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DeepDOF-SE: affordable deep-learning
microscopy platform for slide-free histology

Lingbo Jin1,6, Yubo Tang2,6, Jackson B. Coole2, Melody T. Tan 2, Xuan Zhao1,
Hawraa Badaoui3, Jacob T. Robinson 1, Michelle D. Williams 4,
Nadarajah Vigneswaran5, Ann M. Gillenwater 3,
Rebecca R. Richards-Kortum 2 & Ashok Veeraraghavan 1

Histopathology plays a critical role in the diagnosis and surgical management
of cancer. However, access to histopathology services, especially frozen sec-
tion pathology during surgery, is limited in resource-constrained settings
because preparing slides from resected tissue is time-consuming, labor-
intensive, and requires expensive infrastructure. Here, we report a deep-
learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tis-
sue at cellular resolution without the need for physical sectioning. Three key
features jointlymakeDeepDOF-SE practical. First, tissue specimens are stained
directly with inexpensive vital fluorescent dyes and optically sectioned with
ultra-violet excitation that localizes fluorescent emission to a thin surface
layer. Second, a deep-learning algorithm extends the depth-of-field, allowing
rapid acquisition of in-focus images from large areas of tissue even when the
tissue surface is highly irregular. Finally, a semi-supervised generative adver-
sarial network virtually stains DeepDOF-SE fluorescence images with
hematoxylin-and-eosin appearance, facilitating image interpretation by
pathologists without significant additional training. We developed the
DeepDOF-SE platform using a data-driven approach and validated its perfor-
mance by imaging surgical resections of suspected oral tumors. Our results
show that DeepDOF-SE provides histological information of diagnostic
importance, offering a rapid and affordable slide-free histology platform for
intraoperative tumor margin assessment and in low-resource settings.

Over 19 million new cancer cases were diagnosed worldwide in 20201.
Surgery is one of the most common treatments for many types of
cancer2, and the goal of surgery is to remove all cancer, while preser-
ving normal tissue to minimize loss of function. This requires intrao-
perative tumor margin assessment to delineate between healthy and
cancerous tissue, where resected specimens are immediately frozen,

and sectioned in a cryostat microtome, and stained for microscopic
examination. In addition to frozen section pathology during surgery,
cancer is routinely diagnosed with histopathological examination that
requires the specimen to be fixed in formalin, dehydrated in increasing
concentrations of alcohol, embedded in paraffin, and then thinly sec-
tioned with a microtome. In both formalin-fixed paraffin-embedded
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(FFPE) and frozen section, microscopic examination of subcellular
features necessitates a slide preparation process that removes surface
irregularities, minimizes subsurface scattering, and improves imaging
contrast. However, current slide-based histology workflows are time-
and labor-intensive and require expensive laboratory infrastructure
along with highly trained histotechnologists, making them inacces-
sible in resource-constrained settings3,4. To bypass the complex his-
topathology preparation process, a slide-free approach is desired to
quickly provide histologic quality images of fresh tissue specimens at
the point of resection without expensive equipment.

Any slide-free approach to real-timehistopathology at thepoint of
resectionmust somehow (a) reduce sub-surface scatteringwithout the
need for thin sections, (b) contend with natural surface irregularities
without requiring use of a microtome and (c) retain the perceptual
appearance of traditional processing to facilitate its integration in the
routine clinical practice. We developed the deep-learning-enabled
extended depth-of-field (DOF) microscope with UV surface excitation
(DeepDOF-SE) to achieve these goals, by substantially expanding the
imaging capability of a simple dual-channel fluorescence microscope
with integrated computational and deep learning models. DeepDOF-
SE is specifically designed to provide a slide-free histology platform for
use in low-resource settings to support immediate biopsy assessment
and/or rapid intraoperative assessment of margin status. The 4×, 0.13
NA system can resolve subcellular features needed to diagnose pre-
cancer and cancer and is consistent with pathologists’ use of 2× and 4×
objectives for the vast majority of diagnoses5–8 and recent studies
demonstrating that deep learning models can accurately classify the
presence of cancer with significant image compression9 and NA as low
as 0.0510.

Over the last decade a host of novel techniques have been devel-
oped for optical sectioning of thick tissue samples to suppress sub-
surface scattering. Two-photon microscopy11, confocal microscopy12,
light-sheet microscopy13, optical coherence microscopy14, and photo-
acoustic 3Dmicroscopy15 havebeen shown to achieveoptical sectioning
and enable high-contrast imaging of thick tissues. However, all these
techniques require complicated and expensive opto-mechanical com-
ponents that are difficult to align and calibrate, and as such fail to
naturally lend themselves to use in point-of-resection and/or low-
resource settings16. For instance, the light source alone used in an open-
access light-sheetmicroscope17 costs more than the entire DeepDOF-SE
system (less than $7000). In DeepDOF-SE, we aim to provide histology
of tissue surfaces cut with a simple scalpel, and we rely on microscopy
with UV surface excitation (MUSE)18 which exploits the limited depth of
penetration of UV excitation light to limit fluorescent emission only to
the tissue surface—thereby limiting the deleterious effects of sub-
surface scattering. Thus, UV excitation allows us to reduce sub-surface
scattering without the need for thin sections.

Computational imaging and especially end-to-end optimized
optics, sensors and algorithms have emerged as a powerful tool for
achieving performance beyond that of conventional optics. For
example, single-shot 3D microscopy19–22, extended depth-of-field
microscope23, and lensless microscopes24–27 have shown great poten-
tial for high-resolution imaging using simple and compact systems.
The key ingredient in all these techniques is that co-designing optics
and algorithms allows these systems to overcome the limits of con-
ventional optics. However, few computational imaging techniques
have so far been designed to image dense cellular features as observed
in histology. In DeepDOF-SE, we build upon our previously developed
deep learning framework to extend the microscope depth-of-field by
co-designing wavefront encoding and image processing23. Compared
to our previous work on extended depth-of-field imaging at a single
wavelength, the end-to-end optics and image processing design in
DeepDOF-SE is optimized in two fluorescence channels. Here we
demonstrate the capability of DeepDOF-SE to image nuclear and
cytoplasmic features simultaneously, and its compatibility with

different fluorescence dyes across a broad range of emission wave-
lengths. Moreover, we show that information acquired in two fluor-
escence channels allows seamless integration of deep-learning-based
virtual staining to generate H&E-like histology images.

