced by internal variability
attributed to the remote ENSO influence, and this internal variability
obscures the relationship between the mean state of the tropical
Indian Ocean and the IOD amplitude. Consequently, the internal
variability weakens the correlation between the IOD amplitude and the
mean climatological state of the tropical Indian Ocean.

Our results show that anthropogenic climate warming leads to a
suppression of the IOD variability in the long term, offering a com-
pelling argument for a human influence on IOD variability change with
a high degree of inter-model consensus. The long-term climate simu-
lations allow us to disentangle the forced response and internal
variability, and to clarify the forced response of IOD to greenhouse
warming. Although the detailed warming pathways differ from the
typical CMIP5/6 futureprojection, our results clearly reveal the physics
of the IOD response to global warming. It implies that the absence of
clear anthropogenic signals in the historical and future IOD
variability21–23 can be partly attributed to the strong masking effect of
internal variability which includes remote ENSO influence. Further-
more, our study suggests the possibility of dramatic changes in the
characteristics of IOD in a very warm climate environment, such as the
occurrence of double peaks in the boreal spring and fall, and a zonally
uniform oscillation pattern, as seen in the CESM1.0.4 simulations.
Given the widespread influence of IOD on the global hydrological
patterns6,10–13, such changes would likely cause shifts in monsoon
precipitation and affect hydrological extremes and wildfire occur-
rences in Indian Ocean-rim countries.

Methods
LongRunMIP data
We use simulation output from the LongRunMIP archive. The Long-
RunMIP archive includes a total of 11 models that provide monthly
surface temperature (or monthly surface air temperature) variables
longer than 500 years.We evaluate the IOD simulation performance of
the 11 models, and select 9 models that can reasonably simulate the
observed spatial and temporal characteristics of IOD. The model
evaluation process and selection criteria are explained in Supple-
mentary Discussion 1. The selected models are listed Supplementary
Table 1.

The selected analysis sample includes a total of 27 simulations
from 9 models. The simulation sample consists of 9 control and 18
high-CO2 simulations (each model has a single number of control
experiments). The control simulation is preindustrial run with a con-
stant 1850 forcing. The high-CO2 simulation includes the following
forcing scenarios: instantaneous doubling (abrupt2x), quadrupling
(abrupt4x), and octupling (abrupt8x); and gradual increase of 1% per
year until doubling (1pct2x) and quadrupling (1pct4x) of atmospheric
CO2 levels relative to the control simulation. As an exception, CCSM3II
includes the abrupt700ppm and abrupt1400ppm experiments. These
experiments abruptly increased CO2 levels to 700 ppm and 1400 ppm
from the control level, respectively. After the increase in the CO2 level,
the CO2 level remains unchanged until the end of the simulation. The
length of the simulation differs by simulation (Supplementary Table 1),
but all simulations are longer than 500 years. The analysis sample of
the high-CO2 simulations does not include their control simulation
period. Details of the LongRunMIP protocol can be found in ref. 27.

Monthly surface temperature (variable name: ts) is used as aproxy
for the SST since monthly SST is not consistently available (only a few
models offer monthly SST data). Ref. 28 also applied a similar method
to study ENSO amplitude changes using the LongRunMIP archive. For
GISS-E2-R, monthly surface air temperature (variable name: tas) is
utilized instead of monthly surface temperature, which is unavailable.

We use annual ocean potential temperature (variable name: the-
tao) and zonal wind stress (variable name: tauuo) variables. The
monthly ocean potential temperature and zonal wind stress are not
consistently available (only a few models offer monthly data). The
ocean potential temperature is used for the calculation of the ther-
mocline depth. The ocean potential temperature is unavailable for the
CCSM3II model, and the zonal wind stress is unavailable for the
CCSM3II and GISS-E2-Rmodels. Therefore, thesemodels are excluded
from the results related to the thermocline depth and zonal wind
stress.

CMIP6 data
We use the piControl experiment from the CMIP6 archive36. A total of
36models areused. Themodel name, ensemble, and simulation length
are listed in Supplementary Table 2. We use monthly SST (variable
name: tos) for the DMI calculation.

Calculation of the DMI and Niño 3.4 index
The DMI is calculated for the LongRunMIP and CMIP6 simulation
output. For the LongRunMIP, we applied quadratic detrending to the
monthly SST to remove the forced long-term change (i.e., secular
mode). The detrending is performed for the entire period of the
simulation (see Supplementary Table 1 for the length of each simula-
tion). The anomaly is defined as a deviation from this long-term trend.
The area-averaged monthly SST anomaly is calculated for the western
(50° E–70° E and 10° S–10° N) and eastern (90° E–110° E and 10° S–0°
N) tropical Indian Ocean. The DMI is calculated as the west minus east
monthly SST anomaly. The Niño 3.4 index is calculated as the area-
averaged monthly SST anomaly for the Niño 3.4 region (170° W–120°
W and 5° S–5° N). As a result, for each simulation, we obtain the DMI
and Niño 3.4 index time series, the length of which is equal to the
length of the entire simulation. Using these DMI and Niño 3.4 index
time series, we perform analyses including the calculation of IOD
amplitude and event intensity.

