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Rapid evolutionary change in trait
correlations of single proteins

Pouria Dasmeh 1,2,3,10 , Jia Zheng 4,5,6,10, Ayşe Nisan Erdoğan7,
Nobuhiko Tokuriki 7 & Andreas Wagner 2,3,8,9

Many organismal traits are genetically determined and covary in evolving
populations. The resulting trait correlations can either help or hinder evolva-
bility – the ability to bring forth new and adaptive phenotypes. The evolution
of evolvability requires that trait correlations themselves must be able to
evolve, but we know little about this ability. To learn more about it, we here
study two evolvable systems, a yellow fluorescent protein and the antibiotic
resistance protein VIM-2 metallo beta-lactamase. We consider two traits in the
fluorescent protein, namely the ability to emit yellow and green light, and
three traits in our enzyme, namely the resistance against ampicillin, cefotax-
ime, and meropenem. We show that correlations between these traits can
evolve rapidly throughbothmutation and selectionon short evolutionary time
scales. In addition, we show that these correlations are driven by a protein’s
ability to fold, because single mutations that alter foldability can dramatically
change trait correlations. Since foldability is important for most proteins and
their traits, mutations affecting protein folding may alter trait correlations
mediated by many other proteins. Thus, mutations that affect protein fold-
ability may also help shape the correlations of complex traits that are affected
by hundreds of proteins.

Evolvability is a biological system’s ability to bring forth novel and
adaptive phenotypes. Because evolvability varies among organisms
and traits, it can itself evolve1. Understanding the factors that affect its
evolution matters not only for our fundamental understanding of
biological evolution. It also matters for technological applications,
including the experimental evolution of novel and useful molecules,
such as efficient industrial enzymes2.

Manyphenotypic traits are correlatedwith one another, and these
correlations often have a genetic basis3–5. Examples of such traits
include the weight and the height of individuals within a population6.
They also include coloration and behavioral traits in many animal

species3,7,8, as well as seed dormancy and flowering time in plants9.
Genetic correlations between phenotypic traits can influence evolva-
bility, because they can affect the extent to which traits can evolve
independently from one another10–14.

On the one hand, correlated trait evolution can facilitate evolva-
bility. For example, a strong correlation between mouth and jaw
morphology in species of freshwater fish from the genus Micropterus
helps these species adapt to the consumption of large prey15,16. On the
other hand, strong trait correlations can also hamper evolvability and
render weak trait correlations advantageous. For example, a weak
correlation between early tetrapod forelimb and hindlimb
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morphology helped bring forth major specializations, such as biped-
alism and flight17,18. More generally, the decoupling of traits from one
another helps trait variation become individuated within a population,
such that genetic change can affect only one trait without affecting
others. Trait individuation can help explain phenomena as different as
the evolution of different cell types in multicellular organisms19, leaf
shapes in plants20, and body structures in animals21.

Because trait correlations are important for evolvability, it is
important to study how easily these correlations can themselves
evolve. Previous studies have shown that trait correlations can change
on long evolutionary time scales, and become weaker or stronger in
some lineages of different species. For example, the correlation
between beak and skull morphology in Darwin’s Galapagos finches
(genus Geospiza) and Hawaiian honeycreepers (Drepanis coccinea) is
significantly stronger compared to their continental relatives22, which
has facilitated rapid craniofacial evolution in the former species.
Another example comes from indigenous Australian dicotyledons –

plants with two embryonic leaves – where the correlations between
several seedling traits such as the appearance of scale-like leaves are
evolutionarily malleable across thousands of species23. Although
examples like these show that trait correlations can evolve, we know
little about how rapidly they can do so. In addition, we cannot easily
quantify the contribution of mutations and selection to these

correlations and their evolutionary change. The reason is that these
traits are complex, macroscopic features of multicellular organisms,
which may be influenced by dozens or hundreds of genes. Also, it is
difficult to determine the causes of correlations between complex
traits. In principle, they can be caused by genetic factors, such as
pleiotropy and linkage disequilibrium24, or by environmental and
ecological factors, such as habitat temperature and aridity25,26.

To overcome some of these challenges, we study evolutionary
change in trait correlations in single protein-coding genes. For this
purpose, we chose two genes that we had previously subjected to
experimental evolution, and whose traits we canmeasure reliably. The
first is the gene yfp, which encodes yellow fluorescent protein (YFP).
Because this protein is not native to themicrobial host organism E. coli
in which we study it, we can study its traits with less interference from
the host’s proteome and physiology than would be possible for native
proteins. YFP emits both yellow and green fluorescence light, and
these emissions are the two traits we study (Fig. 1A). Although these
traits are not directly linked to cellular fitness, they can change by
mutation and selection. We can quantify them rapidly and precisely in
thousands of organisms through fluorescence activated cell sorting
(FACS), which allows us to precisely estimate trait correlations.

The second gene extends our analysis to traits that are directly
linked to cellular fitness. It is the gene vim2, which encodes the protein

Fig. 1 | Gene expression noise and mutations can change the strength of cor-
relation between yellow and green fluorescence intensities. A Schematic of
experimental design. We investigate the correlation between yellow and green
fluorescence intensities in E. coli populations that express yellow fluorescent pro-
tein (YFP). B Autofluorescence correlation between yellow and green fluorescence
intensities in anE.colipopulationwithout the yfpgene. Blue lines show the contours
of a two-dimensional density of data points. C The correlation between yellow and

green fluorescence intensities varies substantially among YFP mutants. Each circle
corresponds to the mean trait correlation for a YFP mutant, and error bars show
one standard deviation of Spearman’s rank correlation coefficient between yellow
and green fluorescence intensities in three biological replicates of populations
expressing eachmutant. Data inpanelsB andC are basedonfluorescence-activated
cell sorting (FACS) with ~105 sorted cells (see Methods for details). Source data for
panels B and C are available in the Source Data file.
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VIM-2 metallo betalactamase (MβL). VIM-2 metallo-β-lactamase is a
highly effective enzyme that confers broad-spectrum resistance
against beta-lactam antibiotics. VIM-2 belongs to the genetically and
functionally diverseMβL superfamily, which has the remarkable ability
to efficiently hydrolyze distinct classes of β-lactam antibiotics27–29.
Given its broad-spectrum resistance capabilities, VIM-2 is an ideal
candidate for experiments on trait correlations. The VIM-2 traits that
we study are resistance to the three different antibiotics ampicillin,
cefotaxime, and meropenem. We have previously shown that only a
few mutations suffice to change the resistance conferred by VIM-2 to
these antibiotics27,30. Here we quantify correlations between these
antibiotic resistance traits.

Using both yfp and vim2, we investigate whether trait correlations
can rapidly change by mutations and selection at the level of single
genes. We demonstrate that trait correlations are malleable and can
undergo substantial changes on short evolutionary time scales.
Although the extent of these changes varies between the proteins we
study, they are predominantly affected by changes in the biophysical
properties of these proteins.

Results
Trait correlation changes by mutations in fluorescent proteins
We first examined trait correlations in our fluorescent protein, YFP, and
then extended our observations and findings to the enzyme VIM-2.
Single point mutations can shift the maximum emission wavelength of
YFP. This property facilitates the experimental evolution of fluores-
cence color in YFP-expressing cell populations (Fig. 1A). In addition, it
allowed us to ask whether mutation and/or selection can change the
correlation between yellow and green fluorescence. To do so, we sys-
tematically measured this correlation in both genetically polymorphic
populations of E.coli cells that express different YFP variants, as well as
in several YFPmutants. In addition, we alsomeasured this correlation in
YFP subpopulations that differ in their fluorescence intensities. These
experiments enabled us to distinguish the extent to which micro-
environmental variation (gene expression noise), mutation, and selec-
tion affect the correlation between two traits of a single protein.