Generative artificial intelligence (AI) has made remarkable
advances over the last few years, resulting in awide variety of powerful
algorithms for virtual stainingof histology images. Unlike conventional
analytical virtual staining methods28, generative adversarial network
(GAN) based virtual histology does not require user input or prior
knowledge of the stains’ property. Supervised GANs built on Pix2pix29

can virtually stain label-free slides or translate the appearance of a slide
chemically stained with one dye to mimic that of another stain or
combinations30,31. While these supervised models have few artifacts,
training them requires a large amount of paired data, which is
expensive to acquire. Unsupervised CycleGAN-based32 virtual staining
can be trained on unpaired images33, making it one of the most fre-
quently used deep learning frameworks for different histological
applications, including label-free virtual staining, stain-to-stain trans-
formation, and correction of stain variations31,34. In virtual staining
applications, CycleGAN was evaluated with different imaging mod-
alities, such as MUSE and photoacoustic microscopy, and virtual
staining has been demonstrated in different tissue types including
brain, breast, prostate, and bone specimens15,33,35. In DeepDOF-SE, we
demonstrate a two-step semi-supervised scheme to train the Cycle-
GAN for virtual staining, generating artifact-free virtual H&E while
avoiding the need for acquiring paired data. This framework is readily
applicable to different staining protocols that provide both nuclear
and cytoplasmic contrast. Furthermore, we report the application of
CycleGAN for virtual staining of fresh human oral tumor resections,
and we demonstrate that our model is capable of visualizing distinct
histological features in different layers of oral epithelium.

In this work, we report the development of DeepDOF-SE by
combining surface excitation, extended DOF imaging, and virtual
staining; we build the DeepDOF-SE based on a simple dual-channel
fluorescence microscope and demonstrate its use for rapid histologi-
cal imaging of fresh intact tissue specimens at a scanning speed of 1.6
cm2/min. Building upon our previous work on extended depth-of-field
microscopy relying on a single dye to provide contrast, the current
work now incorporates optical sectioning18, deep-learning-enabled
extended DOF imaging and virtual staining of nuclear and cytoplasmic
features to make rapid, cost-effective, and slide-free histology prac-
tical. As shown in Fig. 1a, DeepDOF-SE is based on a simple dual-
channel fluorescence microscope. Image contrast is provided by
briefly immersing fresh tissue samples in a solution containing the vital
fluorescent dyes Rhodamine B and DAPI that highlight cytoplasmic
and nuclear features, respectively. A jointly optimized phasemask and
reconstruction network extend the depth-of-field, enabling high-
resolution images to be collected without refocusing from tissue sur-
faces that are simply cutwith a scalpel; compared to our previouswork
on a single-channel extended DOF microscope23, DeepDOF-SE pro-
vides the ability to simultaneously acquire images of cytoplasmic and
nuclear features in two separate channels. The resulting all-in-focus
fluorescence images are virtually stained to resemble H&E-stained
sections using a semi-supervised CycleGAN. Figure 1b demonstrates
the improvement in performance provided by surface excitation,
extended DOF, and virtual staining. Compared to visible excitation
(dual-channel fluorescence image of porcine specimen stained with
Rhodamine B and DAPI in Fig. 1b.i), UV excitation suppresses the
impact of subsurface scattering18 (Fig. 1b.ii); however, it is challenging
to survey a large area (1 cm2 or larger) of scalpel-cut tissue due to
surface irregularities that extend beyond the DOF of a conventional
microscope, as evidenced by out-of-focus regions of the image. We
tackled this challenge by using deep-learning techniques to extend the
DOF to 200 μm, consistent with topographic variations in tissue pre-
pared with a simple scalpel13 (Supplementary Fig. 2), while preserving
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Fig. 1 | Overview of the DeepDOF-SE platform for slide-free histology of fresh
tissue specimens. a DeepDOF-SE is built based on a simple fluorescence micro-
scope with three major components: surface UV excitation that provides optical
sectioning of vital-dye stained fresh tissue; a deep-learning-based phase mask and
reconstruction network that extends the depth-of-field, enabling in-focus imaging
of irregular tissue surfaces; and a CycleGAN that virtually stains fluorescence ima-
ges resembling H&E-stained sections. b Compared to a conventional fluorescence
microscope, DeepDOF-SE acquires high-contrast, in-focus and virtually stained
histology images of fresh tissue specimens. Example images of an ex vivo porcine
tongue sample were acquired using (i) a conventional fluorescence microscope

with 405 nm excitation, (ii) a conventional fluorescence microscope with 280 nm
excitation, (iii) DeepDOF-SE influorescencemode, and (iv)DeepDOF-SEwith virtual
staining. Benefits of optical sectioning, extendeddepth-of-field, and virtual staining
are shown from left to right with the addition of UV excitation, deep-learning-
enabled extended DOF imaging, and CycleGAN-based virtual staining. Scale bars
are 100 μm. Brightness increased for display. c Compared to conventional histo-
pathology, DeepDOF-SE significantly reduces the time, infrastructure, and exper-
tise needed to prepare histology samples. UV ultraviolet, DOF depth-of-field, H&E
hematoxylin and eosin, DeepDOF-SE a deep learning enabled extended depth-of-
field microscope with surface excitation.
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subcellular resolution23. As shown in Fig. 1b.iii, the combination of UV
excitation and deep-learning extendedDOF allows acquisition of an in-
focus image from a large area. Finally, Fig. 1b.iv displays the CycleGAN
virtual H&E stain of the image, designed to resemble conventional
slide-based H&E. Using a data-driven and learning-based approach, we
show here that DeepDOF-SE offers a slide-free histology platform
suited for rapid histopathologic assessment of fresh tissue specimens
that could be performed intraoperatively or in resource-constrained
settings (Fig. 1c).

