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Biosensor and machine learning-aided
engineering of an amaryllidaceae enzyme

Simon d’Oelsnitz 1,6 , Daniel J. Diaz 2,3, Wantae Kim4, Daniel J. Acosta 1,
Tyler L. Dangerfield1, Mason W. Schechter1, Matthew B. Minus5,
James R. Howard2, Hannah Do1, James M. Loy 1, Hal S. Alper 4,
Y. Jessie Zhang 1 & Andrew D. Ellington 1

Amajor challenge to achieving industry-scale biomanufacturing of therapeutic
alkaloids is the slow process of biocatalyst engineering. Amaryllidaceae alka-
loids, such as the Alzheimer’s medication galantamine, are complex plant
secondarymetaboliteswith recognized therapeutic value. Due to their difficult
synthesis they are regularly sourced by extraction and purification from the
low-yielding daffodil Narcissus pseudonarcissus. Here, we propose an efficient
biosensor-machine learning technology stack for biocatalyst development,
which we apply to engineer an Amaryllidaceae enzyme in Escherichia coli.
Directed evolution is used to develop a highly sensitive (EC50 = 20μM) and
specific biosensor for the key Amaryllidaceae alkaloid branchpoint 4’-O-
methylnorbelladine. A structure-based residual neural network (MutCompu-
teX) is subsequently developed andused to generate activity-enriched variants
of a plant methyltransferase, which are rapidly screened with the biosensor.
Functional enzyme variants are identified that yield a 60% improvement in
product titer, 2-fold higher catalytic activity, and 3-fold lower off-product
regioisomer formation. A solved crystal structure elucidates the mechanism
behind key beneficial mutations.

Alkaloids produced by the Amaryllidoideae subfamily of flowering
plants have great therapeutic promise, including anticancer, fungici-
dal, antiviral, and acetylcholinesterase inhibition properties. Among
the approximate ~600 reported Amaryllidoideae alkaloids (AAs), those
derived from the lycorine, haemanthamine, and narciclasine scaffolds
have been used as lead molecules in anticancer research1–4. One of the
most notable AAs is galantamine, a selective and reversible acet-
ylcholinesterase inhibitor that is a licensed treatment for mild to
moderate symptoms of Alzheimer’s disease and a promising scaffold
for drug design5,6. Due to galantamine’s challenging synthesis, global
supplies largely rely on isolating the low quantities (0.3% dry weight)

that accumulate in harvested daffodils, ultimately resulting in an
expensive ($50,000/kg) and environmentally-dependent supply
chain7,8. In an effort to improve galantamine production, agricultural
techniques are currently being tested to boost daffodil-sourced
yields9,10.

A promising alternative to amaryllidaceae alkaloid extraction
from plants is microbial fermentation. Recently, long plant pathways
have been reconstituted into microbial hosts for the production of
therapeutic benzylisoquinoline alkaloids11,12, tropane alkaloids13, and
monoterpene indole alkaloids14. While the complete biosynthetic
pathway for anyAAwith therapeutic value has not yet been elucidated,
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recent studies have characterized early pathway enzymes responsible
for the biosynthesis of 4’-O-Methylnorbelladine, the last common
intermediate before AA pathway branches diverge15. Furthermore,
semi-synthetic methods have been proposed using characterized
enzymes to generate advanced intermediates16. The industrial appli-
cation of such pathways could be greatly accelerated by augmenting
high-throughput screens with genetic biosensors17–20, and using
machine learning to guide protein design21–24, yielding enzymes and
pathways with improved stability and activity.

Here, we synergize the development of custom biosensors with
machine learning(ML)-guided protein design to improve microbial
fermentation of the branchpoint AA 4′-O-methylnorbelladine (4NB). A
generalist transcription factor, RamR, is evolved into a highly sensitive
biosensor for 4NB that precisely discriminates against the non-
methylated precursor norbelladine, and the biosensor is then used
to monitor the activity of norbelladine 4’-O-methyltransferase
(Nb4OMT) from the daffodil Narcissus pseudonarcissus in Escherichia
coli. We then develop MutComputeX: a structure-based self-super-
vised residual neural network (3DResNet) trained to generalize at
protein:non-protein interfaces, which is used to generate activity-
enriched Nb4OMT designs from an ML-generated protein-cofactor-
substrate structure. The evolved biosensor is used to rapidly screen a
panel of MutComputeX-guided Nb4OMT designs, leading to the
identification of one variant that yields a 60% improvement in product
titer, 2-fold higher catalytic activity, and 3-fold lower off-product for-
mation. A newly solved crystal structure of this engineered enzyme
helps elucidate the mechanism behind key beneficial mutations and
highlight important discrepancies with the AlphaFold2 model.

Results
Identifying a biosensor for the branchpoint amaryllidaceae
alkaloid 4′-O-methylnorbelladine
4′-O-methylnorbelladine (4NB) is the branchpoint intermediate for the
entire amaryllidaceae alkaloid (AA) family (Fig. 1a), and therefore was
the target compound for biosensor generation. Previously the highly
malleable TetR-family Salmonella typhimurium repressor RamR had
been used as a starting point for identifying biosensors for a variety of
benzylisoquinoline alkaloids17. Given the chemical similarities between
AAs and BIAs, and RamR’s proven ability to rapidly evolve novel ligand
specificity, RamR was again used as a starting point for directed
evolution.

The wild-type RamR sensor was constitutively expressed on one
plasmid (pReg-RamR) in parallel with another plasmid bearing the
regulator’s cognate promoter upstream of the sfGFP gene (Pramr-
GFP). Upon induction with various AA intermediates, RamR was found
to be slightly responsive to both 4NB and its immediate precursor
norbelladine, yielding 3.8-fold and 4.4-fold increases in fluorescence,
respectively (Fig. 1b). To better understand this promiscuous binding
activity, 4NB was docked within the ligand-binding pocket of RamR
using GNINA 1.025, and a conformational pose was identified whereby
the phenol moiety of norbelladine forms hydrogen bonds with S137
and T85, while the catechol moiety forms a hydrogen bond with K63.
This docking pose also suggested that norbelladine’s secondary amine
may hydrogen bond with D152 and further interact with the aromatic
ring of F155 (Fig. 1c).

Evolving a highly specific biosensor for 4′-O-Methylnorbelladine
While the native responsiveness was promising, for practical use in
metabolic engineering applications the sensitivity and specificity of
RamR for 4NB needed to be greatly improved. The simulated mole-
cular interactions between RamR and 4NB informed a rational
approach to library design. Three site-saturated (NNS) RamR libraries
that each targeted three residues facing inwards toward the ligand-
binding cavity were generated (Supplementary Fig. 1; see “Methods”).
The 32,000 unique genotypes per library could be readily plumbed
using our previously described method, Seamless Enrichment of
Ligand Inducible Sensors (SELIS)17. Briefly, this method involves a
growth-based selection to first filter out biosensor variants that are
incapable of repressing transcription from their cognate promoter,
followed by a fluorescence-based screen to isolate sensor variants
highly responsive to the target analyte.