Before starting our main experiments, we needed to make sure
that the trait correlation wemeasure and study in this work is only the
property of fluorescent proteins and not the background-fluorescence
resulting from other fluorescing molecules31. We thus measured both
the yellow and green autofluorescence of E.coli cells that do not
express YFP, and found that the two autofluorescence traits are only
weakly correlated (Spearman’s rank correlation R = 0.03, p =0.0002;
Fig. 1B). We consider this correlation our baseline correlation. Any
significantly stronger correlations in YFP-expressing cells can be
attributed to YFP, and not to cellular autofluorescence.

We next turned to our first focal question: Can mutations
strengthen or weaken this baseline correlation. To answer this ques-
tion, we measured trait correlations for 71 YFP mutants that we had
previously engineered, because they attained moderate to high fre-
quency in evolving populations32,33. These variants include the WT
protein, as well as 10 mutants with one, 28 mutants with two, and 32
mutants with three amino acid changes (Supplementary Table 1). All
double mutations share the mutation G66S (replacement of a glycine
with serine at position 66 of YFP) or Y204C, and all triple mutations
share both amino acid changes G66S and Y204C. Themutations G66S
and Y204C are unique in that they shift the emission spectrum of YFP
from yellow towards green fluorescence32, reducing yellow fluores-
cence but enhancing green fluorescence. The nature of these muta-
tions shows that yellow and green fluorescence are two distinct
features of YFP and can be treated as separate (albeit possibly corre-
lated) traits.

Trait correlations varied significantly among YFP mutants
(Fig. 1C). Specifically, they varied from R = 0.17 (for the triple mutant
G66S-Y204C-F72S; p < 10−16, Spearman’s rank correlation) to R = 0.98

(for the double mutant G66S-N145S, p < 10−16; Spearman’s rank corre-
lation). Remarkably, even some single-point mutations sufficed to
substantially strengthen or weaken the correlations of these traits
relative to theWT protein.We further investigated whether changes in
trait correlations arise from changes in the proportion of cells exhi-
biting autofluorescence or low fluorescence intensity. We found
instead that they stem from variation in the fluorescence intensity of
functional and actively fluorescing molecules (Supplementary note 1).
Altogether, these observations show that trait correlations in our sys-
tem can change substantially by single-point mutations.

Selection of one trait changes trait correlation in fluorescent
proteins
We next addressed our second focal question: Can selection change
trait correlations? To answer it, we measured the correlation between
yellow and green fluorescence intensities in YFP populations that we
had previously evolved under multiple cycles of mutation and either
strong selection, weak selection, or no selection for yellow fluores-
cence intensity32,33 (Fig. 2A, seeMethods for details). Selection leads to
the accumulation of different YFP mutants in these population. The
properties of such variants differ from that of wild-type (WT) YFP. To
quantify these differences, we calculated the ratio of the median yel-
low fluorescence of different populations to that of an isogenic
population of YFP wild-type. For populations under no selection this
ratio was approximately 0.68. For populations under weak selection it
was approximately 1, and for populations under strong selection it was
18. Previous single-molecule real-time sequencing had also shown that
during experimental evolution, YFP accumulated up to ~6 amino acid
changes compared to the wild-type32.

During experimental evolution, the trait correlation increased
from R =0.13 (p < 10−16, Spearman’s rank correlation) for YFP popula-
tions that had evolved under no selection, to R =0.73 and R = 0.89
(p < 10−16, Spearman’s rank correlation), for populations that had
evolvedunderweak and strong selection, respectively (Supplementary
Fig. 1). Because we suspected that trait correlations may depend on
absolute fluorescence intensities, we pooled YFPs from these three
populations and further partitioned this pooled population into 20
subpopulations, such that each subpopulation spanned a similar
interval of yellow fluorescence intensity (Fig. 2B; see Methods). We
then sorted ~105 cells in each subpopulation using fluorescence-
activated cell sorting (Fig. 2B), and measured the correlation between
yellow and green fluorescence intensities in each subpopulation.

Remarkably, the correlation between yellow and green fluores-
cence varied dramatically among the 20 subpopulations. It increased
from a weak correlation (R =0.03, p =0.00023; Spearman’s rank cor-
relation) for the first subpopulation with the lowest average yellow
fluorescence intensity, to a strong correlation (R =0.87, p < 10−16;
Spearman’s rank correlation) for the 20th subpopulation with the
highest average yellow fluorescence intensity (Fig. 2C–E). The corre-
lation between yellow and green fluorescence was significantly dif-
ferent (p <0.05; Fisher’s z-transformation, Methods) from that caused
by mutations (Spearman’s R =0.63) for all except the 12th subpopula-
tion (p ~ 0.3, Fisher Z-transformation). These results show that selec-
tion can systematically change the strength of a trait correlation, and
render it significantly stronger or weaker than the one caused by
random mutations. To further validate this observation, we picked
90 single clones from each of the 20 subpopulations and measured
their yellow (λex = 485 nm, λem = 530 nm) and green (λex = 400 nm,
λem = 512 nm) fluorescence intensities using a microplate reader
(TECAN Spark) (Fig. 2F, see Methods for details). For these single
clones too, we observed an increase in the correlation of the green and
yellow fluorescence intensities from the first subpopulation to the 20th

subpopulation (Fig. 2G, H). Altogether, our observations show that
trait correlations can be easily shaped by selection, even on the short
time scales of laboratory evolution.
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Fig. 2 | Selection systematically changes the trait correlation measured at the
level of single cells. A Distribution of fluorescence intensity from fluorescence-
activated cell sorting (FACS) of our pooled population, which contains YFP variants
that have evolved under mutation and various strengths of selection to maintain
yellow fluorescence (see “Methods”), and that display different fluorescence
intensities. The vertical axis indicates the number of cells at a given yellow fluor-
escence intensity (horizontal axis, arbitrary units). To study cells of different
fluorescence intensity, we sorted cells from this population into twenty bins
(subpopulations) according to their yellow fluorescence intensity (Subpopulations
1–20, as indicated by lettering on top of each bin). B Each of the subpanels from
bottom to top shows the distribution of fluorescence intensities of cells in one of
the 20 subpopulations (right vertical axis). C The mean Spearman’s correlation
coefficient for the correlation between yellow and green fluorescence intensities in
all 20 subpopulations (indicated on the x-axis). Error bars represent the standard
deviation of the correlation coefficient, as measured from three replicate samples
of the same subpopulation. Green circles correspond to subpopulations in which
the correlation between yellow and green fluorescence was significantly different
from that caused by single-point mutations (p <0.05). The red circle and bar