Results
End-to-end design for extended DOF fluorescence imaging
The DeepDOF-SE fluorescence microscope enables direct in-focus
imaging of irregular surfaces of fresh tissue specimens by extending
the depth-of-field and leveraging surface excitation. Figure 2 describes
the end-to-end network used to jointly design the phase mask and the
reconstruction algorithm. The first layer of the end-to-end network
uses a physics-informed algorithm to simulate image formation of a
fluorescence microscope with the addition of a phase mask. In parti-
cular, image formation at two spectral channels that correspond to the
vital dyes, Rhodamine B and DAPI, is simulated at 21 discrete depths
within the 200 µm DOF. In the following layers of the end-to-end net-
work, two reconstruction U-Nets are used to recover all-in-focus ima-
ges from the blurred images.

After the network was trained with a dataset containing a broad
range of complex features including histologic features (see “Meth-
ods”), the optimized phasemask design was fabricated and installed in
theDeepDOF-SEmicroscope. Figure 3a shows the systemdesign based
on a simple fluorescence microscope with a standard objective
(Olympus Plan Fluorite 4×, 0.13 NA). A UVC LED provides oblique
illumination for surface excitation, while the phase mask modulates
thewavefront in the optical path to enable the extended depth-of-field
imaging. We performed a one-time calibration of the system by cap-
turing its point spread functions (PSFs, shown in Fig. 3b) and used the
measured PSFs to fine-tune the U-Nets.

Validation of DeepDOF-SE performance in the target DOF
We characterized the spatial resolution of DeepDOF-SE using a nega-
tive 1951 USAF resolution target. In Fig. 3c, the resolution target was

imaged in two fluorescence channels (Rhodamine B and DAPI) using
DeepDOF-SE and a conventionalfluorescencemicroscope. As shown in
Fig. 3c, significant defocus blur was observed as the USAF target was
translated axially through the focal plane of the conventional micro-
scope. In contrast, Group 7 element 5 (2.46μm line width) is con-
sistently resolved in the Rhodamine B and DAPI fluorescence channels
of DeepDOF-SE as the target is translated axially through the target
200μm depth-of-field. Notably, we also observed significant axial
chromatic aberrations between the two fluorescence channels using
the conventional microscope, which can further hinder direct imaging
of uneven surfaces; using the DeepDOF-SE, the chromatic aberrations
were significantly reduced due to the extended DOF (see Supple-
mentary Fig 4 and Supplementary Fig 5).

The ability of DeepDOF-SE to resolve various clinically relevant
features for samples within the target DOF was evaluated using thin
frozen-section tissue slides. We obtained images of human colon,
esophagus, and liver slides thatwere stainedwithDAPI andRhodamine
B as slides were translated throughout the target DOF of DeepDOF-SE
and compared results to a conventional fluorescence microscope. For
better visualization, we performed a color space transform using the
Beer-Lambert method28. Figure 4 compares the images taken with
DeepDOF-SE and a conventional microscope. DeepDOF-SE con-
sistently resolves varied cellular morphology within the targeted DOF
while images acquired with the conventional microscope images suf-
fered from significant blur when the target is out of focus. This
observation is corroborated by the Multi-scale Structure Similarity
Index Measure (MS-SSIM36) score when using the in-focus image as a
reference. The MS-SSIM for images acquired with conventional
microscopy quickly drops to as low as 0.39 while DeepDOF-SE images
maintain a high MS-SSIM (0.85+) across the 200μm DOF.

DeepDOF-SE imaging of fresh tissue without refocusing
We validated the performance of DeepDOF-SE to image fresh resected
tissue specimens and images from a porcine kidney specimen (Fig. 5,
top row) and a surgical resection of humanoralmucosa (Fig. 5, bottom
row). Specimens were stained with DAPI and Rhodamine B, then
imaged with both the conventional microscope and DeepDOF-SE for
comparison. The images were virtually stained using Beer-Lambert
method for better visualization.
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Fig. 2 | An end-to-end deep learning network to jointly design the imaging
optics and image processing for extended depth-of-field imaging in two
fluorescence channels. The end-to-end (E2E) network first simulates the physics-
derived image formation of a fluorescence microscope with a learned phase mask
and produces simulated blurred images; then the sequential image processing

layers consisting of two U-Nets reconstructs in-focus images within the targeted
DOF of 200 µm. Both the phase mask design and the U-Net weights are optimized
based on the loss between the ground truth images and the corresponding
reconstructed images. PSF point spread function, RMS root mean square.
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For each sample, we selected ROIs that appeared in focus (ROIs 4,
5, 9, 10) and out of focus (ROIs 1, 2, 3, 6, 7, 8) in images collected with
the conventional microscope. It was challenging to resolve nuclear
features in ROIs that were out-of-focus with the conventional micro-
scope. In contrast, nuclei were clearly resolved in all ROIs of images
captured with DeepDOF-SE. Similar subcellular features are present in
DeepDOF-SE images and in-focus ROIs imaged with the conventional
microscope.

DeepDOF-SE virtual histology via CycleGAN
We model the virtual staining of DeepDOF-SE images as an image-to-
image translation that aims to generate images with histology features
similar to those in the corresponding standard H&E images. However,
it is challenging to acquire image pairs from fresh tissue specimens at
the same imaging planes using DeepDOF-SE and standard H&E pro-
cessing; as a result, we trained the image-to-imagemappingnetwork to
virtually stain DeepDOF-SE images as part of the CycleGAN archi-
tecture (Fig. 6a). Unlike deep-learning networks that perform pixel-
wise translation, CycleGAN can be effectively trained without paired
image sets. As shown in Fig. 6a, the twodomains X and Y are defined as
DeepDOF-SE images and standard H&E images, respectively. The
image mapping in each direction is trained using an adversarial
architecture; fromdomainX to Y , for example, the generatorG aims to
virtually stainDeepDOF-SE images, while the discriminator networkDY

aims to distinguish virtually stained H&E images generated by G from
standard H&E images.