After the first round of directed evolution, several RamR variants
were found to be substantially more responsive to 4NB, even in the
absence of a negative selection against norbelladine. In fact, one var-
iant bearing two amino acid substitutions (4NB1.2: K63T and L66M)
displayed a 20-fold selectivity for 4NB over norbelladine (Supple-
mentary Fig. 2a, b). Although two other RamR variants had greater
sensitivity for 4NB, the higher selectivity of the 4NB2.1 variant ren-
dered it more suitable for accurately monitoring pathway activity.
Using 4NB1.2 as a starting point, additional libraries were generated
that encompassed the other, previously randomized positions. SELIS
was now performed with a growth-based counter-selection against

Fig. 1 | Identifying a biosensor responsive to amaryllidaceae alkaloid inter-
mediates. a. Abbreviated biosynthetic plant pathways for therapeutic amar-
yllidaceae alkaloids.bResponse of the RamR transcription factor to amaryllidaceae
alkaloid pathway intermediates norbelladine and 4′-O-methylnorbelladine. Error

bars represent the S.D. +/− the mean. Experiments were conducted in biological
triplicate. c Structureof RamR (PDB: 3VVX_A) dockedwith 4′-O-methylnorbelladine
using GNINA (see “Methods”). Predicted ligand-interacting residues are
highlighted green.
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norbelladine (100μM). The top four biosensor variants were again
highly specific for 4NB but now also became significantly more sensi-
tive, with the best variant, 4NB2.1 (C134D and S137G), achieving a limit
of detection of approximately 2.5μM(Supplementary Fig. 2c, d; Fig. 2).
Ultimately, the 4NB2.1 sensor was highly selective for 4NB over nor-
belladine, displaying an over 80-fold preference for the former,
despite the two effectors differing by only a single methyl group.

To again explore the structural basis for precise methyl group
discrimination a structural model of 4NB2.1 was generated using
AlphaFold226, and 4NB was docked into this model using GNINA 1.025.

The docked pose suggests that the K63T substitution repositions the
hydroxyl group at position 3 of 4NB to hydrogen bond with the wild-
type Y59 residue, while the L66M substitution strengthens a hydro-
phobic pocket around the 4′-O-Methyl group of 4NB (along with the
native I106 and L156 residues; Fig. 2d). This analysis is in agreement
with the fluorescence assay data, since only RamR variants bearing the
K63T and L66M mutations are highly selective for 4NB over norbel-
ladine (Supplementary Fig. 2). The model also positions the new
aspartate at position 134 (C134D) to hydrogen bond with the amine of
4NB; several other RamR variants also placed a hydrogen bond donor
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Fig. 2 | Evolving a highly specific biosensor for 4′-O-methylnorbelladine.
a Schematic illustrating the mutations that resulted after round one (4NB1) and
round two (4NB2) of RamR evolution towards 4′-O-methylnorbelladine.
b Dose–response measurements of WT RamR, 4NB1, and 4NB2 mutants with 4′-O-
methylnorbelladine. c Relative response of WT RamR, 4NB1, and 4NB2 mutants to
norbelladine and 4′-O-methylnorbelladine. d, e AlphaFold2 structural model of
4NB2 docked with 4′-O-methylnorbelladine. Predicted ligand interactions with WT
residues, mutations that arose in 4NB1, and mutations that arose in 4NB2 are

colored gray, orange, and green, respectively. (f) Correlation between fluorescent
response measured with the 4NB2 sensor and 4′-O-methylnorbelladine measured
with high-performance liquid chromatography. (g) The distribution of fluorescent
cell populations in response to 4′-O-methylnorbelladine concentration. All datawas
performed in biological triplicate. Cells were cultured for 4 h with the ligand in (b)
and (c), and for 18 h with the ligand in (f) and (g). Error bars represent the S.D. +/−
the mean.
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(glutamate, glutamine, asparagine) at the 134 position (Supplementary
Fig. 2). Overall, as a consequence of these substitutions the 4NB ligand
may shift in position to allow for more favorable π–π stacking with
F155 (Fig. 2e).

To evaluate the utility of the 4NB2.1 sensor for high-throughput
screening of AA intermediates, we compared its performance to an
HPLC method adapted from the literature27. The concentration range
of 4NB can be discerned between 2.5μM and 250μM, while the
equivalent range for the HPLCmethod is between 25μMand 1000μM
(Fig. 2f, Supplementary Table 1). The dynamic range of sensing could
potentially be further increased via less sensitive biosensor inter-
mediates characterized during evolution (see Supplementary Fig. 2).
Most importantly, the 4NB2.1 sensor is approximately 10-fold more
sensitive than the HPLC method, making it well-suited for screening
transplanted biosynthetic enzymes from plants, which often initially
show low flux28. Flow cytometry analysis indicated that the sensor’s
response at the population level was highly uniform (Fig. 2g), ensuring
low noise measurements.

Monitoring norbelladine methyltransferase activity in Escher-
ichia coli
Although severalAAs havebeen recognized for their therapeutic value,
to our knowledge there have so far been no attempts to reconstitute
AA pathways in microbial hosts. Since norbelladine 4′-O-methyl-
transferase (Nb4OMT) from the wild daffodil Narcissus sp. aff. pseu-
donarcissus, is directly responsible for 4NB production from
norbelladine, we chose this as a starting point for development of a
fuller pathway. A 4NB reporter plasmid (pSens4NB2; Supplementary
Fig. 3) was co-transformed with a plasmid constitutively expressing
Nb4OMT.When this strain was grown inmedia supplementedwith the
substrate norbelladine, Nb4OMT activity could be observed, mon-
itored, and quantified via fluorescence (Fig. 3a). The level of cell
fluorescence correlated positively with enzyme expression strength
(Supplementary Fig. 4), with the concentration of norbelladine sup-
plemented into the culture media, and with 4NB titer measured via
HPLC (Fig. 3b). As was the case with measuring 4NB supplemented
media, the fluorescence of cellular populations was uniformly dis-
tributed, again indicating that there was little noise during production
or sensing. The independent measurements of noise via the 4NB bio-
sensor will likely prove important as high yield strains are further
developed and translated.

While these results demonstrated the utility of the evolved bio-
sensor for monitoring Nb4OMT activity, they also revealed the cata-
lytic inefficiency of the enzyme. HPLC analysis indicated that a
significant amount of supplemented norbelladine remained after cul-
turing for 24 h (Fig. 3c). Indeed, leftover norbelladine was identified
when as low as 50 µM of norbelladine was supplemented into the
culture media (Supplementary Fig. 5). Furthermore, LC/MS analysis
identified 3’-O-Methylnorbelladine as a minor component, indicating
that the wild-type Nb4OMT enzyme was not highly regiospecific
(Supplementary Fig. 6). These observations all suggested that
Nb4OMT activity and specificity could be improved by enzyme
engineering.

To improve Nb4OMT activity in a microbial host we initially
carried out directed evolution starting from randomly mutagenized
libraries, via error-prone PCR, which generated an average of three
mutations per gene. The library of enzyme variants was transformed
into cells containing the pSens4NB2.1 plasmid, plated on solid media
containing norbelladine, and highly fluorescent colonies were iso-
lated and then individually phenotyped in a secondary, quantitative
liquid-based fluorescence screen where they were compared to the
wild-type enzyme. Unfortunately, this approach was not able to
identify variants that outperformed the wild-type enzyme in the
liquid-based screen.

Developing a machine learning pipeline for structure-based
enzyme engineering
To pursue a complementary approach to enzyme engineering, we
sought to use machine learning to guide enzyme design, an approach
that could identify variants unlikely to occur via randommutagenesis.
MutCompute is a self-supervised convolutional neural network (CNN)
trained to use a local 3D chemical microenvironment to predict amino
acid likelihood at each residue within a protein. We have previously
demonstrated that positions where MutCompute does not predict the
wild-type amino acid can frequently be substituted with a more che-
mically congruent amino acid, which has enabled us to improve pro-
tein fluorescence (BFP)29, expression (PMI)29, stability (polymerase)30,
and catalytic activity (PETase)21.