IOD and ENSO amplitude
The amplitude of IOD and ENSO is defined as the standard deviation of
the DMI and Niño 3.4 index, respectively.

Detection of IOD events
The positive (negative) IOD event is defined as a three-month running
meanof DMI exceeding (below) the one standarddeviation of the time
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series for at least three consecutivemonths. The intensity of a positive
(negative) IOD event is the highest (lowest) DMI level during the event.

Definition of the equilibrium and transient response
The equilibrium IOD response is defined as the response of IOD
variability to an increased equilibrium GMST level. The equilibrium
response reflects the forced equilibrium response due to greenhouse
gas warming. The transient response is defined as the evolution of IOD
variability in response to increasing GMST with time. The transient
response reflects both the forced response and internal variability.
Specifically, we interpret the long-term trend in IOD amplitude (or IOD
event intensity) as the forced response, and the fluctuation in IOD
amplitude (or IOD event intensity) that deviates from the long-term
forced trend as the internal variability.

Spectrum analysis
The spectrum analysis is performed using the Multi-Taper Method
(MTM), a widely used technique for spectrum estimation. The para-
meters of the MTM analysis are chosen by following the standard
guidelines of ref. 37,38. We set the time-frequency bandwidth para-
meter (NW) to 2, and the number of Slepian Tapers (K) to 3. The sig-
nificance of the power spectrum is estimated based on the red noise,
which is a typical null hypothesis for climate variability. The 99%, 95%,
and 50% significance levels are calculated using the Monte Carlo
method with 100 ensembles.

Equilibrium sensitivity
Wecalculate the equilibrium sensitivity of the IOD amplitude toGMST.
Weuse the IODamplitude andGMST in the equilibriumperiod (i.e., the
last 500 years of the simulation). For each model, we calculate the
linear regression coefficients of {DMI}s = aeq{GMST}s + beqwhere {DMI}s
and {GMST}s are an array of IOD amplitude and GMST for the control
and high-CO2 simulations, respectively. The aeq is the equilibrium
sensitivity. For {DMI}s, we use percentage change from the control
simulation, not the absolute value. For example, in the equilibrium
period, the CCSM3model exhibits IOD amplitudes of 0.26 °C, 0.17 °C,
0.14 °C, and 0.13 °C for the control, abrupt2x, abrupt4x, and abrupt8x
simulations, respectively. The corresponding percentage changes in
the IOD amplitude from the control simulations are 0%, −34%, −47%,
and −50%, respectively. The corresponding GMSTs are 14.3 °C, 16.6 °C,
18.9 °C, and 21.5 °C, respectively. We perform linear regression on this
array of IOD amplitude ({DMI}s = {0%, −34%, −47%, −50%}) and GMST
({GMST}s = {14.3 °C, 16.6 °C, 18.9 °C, 21.5 °C}) and estimate the aeq. The
unit of aeq is %/°C. This equilibrium sensitivity quantifies the percen-
tage change in IOD amplitude per 1 °C increase in GMST under an
equilibrium climate condition.

Transient sensitivity
We calculate the transient sensitivity of IOD amplitude to GMST. We
use time series of 100-yearmoving IOD amplitude andGMST. For each
high-CO2 simulation, we performmoving window linear regression for
{DMI}w = ats{GMST}w + bts where {DMI}w and {GMST}w are times series
of 100-year moving IOD amplitude and GMST. The ats is the transient
sensitivity. For {DMI}w, we use percentage change from the initial
value, not the absolute value. The unit of ats is %/°C. The size ofmoving
window is 1 °C. The statistics of the ats distribution (mean and standard
deviation) is presented in Fig. 2b. The full probability distribution ofats
is presented in Supplementary Fig. 8. To derive the probability dis-
tribution of the ats, we perform kernel density estimation on the ats.
The bandwidth is set as the optimal value for normal densities.

Calculation of thermocline depth
The thermoclinedepth is calculated as themaximumgradient depthof
the ocean potential temperature profile. For each horizontal grid
point, we perform a cubic interpolation on the vertical ocean potential

temperature profile. The maximum temperature gradient depth is
determined in the interpolated ocean potential temperature profile.

Simple IOD model
The simple IOD model20,31 is written as

dT
dt

= λT +βENSOðtÞ+ σξ ð1Þ

where T is the DMI and ENSO is the Niño 3.4 index. The simple IOD
model includes three terms representing local feedback processes
(λT), external ENSO forcing (βENSO(t)), and stochastic forcing (σξ). λ
characterizes local feedback processes associated with the IOD. β
characterizes the sensitivity of the DMI to external ENSO forcing. σ is
the noise amplitude and ξ is white noise with zero mean and unit
standard deviation. We consider the seasonality of λ, β, and σ. Thus,
these three parameters vary seasonally. The model can consider the
lag between ENSO and T because themodel equation relates the ENSO
with the tendency of T, not with the T itself.