correspond to the 12th subpopulation, in which trait correlation was statistically
indistinguishable from that caused by randommutations (p <0.05). We compared
the significance of the trait correlation in each subpopulation with the correlation
caused by mutations (R =0.63, p < 10–16, Spearman’s rank correlation), using
Fisher’s z-transformation (see Methods). The p-values of this comparison for all
subpopulations are ~0, ~0. ~0, ~0, 2.69 × 10−290, 9.46×10−191, 4.63 × 10−185, 1.11 × 10−122,
6.80× 10−65, 5.37 × 10−30, 5.44 × 10−17, 0.30, 1.04 × 10−20, 5.82 × 10−132, 6.90 × 10−186,
1.33 × 10−194, 7.71 × 10−261, ~0, 1.11 × 10−304, and ~0. D Yellow fluorescence intensity
versus green fluorescence intensity for the first subpopulation (with lowest fluor-
escence intensity). E Yellow fluorescence intensity versus green fluorescence
intensity for the 20th subpopulation (with the highest fluorescence intensity).FWe
picked 90 single clones fromeach of our twenty subpopulations, andmeasured the
correlation between yellow and green fluorescence intensities in liquid cultures
derived from each of these 1800 (=90 × 20) colonies (see “Methods”). Yellow
fluorescence intensity versus green fluorescence intensity for the 90 clones sam-
pled from G the first subpopulation and H the 20th subpopulation. All correlation
coefficients (R) are Spearman’s rank correlations. Source data for panels
C–E, G, and H are available in the Source Data file.
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Protein foldability contributes to the malleability of trait
correlation
We next asked which YFP properties can (i) be easily shaped by one or
few mutations, and (ii) affect the trait correlations we observe in
individual variants and in our polymorphic subpopulations. One can-
didate property is fluorescence color itself. Mutations in YFP, parti-
cularly those that alter amino acids close to the protein’s fluorophore,
can shift the emission spectrum of the protein. We compared trait
correlations for a set of 10 YFP variants that maximally emit in colors
ranging between yellow (~525–530 nm) and green (~510 nm; see Sup-
plementary Table 2). However, a change in this maximum emission
wavelength was not significantly associated with an altered trait cor-
relation (R = 0.28, p = 0.42; Spearman’s rank correlation). For example,
although the maximum emission wavelength was substantially differ-
ent between themutant G66S (~521 nm) and the triplemutants Y204C-
G66S-F65L (~511 nm), the trait correlation is nearly the same in these
twomutants (~0.9). Another example involves the triple pointmutants
that contain both color-shifting mutations Y204C and G66S (~511 nm).
Among all suchmutants, trait correlation varied from0.68 (for Y204C-
G66S-K102E) to 0.87 (Y204C-G66S-F65L). These observations show
that the fluorescence color itself. i.e., the emission spectrum, is not a
key property affecting the trait correlations we study.

We then focused on a second candidate property, which is bio-
physical in nature. It is the ability of a protein to fold properly. We
hypothesized that changes in protein foldability can affect trait cor-
relations, because only folded proteins fluoresce. To validate this
hypothesis, we estimated the foldability of our 10 YFP variants. Spe-
cifically, we measured the overall refolding yield of YFP upon thermal
denaturation (see Methods). In this assay, we first denatured YFP,
allowed it to refold, and quantified the amount of refolded proteins by
measuring the fluorescence relative to the fluorescence of YFPs that
hadnot denatured32. Importantly,more foldable YFP variants showeda
significantly higher correlation between green and yellow fluorescence
intensities (Fig. 3B; R =0.67, p =0.03; Spearman’s rank correlation).
Some of our 10 YFP variants in this analysis harbored the known
foldability-improving mutations F47L, V164A, and F65L32. The pre-
sence of these mutations alone increased the trait correlation. For
example, the trait correlation of the variant G66S-Y20C increased from
~0.61 to ~0.75, 0.78, and 0.87, in the presence of the mutation F47L,
V164A and F65L, respectively (Supplementary Table 2).

To further validate the hypothesis that changes in foldability
determine evolutionary changes in trait correlations, we turned to our
20 subpopulations and quantified the overall refolding yield of YFP
upon thermal denaturation for these subpopulations. We also mea-
sured the temperature of midpoint denaturation (Tm) as a measure of
thermodynamic stability, another quantity that correlates well with
protein foldability34. Both measures of protein foldability system-
atically increased from the first to the 20th subpopulation (Fig. 3C, D
and Supplementary Fig. 2). Bothmeasures were also themselves highly
associated with trait correlations (Fig. 3E–G; Spearman’s R = 0.93 and
0.99 for Tm and refolding yield after thermal denaturation, respec-
tively; p ~ 10−6). In addition, we also used an enzyme-linked immuno-
sorbent assay (ELISA) tomeasure the amount of soluble protein in each
subpopulation, which is also a proxy for protein foldability. Indeed,
more soluble YFP subpopulations also fluoresced more intensely
(Supplementary Fig. 2). More importantly, protein solubility was again
strongly associated with the magnitude of our trait correlations
(R =0.99, p ~ 10−6; Spearman’s rank correlation). Altogether, these
results show that protein foldability is a key determinant of the cor-
relation between the two traits we study in YFP.

Trait correlations changes in the evolution of an enzyme
So far,wehave shown that correlations in color emissionoffluorescent
proteins change bymutations and selection and are shaped by protein
foldability. Would these conclusions also apply to a different protein

whose traits are directly linked to cellular fitness? To find out, we
studied the VIM-2 metallo-β-lactamase (MβL), a highly effective
enzyme that confers broad-spectrum resistance against beta-lactam
antibiotics. (Fig. 4A)27,29. Given its broad-spectrum resistance con-
ferring abilities, VIM-2 is an ideal candidate for our analysis of trait
correlation. Here, we consider resistance to the three different beta-
lactamantibiotics ampicillin, cefotaxime, andmeropenem as our traits
of interest.

Just as in the case of fluorescent proteins, we first investigated
whether mutations could change trait correlations. Assessing trait
correlation in YFP and VIM-2 populations requires different measure-
ment methods: unlike light emission, antibiotic resistance cannot be
measured in single cells. We thus compared trait correlations across
different genotypes from deepmutational scanning experiments. This
is akin to averaging the individual differences in single cells of a given
genotype, and doing so for multiple genotypes. For this analysis, we
analyzed data from deep mutational scans that we had previously
performed to assess the fitness effect of single-point mutations in
VIM2 on E. coli’s resistance to our three antibiotics27,29.

As shown in Fig. 4B, C, changes in antibiotic resistance (our fitness
measure, see Methods) of VIM-2 mutants relative to WT VIM-2 are
correlated across the pairs of antibiotics. On average, a mutation that
increases resistanceagainst ampicillin also tends to enhance resistance
to cefotaxime and meropenem. The strength of this association was
~0.83 and ~0.94 (Spearman’s rank correlation) between ampicillin and
cefotaxime, and between ampicillin and meropenem, respectively.
Importantly, the trait correlation was weaker for more deleterious
(resistance-reducing) than for less deleterious mutations. To demon-
strate this, we divided all mutations into two bins based on how they
affect ampicillin resistance. The first bin encompassed mutations that
are highly deleterious (fitness scores −12 to −4, referred as ‘bin 1’ in
Fig. 4B, C) and cause the ampicillinMICof the enzyme to fall below the
intrinsic resistance of E. coli (4 μg/mL). The second bin encompassed
mutations above this resistance threshold (fitness scores −4 to 2,
referred as ‘bin 2’). For ampicillin and cefotaxime resistance, the trait
correlation in the first bin was ~0.70 (Spearman’s correlation,
p <0.0001). It increased to ~0.91 (Spearman’s correlation, p <0.0001)
in the second bin. Likewise, for ampicillin and meropenem resistance,
the trait correlation within the first bin was ~0.71 (Spearman’s corre-
lation, p <0.0001), and increased to ~0.91 (Spearman’s correlation,
p <0.0001) for the second bin. These changes in correlation strength
were significant, as indicated from a Fisher transformation of Spear-
man’s rank correlation (p < 0.001), showing that mutations can sig-
nificantly change trait correlations in VIM2.