The original data engineering pipelines established for MutCom-
pute restricted its training to microenvironments with atoms belong-
ing to the 20 amino acids, and therefore MutCompute was unable to
provide contextualized predictions in microenvironments that pos-
sessed atoms from cofactors, ligands, or nucleic acids29,31. To create
designs that could be generalized to protein-ligand interfaces, we
developed MutComputeX: an improved structured-based neural net-
work designed for protein engineering. (Fig. 4a). To develop Mut-
ComputeX, we first rebuilt the data engineering pipelines to enable
training on heterogenous microenvironments (Fig. 4b). New atomic
channels for phosphorus and grouped halogens were added to the
input representation (see “Methods”). New training and testing data-
sets were curated that included sampling ~256,000 protein-ligand
interface microenvironments (see “Methods”). Finally, a residual con-
volutional architecture was developed to improve feature extraction
capabilities and in turn the predictive power of the model32,33 (Fig. 4c,
Supplementary Fig. 7). The self-supervised 3D residual neural network
(3DResNet) framework achieved an improved wild-type prediction
accuracyof ~80%on a ~250K residue test set compared to 69%on a 6 K
test set from the previous 3DCNN model29,31. Furthermore, the
3DResNets were shown to generalize to protein-ligand interaction
interfaces without any drop in wild-type accuracy (81% wild-type
accuracy on a protein-ligand interface test set compared to 62.1% from
the previous 3DCNN model). After training numerous models, we
selected three models for ensembling and ML-engineering of the
norbelladine methlytransferase based on their zero-shot capability to
correlate with ΔTM point mutations from FireProtDB34 (zero-shot
correlation described in “Methods”). The ensembled 3DResNet model
(MutComputeX) had an overall wild-type accuracy of 67.3% and
protein-ligand interface wild-type accuracy of 66.%. While the wild-
type accuracy of MutComputeX is lower than what is capable by the
3DResNet framework, we chose to use this model since it correlated
best with experimentally collected data from FireProtDB34.

To produce MutComputeX-guided designs, we generated a
Nb4OMT enzyme structure file to serve as an input to the model.
Although the structure of the Nb4OMT enzyme had not been solved,
we were able to create a de novo structural model for Nb4OMT using
AlphaFold226, which was then docked with both the S-adenosyl-
homocysteine (SAH) cofactor and norbelladine using GNINA1.025. The
SAH cofactor was chosen instead of SAM because the nearest struc-
ture, of Alfalfa caffeoyl coenzyme A 3′-O-methyltransferase (PDB: 1SUI;
sequence similarity: 60.79%), contained this cofactor, and its SAHpose
was transplanted to the AlphaFolded Nb4OMT scaffold. GNINA scored
the minimized SAH pose with a 0.835 probability of being within 2 Å

RMSD from the real pose, and predicted an affinity of −7.9 kcal/mol
(Supplementary Table 2). The GNINA pose was guided by the suppo-
sition that either D155 or K158 must be the general-base that depro-
tonates the 4-hydroxyl group during the SN2 reaction, and that a
potential cation-π interaction with K158 would orient the plane of the
catechol ring in the active site. GNINA scored the minimized norbel-
ladine pose with a 0.824 probability of being within 2 Å RMSD from the
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real pose and a predicted affinity of −7.3 kcal/mol (Supplementary
Table 2). The ternary Nb4OMT structure model was passed to Mut-
ComputeX, and predictions were generated for each residue on both
chains (Fig. 4d). Based on these predictions, we manually curated
predicted substitutions, prioritizing those that were near the active
site and that were likely to form known stabilizing motifs, such as salt
bridges. Our rationale for choosing the selectedmutations is provided
in Supplementary Discussion 1.

Characterization of improved norbelladine methyltransferase
variants
Ultimately, 22 mutational designs were experimentally validated in E.
coli. Leveraging the biosensor-enabled high-throughput screen, we
were able to quickly assess each of the 22 mutants across three tem-
peratures (25 °C, 30 °C, 37 °C) and two substrate concentrations

(100μM, 1mM) (Supplementary Fig. 8). In all tested conditions, the
A53M mutation consistently produced a fluorescent signal sig-
nificantly above the wild-type enzyme, while the H17K, H17R, S159E,
V203E, and E36P-G40E substitutions produced signals abovewild-type
in at least one tested condition (Supplementary Fig. 8). Increasing the
reaction temperature to 37 °C improved product formation (despite
the fact that the Narcissus pseudonarcissus plant grows in 10–23 °C
climates35). Double and triple mutants incorporating the H17K, A53M,
S159E, V203E, and E36P-G40E substitutions were generated and
screened; as with the initial screens, variants bearing the A53M muta-
tion produced the greatest signals (Fig. 5a). In time course reactions,
after media supplementation with norbelladine the rate of fluores-
cence increase for the E36P-G40E variant was similar to that of the
wild-type enzyme, but the rates produced by the two A53M-bearing
variants were significantly higher (Fig. 5b). LC/MS analyses were
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carried out on supernatants from the E36P-G40E, A53M, and E36P-
G40E-A53M variants, and in agreement with our fluorescence-based
assay the level of 4NB product increased by 60% while the level of
remnant norbelladine decreased 17-fold (Fig. 5c, Supplementary
Fig. 9). Furthermore, the A53M mutation reduced levels of the 3′-O-
Methyl-norbelladine off-product by about 3-fold (Supplementary
Fig. 10). Interestingly, we found that the beneficial A53M substitution
was only predicted by MutComputeX when the Nb4OMT structure
model was docked with SAH and norbelladine; in contrast, A53R was
predicted when docking was not performed, a substitution that
reduced activity under all tested conditions (Supplementary Fig. 8,
Supplementary Fig. 11). These results clearly demonstrate that the
incorporation of ligand atoms to the microenvironment greatly
improves MutComputeX’s ability to engineer the active site of
enzymes.

To further understand the mechanism behind beneficial muta-
tions, we characterized the steady state kinetic and thermal properties
of NbOMTbearing the A53M substitution alone or in combinationwith
the E36P and G40E substitutions. The A53M substitution increased
kcat/Km by a factor of about 2, due to a > 2.1-fold increase in kcat, and
increased the Tm by 1.7 °C relative to the wild-type enzyme (Table 1;
Supplementary Fig. 12). The Nb4OMTE36P/G40E/A53M triple substitutions

appeared to have kcat and Km values similar to the Nb4OMTA53M single
mutant, but a 5.6 °C increase in Tm relative to the wild-type Nb4OMT
enzyme. Steady state kinetic data suggested that the Nb4OMTA53M and
Nb4OMTE36P/G40E/A53M mutant enzymes were affected by substrate inhi-
bition (Supplementary Fig. 12). These in vitro characterization data
agree with the in vivo data collected with the 4NB-responsive bio-
sensor (Fig. 5a).