We note that there are several versions of the simple IODmodel in
the current literature depending on the types of feedback processes
included. The simple IOD model used in this study is the basic type
model introduced in ref. 31, which considers the essential physical
process of IOD in the simplest way. Hence, the model does not expli-
citly account for the time-delayed Rossby wave process as done in
ref. 20, and implicitly considers it by λT, which comprehensively
represents local feedback processes in the tropical Indian Ocean. The
simplicity of themodel used in this study has advantages that facilitate
the physical understanding of the model results, especially in deter-
mining whether the IOD amplitude change is caused by a local process
or a remote influence.

Fitting the parameters of the simple IOD model
We perform parameter fitting of the simple IOD model for the given
monthly DMI and Niño 3.4 index time series. We estimate the values of
three parameters (λ, β, σ) for each month of the year from January to
December. We discretize the simple IOD model as follows:

ΔTi

Δt
= λTi +βðEMSOÞi ð2Þ

where i denote time step (i = 1, 2…N) andΔTi = Ti+1-Ti. Δt is 1month.We
perform the linear regression and estimate λ and β using yearly time
series of ΔTi, Ti, and (ENSO)i for each month of the year. The σ is
estimated as the standard deviation of the residual of the linear
regression.

Solving the simple IOD model
The simple IOD model is numerically solved using the
Euler–Maruyama method with a time step of 0.1 months. The
Euler–Huen method is a numerical scheme for solving the Stochastic
Differential Equation. The input data is seasonally varying parameter
and the Niño 3.4 index. We performed the linear interpolation for the
parameters and the Niño 3.4 index, which have a time resolution of
1.0 month, and downscaled the time resolution to 0.1 month to match
the time resolution with the numerical time step.

Parameter perturbation experiment
We perform the parameter perturbation experiment using the simple
IOD model. The parameters of the simple IOD model are fitted using
the DMI and Niño 3.4 index time series in the equilibrium period. The
fitted parameters are shown in Supplementary Fig. 11 and Fig. 3a. The
statistical relationships between the fitted parameters and the GMST
are shown in Supplementary Fig. 24.We reproduce theDMI time series
by running the simple IODmodel using the fitted parameters (EXP-all-
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high-CO2) for each LongRunMIP simulation. We then run the simple
model with the control simulation parameters but with the replaced λ
(EXP-λ-high-CO2), β (EXP-β-high-CO2), ENSO (EXP-ENSO-high-CO2), β,
and ENSO (EXP-β*ENSO-high-CO2), and σ (EXP-σ-high-CO2) values with
the ones from the high-CO2 simulations. For example, the EXP-λ-high-
CO2 uses λ from the high-CO2 simulation and the β, ENSO, and σ from
its control simulation. The parameter perturbation experiment is
performed for each high-CO2 simulation. Additionally, for the baseline
experiment, we run the simple model using the control simulation
parameters (EXP-all-control).

Low-pass parameter experiment
We perform the low-pass parameter experiment using the simple IOD
model. Themodel parameters are fitted for amoving 100-yearwindow
using theDMI andNiño 3.4 index time series. The annualmeanvalue of
the fitted parameters is shown in Supplementary Figs. 12–14 (note that
the parameter fitting is performed for each calendar month as shown
in Supplementary Fig. 11, but we only present their annual mean value
for simplicity). For each segment of a window, we reproduced the DMI
time series using the fitted parameters and calculated IOD amplitude
(EXP-all-varying). To remove the fluctuations of the parameters, we
low-pass filter λ, βENSO, and σ and only leave their quadratic trend. We
run the EXP-all-varying but with the replaced original parameter from
the low-pass filtered parameters for–λ (EXP-λ-varying), β (EXP-β-
varying), ENSO (EXP-ENSO-varying), β and ENSO (EXP-β*ENSO-vary-
ing), and σ (EXP-σ-varying). For example, the EXP- λ-varying uses the
original λ and low-pass filtered β, ENSO, and σ. The strength of the
internal variability of IOD amplitude is quantified as the standard
deviation of the IOD amplitude. The low-pass parameter experiment is
performed for each high-CO2 simulation. Additionally, for the baseline
experiment, we run the simple model solely using only the low-pass
parameters (EXP-all-fixed).

Data availability
The LongRunMIP data are available upon request to Maria Rugenstein
(maria.rugenstein@colostate.edu). The CMIP6 data are available from
the Earth System Grid Federation repository (https://esgf-node.llnl.
gov/projects/cmip6/). ERSSTv5 is available from https://psl.noaa.gov/
data/gridded/data.noaa.ersst.v5.html. COBE is available from https://
psl.noaa.gov/data/gridded/data.cobe.html. HadISST is available from
https://www.metoffice.gov.uk/hadobs/hadisst/.

Code availability
The codes used in this study are available from the authors upon
request.
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