Next, we investigated whether significant changes in trait corre-
lations occur within VIM-2 populations that are subject not just to
mutations but also to selection. To this end, we took advantage of a
laboratory evolution experiment that we had performed recently. In
this experiment we evolved VIM-2 through 100 rounds ofmutagenesis
and selection under a fixed and low ampicillin concentration (10 µg/
ml), starting from a VIM-2 variant with high resistance against ampi-
cillin (MIC = 8192 µg/ml, compared to MIC= 128 µg/ml in WT VIM-2;
Fig. 1D, Supplementary Fig. 4, and S5)35. The concentration of ampi-
cillin and thus the strength of selection remained constant in this
experiment. Since the experiment started from very high resistance,
deleteriousmutations gradually accumulated and reduced the average
ampicillin resistance of the evolving population, until the population
reached a mutation-selection equilibrium. In this equilibrium popula-
tion members differed widely in their mutation load and their anti-
biotic resistance. Specifically, the VIM-2 variants at the end of this
experiment genotypically differed by ~15–75 amino acid mutations
from wild-type VIM-2, and phenotypically differed by up to 13-fold in
their ampicillin minimum inhibitory concentration (MIC). We exam-
ined the correlation between resistance against the three beta-lactam
antibiotics at different time points during evolution.
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To this end, we isolated up to 100 VIM-2 variants from each round
of evolution and measured their MICs of the three beta-lactam anti-
biotics (see Methods). We observed that the correlation between the
resistance (MIC) of enzyme variants to ampicillin vs. meropenem and
ampicillin vs. cefotaxime varied substantially during the experiment,

and significantly weakened from the first to the last round. In round
one, the Spearman’s rank correlation between ampicillin and cefo-
taxime resistance was 0.91, but by round 100, it had significantly
decreased to 0.47 (Fig. 4D, Fisher transformation of Spearman’s rank
correlation p < 0.001). Likewise, the correlation between ampicillin

U == G66S + Y204C U = G666S + Y204CC

Fig. 3 | Trait correlation substantially changes by single-point mutations that
affect protein folding. Spearman’s rank correlation coefficient between yellow
and green fluorescence intensities versus (A) maximum emission wavelength (nm)
for a selected set of 10 mutants, and (B) refolding yield after thermal denaturation
for the same mutants. C Refolding percentage upon thermal denaturation for the
20 subpopulations versus time (in hours). D Residual yellow fluorescence as a
function of temperature, for the 20 subpopulations. In panels A and B, sub-
populations are color coded from gray (subpopulation 1) to red (subpopulation
20). Spearman’s rank correlation coefficient between yellow and green

fluorescence intensities versus (E) the temperature of the denaturation midpoint
(Tm) of YFP subpopulations (p = 6.08× 10−6), (F) the percentage of refolded YFP
upon thermal denaturation (p = 6.45 × 10−6), and (G) the soluble fraction of YFP (in
µg/ml) as assessed by an enzyme-linked immunosorbent assay (ELISA)
(p = 6.14 × 10−6). In panels A and B, the symbol U represents the genotype G66S-
Y204C. All correlation coefficients were calculated using two-sided Spearman’s
rank correlations. In panelsC, E–G, we have n = 3 biologically independent samples
per subpopulation, and data is shown as mean values ± SD. Source data for all
panels are available in the Source Data file.
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and meropenem resistance significantly decreased from R =0.92 in
round 1 to R = 0.65 in round 100 (Fisher transformation of Spearman’s
rank correlationp <0.001). Thesefindings, highlight the evolvability of
trait correlations in an evolving VIM-2 population on the short time
scale of laboratory evolution. In addition, throughout the evolution
experiment, the correlation between ampicillin and cefotaxime resis-
tance variedmore substantially (from R =0.92 in round 1 to R = 0.47 in
round 100) than between ampicillin and meropenem resistance (from
R = 0.92 in round 1 to R =0.65 in round 100), indicating that the mal-
leability of trait correlationsmight differ fromone trait pair to another.

Finally, we examined how trait correlations in our antibiotic
resistance enzyme may be affected by the same factor – protein
foldability – that affects trait correlations in fluorescent proteins
(Fig. 3). To findout, wequantified the statistical association between (i)
the change in predicted folding stability of VIM-2 variants in our
evolving VIM-2 population at different times during evolution and (ii)
the correlation (Spearman’s R) in resistance for our pairs of antibiotics.
We employed this partly computational approach because the mea-
surement of protein foldability in VIM-2 populations is not as

straightforward as in YFP, where a fluorescence assay suffices to
quantify the refolding yield after thermal or chemical denaturation32,36.
A similar measurement on VIM-2 would require enzymatic assays on
purified VIM-2 proteins, which are difficult to perform for many var-
iants sampled from protein populations. We thus sequenced ~20–30
VIM2 variants at each of multiple time points during experimental
evolution, measured their antibiotic resistance, and predicted the
folding stability of each variant using FoldX, a widely used predictor of
this stability (see Methods; Source data). We found that the folding
stability of VIM2 populations decreased during evolution (Fig. 4E).
Notably, the average predicted folding stability significantly decreased
with diminishing trait correlation only for ampicillin and cefotaxime
resistance (R = 0.71 between folding stability and resistance correla-
tion, p ~ 0.004; Spearman’s rank correlation). This decrease is not
driven by decreasing resistance itself (Supplementary Note 2). Folding
stability decreased but not significantly so for ampicillin and mer-
openem resistance (R = 0.36, p ~ 0.1; Spearman’s rank correlation). The
small sample size of ~20–30 variants per populationmay be one cause
of this observation. Another may be the more complex relationship
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Fig. 4 | Exploring trait correlations in an antibiotic resistance enzyme. A The
structure of wild-type metallo-beta-lactamase VIM-2 (PDB: 4bz3), depicted as a
ribbon cartoon (green and orange) overlaid with the solvent accessible surface
(Connolly’s molecular surface, shown in gray). The side chains of active site resi-
dues are shownwith the ball and stick representation alongside the two Zinc atoms
(gray spheres within the protein’s active site) that coordinate the hydroxyl radical
responsible for the nucleophilic attack on the beta-lactam ring27,29. B, C Relative
fitness effects of individual amino acid substitutions on VIM-2 expressed in E. coli,
tested in media containing ampicillin vs. cefotaxime (panel B) or meropenem
(panelC). The 95% prediction bands of the best-fit line are depicted as dotted lines,
fitted to all data points (left panel) and when data is grouped into two fitness effect
categories. Bin 1: fitness scores −12 to −4, shown in green; bin 2: fitness scores −4 to
2, shown in lilac. Gray data panels to the right of each colored plot show trait
correlation for all mutations. D Trait correlation between resistance against

ampicillin vs. cefotaxime (upperpanel) andmeropenem (lower panel),measured as
the minimum inhibitory concentration (MIC) for representative VIM-2 populations
across 100 rounds of evolution. Each circle corresponds to the data fromone VIM-2
mutant. The number of mutants is n = 24, 48, and 93 for rounds 1, 20, and 100,
respectively. E Predicted change in folding stability (ΔΔG) of VIM-2 variants across
different rounds of experimental evolution. The number of biologically indepen-
dent variants in the rounds 1, 2, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100 are
n = 24, 24, 21, 21, 23, 22, 25, 29, 18, 37, 22, 23, 20 and 23, respectively. Data is shown
as mean values ± SD. F, G The relationship between the average predicted folding
stability of VIM-2 variants at different rounds of evolution (as shown in panel E) is
plotted against the correlation betweenampicillin and cefotaxime resistance (panel
F), and between ampicillin and meropenem resistance (panel G). Source data for
panels B–G are available in the Source Data file.
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between trait correlation and protein folding in VIM-2 compared to
YFP that we discuss below.