Crystal structure of an improved norbelladine
methyltransferase
To better understand the mechanism underlying the three bene-
ficial substitutions in the Nb4OMTE36P/G40E/A53M variant, we deter-
mined the structure of the Nb4OMTE36P/G40E/A53M variant in complex
with S-adenosyl-L-homocysteine (SAH) at 2.4 Å resolution. The
Nb4OMT variant exists as a homodimer in the crystalline form
(Fig. 6a), consistent with its size exclusion chromatogram (Sup-
plementary Fig. 13). The overall fold of the protein was almost
identical to the predicted AlphaFold2 structure, except for the
N-terminal region (Fig. 6b). AlphaFold2 predicts that Lys13 forms
tight salt bridge interaction with Asp155, Asp181, and Asn182 in the
enzyme active site, while the experimental structure showed that
Asp155, Asp181, and Asn182 instead coordinate a Ca2+ ion and Lys13
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provided in Supplementary Fig. 7. The schematic was designed using a vector
graphics editor. d Workflow using MutComputeX for enzyme engineering. In the
A53 masked microenvironment that is shown, the light blue spheres represent the
masked alanine, the norbelladine ligand is shown in aqua, protein residues are
shown in gray, and S-adenosyl-homocysteine (SAH) is shown in pink.
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forms hydrogen bonds with the backbone of Tyr186 and the side-
chain of Tyr194 (Fig. 6b).

The experimental structure of Nb4OMTE36P/G40E/A53M provides a
basis for the improved thermostability of the enzyme (an increase in
Tm from 52.8 °C to 58.4 °C). The A53M substitution inserts a larger
hydrophobic methionine inside the hydrophobic pocket formed by
Trp50, Tyr81, and Tyr108 (Fig. 6c), stabilizing the active site of
Nb4OMT. The E36P-G40E double mutant shifts a glutamate from
position 36 to position 40 and thereby preserves the salt bridge
interaction with Lys118 while proline capping the alpha helix (Fig. 6d).

To better determine how the A53M substitution affects the sub-
strate recognition of Nb4OMT, GNINA 1.0 was used to dock norbella-
dine into the crystal structure of Nb4OMTE36P/G40E/A53M with SAH and
Ca2+ already in the active site (based on Fo-Fc electron densities;
Supplementary Fig. 14). In the docked structure, the Ca2+ ion positions

the catechol moiety of the substrate adjacent to the SAH binding site
(Fig. 6e). A similar substrate recruitment by divalent metal ions is
found in other, homologous methyltransferases36,37. A sulfur-π inter-
action between the catechol group of norbelladine and Methionine 53
may also restrict the rotation of the catechol group, thereby reducing
the cross-methylation of the 3’ position and improving specificity.

Discussion
Herein we report the use of directed evolution and machine learning-
guided design for the development of custom microbial biosensors
that could be used to monitor substantive improvements in amar-
yllidaceaealkaloidpathwayactivity. TheRamR transcription factorwas
evolved to respond to low micromolar levels of the pathway branch-
point 4NB. After only four substitutions exquisite specificity emerges
for the methylated oxygen moiety in 4NB, with a barely detectable
response to the non-methylated precursor norbelladine. The high
specificity was also essential for measuring the real-time activity of the
plant-derived Nb4OMT enzyme in E. coli. Overall, these results high-
light the powerful capability of using evolved biosensors for precisely
reporting on pathway intermediates while avoiding cross-reactivity
with closely related precursor molecules. The RamR protein is now
well positioned as an ideal starting point for the generation of bio-
sensors for not onlybenzylisoquinoline alkaloids, but also for AAs such
as galantamine, haemanthamine, lycorine, and their intermediates.

To accelerate our efforts to engineer the Nb4OMT enzyme, we
developed a structure-based residual neural network, MutComputeX.
Unlike structure prediction models (such as AlphaFold226,
RosettaFold38, ESMfold39, and OmegaFold40), or structure-based gen-
erative models (such as RFdiffusion41 and Ig-VAE42), to our knowledge,
MutcomputeX is the first structure-based model designed to assess
sequence substitutions, and that has been explicitly trained to gen-
eralize to non-protein atoms, such as nucleic acids and ligands. By

Table 1 | Kinetic and thermal parameters of the wild-type and
mutant Nb4OMTs

Enzyme kcat/Km

(μM−1 min−1)
kcat (min−1) Km (μM) Tm (oC)

Wild-type
Nb4OMT

1.18
(0.85–1.69)

73 (63–89) 62 (37–104) 52.8
(52.8–52.8)

A53M
mutant

>2.1 >190 <90 54.5
(54.3–54.6)

E36P/G40E/
A53M
mutant

>1.4 >120 <83 58.4
(58.4–58.4)

Lower and upper bounds for the 95% confidence interval from confidence contour analysis for
kcat/Km and kcat given in parentheses. Km was calculated by dividing kcat by kcat/Km. Due to the
weak substrate inhibition term for the A53M and triple mutation variants, general upper and
lower limits on steady state kinetic parameters are reported (see “Methods”).

b

a Norbelladine

Standards

Wild type

E36P + G40E

A53M

E36P + G40E 
+ A53M

Retention time (min)Time (hours)

2 4 2 4 6

4-OMe-Norbelladinec

NbOMT variant

Fig. 5 | In vivo characterizationofML-designedNb4OMTvariants. a Fluorescent
signal produced from E. coli cells containing the 4′-O-methylnorbelladine reporter
plasmid (pSens-4NB2) and expressing either an empty plasmid (TAA), the wild-type
Nb4OMT enzyme (WT), or Nb4OMT mutants, when cultured with 100μM of nor-
belladine at 37 °C. The blue horizontal line denotes the fluorescent signal produced
fromculturing thewild-typeNb4OMTenzyme. All datawas performed inbiological
triplicate. Error bars represent the S.D. +/− the mean. Genotypes of all variants can

be found in Supplementary Table 3. b Time-dependent fluorescent signals pro-
duced by E. coli cells containing the 4′-O-methylnorbelladine reporter plasmid
(pSens-4NB2) and expressing Nb4OMT (WT) or ML-designed mutants. Data was
performed in biological triplicate and shaded error bands represent the S.D. +/− the
mean. c Ion-extracted chromatograms of chemical standards (blue) or the super-
natant of cells expressing Nb4OMTorML-designedmutants (purple) cultured with
norbelladine.
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leveraging recent developments in structure prediction (AlphaFold2)
and ligand docking (GNINA1.0), we demonstrate that a solved crystal
structure is not needed to generate activity-enriched enzyme designs.
MutComputeX was trained on ∼2.3M microenvironments sampled
from over 23,000 protein structures, and facilitated the manual
curation of variants with a 60% improvement in product titer, 3-fold
lower off-product formation, 5˚C higher thermostability, and 2-fold
higher catalytic activity. As validation, we show that the ability of
MutComputeX to recognize ligand atomswas crucial to predicting the
key beneficial A53M mutation in the active site of Nb4OMT.

The solved crystal structure of the engineered Nb4OMT enzyme
provides insights into the stabilization afforded by the E36P/G40E
substitutions, and the increased activity and regiospecificity afforded
by the A53M substitution. Interestingly, the active site of the solved
structurediffers fromAlphaFold2models, likely due to lackof themetal
ions, ligands, and cofactors. While the recently described AlphaFill tool
could potentially address this issue for some models, it did not incor-
porate the norbelladine substrate or provide amore accurate model of
Nb4OMT43 (Supplementary Fig. 15). Together with the 4NB2 sensor and
MutComputeXmodel, theNb4OMTvariant structure should accelerate
progress towards further engineering of the AA pathway.