Since generative networks canbeprone to synthesizing unwanted
features31, we implemented a semi-supervised training procedure
(described in “Methods” section) to ensure that both nuclear and
cytoplasmic features are accurately translated. In Fig. 6b, c, we validate
its ability to preserve clinically important features. To validate Cycle-
GAN virtual staining, we used frozen section slides of mouse tongue,
which allowed us to acquire co-registered DeepDOF-SE and standard
H&E images; the DeepDOF-SE fluorescence images were then virtually
stained using the CycleGAN. We applied automated segmentation
algorithms37 to both theCycleGANH&E and the standardH&E to count
the number of nuclei and calculate the average nuclear area (see
Supplementary Table 2 and Supplementary Fig 9). Nuclear counts for
four selected FOVs are displayed in Fig. 6b. The close agreement
between the number of nuclei in CycleGAN stained samples and H&E
samples supports the ability of CycleGAN staining to preserve impor-
tant clinical features. Figure 6c shows CycleGAN stained images and
H&E stained images of two fields of view (FOV1 and FOV2). In the first
FOV (left panel, Fig. 6c), cross-sectioned muscle fibers are clearly
shownwith evenly distributed nuclei in theCycleGANvirtualHE image;
similar features are observed in the gold standard H&E image. The
second FOV (right panel, Fig. 6c) shows the epitheliumwith underlying
lamina propria and muscle fibers; the layered epithelial cell structure
and thebasementmembrane are clearly shown in theCycleGANvirtual
H&E image. Importantly, when compared to the gold standard H&E
images, the CycleGAN virtualH&E images show co-localized nuclei and
cytoplasmic features across the entire FOV, confirming that the
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Fig. 3 | Optical setup and characterization of DeepDOF-SE. a The optical sche-
matic of DeepDOF-SE. The DeepDOF-SE microscope is built based on a simple
fluorescencemicroscope, with the addition of a deep-learning-enabled phasemask
that enables an extended DOF and a UVC LED that enables surface excitation.
b Experimentally captured point spread functions at 21 discrete depths within the
200 μm target DOF. c Experimental resolution characterization of the spatial

resolution of DeepDOF-SE in DAPI and Rhodamine B channels using a USAF 1951
resolution target, in comparison to a conventional fluorescence microscope as the
baseline. DeepDOF-SEconsistently resolvesGroup7, element 5 (2.46μmlinewidth)
or better in both color channels within the target DOF; in addition, DeepDOF-SE
exhibits significantly reduced chromatic aberration compared to the conventional
microscope.
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CycleGAN performs virtual staining while accurately preserving clini-
cally important features. We note that there exist minor color differ-
ences between the CycleGAN virtual H&E and standard H&E images,
which can be attributed to the known color variations during standard
H&E processing38.

H&E validation for DeepDOF-SE virtual staining in human oral
tissue specimen
We assessed the diagnostic potential of the DeepDOF-SE microscope
by comparing DeepDOF-SE images of freshly resected tissue virtually
stained using CycleGAN to the gold-standard FFPE H&E scan of the
same tissue. Figure 7 shows images of two large specimens from
freshly resected head and neck squamous cell carcinoma. Each speci-
men was transected with a scalpel; fluorescence images (top row),
virtually stained images using the CycleGAN from the DeepDOF-SE
(middle row) are displayed in Fig. 7. Subsequently, FFPE H&E sections
were prepared from the same samples (Fig. 7, bottom row). Repre-
sentative ROIs from these specimens reveal various histopathologic
features in different tissue types and disease status; importantly,
matching cellular details between the DeepDOF-SE GAN staining ima-
ges and FFPE H&E images are observed in these ROIs. We note that

there exist subtle color differences between CycleGAN virtual staining
and standard H&E staining.; these differences are quite similar to var-
iations in the intensity of staining that occur from lab to lab and daily
within a single lab. Variations in factors such as the age of stains or the
precise staining time can lead to intensity variations and overstaining
issues in H&E stained slides39. Despite these differences, epithelial
architecture and cellular detail are clearly discerned in both, providing
sufficient diagnostic information for clinical evaluation.

Four selected FOVs from the surface epithelium with underlying
connective tissue and skeletal muscle bundles are shown across each
of the cross-sectioned specimens in Fig. 7. In the stratified squamous
epithelial layers, ROIs 1, 2, 5, 6 show the individual nuclei with clearly
visible basal layer with attached basement membranes. Specifically,
ROI 1 shows hyperplasia with dysplasia, while ROIs 2, 5, and 6 display
hyperkeratosis, evidenced by the increased thickness of the surface
keratin. Invasive islands of squamous cell carcinoma characterized by
cellular and nuclear atypia and dyskeratosis were noted within the
connective tissue underlying the surface epithelium in ROI 7. ROIs 3
and 4 show skeletal muscle bundles below the lamina propria that are
sectioned in cross- and longitudinal-directions found in the H&E sec-
tion were also observed in the DeepDOF-SE images. A large muscular
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Lambert method, an analytical color space transform to better visualize the sub-
cellular features while preserving defocus artifacts. Virtually stained images from
human tissue sections revealed architectural and cellular morphology of colonic
crypts lined by intestinal columnar epithelium (top panel), esophagus lined by
stratified squamous epithelium (middle panel), and bile duct and portal veinwithin

the portal tract of the liver (bottom panel). In all tissue types, cell nuclei are con-
sistently resolved in images acquired with DeepDOF-SE, while significant defocus
blur was observed in images acquired with the conventional microscope. The
multiscale structural similarity index MS-SSIM was consistent as the sample was
translated throughout theDOFof DeepDOF-SE, while theMS-SSIMdropped rapidly
as the samplewas translated across the focal plane of the conventionalmicroscope.
Scale bars are 100μm. MS-SSIM multiscale structural similarity index measure.
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artery that was noted within submucosa of H&E stained section can be
also identified in the DeepDOF-SE image in ROI 8. These findings were
confirmed by the study pathologist (N.V) through standard histo-
pathology evaluation.

Discussion
We demonstrated optically sectioned, high resolution and extended
depth-of-field imaging of intact tissue samples using DeepDOF-SE, a
platform designed using a data-driven approach for slide-free histol-
ogy. The key components of DeepDOF-SE, including deep UV excita-
tion, end-to-end designed extended DOF, and cycleGAN-based virtual
staining, jointly enable rapid and slide-free histological examination of
fresh tissue specimens with highly irregular surfaces. We show that
DeepDOF-SE images reveal a broad range of diagnostic microscopic
features within large areas of tissue cross sections. Moreover, varied
types of histological architecture in benign and neoplastic conditions
are clearly visualized in the CycleGAN virtually stained H&E images,
and histologicfindings basedonDeepDOF-SE images are confirmedby
the gold standard H&E histopathology.