Discussion
Our experiments with a fluorescent protein (YFP) and an enzyme
(VIM-2) demonstrate that correlations between traits of such proteins
can change dramatically and rapidly on short evolutionary time scales
by the dual forces of mutation and selection. For both fluorescent
proteins and for VIM-2, particularly for resistance against ampicillin
and cefotaxime, we also show that trait correlations increase with
protein foldability.

Foldability is essential for the function ofmost proteins37–40. It can
also readily change through mutations. Specifically, most random
mutations in proteins are destabilizing41, but ~20% of such mutations
are stabilizing and increase protein foldability41. In consequence, pro-
tein foldability is highly variable during protein evolution42–44. For
instance, although mammalian myoglobins exhibit similar oxygen
binding abilities (oxygenation constant ~ 0.8–1.2 µM − 1), their unfold-
ing resistance to chemical denaturants differs dramatically, with up to
a 600-fold variation44,45. More generally, proteins in the proteomes of
E. coli, C. elegans, S. cerevisiae, and human vary widely in their ther-
modynamic stability46,47, which correlates with protein foldability34.
These examples suggest that changes in protein foldability occur fre-
quently during protein evolution, potentially leading to rapid altera-
tions in trait correlations. Our findings expand upon the established
concept that highly stable and foldable proteins are more
evolvable1,48,49. It is not solely the increased stability or foldability of
proteins that promotes evolvability. Instead, the dynamic nature of
this property can render trait correlationsmalleable, thereby fostering
evolvability depending on whether an increased or decreased trait
correlation is advantageous.

The extent to which mutations can change trait correlation is not
the same for each trait, and itmay depend on the number ofmutations
that affect the trait. For example, we observed that the correlation
between resistanceagainstmeropenemand ampicillin is lessmalleable
in evolution than the correlation between resistance to cefotaxime and
meropenem (Fig. 4). A possible explanation comes from the number of
amino acid positions whose mutations confer resistance to the three
beta-lactam antibiotics. Specifically, mutations at 25 amino acid posi-
tions of VIM-2 alter resistance against at least one of our three anti-
biotics, but this number is not the same for different antibiotics. That
is,mutations in 21 out of 25 positions affect ampicillin resistance, while
many fewer (10 of 25) affect cefotaxime resistance, and only one
affects meropenem resistance29. We speculate that the larger number
of mutations affecting either cefotaxime or ampicillin resistance also
contributes to their more malleable trait correlation. More generally,
we anticipate that a protein’s structure, particularly the number of
amino acid positions affecting an enzyme’s active site, or impacting
protein function through long-range effects such as allostery, will be
crucial in determining the malleability of trait correlations in proteins.

Our observations on the changes in trait correlation in protein
populations help us gain more insights on the mutational pleiotropy.
Most mutations are pleiotropic, that is, they simultaneously affect
multiple protein traits50–52. A pleiotropicmutationmay alter all traits to
a similar extent – its effects on traitsmay be isotropic – or itmay affect
some traits differently from others. Our observations show that
mutations may differ in their isotropic effect on protein traits. For
example, we had previously observed that 29 single-pointmutations in
25 amino acid positionswithin the active site of VIM-2 lead to increased
resistance against all three antibiotics29. These mutations are isotropic
in the sense that they increase resistance to multiple antibiotics. We
quantified the prevalence of suchmutations among 4565mutations in
240 amino acid positions in VIM-2 using our previous deepmutational
scan of VIM-2 (Supplementary Note 3, Supplementary Table 4).
Approximately 2% of mutations enhanced resistance to all three

antibiotics. Conversely, roughly61%ofmutations decreased resistance
to the three antibiotics. Hence, in VIM-2, around 63% of all mutations
are isotropic, either enhancing or diminishing resistance to all three
antibiotics we studied here (Supplementary Table 4). Isotropy also
varied among different amino acid positions (Supplementary Fig. 6).
Whilewewereunable to estimate the fractionof isotropicmutations in
YFP due to the absence of a comprehensive mutational scan for this
protein, we did examine the isotropy of 21 single-point mutants in YFP
(Supplementary Table 5). Out of these 21 mutants, 12 significantly
altered YFP’s yellow and green fluorescence intensities relative to the
wild-type. Specifically, five mutations increased and five other muta-
tions decreased both yellow and green fluorescence. The remaining
two mutations (G66S and Y204C), were anisotropic. They enhanced
green fluorescence but reduced yellow fluorescence, i.e., they shifted
the fluorescence color from green to yellow. Overall, our observations
on both VIM-2 and YFP indicate that isotropy can vary among muta-
tions. Systematic exploration of the pleiotropy of mutations using
deep mutational scanning data may help to generalize our findings to
other proteins.

Lastly, our results provide insights into themalleability ofG andM
matrices, two fundamental concepts in quantitative genetics11–13. The G
matrix encapsulates the genetic variances and covariances of traits
across individuals in a given population. The rapid changes in trait
correlations we observe indicate that the G matrix is highly malleable
in both of our study systems. The M matrix characterizes trait var-
iances and covariances that result from mutations. One difficulty in
estimating it is that most observable organismal traits are not just
influenced bymutation but bymutation and selection. To determine if
mutations alone can impact the M matrix, we must examine how
mutations in various genetic backgrounds affect trait correlations. In
YFP,wehadpreviously createdmutagenized libraries of 21 single-point
mutation variants of YFP, using error-pronePCRwith ~0.84 aminoacid-
changing mutations per YFP molecule32. We employed this dataset to
explore how trait correlation varies across different genetic back-
grounds. If this background had no effect on the M matrix, trait cor-
relations should be identical for these YFP variants. However, contrary
to this expectation, we observed significant variation in trait correla-
tions among the mutagenized YFP variants (Supplementary Fig. 7).
This observation demonstrates that the impact of mutations on trait
correlations can change substantially with genetic background. It
provides evidence for the malleability of the M matrix. And because
the 21 variants arose in the course of a short laboratory selection
experiment32, it also suggests that selection can rapidly change the M
matrix. This analysis further demonstrates that tractable molecular
systems, such as the protein populations examined in this study, can
help to explore fundamental questions in quantitative genetics.