That said, many challenges remain to realizing a commercially
viable microbial strain for the fermentation of AAs. First, the central
precursors 3,4-dihydroxybenzoate and tyramine must be over-
produced in a base strain, likely Saccharomyces cerevisiae due to its
proven ability to functionally express multiple plant-derived cyto-
chrome proteins44. Biosynthetic pathways for the production of 3,4-
dihydroxybenzoate and tyramine have already been engineered into S.
cerevisiae45,46, with high-throughput screening methods yielding
improved tyrosine precursor yields47. Second, the early pathway
enzymes for the production of norbelladine, norcraugsodine reduc-
tase, and norbelladine synthase must be functionally expressed in a
microbial strain. So far, the activities of these enzymes have only been
demonstrated within an in vitro context48–50. Third, the downstream
enzymes necessary for the production of advanced AAs must be
identified and functionally expressed. With regards to galantamine,
the CYP96T1 and CYP96T6 cytochrome proteins have been shown to
catalyze the para-ortho coupling of 4NB and thus produce the galan-
tamine precursor N-demethylnarwedine51,52. Finally, while writing this
paper, the remaining NtNMT methyltransferase and NtAKR1 ketone
reductase enzymes necessary for complete galantamine biosynthesis
have been discovered, unlocking the exciting opportunity to achieve

Fig. 6 | Crystal structure of an engineerednorbelladine 4′-O-methyltransferase.
a Global structure of Nb4OMTE36P/G40E/A53M solved in 2.4 A resolution. One dimer is
colored blue while the other dimer is transparent. b Comparison of N-termini of
Nb4OMT crystal structure (orange) and wild-type Nb4OMT AlphaFold2 structure
(blue). c Local context of the A53Mmutant residue.d Local context of the E36P and
G40E mutant residues. Black arrow indicates the shift of glutamate from position

36 to position 40. e Active site context of Nb4OMTE36P/G40E/A53M in complex with S-
Adenosyl-L-homocysteine (SAH) anddockedwith norbelladine. For (a), (c), (d), and
(e), the color coding is as follows—calcium ions: green, S-Adenosyl-L-homocysteine:
purple, mutant residues: orange, non-mutant residues: gray, docked norbelladine:
seafoam green, interactions: yellow dashed lines.
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the biosynthesis of galantamine from simple feedstocks within a
microbial host52.

While the development of strains for microbial AA biosynthesis is
a significant endeavor, we believe that the developed 4NB biosensor,
ML framework, and enzyme structure presented in this work will sig-
nificantly accelerate progress towards this goal. Custom biosensor-
enabled screens enable rapid collection of phenotype data under a
wide variety of experimental conditions, including determining the
kinetics of product formation among strain and enzyme variants,
values that are nearly impossible to measure using traditional analy-
tical instruments. The importance of machine learning is further
highlighted by failed attempts to engineer Nb4OMT using random
mutagenesis alone. In the future, microbial semi-synthesis of galanta-
mine and other AAs could provide faster production cycles, a more
reliable supply chain, and reduced land and water use compared to
traditional plant harvesting methods, and the biosensor-ML hybrid
technology stack we have advanced herein should greatly accelerate
the engineering of upstream enzymes in the pathway, such as nor-
belladine synthase and norcraugsodine reductase48,50.

Methods
Strains, plasmids, and media
E. coli DH10B (New England Biolabs) was used for all routine cloning
and directed evolution. All biosensor systems were characterized in E.
coli DH10B. LB Miller (LB) medium (BD) was used for routine cloning,
fluorescence assays, directed evolution, and orthogonality assays
unless specifically noted. LB with 1.5% agar (BD) plates were used for
routine cloning and directed evolution. The plasmids described in this
workwere constructed usingGibson assembly and standardmolecular
biology techniques. Synthetic genes, obtained as gBlocks, and primers
were purchased from IDT. Plasmid designs and sequences are listed in
Supplementary Table 7.

Chemicals
4′-O-methylnorbelladine was purchased from Toronto Research Che-
micals (Toronto Research Chemicals. CAT#: H948930). Tyramine
(T90344), 3,4-dihydroxybenzaldehyde (37520), dichloromethane
(439223), and NaBH4 were purchased from Sigma Aldrich. NMR sol-
vents (d6-DMSO, CD3OD) were purchased from Cambridge isotope
laboratories.

Chemical synthesis and NMR analysis of norbelladine
The aldehyde (3,4-dihydroxybenzaldehyde) (1 mM, 138mg) and
tyramine (1 mM, 137mg) were dissolved in dichloromethane (5 mL)
and converted to the imine in situ compound by stirring for 4 h at
room temperature. The imine compound was reduced with NaBH4

(2 mM, 75.6mg), washed with water and dried to produce crude
product. The crude material was then purified by combinatorial
flash chromatography to yield norbelladine (10–90%MeCN in H2O,
20min; 130mg recovered, beige orange solid, 50% yield), which
was confirmed via NMR (Supplementary Fig. 16). NMR spectra were
taken on the 500MHz Bruker prodigy at University of Texas at
Austin.

Chemical transformation
For routine transformations, strains were made competent for che-
mical transformation. Five milliliters of an overnight culture of DH10B
cells was subcultured into 500mL LBmedium and grown at 37 °C and
250 r.p.m. until an optical density of 0.7 was reached (~3 h). Cultures
were centrifuged (3500× g, 4 °C, 10min), andpelletswerewashedwith
70mL chemical competence buffer (10% glycerol, 100mM CaCl2) and
centrifuged again (3500 × g, 4 °C, 10min). The resulting pellets were
resuspended in 20mL chemical competence buffer. After 30min on
ice, cells were divided into 250-μL aliquots and flash-frozen in liquid
nitrogen. Competent cells were stored at −80 °C until use.

Biosensor response assay
The pReg-RamR and Pramr-GFP plasmids were co-transformed into
DH10B cells, which were then plated on LB agar plates containing
appropriate antibiotics. Three separate colonies were picked for each
transformation andwere grown overnight. The following day, 20μL of
each culturewas then used to inoculate six separate wells in a 2-mL96-
deep-well plate (Corning, P-DW-20-C-S) sealed with an AeraSeal film
(Excel Scientific) containing 900μL LB medium, one for each test
ligand and a solvent control. After 2 h of growth at 37 °C, cultures were
induced with 100 µL LB medium containing either 10μL DMSO or
100μL LB medium containing the target AA dissolved in 10μL DMSO.
Cultures were grown for an additional 4 h at 37 °C and 250 r.p.m. and
subsequently centrifuged (3500× g, 4 °C, 10min), except in the caseof
theHPLC comparison assays (Fig. 2f, g), where cultureswere grown for
an additional 18 h at 37 °C and 250 r.p.m. in order to compare sensor
response in fermentation-relevant conditions. Supernatant was
removed, and cell pellets were resuspended in 1mL PBS (137mMNaCl,
2.7mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4, pH 7.4). One hundred
microliters of the cell resuspension for each condition was transferred
to a 96-well microtiter plate (Corning, 3904), from which the fluores-
cence (excitation, 485 nm; emission, 509 nm) and absorbance
(600nm) weremeasured using the Tecan Infinite M1000 plate reader.

RamR library design and construction
Three semi-rational libraries were designed, each targeting three
inward-facing residues within the RamR ligand-binding pocket (K63,
L66, M71; E120, A123, D124; L133, C134, S137) (Supplementary Fig. 1).
Libraries were generated using overlap PCR with redundant NNS
codons using AccuPrime Pfx (Thermo Fisher, 12344024) and cloned
into pReg-RamR. E. coli DH10B bearing pSELIS-RamR was transformed
with the resulting library. Transformation efficiency always exceeded
106 for each round of selection, indicating several fold coverage of the
library. Transformed cells were grown in LBmediumovernight at 37 °C
with carbenicillin and chloramphenicol.