Unlike conventional histopathology that is time-consuming and
requires expensive equipment, the DeepDOF-SE platform is low-cost
to build (less than $7000, see Supplementary Table 1), requires mini-
mal training to use, and takes less than 10min to stain and image a 7
cm2 tissue sample (4min for tissue staining and <5min for tissue
scanning). Compared to conventional pathology requiringmechanical
sectioning using amicrotome,we employ a simple yet effective optical
sectioning approach via deep UV excitation. Conventional histo-
pathologic diagnosis is based on H&E-stained tissue sections and
hence, pathologists are accustomed to interpreting H&E stained tissue
sections. Using DAPI as the nuclear stain and Rhodamine B as the
counter stain, DeepDOF-SE can image cell nuclei and cytoplasmic

features.We apply the deep-learning-based CycleGAN to virtually stain
the all-in-focus fluorescence images. The resulting virtual H&E images
revealed diagnostic histopathology matching the corresponding
standard slide-based H&E images. While it is challenging to achieve
serial sectioning with DeepDOF-SE in cases where diagnosis on the
surface is equivocal, it is possible to rapidly scan the opposite side of a
4mm tissue slice using DeepDOF-SE. Alternatively, the slice can be
further cut with a scalpel in 2–3mm steps before scanning again.

Recent advances inmicroscopy have enabled a range of fast, non-
destructive and slide-free histological imaging technologies, such as
MUSE, FF-OCT, the light-sheet microscopy, and photo-acoustic
microscopy13–15,18. Other methods of extending DOF exist, primarily
achieved via axial focus stacking. These methods leverage different
mechanisms and instrumentation, such as a deformable mirror, a
varifocal lens, or a digital micromirror device40–42. Compared to these
modalities that usually require complicated optical configurations,
DeepDOF-SE leverages a simple optical modulation element with deep
learning to substantially augment the performance of a fluorescence
microscope for high-throughput, single-shot histology imaging. As a
result, the DeepDOF-SE platform can be readily built using a modular
design approach at a low cost; all of its key components, including the
external deep UV LED, the phase mask, the fluorescence filter, the
sample stage and computing hardware, can be seamlessly integrated
into a simple microscope system with minimal optical and hardware
modification. Moreover, the fast and slide-free tissue preparation
requires minimal training and does not interrupt standard-of-care
procedures, making the technology suitable for broad dissemination
in resource-constrained settings. Our initial clinical assessment
of DeepDOF-SE demonstrates its capability to rapidly provide histo-
logical information of fresh surgical specimens in Fig. 7, including
those needed for the diagnosis of precancer and cancer, such as
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Fig. 5 | Images of intact fresh tissueof varied types obtainedusingDeepDOF-SE
and a conventional microscope without refocusing. Conventional*: Conven-
tional microscope (4× 0.13 NA) with 280 nm excitation, with virtual staining using
the Beer-Lambert method; DeepDOF-SE†: DeepDOF-SE microscope, with virtual
staining using the Beer-Lambert method. a Ex vivo porcine kidney sample with five
annotated ROIs. Conventional microscope images from ROIs 1–3 are out-of-focus

while ROIs 4 and 5 are in focus. CorrespondingDeepDOF-SE images are in focus for
all ROIs. b Ex vivo human tongue resection with five annotated ROIs. Conventional
microscopy images from ROIs 6–8 are out-of-focus while ROIs 9–10 are in focus.
Corresponding DeepDOF-SE images are in focus for all ROIS. ROI scale bars are
50 μm.
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architectural abnormalities, pleomorphism, and abnormal nuclear
morphology and increased nuclear-to-cytoplasmic ratio43. In cases
where a higher resolution is desired, our approach can serve as a rapid
triage tool to identify suspicious regions for further examination at a
higher magnification. Based on our results, further evaluation with a
larger sample size iswarranted. In a larger study, using standardH&Eas
a baseline, we will establish diagnostic criteria based on DeepDOF-SE
images, and we will also refine the criteria since it was previously
shown that nuclear count in optically sectioned fluorescence images
using 280 nm excitation is slightly elevated than conventional H&E18.

To facilitate its evaluation in a clinical setting, we will enclose the
system in a compact housing. In addition, the imaging throughput can
be further improved by incorporating a high-sensitivity sensor, higher
levels of illumination and faster sample scanning motors.

The DeepDOF-SE platform leverages two deep learning networks
in its system design and data processing pipeline, and we employed
different training strategies basedon thenature of their tasks.The end-
to-end extended DOF network aims to simulate physics-informed
image formation and reconstruction that are insensitive to image
content, and therefore, a data-agnostic approachwasused for training.
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In contrast, since the CycleGAN virtual staining network is designed to
perform domain-wise image translation, we confine the training and
validation scope using images from the tongue in our current study.
Specifically, in the extendedDOF network, we used an eclectic training
dataset containing various features ranging from multiple types of
FFPE H&E images to natural scenes; during validation and testing,
fluorescence images of different tissue types are reconstructed. This
variability can help the model become more robust and adaptable to
different types of inputs during inference, allowing it to generalize to a

wider range of applications. Data fusion and dataset merging has also
been used in other domains of imaging44–46. In contrast, the cycleGAN
was trained and validated with images from oral tissue surgeries in a
clinical study and frozen slides of mouse tongue. While it faithfully
translates the DeepDOF-SE fluorescence images of oral tissue to
standard H&E appearance, further data collection and clinical evalua-
tion are needed to extend the GAN-based virtual staining to other
tissue types.We also note that adipose cells appear intact in DeepDOF-
SE images of fresh tissue (Supplementary Fig 13), while they show a
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network of thin cell membranes with clear lumens in standard H&E.
This is expected since the cytoplasmic lipids within the adipocytes are
removed during tissue dehydration using different concentrations of
alcohol.