It is important to acknowledge two key limitations of our study.
Firstly, the pairs of protein traits we studied here are similar to each
other. Although our selection assays independently targeted these
traits, their inherent similarity may bias our conclusions, which may
not apply to more dissimilar traits. Future research could explore the
evolution of trait correlations in more dissimilar traits, such as enzy-
matic reactions catalyzed by a bifunctional enzyme or traits related to
protein oligomeric states, such as the formation of dimers and tetra-
mers. Secondly, we relied on predicted stabilities for different variants
within VIM-2 populations. While stability predictors are widely used to
assess protein stability44,53–55, deviations from experimentally mea-
sured stabilities might affect our conclusions regarding the degree of
trait correlation and its malleability. Future experiments utilizing
population-level assays, such as differential scanning fluorimetry56,
may provide a better assessment of how trait correlation varies with
changes in the stability or foldability of proteins.

In sum, our experiments not only show that correlations between
traits of single proteins can change rapidly and on short evolutionary
time scales. They also provide a simple biophysical explanation for this
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change. They link the fundamental protein property of foldability with
a fundamental aspect of evolvability – trait correlations. In doing so,
they can help to explain how evolvability can evolve rapidly.

Methods
Plasmids, strains, and mutant libraries
We used the vector pBAD202/D-TOPO (K4202-01, Invitrogen), which
carries an arabinose-inducible araBAD promoter and a Kanamycin-
resistance gene for YFP evolution within the E. coli strain BW27783
(CGSC 12119). As described previously3, we inserted the coding region
of yfp fromwater jellyfish (Aequorea victoria;Uniprot ID: A0A059PIR9)
that was already present in the plasmid pAND2 into the vector back-
bone of pBAD202/D-TOPO by restriction digest and ligation. We
inserted the YFP-coding gene between XhoI and HindIII restriction
sites, placing it under the control of the arabinose-inducible araBAD
promoter. We named the resulting plasmid pBAD-YFP.

We introduced random mutations into the coding region of YFP
by mutagenic PCR as previously described3. Briefly, we added 10 ng of
template plasmid to 100 µl of a PCR reaction mix that contains 10 µl of
10 × ThermoPol buffer (M0267L, NEB), 2.5 µl of Taq DNA polymerase
(M0267L, NEB), 400 µM of dNTPs (R0192, Thermo Scientific), 3 µM of
8-oxo-GTP/dPTP (Trilink Biotechnologies), and 400nMof each primer
(MutafpF- GAAGGAGATATACctcgag /MutafpR- AGACCGTTTAAA-
Caagctt). We used a Biometra thermocycler to perform PCR by using
the following program: 95 °C/30 s; 25 cycles of 94 °C/20 s, 46 °C/30 s
and 68 °C/50 s; 68 °C/5min. We used the restriction enzymes XhoI and
HindIII (R0146L/R3104S, NEB) to digest the resulting PCR products,
and used DpnI (R0176S, NEB) to remove the template plasmid by fol-
lowing the manufacturer’s protocols. We used the QIAquick PCR pur-
ification kit to purify the digested mutated YFP pools to obtain
linearized inserts.

Sorting cells from a pool of evolving populations at the end of
directed evolution
To systematically study how selection affects protein evolvability
through direct effects on fitness as well as through indirect effects on
protein stability and foldability, we sampled diverse YFP variants that
vary broadly in their yellow fluorescence. Specifically, we sampled
from YFP populations created in a previously published directed
evolution experiment, in which we had evolved populations of YFP
under either strong selection for yellow fluorescence (populations S,
top 20 percent of yellow fluorescing cells survive selection), weak
selection (populations W, top 65 percent survive), or no selection
(populations N for neutral, 100 percent survive)32. For each of these
selection regimes we had evolved four replicate populations for four
rounds (“generations”) of directed evolution through fluorescent
activated cell sorting (FACS)-based selection and PCR-based
mutagenesis.

To create a pool of yellow fluorescent proteins that cover a broad
range of fluorescence intensities, we sampled 100 µl of glycerol stock
from each of the four replicate S populations (from generation 4), W
populations (generation 4), and W populations (generation 2). We
added each of these 12 ( = 4 + 4 + 4) samples into 2ml LB medium
supplemented with 30 µg/ml kanamycin. We grew the resulting 12
cultures at 37 °C with shaking at 220 rpm in a 10ml tube for ~5 h, and
then transferred 50 µl of each culture to 2ml LB supplemented with
30 µg/ml kanamycin. After continuing cultivation for another ~12 h, we
combined 400 µl of each culture into one tube andmixed thoroughly.
Subsequently, we added 900 µl of the resulting mixture into 600 µl
50% glycerol and stored it at −80 °C for subsequent sorting experi-
ments. We call the resulting mixture our “pooled” population of YFP-
expressing cells. We sorted this pooled populations into 20 “sub-
populations” as shown in Fig. 2A.

To sort the pooled population into 20 subpopulations according
to their fluorescence, we first added 200 µl of glycerol stock of the

pooled population sample to 3ml LB medium containing 30 µg/ml
kanamycin, and grew the resulting culture at 37 °C with shaking at
220 rpm for ~5 h. We then transferred 200 µl of the culture into 20ml
LB medium with 50 µg/ml kanamycin, and continued the incubation
for ~12 h. We then sampled 2ml of the culture and centrifuged it at
9000 g and 4 °C for 5min to collect cells. We suspended the col-
lected cells in 2ml LB medium supplemented with 50 µg/ml of
kanamycin and 0.2% arabinose, and continued cultivation for ~12 h.
Subsequently, we sampled 40 µl of culture and suspended it in 2ml
cold PBS buffer. We selected cells by their yellow fluorescence
intensity according to the selection criteria described in Fig. 2A, B
with an Aria III cell sorter (BD Biosciences). Specifically, we sorted
cells at 4 °C in the FITC channel (λex = 488 nm, λem = 530 ± 15 nm),
and collected 105 cells in ~1ml LB medium for each sorted sub-
population. We placed the selected cells on ice until we had finished
sorting all subpopulations to prevent cell proliferation or death. We
regrew the sorted cells and followed the same procedure to perform
a second sorting for each of the twenty subpopulations, according to
the selection criteria described in Supplementary Fig. 8.We prepared
a glycerol stock of each subpopulation for later flow cytometry
measurements.

Fluorescence assay using flow cytometry
We added 200μl of glycerol stock from each subpopulation into 10ml
LB medium containing 50μg/ml of kanamycin, and incubated the
resulting 20 cultures at 37 °C with shaking at 220 rpm for ~8 h. We
collected cells by sampling three separate 2ml of each subpopulation’s
culture and then centrifuging them at 9000g and 4 °C to collect cells.
To the pelleted cells of each subpopulation we added 2.3ml LB med-
ium supplemented with 50μg/ml of kanamycin and 0.2% arabinose,
resuspended the cells, and grew the resulting culture at 37 °C with
shaking at 220 rpm for ~12 h. This procedure yielded 20 overnight
cultures. We then added 20μl of these 20 overnight cultures to 180μl
of cold PBS buffer. After mixing thoroughly by pipetting, we trans-
ferred 5μl of the resulting suspension into 195μl of cold PBS buffer,
mixed thoroughly, and measured yellow fluorescence in the FITC
channel (λex = 488 nmand λem = 530 ± 15 nm) and green fluorescence in
the AmCyan channel (λex = 405 nm and λem = 525 ± 25 nm) at room
temperature. We used a Fortessa cell analyzer (BD Biosciences) to
analyze ~104 events per biological replicate with a flow rate of ~3000
events/s.