Directed evolution of RamR biosensors
Cell culture (20μl) bearing the sensor library was seeded into 5ml
fresh LB containing appropriate antibiotics, 100μgml−1 zeocin
(Thermo Fisher, R25001) and 100μM of norbelladine (for round two)
and grown at 37 °C for 7 h. Following incubation, 0.5μl of culture was
diluted into 1ml LB medium, from which 100μl was further diluted
into 900μl LBmedium. Three hundredmicroliters of this mixture was
then plated across three LB agar plates (100 μL per plate) containing
carbenicillin, chloramphenicol and 4NB dissolved in DMSO. Plates
were incubated overnight at 37 °C. The following day, the brightest
colonies were picked and grown overnight in 1ml LB medium con-
taining appropriate antibiotics in a 96-deep-well plate sealed with an
AeraSealfilm at 37 °C. A glycerol stock of cells containing pSELIS-RamR
and pReg-RamR encoding the template RamR variant was also inocu-
lated into 5ml LB for overnight growth.

The following day, 20μl of each culture was used to inoculate two
separate wells in a new 96-deep-well plate containing 900μl LB med-
ium. Additionally, eight separate wells containing 1ml LBmediumwere
inoculated with 20μl of the overnight culture expressing the parental
RamR variant. After 2 h of growth at 37 °C, the top half of the 96-well
plate was induced with 100μl LB medium containing 10 µl DMSO,
whereas the bottom half of the plate was induced with 100μl LB med-
ium containing 4NB dissolved in 10μl DMSO. The concentration of 4NB
used for induction is typically the same concentration used in the LB
agar plate for screening during that particular round of evolution.
Cultures were grown for an additional 4 h at 37 °C and 250 r.p.m. and
subsequently centrifuged (3500× g, 4 °C, 10min). Supernatant was
removed, and cell pellets were resuspended in 1ml PBS. One hundred
microliters of the cell resuspension for each condition was transferred
to a 96-well microtiter plate, from which the fluorescence (excitation,
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485 nm; emission, 509nm) and absorbance (600nm) were measured
using the Tecan Infinite M1000 plate reader. Clones with the highest
signal-to-noise ratio (generally the top 5–10% of the screened clones)
were then sequenced and subcloned into a fresh pReg-RamR vector.

For sensor variant validation, the subcloned pReg-RamR vectors
expressing the sensor variants were transformed into DH10B cells
expressing Pramr-GFP. These cultures were then assayed, as described
in the section ‘Biosensor response assay’, using eight different con-
centrations of the 4NB. The sensor variant that displayed a combination
of low background, a reduced EC50 for 4NB and a high signal-to-noise
ratio was then used as the template for the next round of evolution.

Dose–response measurements
Glycerol stocks (20% glycerol) of strains containing the plasmids of
interest were inoculated into 1ml LB medium and grown overnight at
37 °C. Twenty microliters of overnight culture was seeded into 900μl
LB medium containing ampicillin and chloramphenicol in a 2-ml 96-
deep-well plate sealed with an AeraSeal film. Following growth at 37 °C
and 250 r.p.m. for 2 h, cultures were induced with 100 μl of an LB
medium solution containing appropriate antibiotics and the inducer
molecule dissolved in 10μl DMSO. Cultures were grown for an addi-
tional 4 h at 37 °C and 250 r.p.m. and subsequently centrifuged
(3500× g, 4 °C, 10min). Supernatant was removed, and cell pellets
were resuspended in 1ml PBS. The cell resuspension (100μl) for each
condition was transferred to a 96-well microtiter plate, fromwhich the
fluorescence (excitation, 485 nm; emission, 509 nm) and absorbance
(600nm) weremeasured using the Tecan Infinite M1000 plate reader.

Biosensor-linked methyltransferase activity assay
Nb4OMT was expressed with the P150-RBS(riboJ) promoter–RBS on
the pReg-RamR plasmid backbone (no regulator present). Cells were
co-transformed with both the Nb4OMT plasmid and the 4NB reporter
plasmid and plated on an LB agar plate containing appropriate anti-
biotics. Three individual colonies from each transformation were
picked into LB and grown overnight. Resulting cultures were diluted
50-fold into 1mLLBmediumcontaining the indicated concentrationof
norbelladine in a 96-deep-well plate and were grown at the indicated
temperature for 24 h. Subsequently, the fluorescence of cultures was
measured in the same manner as previously described in
‘Dose–response measurements’ above.

Protein-cofactor-substrate complex generation with Alpha-
Fold2 and GNINA1.0
Nb4OMT wild-type sequence (Uniprot id: A0A077EWA5) was run
through the AlphaFold2-multimer as a homodimer using the publicly
available collab notebook. This resulted in a computational structure
with a pLDDT of 0.955 and a pTM of 0.94. The initial coordinates for
the SAH cofactor were transplanted onto the AlphaFold2 structure
from the 1SUI PDB structure and then optimized with GNINA1.0’s
–local_only and –minimize flags. Norbelladine’s initial 3D coordinates
were obtained from the PubChem database (id: 416247) and docked
into the active site of the A protomer. To dock norbelladine, we gen-
erated a bounding box for the GNINA docking procedure by finding
the largest 3D box from the atomic coordinates of the following resi-
dues: L10, W50, S52, A53, D155, D157, K158, W185, Y186, A204. GNINA
was run several times with different seeds and all docked poses were
manually screened for known mechanistic insight (orientation with K.
The docked pose that best satisfied the mechanistic insight and
received a high GNINA docking score was then minimized with the
–local_only and –minimize flags. The docking results from GNINA for
SAH and NB are shown in Supplementary Table 1.

Building MutComputeX
Structure File pre-processing. To generate voxelized matrices of
microenvironments that span between protein:non-protein atoms,

experimental CIF files were pre-processed with (1) ChimeraX to add
hydrogen atoms to the proteins, nucleic acids, and organic ligands; (2)
ChargeFW2 to add polarized charges that bridge protein: non-protein
interfaces; and (3) FreeSASA to add solvent accessible surface area
values that take into account protein:non-protein interactions. CIF
read and write functionality for ChargeFW253 and FreeSASA54 were
implemented and merged to both open-sourced libraries.

Voxelized matrix generation. To generate a voxelized molecular
representation of a microenvironment, a 20Å cube of atoms was fil-
tered from the structure centered on the Calpha and oriented with
respect to the backbone where the side chain was along the +z axis. All
atoms in the center residue are then removed prior to insertion into a
voxelized grid with 1 Å resolution. Each atom is placed into a corre-
sponding element channel except halogen atoms (which are placed
into a multi-atom channel that consist of F, Cl, Br, I), resulting in the
following atomic channels: C, H, O, N, S, P, Halogens. Each atom’s
partial charge and SASA value are placed into the partial charge and
SASA channels, respectively. For all 9 channels, atom values are
gaussian blurred according to their Van-der-Waals radii. The P and
Halogen channels were added to the original MutCompute framework
in order to generalize to ligands and nucleic acids.