In conclusion, we developed a deep-learning enabled DeepDOF-
SE platform that enhanced the ability of conventional microscopy to
image intact, fresh tissue specimens without the need for extensive
sample preparation, and we validated its performance to provide
diagnostic information in oral surgical resections as confirmed by
standard slide-based histopathology. As a fast, easy-to-use, and inex-
pensive alternative to standard histopathology, DeepDOF-SE will be
further evaluated clinically, especially for intraoperative tumor-margin
assessment and for use in under-resourced areas that lack access to
standard or frozen section histopathology.

Methods
Ethical statement
Our research involves an ex vivo protocol where consenting patients
undergoing surgery for oral cancer resection were enrolled at the
University of Texas MD Anderson Cancer Center. The study was
approved by the Institutional Review Boards at the University of Texas
MD Anderson Cancer Center and Rice University.

DeepDOF-SE microscope setup
As shown in Fig. 3, The DeepDOF-SE microscope is built using a dual-
channel fluorescence microscope with UV surface excitation18 and the
addition of a deep-learning optimized phase mask. The UV LED
(Thorlabs M275L4), coupled with a condenser and focusing lens, is
pointed at an oblique angle to the sapphire sample window (Knight-
Optical, WHF5053), illuminating the sample uniformly from beneath.
Fluorescence emission from the vital-dye-stained tissue sample is
collected by anOlympus 4× objective (RMS4x-PF, 0.13 NA),modulated
by thephasemask, and then an image is relayedby a f150mmtube lens
(Thorlabs AC254-150-A) onto a 20-megapixel color CMOS camera
(Tucsen FL20). A dual-bandpass filter (Chroma 59003m, 460/630nm)
is used for collecting fluorescence from the Rhodamine B and DAPI
channels simultaneously.

For convenient placement of large surgical specimens, the
DeepDOF-SE has an open-top sample stage with a circular imaging
window 50mm in diameter. Rapid scanning is enabled by two
motorized linear stages (Zaber X-LHM100A). With the designed 3.3×
magnification, the FL20 camera provides a 3.9 × 2.6 mm2

field-of-
view per frame. To ensure sufficient overlap between frames for field
of view stitching, we chose 2mm for stage step motion and scanned
40 frames per minute. The scanning process is controlled
and automated using a custom LabVIEW GUI. Briefly, using the GUI,
the scanning region is first defined with user input, and images are
then acquired and saved sequentially using scanning coordinates
automatically calculated based on the scanning range and stage
step size.

Optical and digital layer of DeepDOF-SE
Previously, we developed a physics-informed deep-learning network
to jointly optimize the imaging optics and image reconstruction for
EDOF imaging in a single fluorescence channel23. In this work, we
employ a similar architecture to enable EDOF imaging in a dual-
channel fluorescence microscope. Overall, the end-to-end network
consists of an optical layer to optimize the imaging optics and a digital
layer to optimize the image reconstruction.

Optical layer. The first layer of the end-to-end extended DOF net-
work parameterizes the design of a phase mask and simulates image
formation of a dual-channel fluorescence microscope from the spe-
cimen to the sensor, with its wavefront at the pupil plane modulated
by the phase mask. In the current work, we design the deep learning

network for two fluorescence channels centered at 473 nm and
640nm, corresponding to emission of DAPI and Rhodamine B,
respectively.

The image formation is simulated based on Fourier optics47.
Briefly, in each fluorescence channel, an image Iλðx2,y2Þ formed by
the microscope is the result of scene I0ðx,yÞ convolved with the
point spread function (PSF) at the given wavelength λ summed across
depth z.

Iλ x2,y2
� �

=
X
z

I0 x,y;zð Þ � PSFλðx2,y2;zÞ ð1Þ

The PSF is the squaredmagnitude of the Fourier transformof the pupil
function Pλðx1,y1; zÞ

PSFλ x2,y2;z
� �

= F fPλ x1 ,x2;zð Þg
���

���
2 ð2Þ

With the amplitude of the pupil function fixed, the phase com-
ponent of the pupil function (Φ) encodes the defocus blurΦDF and the
depth-independent mask modulation ΦM .

Φλ x1,y1;z
� �

=ΦDF
λ x1,y1;z
� �

+ΦM
λ ðx1,y1Þ ð3Þ

In the equation above, the mask modulation term ΦM is modu-
lated by the height map of the phase mask, which is parameterized
using the first 55 Zernike basis in the first layer of the end-to-end
optimization network. In addition, the defocus phase is modeled as

ΦDF
λ x1,y1;z
� �

=
2π
λ

Wm
x21 + x

2
2

R2
ð4Þ

where R is the radius of the pupil andWm = R2

2 *
z0�zð Þ
z20

is the maximum
path-length error at the edge of the pupil due to defocus where
z and z0 are the defocused imaging depth and in-focus depth
respectively.

For a given scene, we simulate the final sensor image from two
wavelengths corresponding to the two fluorescence channels, and 21
discrete depths evenly discretized in the targeted DOF range of
200μm.This corresponds to 2π

λ Wm ranges of ½�8:73, + 8:73� at 473 nm
and ½�11:88, + 11:88� at 640nm. We also approximated the sensor
noiseby adding aGaussian read noisewith a standarddeviation of 0.01
in the range of [0, 1].

Digital layer. Sensor images from different defocus in two fluores-
cence channels are further processed using the image reconstruction
layers to recover in-focus images of the specimen. As shown in Fig. 2,
the digital layer consists of two deep neural networks, and we used a
U-Net architecture described in Jin et al.23.

Network training details
Dataset. To ensure the system is capable of imaging a wide variety of
features, we train the network with a large dataset that contains a
broad range of imaging features23. Specifically, the dataset contains
600 high-resolution proflavine-stained oral cancer resections, 600
histopathology images from Cancer Genome Atlas Center FFPE slides,
and 600 natural images from the IRNIA holiday dataset (each
1000 × 1000 pixels, gray scale)48. While these images have diverse
features, they are all in gray scale and cannot be directly used to train
DeepDOF-SE, which generates color images. Natural RGB images are
also not suitable because the color images captured by fluorescence
microscopes contain different information in each color channel.
Instead of collecting a new color dataset, which is costly and time-
consuming, we randomly combined two different images from the
DeepDOF dataset for the DAPI channel and the Rhodamine B channel
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as input during training; this provides effective training while elim-
inating cross-talks between the two fluorescence channels.