Flow cytometry data analysis
We used FlowJo V10.4.2 (LLC) to analyze flow cytometry data. Speci-
fically, we first selected a homogenous cell population by forward
scatter height (FSC-H) versus side scatter height (SSC-H) density plots.
We then selected singlets (single cells) by using side scatter area (SSC-
A) versus side scatter height (SSC-H) density plots. We used the
resulting filtered data for determining green and yellow fluorescence
intensities.

Extracting soluble fluorescent proteins
After inducing the expression of YFP variants in each subpopulation as
described in Fluorescence assay using flow cytometry, we sampled 2ml
of the overnight culture of each subpopulation for extracting soluble
fluorescent proteins by following the manufacturer’s protocol. Speci-
fically, we centrifuged the culture for each subpopulation at 5000 g
and at 4 °C for 5min to collect cells, and stored the collected cells at
−20 °C overnight. We then followed the manufacturer’s protocol to
extract soluble proteins by using CelLytic™ B Cell Lysis Reagent
(B7435-500ml, Sigma). Subsequently, weused 200μl cell lysis solution
(ThermoFisher; 50mM Tri with pH 7.4, 250mM NaCl, 5mM, 50mM
NaF, 1mM Na3VO4, 0.02% NaN3) to dissolve the soluble proteins, and
placed the resulting soluble pellet sample on ice for subsequent
experiments.
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Protein refolding assay
To unfold fluorescent proteins, we mixed 5μl of crude lysate of each
subpopulation with 45μl of 8M urea (containing 10mM DTT), and
heated the sample at 95 °C for 5min in a PCR thermocycler. As a
control, we mixed 5μl of crude lysate with 45μl of TNG buffer
(100mMTris, 100mMNaCl, 10% glycerol, 10mMDTT, 1 × cOmplete™
(EDTA-free Protease Inhibitor Cocktail, Roche 11873580001), pH
7.2–7.5). To refold the unfolded fluorescent proteins, we rapidly added
10μl aliquots of an unfolded sample or of the control into 190μl of
TNG buffer in a 96-well microplate, and immediately measured fluor-
escence intensity using an Infinite F200 Pro microplate reader (λex =
485 nm, λem = 530 nm). We measured fluorescence at ~20min inter-
vals with 2-mm orbital shaking in between. We report the refolding
yields as fluorescence relative to the control.

Protein thermal stability assay
To quantify the thermal stability of fluorescent proteins in each sub-
population, we added 2μl of crude lysate to 98μl of TNG buffer, and
mixed thoroughly by pipetting. We incubated the resulting mixture in
a PCR cycler for 5min, and subjected each subpopulation to a tem-
perature range of 60.6–80.6 °C (specifically, 60.6, 62, 64.1, 66.6, 69,
71.6, 74, 76.5, 78.6, 80 and 80.6 °C), followed by a 30 s incubation at
4 °C. Then we immediately transferred 90μl of each mixture to a 96-
well microplate, and used an Infinite F200 Pro (λex = 485 nm, λem =
530 nm) to measure its fluorescence intensity. As a control, we used
the unheated lysate-buffer mixture. We report thermal stability as
fluorescence relative to the control.

Quantification of soluble fluorescent proteins by ELISA
To quantify the amount of soluble fluorescent proteins in each sub-
population, we used a GFP ELISA Kit (AKR-121, Cell Biolabs Inc.) which
can detect GFP, BFP, CFP, and YFP from Aequorea victoria. Specifically,
we followed the manufacture’s protocol to determine the quantity of
soluble fluorescent proteins in the lysate of each biological replicate
for every subpopulation by comparing its absorbance with that of a
recombinant GFP standard curve.

Fluorescence assay using a microplate reader
To further validate how different selection strengths affect the asso-
ciation between green and yellow fluorescence, we randomly sampled
90 clones fromeachof the twenty subpopulations, andmeasured their
green and yellow fluorescence intensities using a microplate reader.
Specifically, we used saline to dilute the glycerol stock of each sub-
population 105-fold, and plated 100 μl of the resulting culture on LB
agar supplemented with 25μg/ml kanamycin. We incubated the LB
agar plates in an incubator at 37 °C overnight, picked single colonies,
and inoculated each colony into 200μl of LB medium (50μg/ml
kanamycin). We grew the resulting cultures in a microplate incubator
at 37 °C and 1000 rpm. After ~5 h of incubation, we transferred 50μl of
each culture into 150μl LB medium supplemented with 0.2% (w/v)
arabinose and 50μg/ml kanamycin, and continued the incubation for
~16 h. We then mixed 50μl of each culture with 170μl PBS buffer by
pipetting thoroughly, and used a TECAN microplate reader (TECAN
Spark) tomeasure both yellow (λex = 485 nm, λem = 530 nm)andgreen
(λex = 400 nm, λem = 512 nm) fluorescence intensities.

Antibiotic resistance experiments with VIM-2 metallo-beta-
lactamase to obtain the fitness effects of single amino acid
mutations
For our analysis we used fitness values of VIM-2 single-point mutants
from our previous deep mutational scanning experiments35. Briefly, in
these experiments we grewVIM-2 variants in the absence of antibiotics
and in the presence of different concentrations of various beta-lactam
antibiotics, namely 128, 16 and 2.0 µg/mL for ampicillin, 4.0 and 0.5 µg/
mL for cefotaxime, and 0.031 µg/mL for meropenem. After selection,

we isolated the plasmids expressing these variants, amplified them by
PCR, and sequenced the amplicons on the Illumina NextSeq 550 plat-
form. We then calculated the fitness score of each variant by dividing
the read count of that variant at each antibiotic concentration by the
read count in the absence of antibiotics. We normalized these scores
by dividing them by the same ratio determined for WT VIM-2.

Long-term evolution experiments with VIM2
For our long-term experimental evolution of VIM-2, we started from
the wild-type VIM-2-coding gene cloned into a low-copy number in-
house plasmid with a constitutive, low expression TEM promoter and
chloramphenicol resistance, which we named pIDR29. We generated
randomly mutagenized libraries of wild-type (WT) VIM-2 via error-
prone PCR (epPCR) by adding the nucleotide analogues 8-oxo-2’-
deoxyguanosine-5’-triphosphate (8-oxo-dGTP) or 2’-deoxy-P-nucleo-
side-5’-triphosphate (dPTP) (TriLink). Each of the two 25μL PCR reac-
tions consisted of 1 x GoTaq Buffer (Promega), 3μMMgCl2, 0.1μM of
each primer, 0.2mM of dNTPs, 1.00 U of GoTaq DNA polymerase
(Promega), 1 ng of template plasmid, and either 100μMof 8-oxo-dGTP
or 1μM of dPTP. We programmed the first PCR (error-prone PCR) as
follows: an initial denaturation step (95 °C for 2min), followed by 20
cycles of 95 °C for 30 s, 58 °C for 60 s, 72 °C for 60 s, before a final
extension step (72 °C for 3min). We subsequently purified the PCR
products with the EZ.N.A.® Cycle Pure PCR Purification Kit (OMEGA
Bio-tek Inc), quantified them using a NanoDrop spectrophotometer,
and used them in equal parts in a subsequent PCR reaction to ensure a
balance between transition versus transversion nucleotide mutations,
and a specific mutation rate and increased product yield for down-
stream processing. The second PCR reaction used the following
reagents: 5 µL of 1 ng/ µL dPTP-epPCR product, 5 µL of 1 ng/ µL 8-oxo-
dGTP-epPCR product, 1 x GoTaq Buffer (Promega), 3μM MgCl2,
0.1μM of each primer, 0.25mM of dNTPs, 1.0 U of GoTaq DNA poly-
merase (Promega) in afinal volumeof 50μL.Weperformed the second
PCR using the same program as the first, but with 35 instead of 20
amplification cycles.We then purified the PCR products with the EZNA
Cycle Pure PCR Purification Kit, and digested them with NcoI (FastDi-
gest, ThermoFisher Scientific™) and XhoI (FastDigest, ThermoFisher
Scientific™) for 1 h at 37 °C. In addition, we digested the pIDR29 plasmid
with NcoI and XhoI, for 3 h at 37 °C. Subsequently, we purified the
digested plasmid from a 1% agarose gel using gel purification columns,
whilewe purified the digested PCRproducts of themutagenized VIM-2
gene with an E.Z.N.A.® Cycle Pure PCR Purification Kit. We ligated the
digestedVIM-2 gene fragmentswith the vector using a ligationmixture
(10μL) consisting of 1 × T4 DNA ligase buffer (ThermoFisher Scien-
tific™), 5 U of T4 DNA ligase (ThermoFisher Scientific™), 8–10 ng of
prepared vector, and 30–40 ng of prepared mutagenized insert. We
incubated this mixture at room temperature for 3 h. We then purified
the resulting ligation products with a MicroElute kit (OMEGA Bio-tek
Inc.) and eluted them with 20μL of water.