Dataset generation. A dataset of 50% sequence similar protein chains
with at least a 3.0 Å resolution was downloaded in November 2021
from the RCSB. This provided us with 22584 protein sequences from
21613 PDB entries. To generate microenvironment datasets, for each
protein chain we prioritized residues that were within 5 Å of a non-
protein entity, via the GEMMI55 library ContactSearch functionality,
and then randomly backfilled until 200 residues or half of the protein
sequence was sampled. A total of 2,569,256 microenvironments were
sampled from 22,584 protein sequences and split 90:10 to generate
our training and test set splits for interfaces and non-interface residues
are shown in Supplementary Table 5.

Model training. The 3D residual neural network was built in Tensor-
flow 2.7. The architecture is provided in Supplementary Fig. 7. Each
model run was parallelized over 4 AMD Radeon Instinct MI50s with a
batch size of 200. Models were trained for up to 8 epochs where each
epoch was saved as a checkpoint with a variety of hyperparameters.
We used a scheduled learning rate that began at 0.001 and had an
exponential decay constant of either 0.3 or 0.5 and an adaptive
learning rate that would lower the learning rate by 0.25 if the training
accuracy did not improve by 0.1% after either 30 K, 50K, and 60K
training instances.Weightswere updatedwith theAdamoptimizer and
all convolutional layers had weight decay regularization of 0.001.

Model benchmarking. To ensure our datasets were enabling the
3DResNet models to generalize across protein:non-protein interfaces,
we monitored the overall wild-type accuracy and wild-type accuracy
for residues at DNA, RNA, and ligand interfaces on our test set. To
select models to ensemble and generate engineering predictions we
generated zero shot-predictions for all mutational data in FireProtDB
and chose the models that had the highest correlation with the single
point mutation ΔTM experimental data. The zero-shot predictions
were generated by taking the prediction assigned to the wild type and
mutant amino acid from FireProtDB and taking the log odds where a
positive log oddmeans a stabilizing prediction and a negative log odd
means a destabilizing prediction. The ensembledmodel had a Pearson
and Spearman correlation coefficients of 0.367 and 0.425 with the
2719 single pointmutations withΔTMexperimental data in FireProtDB
and a Pearson and Spearman correlation coefficients of −0.407 and
−0.457 with the 4889 single point mutations with ΔΔG experimental
data in FireProtDB. Correlation coefficients for the independent
models can be found in Supplementary Table 6.
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Mutational designs
Mutations were designed with two goals: stabilizing the protein away
from the active site and investigating point mutations where predic-
tions differed between the docked and apo protein structures. With
these objectives, we sorted residues based on the log odds between
the predicted and wild-type amino acids. For the stability objective,
predictions that recapitulate known chemical phenomena such as salt
bridges, hydrogen bonding, proline capping were prioritized. An in-
depth discussion of the mutation curation process is described in
Supplementary Discussion 1.

High-performance liquid chromatography analysis
Assay samples were filtered using a 0.2-μm PTFE syringe filter prior to
running the HPLC. The measurement of Norbelladine and 4′-O-
methylnorbelladine was performed using a Vanquish HPLC system
(Thermo Fisher Scientific) equipped with a BDS Hypersil TM C18
(3.0 × 150mm2, 3μm) (Thermo Fisher Scientific) with detection wave-
length 277 nm.Themobile phase consistedof0.1% formic acid inwater
or 0.1% formic acid in acetonitrile over the course of 28min under the
following conditions: 10%organic (vol/vol) for 2min, 10 to 30%organic
(vol/vol) for 13min, 30 to 90% organic (vol/vol) for 0.1min, 90%
organic (vol/vol) for 4.9min, 90 to 10% organic (vol/vol) for 1min, and
10% organic (vol/vol) for 7min. The flow rate was fixed at 0.8mlmin−1.
A standard curve for norbelladine was prepared using synthesized
norbelladine (see ‘Chemical synthesis and NMR analysis of norbella-
dine’). A standard curve for 4′-O-methylnorbelladine was prepared
using commercially available 4′-O-methylnorbelladine.

Reactions for kineticsmeasurements were performed in triplicate
for all enzyme variants. For each variant, 1.5ml reactions containing
3.5 nM of enzyme, 500 µM SAM, 2mM CaCl2, and 15.625, 31.25, 62.5,
125, 250, or 500 µMnorbelladine in PBS pH 7.5 were incubated at 37 °C
for 4 h. Every hour a 200 µl aliquot of each reaction was quenched by
pipetting it into a 1.5ml microcentrifuge tube with 20 µl of 2M HCl.
The concentration of 4′-O-methylnorbelladine was then determined
using HPLC as described.

Liquid chromatography–mass spectrometry
Cells containing the plasmidexpressing eachNb4OMTvariantwith the
P150-RBS(RiboJ) promoter were transformed and plated onto an LB
agar plate containing appropriate antibiotics. The following day, three
colonies from each plate (n = 3) were cultured overnight in LB and
subsequently diluted 50-fold into 1ml LB containing 1mM norbella-
dine. These cultures were grown for 24 h at 37 °C and centrifuged at
16,000× g for 1min, and the resulting supernatant was filtered using a
0.2-μm filter.

Samples were analyzed using an Agilent 6530 Q-TOF LC–MS with
a dual Agilent Jet Stream electrospray ionization source in positive
mode. Chromatographic separations were obtained under gradient
conditions by injecting 10μl onto an Agilent RRHD Eclipse Plus C18
column (50 × 2.1mm, 1.8-μm particle size) with an Agilent ZORBAX
Eclipse Plus C18 narrow-bore guard column (12.5 × 2.1mm, 5-μm par-
ticle size) on an Agilent 1260 Infinity II liquid chromatography system.
The mobile phase consisted of eluent A (water with 0.1% formic acid)
and eluent B (acetonitrile). The gradient was as follows: Hold 95%A/5%
B from 0 to 2min (0.7mlmin−1), 80% A/20% B from 2 to 15min
(0.7mlmin−1), 70% A/5% B from 15 to 18min (0.7mlmin−1). The sample
tray and column compartmentwere set to 7 °C and 30 °C, respectively.
The fragmentorwas set to 100V. Q-TOF datawereprocessed using the
Agilent MassHunter Qualitative Analysis software (Version 10.0). Both
products and the residual substrate of the wild-type reactions were
identified with MS/MS with a collision cell energy of 5 V. To create the
chromatograms (shown in Fig. 4C and Supplementary Fig. 6), signal
counts from the EIC within a window ±0.05min relative to the reten-
tion time of the substrate and products were extracted for each scan
(m/z ratios 260.1281 and 274.1438).

Enzyme kinetics calculations
Kinetic data were fit in KinTek Explorer simulation and data fitting
software v1156. The followingminimalmodel was used as an input. Each
line represents a step in themodel and the forward reaction goes from
left to rightwhile the reverse reaction goes from right to left aswritten.