The 1800 images in the DeepDOF dataset were randomly sepa-
rated into training, validation, and testing sets. To increase data
variability, the images were augmented with random cropping (from
256× 256 to 326× 326 pixels), rotation, flipping, and brightness
adjustment. Since the dataset contains a rich library of features
including both histopathological andother features in nature scenes, it
is broadly applicable to training image reconstruction pipelines using
different microscope objectives with proper rescaling.

Implementation. The network was implemented using the Tensor-
Flow package and optimized using Adam49. The learning rate was
chosen empirically at 1e-9 for the optical layer and 1e−4 for the digital
layer. We trained the network in two steps. In the first step, we fixed
the optical layer to be the cubic mask and only trained the U-Net. In
the second step, we jointly trained the optical and digital layer.
For both steps, convergence occurred at around 30,000–40,000
iterations.

Microscope calibration and network fine-tuning
To account for the difference between the simulated PSF and the
experimental PSF during system implementation, weperformed a one-
time calibration. A monolayer of 1 um fluorescent beads (Invitrogen
T7282, TetraSpeck microspheres, diluted to 105/mL) was imaged as a
calibration target, and we adjusted the right-angle mirror behind the
objective and a micrometer tilt stage (#66-551, Edmund Optics)
installed on the sample stage to achieve uniform focus across the
sample imaging window.

To capture the PSFs in the two fluorescence channels, we used
fluorescent TetraSpeck beads stained with four fluorescent dyes at
360/430 nm (blue), 505/515 nm (green), 560/580 nm (orange), and
660/680 nm (dark red). The beads were illuminated using a 365 nm
LED (ThorlabsM365LP1) for better excitation, and PSFsweremeasured
at 31 depths at 10 um intervals. At each depth, we averaged temporally
over five frames and performed background subtraction to
reduce noise.

We selected 21 depths for the target DOF for network fine-tuning.
When retraining the network, the optical layer was fixed and the
experimentally captured PSF was used to fine-tune the network.

Resolution characterization
The resolution of DeepDOF-SE was characterized by imaging a US Air
Force 1951 resolution target with an added fluorescent background.
Illumination was provided by a 405 nm LED, and we performed frame
averaging and background subtraction to enhance the signal-to-
noise ratio.

Tissue processing and imaging
Human surgical sample. Fresh surgical cancer resections from the
oral cavity were imaged to evaluate the imaging performance of
DeepDOF-SE. In our ex vivo protocol, consenting patients undergoing
surgery for oral cancer resection were enrolled. The excised specimen
was first assessed by an expert pathologist and sliced into 3–4-mm-
thick slices with a standard scalpel. Selected slices were processed for
standard frozen-section pathology. The remaining slices were cleaned
with phosphate-buffered saline (PBS, Sigma-Aldrich P4417, pH 7.2–7.6,
isotonic) to remove residuals such as mucus and blood, stained with
DAPI (Sigma-AldrichMBD0015, dilutedwith PBS, 500μg/mL) for 2min
and Rhodamine B (Sigma-Aldrich 83689, dissolved in PBS, 500 μg/mL)
for 2min, and excessive stain was rinsed off with PBS. The tissue was
then imaged using the DeepDOF-SE microscope. The raw frames
were processed with the DeepDOF-SE networks and stitched using
Image Composite Editor (Microsoft, discontinued and other stitching

software can be applicable). Post-imaging, the specimens were pro-
cessed through FFPE histopathology at University of Texas MD
Anderson Cancer Center, and the slides were imaged using a slide
scanner to provide the standard H&E images. The study was approved
by the Institutional Review Boards at the University of Texas MD
Anderson Cancer Center and Rice University.

Porcine tissue. Freshly resected ex vivo porcine samples were
obtained from an abattoir. The tissue was cut with a scalpel, cleaned
with PBS to remove residuals such as mucus and blood, and then
stained with DAPI (500 μg/mL) for 2min and Rhodamine B (500 μg/
mL) for 2min. Excessive stain was rinsed off with PBS, and the tissue
was imaged using DeepDOF-SE and a conventional MUSE microscope
with the same standard objective.

Frozen-section slides. Frozen-section tissue slides (Zyagen, Inc) were
fixed in buffered acetone (60% v/v) for 20min and rinsed in PBS twice
for five minutes each. Slides were then stained with DAPI (500 μg/mL)
for 2min and Rhodamine B (500 μg/mL) for 2min, and excessive stain
was rinsed off with PBS. The stained slide was imaged with DeepDOF-
SE without a coverslip on the sapphire window, with the tissue side
facing downward. Since glass slides have autofluorescence, we sub-
tract the background signal before any downstream processing. For
the cycleGAN validation study, the imaged frozen section slides were
sent to University of Texas MD Anderson Cancer Center for standard
H&E staining.

Statistics & reproducibility. In this study, no statistical method was
used to predetermine sample size. For Figs. 4 and 5 of the main text,
the samples are imaged oncewith the proposedDeepDOF-SE and once
with the conventional baseline. For Figs. 6 and 7, the samples are
imaged once with the proposed DeepDOF-SE.

Beer-Lambert-law-based virtual H&E
We used a Beer-Lambert-law-based method to assist visualization of
DeepDOF-SE images in a color space similar to H&E staining28; since it
is an analytical method, it preserves both in- and out-of-focus features
in DeepDOF-SE images. In this virtual staining method, the transmis-
sion T of a wavelength λ through a specimen containing N absorbing
dyes can be represented as

Tλ = exp �
XN

i = 1
σλ,ici

� �
ð5Þ

Where σλ,i is the wavelength-dependent attenuation for the i-th dye
and ci is the thickness integrated concentration of the i-th dye per area
on the slide. In the case of a digital image, the transmission TM ofM-th
color channel can be written as

TM = exp �
XN

i = 1
βM,iIik

� �
ð6Þ

Where βM,i is the attenuation of the i-th dye integrated over the
spectral range of theM-th channel, Ii is the intensity image for i-th dye,
and k is an arbitrary scaling constant that accounts for detector sen-
sitivity etc. In the case of mapping to H&E staining in RGB space, the
expression for each channel is as follows:

R= expð�βhematoxylin,redInucleistainkÞ expð�βeosin,redIcounterstainkÞ ð7Þ

G= expð�βhematoxylin,greenInucleistainkÞ expð�βeosin,greenIcounterstainkÞ
ð8Þ

B= expð�βhematoxylin,blueInucleistainkÞ expð�βeosin,blueIcounterstainkÞ ð9Þ
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We empirically chose k to be 2.5 for images of range [0, 255]. The
values of the βs are described in Giacomelli et al.28.