Selection of libraries in the presence of ampicillin
we performed two consecutive evolution experiments with VIM-235. In
the first, we evolvedWTVIM-2 towards higher ampicillin resistance for
18 rounds of evolution, until it had reached a plateau of ~ 40-times
higher resistance than WTVIM-2. The second experiment started from
the surviving population at the end of the first experiment and lasted
for an additional 100 rounds. During this time, we kept the selection
pressure constant at 10μg/mL ampicillin.

For both experiments, we first transformed 4–5μL of the purified
pIDR/VIM-2 ligation products into E.cloni® 10G E. coli cells (Lucigen
Corp.) using electroporation. We performed the first directed evolu-
tion experiment, where we iteratively mutagenized and selected the
resulting VIM-2 variants in increasing ampicillin concentrations until
they had reached a resistance plateau, as follows. We grew E. coli cells
transformed with the mutagenized VIM-2 pool overnight at 30 °C in
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10mL of LB media supplemented with 34μg/mL of chloramphenicol.
Thenwe plated 100μL of a 1:100 dilution of the overnight culture onto
a series of LB agar plates containing increasing ampicillin concentra-
tions, with a 2-fold concentration increase from plate to plate, which
ranged from 2 to 8,192μg/mL. We used colonies from the plate with
the highest concentration of ampicillin and colony counts between
100 and 1000 colonies for the next experimental step. For this step, we
scraped all colonies and extracted the plasmids to use them as tem-
plates for the next round of mutagenesis. We repeated this process of
selection and mutagenesis iteratively for 18 rounds, where we
increased the ampicillin concentration used for selection from 256 µg/
mL to 4096 µg/mL during the first 9 rounds, and kept this concentra-
tion for the rest of the evolution at 4096 µg/mL, because thenumber of
surviving colonies dropped below our lower threshold for the next
concentration (8192 µg/mL). For the second, long-term evolution
experiment, we used the population obtained at the end of the first
directed evolution experiment as our starting point and repeated the
same iterative mutagenesis and selection cycle using large LB agar
plates and ampicillin as the selection pressure, but kept the ampicillin
concentration on the selective plates constant at 10 µg/mL. We repe-
ated this process iteratively for 100 rounds. We supplemented all
plateswith 34 µg/mLchloramphenicol (Cm) to select for the successful
uptake and expression of the plasmid.

Measuring the minimum inhibitory concentration of individual
VIM-2 variants
To quantify the ampicillin resistance level conferred on E. coli by
individual variants isolated from VIM2 libraries, we used agar-plate
based assays to determine the minimum inhibitory concentration
(MIC) of antibiotics for E. coli carrying a specific VIM-2 variant. To this
end, we grew E. coli cells harboring a single VIM2 variant in 500μL LB-
Cmmedia at 30 °C overnight in a deep-96-well plate. The next day, we
inoculated 5μL of the overnight culture into 195 μL of LB-Cm in
quadruplicate in a standard 96-well plate, and grew the resulting cul-
tures for 3 h at 37 °C. We then plated the cultures with 96-well repli-
cator pins on a series of 15mm LB agar plates harboring increasing
levels of antibiotics (two-fold increases in ampicillin, meropenem, and
cefotaxime from 2 to 32,768μg/mL, 0.016 to 64μg/mL, and 0.032 to
4096 μg/mL respectively).We incubated these agar plates overnight at
37 °C. The next day, we determined the MIC of each variant by iden-
tifying the concentration of antibiotics at which no growth was
observed in at least three of the four replicates for each variant.

Sequencing of individual variants and calculation of ΔΔG
We randomly picked 24–96 single colonies from selected libraries, and
PCR amplified the VIM-2 gene region of the pIDR plasmid with NEB
Taq2x Master Mix using the manufacturer’s protocol, with an initial
denaturation (95 °C for 2min), followed by 30 cycles of amplification
(95 °C for 30 s, 58 °C for 60 s, and 72 °C for 60 s), before a final
extension step (72 °C for 3min). We subsequently purified the result-
ing PCR products enzymatically by treatment with ExoI (Thermo-
FisherScientific™) and FastAP (ThermoFisherScientific™) for 1 h at
37 °C, and then inactivated the enzymes via heat treatment of the
sample by incubation at 85 °C for 15min.We sent the purified products
for Sanger sequencing (Azenta™). We visually inspected sequencing
results in Geneious® bioinformatics software and identified mutations
by comparing each mutant VIM-2 gene sequence to the wild-type
sequence using an in-house Python script. We used FoldX to estimate
the change in free energy of folding (ΔΔG) for all sequencedmutants in
our libraries, using the crystal structure of wtVIM2 (PDB ID=4bz3).

Statistical analyses
To test the null hypothesis that trait correlations are identical between
samples (e.g., when comparing trait correlations between two sub-
populations), we used Fisher’s z-transformation. In this statistical

method, Pearson’s or Spearman’s correlation coefficients are con-
verted to z-scores, so that they become normally distributed. The null
hypothesis is then tested using a t-test on the z-scores. We performed
all data and statistical analyses with R (v4.2.1)57, Python (v3.10.4),
PRISM™ 9.0 software, SMRT Link (v9.0.0.92188), and FlowJo (v10.4.2
& 10.8.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental data used to generate all figures are available in the
source file. All the FACS files for YFP populations are available at the
following GitHub link: https://github.com/dasmeh/Trait_correlation.
We used the 3D structure of VIM2 with the pdb ID=4BZ3 (https://www.
rcsb.org/structure/4BZ3) for structure visualization. We used pre-
viously published deep mutational scanning data of VIM2 for trait
correlation analyses performed onmutational data (raw data available
at: BioProject ID PRJNA606894, processed data available at: https://
cdn.elifesciences.org/articles/56707/elife-56707-supp2-v2.xlsx).
Source data are available as a Source Data file. Source data are pro-
vided with this paper.

Code availability
Scripts and statistical analyses are available at the GitHub repository:
https://github.com/dasmeh/Trait_correlation.
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