(1) E + S = ES
(2) ES = EP
(3) EP = E + P
(4) S = P2
Starting concentrations were entered into the software just as the

reactions were performed:
3.5 nM enzyme and 15.625, 31.25, 62.5, 125, 250, and 500M sub-

strate. The output observable was defined as EP + P. Substrate oxida-
tion was modeled in step (4) as irreversible with a best-fit value from
globally fitting data from all variants to derive k4 = 0.00547min−1. To
get kcat/Km and kcat: k−1, k−2, and k−3were locked at 0min−1 (irreversible
reactions). k+3 was locked at 10,000min−1 as to not limit the rate of
turnover. k+1 and k+2 were used as variable parameters in the fitting.
Under these conditions, k+2 = kcat and k+1 = kcat/Km. For estimates of
95% confidence intervals on kinetic parameters, confidence contour
analysis was used with the FitSpace function in KinTek Explorer57.
Confidence contour plots are calculated by systematically varying a
single rate constant and holding it fixed at a particular value while
refitting the data, allowing other rate constants to float. The goodness
of fit was scored by the resulting χ2 value. The confidence interval is
defined based on a threshold in χ2 calculated from the F-distribution
based on the number of data points and number of variable para-
meters to give the 95% confidence limits. For the data given in Sup-
plementary Fig. 12, this threshold was 0.85 to estimate the upper and
lower limits for each parameter. While the model described above is
the simplest model that could describe the data and gave reasonable
estimates for kcat and kcat/Km, there was evidence for substrate inhi-
bition at the highest norbelladine concentration for the two variants
(A53M and triple mutant) that this model did not account for.We then
fit the data for these two variants to the model shown below,
accounting for substrate inhibition.

(1) E + S = ES
(2) ES = EP
(3) EP = E + P
(4) E + S = SE
(5) SE + S = SES
(6) ES + S = SES
(7) S = P2
As before, k+1was allowed to float in the fitting to give kcat/Km, and

k−1 was locked at 0min−1. k+2 was allowed to float in the fitting to give
kcat, and k−2 was locked at 0min−1. k+3 was locked at 10,000min−1, and
k−3was locked at 0min−1. k+4 and k+6were locked at 100 µM−1 min−1, and
k−4 and k−6were allowed to float in the fitting as linked parameters. k+5
was linked to k+1 and k−5 was locked at 0min−1. k−7 was locked at
0min−1, and k+7was locked at 0.00547min−1. With limited inhibition at
the highest substrate concentrations tested, confidence contour ana-
lysis showed that only lower limits on kcat, kcat/Km, and substrate
inhibition could be obtained from the analysis, and these limits are
reported in Table 1.

Protein expression and purification
For bacterial overexpression of Nb4OMT wild type and its variants
(A53M and E36P + G40E + A53M), E. coli BL21 (DE3) was used as the
expression host and its competent cell was transformed with the
corresponding constructed plasmids. A single colony of an E. coli
BL21 (DE3) strain harboring one of the constructed plasmids was
inoculated into 2mL of Luria Bertani broth (LB) medium with
100 µg/mL ampicillin and grown overnight at 37 °C/225 rpm. The
overnight-grown culture (using 1mL) was scaled up into a 500-mL
autoinduction media at 37 °C/225 rpm. Protein expression was
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automatically induced and cells were cultured for 24 h at 25 °C/
225 rpm. The induced cell culture was harvested by centrifugation
at 4000 × g and 4 °C for 20min. Cell pellets were then resuspended
in 200mL of lysis buffer (50mM TRIS pH 8.0, 500mMNaCl, 20mM
Imidazole, 10% Glycerol, 10mM β-mercaptoethanol, and 0.1% Tri-
ton-X). Cells were lysed by sonication and the resulting cell lysate
was centrifuged at 15,000 × g and 4 °C for 20min to obtain the
supernatant that contains soluble proteins. The supernatant was
equilibrated with HisPur™ Ni-NTA Resin (Thermo Fisher Scientific,
Waltham, MA) and washed with 10x bed volumes of wash buffer
(50mM TRIS pH 8.0, 500mMNaCl, 20mM Imidazole, 10% Glycerol,
10mM β-mercaptoethanol). Then protein was eluted by using a
10mL elution buffer (50mM TRIS pH 8.0, 500mM NaCl, 250mM
Imidazole, 10%Glycerol, 10mM β-mercaptoethanol). The eluate was
dialyzed with 3 C protease added to the dialysis cassette, into the
appropriate buffer (20mM TRIS pH 7.5, 100mM NaCl, 10mM β-
mercaptoethanol) followed by size-exclusion fast protein liquid
chromatography. All Nb4OMT variants were stored in 20mM Tris
(pH 7.5), 100mM NaCl and 10mM β-mercaptoethanol.

Protein X-ray crystallography
To identify crystallization conditions of the Nb4OMT variant with tri-
ple mutations (E36P +G40E +A53M), 20mg/ml purified enzyme sam-
plesweredirectly used in sparsematrix screening. Rod-shaped crystals
formed after incubating screening plates at room temperature for
3 days. A crystallization condition with the best crystal morphology
(0.1M Calcium Acetate, 0.1M MES pH6.5, and 20% PEG3350) was
chosen and further optimized by manually setting sitting-drop vapor
diffusion experiments by varying pH and precipitant concentration,
resulting diffraction-quality single crystals in 0.1M Calcium Acetate,
0.1M MES pH 7.0, and 26% PEG3350.

Individual Nb4OMT variant (E36P + G40E + A53M) crystals were
flash-frozen directly in liquid nitrogen after brief incubation with a
reservoir solution supplemented with 30% (v/v) glycerol. X-ray dif-
fraction data were collected at BL 8.2.2 in ALS (Berkeley, CA). X-ray
diffraction data were processed to 2.4 Å using HKL2000. In Phenix
software, phases were obtained by molecular replacement using an
AlphaFold2 model of Nb4OMT as the initial search model. The
molecular replacement solution was iteratively built and refined
using Coot and Phenix refine package. The quality of the final
refined structures was evaluated by MolProbity. The final statistics
for data collection and structure determination are shown in Sup-
plementary Table 4.

Differential scanning fluorimetry
Purified Nb4OMT variants in the concentration of 5 µMwere prepared
in 96-well low-profile PCR plates (ABgene, Thermo Scientific). 10X
SYPRO® Orange (Molecular Probes) was added into each well and
mixed prior to measurement in an RT-PCR machine (LightCycler 480,
Roche). The protein melting experiments were carried out with a
continuous temperature acquisition mode using 10 acquisitions per
1 °C in each cycle from 20 °C to 95 °C. The melting curves of the
Nb4OMT variants were monophasic and Tm values were derived using
Boltzmann equation.

Statistical analysis and reproducibility
All data in the text are displayed as mean± S.D. unless specifically
indicated. Bar graphs, fluorescence and growth curves, dose–response
functions were all plotted in Python 3.6.9 using Matplotlib.
Dose–response curves and EC50 values were estimated by fitting to the
Hill equation y = d + (a − d)xb(cb + xb)−1 (where y = output signal,
b =Hill coefficient, x = ligand concentration, d = background signal,
a =maximum signal and c = EC50), with the scipy.optimize.curve_fit
library in Python.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Protein sequence information was retrieved from the NCBI database:
RamR, 3VVX_A; Nb4OMT, A0A077EWA5. Plasmid sequences relevant
to this study can be found in Supplementary Table 7 and have been
deposited in Addgene (216231, 216232). The Alfalfa caffeoyl coenzyme
A 3′-O-methyltransferase (PDB: 1SUI) was used to assist with docking.
Coordinates for the complex structure of Nb4OMTE36P/G40E/A53M with S-
adenosyl-L-homocysteine (SAH) has been deposited in the Protein
Data Bank (PDB) as 8UKE. Source data are provided with this paper.

Code availability
Code used to generate bar plots and dose–response functions pre-
sented in this text is accessible at https://github.com/simonsnitz/
plotting58. The MutComputeX model as well as the input data of the
norbelladine-4O-methyltransferase are available at https://github.
com/danny305/MutComputeX59.
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