CycleGAN-based virtual H&E
Network architecture. The domain-wise image translation from
DeepDOF-SE images (domain X) to standard H&E images (domain Y )
was trained using CycleGAN, a network architecture capable of
unpaired image-to-image translation32. Briefly, the network consists of
two generators, G that maps DeepDOF-SE images ðX Þ to H&E images
(Y ) and F that maps H&E images (Y ) to DeepDOF-SE images (X). For
each generator, a discriminator network is tasked to distinguish ima-
ges synthesized by the generators from the ground truth image set (DX

for F and DY for G). The generator networks are 9-block ResNets and
the discriminator networks are 70 × 70 PatchGANs; instance normal-
ization is implemented in all networks.

We aim to train the CycleGAN so that the generators perform
realistic color and texture translation while accurately preserving
nuclear and counterstain features. To achieve this goal without accu-
rately co-registered ground truth images in domains X and Y , we
adopted a two-step semi-supervised training strategy (Supplementary
Fig. 7). In step 1, to pretrain the generators for color translationwith co-
registered features, we synthesized a paired training set consisting of
DeepDOF-SE images (X) and the corresponding Beer-Lambert-based
false-colored H&E images (X̂ ). During this step, the generators were
trained to perform the color mapping, while the feature correspon-
dence (e.g., nuclei in DAPI channel of DeepDOF-SE images to nuclei in
eosin channel in H&E images) between the two domains is preserved.
In step 2, we used unpaired DeepDOF-SE images (X) and standardH&E
images (Y ) to retrain the CycleGAN. Compared to a CycleGAN directly
trained with a dataset of unpaired images in an unsupervised manner,
the semi-supervised training ensures that both nuclear and contextual
features are accurately preserved (Supplementary Fig. 8).

Loss function. The objective used to train the GAN consists of loss
terms for the generator and the discriminator in each mapping
direction, and a cycle consistency loss for the two generators50. More
specifically, the GAN losses for the generators and discriminators are:

LGAN G,X ,Yð Þ=Ex ∼pdata xð Þ DY G xð Þð Þ � 1
� �2h i

ð10Þ

LGAN DY ,X ,Y
� �

=Ex ∼pdata xð Þ DY G xð Þð Þ� �2h i
+Ey∼pdata yð Þ ðDY yð Þ � 1Þ2

h i

ð11Þ

LGAN F ,X ,Yð Þ=Ey∼pdata yð Þ DX F yð Þð Þ � 1
� �2h i

ð12Þ

LGAN DX ,X ,Y
� �

=Ey∼pdata yð Þ DX F yð Þð Þ� �2h i
+Ex ∼pdata xð Þ ðDX xð Þ � 1Þ2

h i

ð13Þ
The cycle consistency loss, which ensures that the synthesized

images can be mapped back to the original ground truth images
through a cycle is as follows:

Lcyc G,Fð Þ=Ex ∼pdataðxÞ jjF G xð Þð Þ � xjj1
� �

+Ey∼pdataðyÞ jjG F yð Þð Þ � yjj1
� �

ð14Þ
The cycle consistency loss is combined with the GAN losses, and

as a result, the total losses for the two generators are:

Ltotal G,X ,Yð Þ=LGAN G,X ,Yð Þ+ λ1Lcyc G,Fð Þ ð15Þ

Ltotal F ,X ,Yð Þ=LGAN F,X ,Yð Þ+ λ1Lcyc G,Fð Þ ð16Þ

Note that in our training step 1, the standardH&E image domain Y
is replaced with the Beer-Lambert-based false-colored H&E image
domain (X̂).

Dataset. The CycleGAN was trained using images of resected surgical
tissue from human oral cavity (described in “Tissue processing and
imaging”). The training dataset consists of an unpaired image dataset
of 604 DeepDOF-SE images and 604 standard H&E images from the
same tissue specimen. The standard H&E scans were scaled to match
the DeepDOF-SE images, and a patch size of 512 × 512 pixels was used.
For training step 1, we also performed Beer-Lambert-law-based color
mapping to generate paired DeepDOF-SE and false-colored images.

Once trained, we evaluated the trainedCycleGAN (specifically, the
generator G) for mapping DeepDOF-SE images to standard H&E ima-
ges. First, we validated its performance to accurately map nuclear and
cytoplasmic features between the two domains. Since it is challenging
to acquire paired DeepDOF-SE and standard H&E images with co-
registered features from fresh tissue specimens, we used frozen tissue
slides of mouse tongue as a target. We first obtained DeepDOF-SE
images of the frozen slides, which were then submitted for standard
H&E processing and scanning; the H&E images were aligned to the
DeepDOF-SE images through SURF feature matching51 to generate co-
registered image pairs for algorithm validation. Once the algorithm is
validated with frozen slide images, we further evaluated its perfor-
mance in virtually staining DeepDOF-SE images of fresh tissue
specimens.

Training details. The network was implemented using the TensorFlow
package and optimized using Adam49. In both steps, the CycleGANwas
trained for 5 epochs, with the learning rate empirically chosen
at 2e−04.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training, validation, and testing datasets for the extended depth-
of-field network and the imaging data underlying the figures are
available at https://zenodo.org/records/10674605. The source data
underlying the graphs in this work are provided in the file “DeepDOF-
SE_source_data.xlsx”. The training data for the virtual staining cycle-
GAN are available under restricted access due to protocol restriction,
access can be obtained by contacting the corresponding authors with
material transfer agreements. Source data are provided with
this paper.

Code availability
The code used in this study is available on GitHub: https://github.com/
MJ2695/DeepDOF-SE/.
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